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ABSTRACT  

Recently the rising internet of things technology has pushed the wireless communication systems 

to require more channel capacity and coverage, resulting in using high frequency bands. Moreover, 

deep learning algorithms can be very useful to explore the huge amount of the collected data during 

the experimental measurement and it is observed that they are suitable to non-linear problems. 

Therefore, it brings a new model as a solution for channel characterization and modeling in any 

complex environment. The first contributions of this PhD thesis consist in developing an efficient 

channel characterization and modeling based on deep learning algorithms in LOS (Line-of-Sight) 

scenario. The learning and the validation process are performed using measurements from only 

one environment, enabling robust model learning and prediction results. Then, the model 

efficiency is analyzed and validated using measurements from different environments which are 

not present during the learning process. Finally, the channel characterization is made with the 

predicted and the measured ones. The proposed model achieved a highly accurate channel 

frequency response prediction within different environments without any prior information. The 

model achieves  lower Root Mean Square Error (RMSE) up to 2% compared to the latest proposed 

models in the literature. Hence, an efficient modeling tool is provided for the future wireless 

communication design in complex confined environment in LOS scenarios.  

The second contribution of this PhD consists in developing an efficient model is developed for 2 

× 2 Wireless Body Area Network Multiple-Input-Multiple-Output (WBAN-MIMO) channel, 

based on deep learning algorithms. The model is composed of three deep learning algorithms 

which is known as Stacked Model (SM). The SM predicts simultaneously the channel matrix H in 

underground mine, identifies the positions of the collected data in both Line of Sight (LoS) and 

non-Line of the Sight (NLoS) scenarios. The model is trained and evaluated using the magnitude 

and phase data collected in an underground mine environment within a frequency range of 

2.3 GHz - 2.5 GHz. These measurements, conducted with different antenna configurations in LoS 

and NLoS scenarios, constitute an input to the model. The latest predict the channel matrix H with 

the position and identify whether the channel is in LoS or NLoS. Finally, the path loss and the 

channel impulse response models are compared with the measurements-based ones. The modeled 

channel prediction 
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exhibited lower Root Mean Square Error (RMSE) for channel prediction, and high classification 

accuracy for LoS-NLoS and position identification, respectively. The model offers a powerful 

solution for future wireless designs in terms of channel prediction in underground mine 

environments. 

The methodologies have demonstrated their uses in channel prediction whether Single Input and 

Single Output (SISO) or MIMO in different environments, considering the variety of polarization, 

where the same discussions could be held as those measured.  

This research will serve as a useful reference for the development of wireless 

communication systems in any complex area for their applications. 
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RÉSUMÉ DE LA THÈSE 

La caractérisation et la modélisation du canal de propagation sont d'une grande importance pour 

la conception des communications sans fil, l'analyse de la qualité de la communication et la 

simulation de la performance du réseau. Dans la littérature, le canal de propagation est défini 

comme le milieu où les ondes électromagnétiques voyagent entre les antennes, et sont soumises à 

divers phénomènes physiques qui affectent la qualité de la transmission. Ces phénomènes sont 

catégorisés par les réflexions, les diffractions et les diffusions, causées par la nature des surfaces 

et la densité des obstacles dans le site spécifique. Ils provoquent donc des interférences et des 

distorsions de l'information dans le canal. Plusieurs approches ont été utilisées pour exploiter les 

ressources des réseaux de propagation, par exemple les techniques seule entrée et une seule sortie 

(Single-Input Single-Output ou bien SISO) et multiple entrée et une multiple sortie (Multiple-Input-

Multiple-Output ou bien MIMO). Au cours de la dernière décennie, la communauté des chercheurs 

a multiplié les efforts pour étudier la propagation des canaux sans fil dans les environnements 

intérieurs, les bureaux, les bâtiments et les mines souterraines. De plus, l'effet du corps est 

également considéré dans plusieurs études comme un paramètre important, en particulier pour les 

futurs systèmes de communication dans les mines souterraines. Par conséquent, les canaux des 

réseaux corporels sans fil (Wireless body Area Network ou WBAN) ont été étudiés dans les mines 

souterraines afin de comprendre le mécanisme de propagation résultant de l'effet du corps dans des 

scénarios SISO et MIMO, en considérant les situations (Line of the Sight ou bien LoS) et (No - Line 

of the Sight ou bien NLoS). Par conséquent, la nécessité croissante d'améliorer les conditions 

d'exploitation minière en mettant en œuvre des réseaux de communication souterrains efficaces a 

suscité diverses recherches sur les sites miniers souterrains. Ces études visent à remplacer les 

communications filaires, dont la maintenance est coûteuse et l'évolutivité limitée, par une liaison 

sans fil fiable et sûre. Ces études ont été développées dans le but de développer une meilleure 

compréhension et des solutions pour l'environnement complexe des mines souterraines, qui est 

caractérisé par des surfaces rugueuses et aléatoires. Les chercheurs ont travaillé sur différentes 

configurations de systèmes d'antennes telles que MIMO, SISO. De plus, des scénarios de LoS et 

de NLoS ont été utilisés pour stimuler le comportement réel du signal à bande étroite ou à large 

bande dans n'importe quelle situation. Bien que ces algorithmes permettent une bonne 

compréhension des canaux sans fil, ils restent limités à un seul environnement, et il est difficile 
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d'appliquer ou de conclure les mêmes résultats dans des environnements différents. En 

conséquence, ces modèles de canaux de propagation ne seront pas suffisants pour concevoir le 

système d'information. En conséquence, ces modèles de canaux de propagation ne seront pas 

suffisants pour concevoir le système sans fil dans n'importe quel environnement en raison de la 

croissance rapide des réseaux et des installations pour les canaux de propagation sans fil qui 

comportent des normes plus élevées pour une efficacité spectrale élevée. 

De nos jours, l'Intelligence Artificielle (IA) fait son apparition dans notre vie quotidienne. Nous ne 

pouvons pas regarder un film ou une émission de télévision sans qu'un robot IA n'apprenne le 

schéma de notre routine quotidienne pour finalement nous faire des suggestions le lendemain, c'est 

fascinant. Cependant, l’arrière-plan de ces applications est basé sur des algorithmes, à savoir des 

algorithmes d’apprentissage automatique (Machine Learning ou bien ML) qui ont été utilisés dans 

plusieurs applications, telles que la reconnaissance faciale, la détection d'objets, etc. En fait, ces 

applications collectent plus de données afin de performer et de bien prédire le choix du film que 

nous voulons regarder. En outre, il existe deux types de problèmes de prédiction : les problèmes 

de classification, où la cible de sortie est une étiquette de classe discrète, et les problèmes de 

régression, où la cible est une quantité continue. Par conséquent, comme nous vivons également à 

l'époque de la technologie de l'Internet des objets (Internet of things ou bien IOT), le domaine de 

l'IA est très utile pour apporter une nouvelle solution dans la vie quotidienne. Cela crée de 

nouvelles technologies massives où plusieurs objets doivent être connectés en même temps entre 

eux et aussi avec le serveur hôte. Par conséquent, le besoin de capacité de canal et de couverture 

devient crucial pour les futurs systèmes de communication sans fil dans les environnements 

intérieurs. L'algorithme d'apprentissage profond (Deep Learning ou bien DL) est un sous-domaine 

de la ML qui structure les algorithmes en plusieurs couches pour créer un réseau neuronal artificiel 

capable d'apprendre et de prendre des décisions intelligentes par lui-même. 

Cette thèse étudie l'application de l'algorithme DL pour modéliser le canal intérieur dans les 

couloirs et les environnements souterrains dans des configurations SISO et MIMO. Il s'agit d'un 

travail nécessaire visant à concevoir d'abord un modèle basé sur les données pour prédire le canal 

dans tout environnement complexe dans un scénario SISO. Ensuite, un modèle empilé (Stacked 

model ou bien SM) est conçu pour le canal WBAN-MIMO afin de prédire, simultanément, le sous-
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canal de la matrice H, la position de l'endroit où les données sont collectées (classificateur de 

position) et s'il s'agit d'une situation LoS ou NLoS (détection LoS-NLoS).



1 

 

CHAPTER 1 INTRODUCTION 

The propagation channel characterization and modeling are of great importance for wireless 

communication design, analyzing the communication quality and simulating the network 

performance. In the literature [1], the propagation channel is defined as the medium where the 

electromagnetic travel between antennas, and are subject to various physical phenomena that affect 

the transmission quality. In indoor environment, these effects known as propagation mechanisms. 

They are categorized by reflections, diffractions, and scattering, caused by the nature of the 

surfaces and the density of the obstacles within the site specific. Therefore, it causes interferences 

and distortions of the information within the channel. Several approaches have been used, 

leveraging the resources from propagation networks, e.g., Single-Input-Single -Output (SISO), 

Multiple-Input-Multiple-Output (MIMO) techniques [2-6]. In other studies, deterministic 

algorithms are used to describe the signal behaviour at a given environment and provides an 

appropriate coverage criterion in that environment. The determinist models are based on 

electromagnetic wave propagation theory [7,8]. Their application necessitates a thorough 

understanding of the propagation environment and allows precise and accurate signal propagation 

predictions in the channel corresponding to the considered environment [7,9]. Ray Tracing (RT) 

is used in the design of propagation environments and wireless networks [8,10-13]. It is among 

the most deterministic and efficient techniques. In fact, the RT technique is complex, it allows 

calculating the received power and to perform statistical operations on the received signal strength 

(RSS). The RT models are designed with a different approach depending on the surface roughness 

of the environment. Several research reported [9,14-16] on channel propagation modeling and 

characterization inside confined environment with smooth surfaces. From an electromagnetic 

perspective, there are no smooth surfaces. The surface roughness depends on the relationship 

between the standard deviation of the roughness high and the wavelength [17-19]. Indoor mm-

wave channel modeling, on the other hand, has been extensively researched in the literature to 

forecast the propagation characteristics in diverse places. The majority of known research 

publications imply that deterministic modeling of mm-waves channels is problematic. In the 

literature and standardization domain, Saleh-Valenzuela [20] and Shoji [21] models are among the 

most often used models. In fact, the channel measurement may be performed to model a specific 

site, depending on whether the measured signal is narrowband or wideband [1,22,23]. Thus, 
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narrowband measurements often correlated with flat fading frequency, where the wideband 

measurements are specifically used to describe the multipath fading phenomena [1]. In this area, 

the Channel Impulse Response (CIR) is generally measured either in the time domain [1,24] or 

obtained from using Inverse Fourier (IFFT) of the measured Channel Frequency Response (CFR) 
for large bandwidth [ 𝑓𝑓0 −  𝑓𝑓𝑛𝑛] [5,25]. On the other hand, Continuous Wave (CW) channel 

measurements are used to validate experimentally deterministic models. Generally, the CW 

measurements are performed by moving continuously the receiver from the transmitter to assess 

the power decay, and by the effect of propagation mechanisms such as reflections, scattering, and 

diffractions. Therefore, the collected data aim to validate some analytical models experimentally 

including ray tracing and edge diffractions model [8,9,26-28]. 

In the past decades, the research community has multiplied efforts in studying wireless channel 

propagation in indoor environment, offices, buildings, and underground mines [5,6,29-34]. 

Moreover, the body effect is also considered in several studies as an important parameter [35]. 

Particularly, for future communications systems in underground mine environment. As results, 

Wireless Body Area Network (WBAN) channels have been studied in underground mine 

environments to understand the propagation mechanism resulting by the body effect [6,29-32,35] 

within SISO and MIMO scenarios, considering LoS and NLoS situations. However, a growing 

need to enhance mining conditions by implementing effective underground communication 

networks prompted various investigations in underground mine sites. The study’s aim to replace 

the wired communications, which is costly to maintain and has limited scalability [36], by a 

reliable and safe wireless link. These studies were developed in the purpose to develop a better 

understanding and bring solutions for the underground mine complex environment. This is due to 

the roughness and the randomness of the underground mine surfaces. The researchers worked 

under different antenna systems configurations such as MIMO, SISO [5,20,23,37-42]. Line of 

Sight (LoS) and Non-LoS scenarios [6,29-32,35] were used to stimulate the real behaviour of the 

narrowband or broadband signal within any situation. Although, these characterizations provide a 

good understanding of the wireless channel, it remains limited to only one environment or a part 

of the underground mine environment. This later, makes it difficult to apply or conclude same 

results in different environments. As results, these propagation channel models will not be 

sufficient to design the wireless system within all the underground mine environments due to the 
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fast-growing networks and facilities for wireless propagation channel which carry higher standards 

for high spectral efficiency. 

Nowadays, the Artificial Intelligence (AI) is emerging in our daily life. It's interesting that we can't 

watch a movie or a TV show without an AI robot learning the pattern of our daily routine and then 

offering suggestions the next day. However, the back end of these applications is based on 

algorithms, namely Machine Learning algorithms (ML) which were used in several applications, 

such as facial recognition, object detection, etc. As a matter of fact, these applications collect more 

data in order to perform and effectively predict the choice of the movie that we want to watch. 

Moreover, two types of prediction problems exist, classification problems where the output target 

is a discrete class labels and regression problem where the target is continuous quantity. Therefore, 

as we also live-in time of the Internet of Objects technology (IOTs). However, the dataflow 

through IoTs makes the AI field is very helpful to bring a new solution in daily life. This creates 

massive new technologies where several objects have to be connected at the same time between 

them and also with the host server. Consequently, the need of channel capacity and coverage 

becomes crucial for future wireless communications systems in indoor environments. Due to the 

amount of the dataflow, the use of the Deep learning (DL) algorithms are helpful to the capability 

to create a model that can learn and predict the wireless communications channels.  

This PhD thesis studies the application of DL algorithms to model the indoor channel within 

corridors and underground environments in SISO and MIMO configurations. It is a necessary work 

aimed to design for first a data-driven model to predict the channel within any complex 

environment in SISO scenarios. Then, a Stacked Model (SM) is designed for WBAN-MIMO 

channel to predict, simultaneously, the subchannel of the matrix H, the position of where the data 

is collected (position classifier) and whether it is in LoS or NLoS situation (LoS-NLoS detection).   

1.1 Motivation 

The channel characterization based both on theoretical approaches and real measurements are 

going to become critical in the future. Due to the availability and removal of equipment from one 

site to another, experimental measurements are usually difficult to perform. The simulation method 

will not be sufficient to deal with the reality of the future communication system caused by the 

difficulty to simulate and model the channel within any complex environments and different 
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frequency range. In particular, the channel characterisation depends on highly experimental site-

specific measurements. As results of these measurements campaign, numerous amounts of the data 

are collected, where different complex environments were used under different antenna 

configuration (MIMO - SISO) and LOS-NLOS scenarios. These collected data can be used to 

develop a suitable technique which improves the design of the wireless channel propagation 

system within any complex environments in different scenarios. As literature point of view 

addresses, the propagation channel is considered as a non-linear problem [1,25,43]. Therefore, to 

design wireless communications systems, more experimental data is needed and continuously 

looking forward to improving the transmission link by resolving a non-linear problem. As results, 

DL algorithms can be very useful to explore the huge amount of the collected data. It is observed 

that it is suitable to non-linear problems, to bring a data driven model as a solution for channel 

characterization and model in any complex environment. Moreover, DL algorithms can also be 

used to enhance the radio-localization in any environments to bring more safety for miners in case 

of underground mine hazards [6]. 

1.2 Research Problems and Objectives  

Freshly applied to channel propagation field, the Deep Learning applications were seen in different 

perspectives [44-57]. However, it is always a problem when it comes to understanding the way to 

develop a model which can be helpful for now and for future communications. Even though, 

researchers made it clear that there is a large possibility to create a model which can reproduce and 

predict same CFR and CIR, with great prediction accuracy, many uncertainties are questioned 

which bring doubt on the performance of the proposed models in the literature. The uncertainties 

are that these modeling techniques tend to update once new data are available, the input data 

processing is not well demonstrated, and the training process used in all environments. Therefore, 

it increases the complexity of the DL algorithms in terms of the computational simulation and the 

loss on the generalization efficiency. However, the need of a data driven model which can predict 

with high accuracy the channel in any complex environment become crucial. This can be designed 

to predict any new experimental data collected in new environment. Moreover, as Moulay, et al 

[35] have specified, a wireless system needs to provide a reliable service  to ensure a secure 

environment work in underground mine, e.g., the localization of the miners for prompt intervention 

in any emergency event, as well as collision avoidance systems that safeguard the miners from 
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passing mining machinery. To overcome, these limitations, a DL algorithm combined with strong 

data processing algorithms for the input data is designed specifically to be able to predict in SISO 

and MIMO scenarios, also considering the localization problem, which is crucial in underground 

mine environment. 

The implementation of the DL algorithms requires details and strong knowledge of the channel 

characterization and modeling. As results, the DL model establishment allows reducing the cost to 

build an efficient wireless systems, by its accuracy to predict the channel. Specifically in 

underground mine environment, where the mine geometry is characterized by the randomness. In 

fact, deterministic approach requires high complexity computations to implement it and a 

stochastic model is not really reliable enough to provide more accuracy in that environment.   

1.3 Thesis Contributions 

To the best of the authors “knowledge,” no such algorithm was applied to model the channel 

frequency response within any environment. The novelty of this thesis consists on SISO and 

MIMO Channel prediction models. The main contributions are 

1.3.1 In the case of SISO channel systems: 

In this case, the SISO channel is proposed in chapter 4. The novelty of this study consists of:  

First, a novel CFR model is proposed for different environments such as smooth, rough corridors 

and underground mine environments. The Line-of-Sight Single Input Single Output (LOS-SISO) 

scenario has been carried out for different antenna configurations and frequency bands. Second, a 

learning framework is designed based on LSTM combined with linear networks. The learning 

curve is performed in only one environment, which is crucial in the deep learning field to 

demonstrate the ability of the model learned from the collected CFR. The model is evaluated for 

CFR prediction in different environments, considering different antenna radiation patterns. Hence, 

three different antenna combinations were used:  

1) Directional transmitter versus Directional receiver antennas (D vs. D). 

2) Directional transmitter versus Patch receiver antennas (D vs. Prx) for the corridors 

environments. 

3) Patch antennas used in the underground mine environment (P vs. P).  
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1.3.2 In the case of WBAN-MIMO channel systems: 

In this case, the WBAM-MIMO channel is proposed in chapter 5. A stacked model (SM) based on 

LSTMs deep learning networks is designed. The model is validated with extensive WBAN-MIMO 

channel measurements published by Moulay et al [35]. The SM intent to bring a new concept for 

the wireless communication system in underground mines environments. Moreover, the SM 

composed of three parallel models, where only one input data is used to predict simultaneously the 

transmitter position, LOS-NLOS scenario and the channel matrix (H). The collected magnitude 

and phase of the Channel matrix were used in the SM to empower the model prediction in terms 

of accuracy. Therefore, the SM aim to predict the channel magnitude and phase for the channel 

matrix (H), simultaneously. Then, it uses this information to predict the positions of the received 

H and whether it is in LOS or NLOS scenario.  

1.4 Thesis Structure 

Six chapters contribute to this study. In the first chapter, the introduction, the motivation of the 

work, the problems and the engineering contributions of this thesis are outlined. The following 

chapters deal with the following topics in detail:  

Chapter 2 explains the channel characterization and sounding   

Chapter 3 provides the applied Deep Learning algorithms in times series data 

Chapter 4 presents the channel prediction model for SISO systems within LOS scenarios. The 

channel characterisation was made to compare the measured and predicted channel frequency 

response within rough, smooth indoor and underground mine environments using different antenna 

configurations. 

Chapter 5 presents the channel prediction model for WBAN -MIMO 2x2 systems within different 

antenna setups. SM framework is designed to predict the channel matrix H, the position and LOS-

NLOS identification. Considering different antenna’s setups, such as linearly polarized (Lin) patch 

antennas MIMO system, circularly polarized patch antennas MIMO system, co-polarized (CP) and 

90 degrees rotated (90 deg) configurations. 

Chapter 6 presents conclusions and discusses the open research problems 
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CHAPTER 2 RADIO WAVE PROPAGATION CHANNEL 

In general, any wireless communication system includes three parts: Transmitter (Tx), Receiver 

(Rx), and the wireless channel in between to connect them, as shown in Figure 2-1. The wireless 

channel, unlike the Tx and Rx, cannot be engineered to help the devices make a better trade-off 

between reliability and performance. However, consistent knowledge of the wireless propagation 

channel is the foundation of the design and analysis of any wireless communication system. This 

chapter will attempt to provide a unified and conceptually simple explanation of a morass of 

concepts around wireless channels. 

2.1 Wireless Propagation Channel Phenomena 

The multiple  radio channel path may be modeled as a linear time invariant impulse response h (t) 

filter if the channel exhibits small or no changes over time and linear time-varying h (t) if the 

distance d is varying with the time [3,4] . As illustrated in Figure 2-1. the received signal y(t) is 

the convolution of the transmitted signal x(t) and the channel impulse response h(t,τ), expressed 

as: 

 y(t) = x(t)*h(t, τ) 
(Chapter 

2.1) 

Where the variable t represents the time variation due to motion of the receiver, and τ represent 

the channel multipath delay for a fixed value of t. The received signal consists of a variety of 

attenuated, time delay replicas of the transmitted signal that have been shifted from phase to phase. 

The baseband impulse response model of a multipath mobile radio can be expressed as [1,4,5]:  

Figure 2-1 Wireless communications system 
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 h(t,τ) = � an(t, τ)e-jθn(t,τ)

N(t)

n=1

δ�τ-τn(t)� (Chapter 

2.2) 

 an(t, τ) and θn(t, τ) are the amplitude and phase of the nth arriving multipath component, δ is the 

Kronecker delta function, and τn(t) is the excess delays. In fact, instead of the theoretical delta 

function, a small pulse is used for research. The propagation channel is described by its impulse 
response h(t) which is the sum of time varying multipath impulse N(t). t denotes the time of the 

various paths of the transmitted signal. Figure 2-2 shows an example of the impulse response and 

the frequency response for SISO-LOS channel within an indoor environment. The method 

acquiring to calculate the impulse response will be discussed in the channel sounding section. Due 

to the nature of wireless propagation, fading is inevitable in wireless channels. Fading refers to the 

time variation of the received signal power induced by shadowing or multipath fading. Generally 

speaking, fading can be categorized into large-scale fading, consisting of path loss and shadowing, 

and small-scale fading [1,6]. Therefore, in total we have three phenomena in wireless channels. 

Path loss (PL) and shadowing belong to large-scale fading category since they are dominant as the 

mobile station moves for several dozen wavelengths. The PL is the attenuation in the transmitted 

signal as it propagates from the TX to the RX and is observed over a distance, while shadowing is 

the slow variations obtained over distances due to large terrain features such as buildings and hills. 

Large scale fading is very important for a system such as cell coverage area, outages and handoffs 

which are influenced by these effects. In the opposite, small scale fading is a result of multipath 

propagation. Multipath fading refers to fast variation obtained over distance due to the constructive 

and destructive interference of the multiple signal paths between the Tx and Rx. These variations 

are observed over a distance. Small-scale fading plays an important role in determining the link-

level performance according to bit error rates (the effect of inter symbol interference), average 

fade duration, and so on . 
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2.1.1 Large-scale Channel Characterization 

The path loss (PL) is defined as the difference (in dB) between the effective transmitted power and 

the received power [1]. It is obtained from the path gains, by averaging over the frequencies, 

snapshots and the number of antennas, and is mathematically represented as follows [1,6,7]: 

   PL�d(z)� =  -20 log10
1

NsNf
���Hj

z(n)�

Nf

n=1

Ns

j=1

 (2.3) 

Where PL�d(z)� is the PL at the position of z, Ns and Nf are the number of the snapshot and 

frequency samples, respectively. Hj
z(n) is the measured S parameters (S21 ) for the position z [1,6-

10]. Therefore, the path loss is modeled as a function of the distance between Tx and Rx as follows 

[1,8] 

 PL(d) = PLdb(d0) + 10.β log10 �
d
d0
� + X (2.4) 

Where PL(d) is the mean path loss at the reference distance d0, d is the distance where the path 

loss is calculated, β is the path loss exponent which determined by using linear regression analysis. 

X (dB) is a zero mean Gaussian variable. The model in equation (2.1), assumes the path loss is 

Figure 2-2 Channel impulse and frequency responses for two antenna configurations. 
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constant over a given distance. However, the presence of obstacles within the environment leads 

to random variation of the received power. This effect is termed as shadowing. Several experiments 

showed that shadowing can be modeled as lognormal random variable [1,8]. It is known that 

shadows are distributed in a normal or Gaussian distribution in the log domain [11], and thus 

shadows can be modelled on as a log-normal distribution.  

2.1.2 Small-scale Channel Characterization 

Multipath fading comes as a result of small path length differences between rays coming from 

scatterers surrounding the transmitter and the receiver [1]. These variations contribute to major 

phase differences in the order of a few wavelengths (fewer than 10 wavelengths). Small 

movements of one of the antennas can then lead to drastic variation in the obtained signal envelope 

[12,13]. Their random phases and amplitudes give rise to rapid fluctuations in the received signal 

strength, thereby inducing small-scale fading and signal distortion. Small-scale fading is 

approximately superimposed on the constant large-scale fading, as seen in Figure 2-3. The small-

scale fading caused by the multipath components is manifested by steep variations in the signal 

obtained by small intervals, by spontaneous frequency changes due to the Doppler effect on the 

various multipath signals, and time dispersion due to the various delays. The involvement of locals 

such as mountains and buildings often inhibit the line of sight (LoS) from Tx to Rx. Therefore, a 

non-LoS (NLoS) propagation path will appear between the Tx and Rx. The waves would then 

disperse by reflection, diffraction, and scattering. This refers to waves from different directions 

and different delays. At the receiver antenna, the waves merge to produce a composite received 

signal. 
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2.1.2.1 Rician K-Factor. 

The Rician k-factor describes the fading distribution of the power in presence of a dominant 

multipath component. The effect of a dominant signal arriving with many weaker multipath signals 

gives rise to the Rician distribution [1,8]. The Rician K-factor is expressed as follows [9,10] 

 K =
PD

2PR
 (2.5) 

Where PD corresponds to the power of the LOS component and 2PR is the power of the multipath 

component. 

2.1.2.2  Time dispersion parameters 

RMS delay is the time dispersive property of wideband multipath channel [1,8] and the coherence 

bandwidth is considered as the range of frequencies over which the channel can be considered flat. 

The RMS delay spread is equal to the square of the second central moment of Power Delay Profile 

(PDP)  which is calculated using this formula [1,14] 

 PDP(t) =  ‖h(t)‖2 (2.6) 

Figure 2-3 Small-scale and large-scale fading 
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Where ‖ . ‖ and   h(n) are the modulus operation and  the impulse response, respectively. The 

signal power (Pt) of each multipath is shown against their respective propagation delays (τ)in a 

typical PDP plot. Figure 2-4 shows a sample PDP plot. It illustrates the received signal with various 

strengths as it travels across a multipath channel with various propagation delays (due to the 

environments) [1].  The RMS delay is calculated using the equation reported in [1]: 

 τRMS = �τ2� -τ�2  (2.7) 

Where τ2� represent the second moment of the PDP, τ� is the mean excess delay, and is expressed as 

follows [2]: 

 τ� =
∑ ak2k τk
∑ ak

2
k

=  
∑ P(τk)k τk
∑ P(τk)k

 (2.8) 

P(τk) is the relative amplitude of the Multipath components (MPCs) at the corresponding delay 

τk. The coherence bandwidth was evaluated for the 50% correlation using the RMS delay spread: 

 Bc ≃
1

5τRMS
 (2.9) 

 

 

Figure 2-4 PDP for a multipath channel with 3 paths  
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2.2 Channel Sounding Techniques 

Most research and studies on wireless communications modeling are based on the measurement  

campaign of the channel transmission characteristics. Channel sounding plays a crucial role in 

wireless engineering where the measurements of radio propagation channels provide 

understanding of and insights into the characteristics of radio channels in different environments. 

Channel investigation started at the end of the 1960s [15], as did  channel sounding when 

researchers had to measure just the received field strength. Since then, the complexity of the 

systems and the required channel models has evolved considerably. New class of channel sounders 

has seen the light in research and industry to accommodate the transition towards wideband 

systems which require power delay profile measurement. In general, the impulse response of a 

channel can be approximated by equipment designed on the basis of one of the following two main 

measurement techniques in time and frequency domain.  

In the time domain or the frequency domain, the properties of wideband channels can be measured 

to generate the time-varying channel impulses, h (τ, t) or transfer function H(f, t), respectively. 

The results are technically similar in both fields and can be translated from one domain to the other 

via the Fourier transform (FT). The practicality of the steps is therefore very different. 

Time domain measurements obtain the channel impulse response presented in equation (2.2) by 

exciting the channel with short pulses or pseudo-noise sequences then recording the received signal 

with a sampling oscilloscope (Figure 2-5) [16,17]. This technique is conceptually simple but in 

practice the generation of ultra-narrow pulses is a challenging task in terms of analog to digital 

converters sampling rates and speed. Moreover, the requirements of RF and analog circuits are 

considered to be complex. 
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On the other hand, frequency domain measurements  usually use a chirp-like tone, or other multi-

connect signals to sound the channel across a number of frequencies [18]. The vector network 

analyzer (VNA) makes this method easy to apply. VNAs essentially sound the channel by slowly 

balancing the interest level and calculating the transmission coefficient S21   between its two ports. 

The greatest downside of the VNA schemes is that, depending on the number of measurements, 

any measurement sweep takes a considerable amount of time [8]. Figure 2-6 presents the frequency 

channel domain sounder where a VNA is used to measure the channel impulse response. By 

stepping through individual frequencies, the sweeper scans a specific frequency band. The S-

parameter test set transmits a known signal level at port 1 for each frequency and monitor the 

received signal at port 2. These signal levels allow the analyzer to determine the complex response 

S21  of the channel over the measured frequency. Then, the response is converted into the time 

domain by applying the inverse discrete Fourier transform which gives a limited channel impulse 

response [1,8]. 

 

 

 

Figure 2-5 Example of pulse transmission system for wideband time-domain measurements [2] 
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CHAPTER 3 A REVIEW OF DEEP LEARNING ALGORITHMS FOR 

CHANNEL CHARACTERIZATION AND MODELING   

As discussed previously, experimental measurements are performed to collect the data in both 

SISO and WBAN MIMO channels. To achieve a better understanding, some theories, and concepts 

of the Artificial neural networks (ANNs) are explained in detail. In research problems (chapter 1), 

it is mentioned that strong data processing and Deep Learning (DL) architectures are needed to 

develop a model to achieve high prediction accuracy and capable of providing a reliable channel 

information to design a wireless system.   

For this purpose, it is crucial to understand the background of DL to apply it to channel 

characterization. The important part in this model is the measurement CFR which is considered as 

an input of our model in both classification and regression cases. Then, considering the CFR data 

nature and the field of knowledge, a proper model is selected to predict and classify the input data. 

However, the model is considered as a specialised learning representation from the CFRs, and the 

algorithm as the learning process, as noticed below. 

 Model = Algorithm(CFRs) (3.1) 

Understanding the measured CFR data and how to gather it, is the best method to pick the 

algorithm for the DL model. Although, the propagation channel characterization is discussed 

previously, which gave us great understanding of the channel, it will not be enough for applying 

the DL. During the measurement campaign up to four thousand points were taken at each position 

for each measurement. These measurements were taken during the channel measurement for SISO 

and WBAN-MIMO cases. The channel measurements were done with the VNA by a frequency 
scan from f0 to fn, which is made within a temporal interval in each position. However, frequency 

time sweep known as sweep time is configured in to carry out a frequency scan. The time 

characteristic of the channel measurement made the data look like a sequence, where several 

channel frequency records were taken sequentially at each position. As time series data, the 

collected data were used in different architecture with Recurrent Neural Network (RNN), such as 

Long Short-Term memory (LSTM) and Gated Recurrent Unit (GRU). They are used for channel 

state information which considers the channel response as time series data [2-8]. Using this 
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concept, the choice of the type of the DL architecture is narrowed. Two primary DL topics, 

classification and regression problems, are explored to fulfil the goal stated in the introduction. 

Hence, this chapter is organized as follows: First, some specialized models for sequence processing 

are discussed.  Second, the sequence modeling using LSTM and Encoder-decoder architectures 

are discussed. Finally, a classification and regression metrics are presented. 

3.1 Neural Network for Sequence Modeling  

ANNs are, as the name implies, artificial networks that seek to grossly replicate the decision 

mechanism in the biological (human or animal) central nervous system’s nerve cell (neuron) 

networks, which is a highly parallel process.  Over the last twenty years or so [1], the use of ANNs 

has expanded in a wide variety of industrial and service fields. ANNs are a robust, practical, and 

reliable method for estimating a target function. The ANN parallelism allows the use of highly 

parallel computer systems to train and evaluate ANNs. The backpropagation learning algorithm 

makes the model robust against errors and noise in the training data. Since there are various of 

artificial neural network structures for time series prediction, it is necessary to summarize their 

characteristics to better understand how the ANN algorithm operates and achieves high accuracy 

prediction. 

3.1.1 Structure of Artificial Neural Networks 

McCulloch and Pitts in 1943, implemented an artificial neural network system, which is analogous 

to biological neurons based on a complex structure Table1 . The ANNs system is thought to be a 

collection of identical structural elements called neurons that are linked together in a manner 

similar to the human nervous system’s cells. It is also composed of a succession of layers 

connected in such a way that each neuron holds its input from the output of the preceding neuron. 

In this case, each neuron acts independently of the others so that the entire neurons form a compact 

structure.  The information is stored in a distributed way in the network in form of synaptic 

coefficients. As shown in Figure 3-1, each neuron receives an input in vector form and then 

calculates a weighted sum of its inputs, as a result of which, the outcome is passed through the 

activation n function to give the prediction output. 
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Table 3-1 Artificial versus biological nomination 

Artificial neuron Biological neuron 

Connection weight Synapses 

Output signal Axons 

Input signal Dendrites 

Activation function Soma 

3.1.1.1 Activation function  

An activation function is used to transform the product of the weighted sum into the output value. 

This conversion is carried out by measuring the state of the neuron by adding non-linearity in the 
action of the neuron. The bias bk acts a threshold role, when the result of the weighted sum exceeds 

this threshold, the argument of the transfer function becomes positive or null; otherwise, it is 

considered negative. Finally, if the result of the weighted sum is 

1- below the threshold, the neuron is considered non-active, 

2- around the threshold, the neuron is in a transition phase, and 

Figure 3-1 Perceptron’s schematic input/output structure [1] 
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3- above the threshold, the neuron is considered active. 

There are several types of transfer functions that can be used in ANNs. Frequently used activation 

functions are shown below: 

3.1.1.1.1 The nonlinear sigmoid function 

The non-linear sigmoid function is frequently used in ANNs, particularly in networks using the 

backpropagation algorithm [9].  Unlike the sigmoid function, the other functions give only a binary 

output which makes it more difficult to estimate optimal weights. The sigmoid function is defined 

by :  

 σ(x) =
1

1 + e-x (3.2) 

3.1.1.1.2 SoftMax function 

The SoftMax function [10] takes a vector of K real values and reduces it to a vector of K real 

values that add up to one. The SoftMax turns the input values, which might be positive, negative, 

zero, or higher than one, into values between 0 and 1, allowing them to be understood as 

probabilities. If one of the inputs is tiny or negative, the SoftMax converts it to a small probability; 

if one of the inputs is high, it becomes a great probability; nonetheless, it will always be between 

0 and 1. Soft-argmax, or multi-class logistic regression, is another name for the SoftMax function. 

This is because the SoftMax is a multi-class classification generalization of logistic regression, 

Figure 3-2 The sigmoid function 
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and its formula is extremely similar to the sigmoid function used in logistic regression. The 

SoftMax formula is as follows [10-14]: 

 σ(xi) =
exi

∑ exjk
j

           j = 0,1,… . k (3.3) 

Where  xi represents the input vector element, and k is the number of classes in the multi-class 

classifier. 

3.1.1.1.3 Hyperbolic Tangent function (Tanh): 

The Tanh functionality is yet another potential function that can be used across layers, of a neural 

network as a nonlinear activation function [15]. In fact, it shares a few things in common with the 

role of sigmoid activation. Both seem quite equivalent. However, while the sigmoid function maps 

input values between 0 and 1, Tanh maps values between -1 and 1. The Tanh function is described 

as follows.  

 σ(x) =
ex-e-x

ex + e-x (3.4) 

3.1.1.1.4 Rectified Linear Units 

The Rectified Linear Unit (ReLu) [16] activation function has been the most widely used activation 

function for ANNs. Compared with the sigmoid activation function, it generally achieves better 

performance and generalizations in ANNs. The key principal behind the ReLu activation function 

is to perform a threshold operation on each input variable where values below zero are set to zero.  

Figure 3-3 Tanh activation function 
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 σ(x) = max(0, x) = �xi  if xi > 0
0 if xi < 0  (3.5) 

 

3.1.2 Single perceptron 

The best known and most primitive type of ANNs is called a perceptron [1,17,18]. As illustrated 

in Figure 3-1, it takes an input vector values X =  (x1, x2, … , xn , ) ∈ Rn and it has internal weights 

W =  (w0, w1 , w2, … , wn , ) ∈ Rn+1 and the neuron threshold known as the bias. The perceptron 

output function is a linear function that returns 1 for values above a certain threshold and 0 

otherwise [17,18] :   

 y(x) = �1, w0 + w1x1 + ⋯+  wnxn + b > 0
0, otherwise  (3.6) 

Where b is considered as a threshold of each neuron. Defining x0  =  1 and X =

 (x0, x1, x2 ,… , xn , ), the output function can be simplified to  [1,17,18]:  

 y(X) = g(W ∙ X) = g��wixi

n

i=0

� (3.7) 

Where g(∙) is the activation function. Figure 3-1 shows a graphical representation of a perceptron. 

The contribution of the input xi to output y is represented by each weight wi . These weights 

Figure 3-4 ReLu activation function 
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determine how effectively the perceptron represents the target function. The hypothesis space is 

defined as the area that contains all potential output functions. The hypothesis space of a single 

perceptron contains only linear functions and is therefore quite limited. A classical example for 

the restriction of the perceptron is the XOR function x1  ⊕  x2 , which can’t be separated by a 

linear function.  

To be able to use backpropagation to train multiple perceptrons, the output function y of a 

perceptron needs to be differentiable. Therefore, y needs to be continuous. When redefining the 

output function as  [1,17,18]:  

 y(X) = σ ��wixi

n

i=0

� (3.8) 

Different activation functions mentioned in the previous section, such as sigmoid, and hyperbolic 

Tangent functions can be used. Only a linear output function can be produced by multiple layers 

of neurons with a linear activation function. A highly nonlinear function is frequently required to 

provide a good approximation of a target function. With a nonlinear activation function, a 
multilayer perceptron can produce a nonlinear output function. Usually, the sigmoid function σ is 

used, since its derivative can be computed easily as  [1,17,18]: 

  
dσ(y)

dy
= σ(y) ∙ �1-σ(y)� (3.9) 

Where the function is nonlinear. Gradient descent can be used to train the weights of a single 

perceptron. It is an optimization algorithm used in order to find a local minimum of a function by 

taking the gradient at the current position and shifting the weights in the opposite direction, until 

a minimum is found. The function is not convex in general, and only a local minimum is 

discovered. To use gradient descent, you will need a loss function that represents the quality of the 

forecast for a given set of weights w. Different loss function can be used. It depends if the 

prediction is the classification and regression problem. Usually, squared error over all predictions 

for the training data D is used. let yd be the label of the input vector d =  (x0, … xn) ∈ D, and y�d 

be the predicted label such as  [1,17,18]:  
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 y�d = σ ��wixi

n

i=0

� (3.10) 

The squared error loss function is then defined as  [1,17,18]: 

 floss(W) =
1
2
�(yd- y�d)
d∈D

2
 (3.11) 

The gradient of the loss function floss  consist of the partial derivatives with respect to the weights 

wi  : 

 ∇floss(W) = �
∂floss
∂w0

,
∂floss
∂w1

, …  
∂floss
∂wn

�
T

 (3.12) 

Each partial derivative can be calculated by applying the chain rule 

  
∂floss
∂wi

=  
∂
∂wi

�
1
2
�(yd- y�d)
d∈D

2
� (3.13) 

 
∂floss
∂wi

=  �(yd- y�d)
d∈D

∂
∂wi

(yd- y�d)  (3.14) 

 
∂floss
∂wi

=  �( y�d-yd)
d∈D

 .
∂ y�d
∂wi

  (3.15) 

Therefore, the weights can be updated using the derivatives by the following rule  

 ∆wi = -α ∑ ( y�d-yd)d∈D  . ∂ y�d
∂wi

 (3.16) 

  w'
i = wi + ∆wi (3.17) 

Where α is a learning rate that influences the size of the gradient descent steps. Moreover, if α is 

too small the algorithm will be very slow to converge towards a local minimum. On the other hand, 

if it is too large, the local minimum can be overstepped. As it will be discussed, in chapter 4 and 

5, the dynamic learning rate can be used in order to overcome this problem. 
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3.1.3 Multi-Layer Perceptron (MLP)  

A Multi-Layer perceptron (MLP) contains multiple layers, including an input vector layer X, an 

output layer y and at least one hidden layer of nodes. A hidden layer hi   consists of a number of 

neurons, with each neuron’s input being the output of all nodes in the network in layer  hi-1. 

Contrary to a single perceptron, a MLP with an activation function (e.g., sigmoid) can approximate 
any continuous function f: R ⟶  R with just one hidden layer [18,19].  However, there is no 

assurance that the training process will find the appropriate parameters to describe the function 

[1]. Moreover, increasing the number of hidden layers improves generalizations with regard to the 

number of parameters [1,20]. 

The graphical illustration of a MLP with one hidden layer is shown in Figure 3-5. In this case, 

forward and backward propagation can be used for MLP evaluation and training. The forward and 

backward propagation are explained using the following notation. 

xi   = Input of node i 

yi    = Output function of node i 

Oi    = Output of node i 

ui   = The set of nodes that are in layer closer to input xi (in the layer above the node i) 

di   = the set of nodes that are closer to the output yo  (in the layer below the node i) 

wij = the internal weight of node j, which is applied to the output of node i 
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3.1.3.1 Feed Forward Propagation  

Forward propagation is used to calculate the output of the MLP. To explain the process, let us 

consider a MLP with one hidden layer which the set of the hidden node is represented by H, L is 

the set of input nodes and  vl is the set of the input value where l ∈ L and O is the set of the output 

node. The output of each node n ∈ O is calculated by forward propagation as [17,18]  

 on(X) =  σ��wjn
j∈H

 ∙  σ��wij vi
i∈L

� � (3.18) 

Where σ is the activation function e.g., sigmoid function. 

3.1.3.2 Backward Propagation 

The backward propagation uses same approach as the gradient descent to train the weights of the 

MLP. A loss function is computed for each data point, and the weights are updated in the opposite 

direction as the loss function’s derivative. This phase is continued until a certain condition is 

fulfilled such as a minimum loss in predictions. Multiple output y units are possible with the MLP, 

so the loss function needs to be modified [19]  

Figure 3-5 MLP with one hidden layer. the input layer composed with 𝑘𝑘 nodes, the hidden 

layer of 𝑛𝑛 nodes, and the output layer of 𝑚𝑚 nodes  
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 flossv (W) =
1
2
�(yxk-ok(x))
i∈L

2
  (3.19) 

Therefore, by applying the gradient   

 
∂floss
∂wij

=  
∂floss
∂xj

∂xj
∂wij

 (3.20) 

 = δj  
∂

∂wij
 � wkj ∙ ok
k∈d(j)

 (3.21) 

     = δj ∙ outi   (3.22) 

Therefore, the calculation of δj  depend on the layer that the node j belongs to.  However, if j 

belongs to the hidden units, the  δj  can be calculated by using the partial derivatives and the results 

will be  

     δj =  � δk  wjk ∙ o'
j�xj�

k∈u(j)

   (3.23) 

And if j belongs to output unit 

 δj = �oj�xj�-yj� ∙ oj'�xj� (3.24) 

Same as the gradient descent, the weight can be updated by the following rule. 

 ∆wij = -α δj  .oi  (3.25) 

  w'
ij = wij + ∆wij (3.26) 

Because the search space contains numerous local minima, the method will most likely converge 

to a local minimum rather than the global minimum. Despite this, backpropagation is an excellent 

technique for approximating functions in practice [1,20,21]. 
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3.2 Limitations of Multilayer Perceptrons 

As discussed previously, the MLPs approximate the mapping function from input variables to 

output variables. As this work is focused on time series data, this capability can also be applied for 

time series prediction (also called sequences problems) for various reasons. First, the MLPs, as 

any ANNs, are robust to noise in input data and in the mapping function, also can support missing 

values during the prediction. Furthermore, MLPs are capable of learning both linear and nonlinear 

relationships. [1,20-22]. As mention in [23], the elegant ability of neural networks to approximate 

arbitrary nonlinear functions is one of their most valuable contributions. This feature is extremely 

valuable in time series processing and opens the door to more sophisticated applications, 

particularly in the forecasting subfield.  

For sequence prediction problems, it was difficult for the MLPs. The MLPs architecture has these 

limitations [24] such as it focuses on complete data and linear relationship. Moreover, for sequence 

predictions, it is necessary to diagnose and specify the link between observations made at different 

periods, as well as the number of lag observations used as input which is challenging for the MLPs  

Although MLPs are a good architecture to start modeling sequence problems (for very short 

sequences), there are better options nowadays, such as the Long Short-Term Memory (LSTM) 

network. 

3.3 Long Short-Term Memory Network  

Long Short-Term Memory (LSTM) network is introduced by Hochreiter & Schmidhuber [25]. It 

is a type of Recurrent Neural Network. They are special types of neural network designed for 

sequence prediction problems. Recurrent neural networks have cycles that feed prior time step 

network activation as inputs to the network to impact predictions at the current time step. This 

activation is kept in the network’s internal states, which may contain long-term temporal related 

information in theory. RNNs can use this method to take advantage of a dynamically shifting 

window over time [26].  The LSTMs, like RNNs, feature recurrent connections, which allow the 

state of the neuron from prior activation in the preceding time step to be used as background for 

forming an output. Unlike other RNNs, the LSTM has a unique formulation that allows it to 

sidestep the issues that prohibit other RNNs from being trained and scaled. In the past, one of the 

http://www.bioinf.jku.at/publications/older/2604.pdf
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key technological challenges with RNNs has been how to properly train them. Experiments have 

proven the training's intricacy, with weight changes that were either so little that they had no effect 

or so enormous that they caused significant alterations or even overflow. These problems are 

referred to vanishing problem and exploding gradients, respectively [27,28].  By its design, 

LSTMs overcome these problems for sequence prediction.  

As an RNN has the form of a successive repeating unit (Figure 3-6), the LSTMs have the same 

chain as structure, but the repeating unit contains different structures. Instead of one neural network 

layer, there are four layers, each interacting in a unique way Figure 3-7 . The computational unit 

of the LSTM network is called memory cell. The term "neuron" has become so ingrained in 

discussions about MLPs as a computing unit that it is now routinely used to refer to the LSTM 

memory cell as well. The LSTM architecture was inspired by a study of error flow in current 

RNNs, which revealed that previous designs could not handle long time delays because back 

propagated error either explodes or decays exponentially. An LSTM layer is made up of memory 

blocks, which are recurrently linked blocks. These blocks can be thought of as a programmable 

equivalent of a digital computer’s memory chips.  Each one has one or more recurrently connected 

memory cells, as well as three multiplicative units (input, output, and forget gates) that enable 

continuous analogues to write, read, and reset operations for the cells. A memory cell has weight 

parameters for the input, output, as well as an internal state that is built up through exposure to 

input time steps. 

Figure 3-6 RNN unit which contain only one layer [2]. 
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3.3.1 LSTM Gates 

The gates are the memory cell’s most important component. These are also weighted functions 

that control the flow of information in the cell. There are three gates to navigate:  

- Forget Gate : determines which data from the cell should be discarded, 

- Input Gate : determines which input values should be used to update the memory state 

and 

- Output Gate : based on the input and the cell’s memory, determines what to output. 

The internal state is updated using the forget gate and input gate. The output gate serves as a last 

check on the cell’s output. It’s these gates, and the consistent data flow that keep each cell stable 

(neither exploding nor vanishing) [1,27]. 

3.3.2 Walk Through LSTM 

In this section we are going through the LSTM to provide more details and on LSTM works, as 

explained in the literature [1]. As mentioned earlier, the LSTM contains several gates which help 

us to determine the output. However, the key of LSTM is the cell state C. The cell state is 

considered as a carrier belt. With only a few small linear interactions, it goes straight down the 

whole chain (as seen in Figure 3-7). It is quite easy for data to just travel over it unaltered. Through 

Figure 3-7 LSTM units containing four layers, ℎ𝑡𝑡 is an output of a given input 𝑋𝑋𝑡𝑡 
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the cell state, the LSTM have the ability to remove or add information. This is regulated by the 

gates that mentioned previously. As results, the LSTM uses these gates to protect and control the 

cell state.  As illustrated in the Figure 3-8, the first step in the LSTM unit, is the forget gate, which 

allows to decide which information. The decision is based on the sigmoid layer function. It takes 
as input a concatenated vector of the ht-1 which represents the hidden state of previous LSTM 

units, the new input vector xt and its output a number between 0 and 1 which means “No need of 

this value” and “there is a need for this value ” for each number in the cell state, respectively.  

Therefore, they forget gate output ft is described as following : 

 ft = σ(Wf ∙ [ht-1, xt] + bf) (3.27) 

Once the LSTM has established which information to discard from the cell state, it can also decide 

which information to store in the cell state. This is done by the input gate in two steps with same 

input as the forget gate. First, a sigmoid layer chooses which value to update. Then, a Tanh layer 

generates a new candidate value vector C�t, which may be used to update the state. We will combine 

these two in the following step to generate an updated state : 

 it = σ(Wi ∙ [ht-1, xt] + bi) (3.28) 

 C�t = Tanh(WC ∙ [ht-1, xt] + bC) (3.29) 

Once these operations are done, the previous cell state Ct-1 can be updated using the forget and 

inputs gate output. Therefore, the forget output results ft multiplied by the Ct-1 then the results will 

be added to the input gate results. The new cell state Ct is expressed as follows : 

 Ct = ft*Ct-1 + it*C�t (3.30) 

As a final step, the LSTM comes through the output gate. As shown in Figure 3-8, it is clear that 

the output results will be based on the cell state. This will, however, be subjected to some sort of 
a filter. In the beginning, a sigmoid function is applied to the ht-1 and xt, in a mean time, Ct is 

going through a Tanh function in order to attempt to keep the numbers between -1 and +1. Finally, 

the results will be multiplied by the sigmoid output results. It is described with the following 

equations : 
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 ot = σ(Wo ∙ [ht-1, xt] + bo) (3.31) 

 ht = ot*Tanh(Ct) (3.32)  

As noticed in the Figure 3-8, two hidden state outputs are shown. One is for the output predicted 

value and the other one is for the next unit step where it is needed for forecasting the successive 

values in the input sequence.   

3.3.3 LSTM Encoder-Decoder Network 

The Encoder-Decoder (E-D) architecture is designed for sequence to sequence problems [29]. The 

E-D LSTM was created for natural language processing issues where it exhibited state-of-the-art 

performance, particularly in the statistical machine translation field [28,30-32].  The E-D has the 

capacity to read and create arbitrary-length sequences as demonstrated in Figure 3-9. Two LSTM 
networks called the encoder and decoder are used by this architecture. The input sequence U =

u1, … , uT is processed through the cell state Ct. As LSTM is used in the E-D architecture, the 

updates were done by going through the equations (3.26 to 3.31) for each LSTM cell. However, 
after T times updates (T is the length of U), the encoder reviews the whole input sequence into the 

final cell state vector CT.  The encoder then feeds CT to the decoder, which utilizes it as the starting 

cell state for sequence creation (i.e., C0'   =  CT). The output sequence is generated recursively by 

Figure 3-8 Walk through LSTM units. 
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the decoder S = S1, … ST' . During each update, the decoder feeds the previous update's output St-1 

into the current update's input. It is worth mentioning that the decoder's output is derived by 

performing the affine transformation, followed by the metric that best matches the task at hand 

e.g., SoftMax function for classification task [30-32]. 

3.4 Machine Learning metrics  

When evaluating machine learning (ML) models, optimization algorithms are used, such as 

Stochastic Gradient Descent (SGD) [33] and Adaptive Moment Estimation (Adam) [34]. The error 

for the ML model present state must be calculated frequently as part of the optimization procedure. 

This requires the selection of an error function, sometimes referred to as a loss function, which 

may be used to estimate the model's loss and update the weights to decrease the loss on the next 

evaluation. The choice of loss function must fit the framing of the specific predictive modeling 

issue, such as classification or regression, because neural network models learn a mapping from 

inputs to outputs from instances. Furthermore, the output layer's setup must be adequate for the 

Figure 3-9 The LSTM encoder-decoder architecture [30] 
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loss function used. Choosing the correct measure is critical. Various loss functions are available 

to assess ML models in various applications. It is useful to present an overview of common 

function, so that we can have a better knowledge of each metric and the applications for which it 

can be utilized. These metrics are divided into groups based on the ML model/application used in 

this research. The most common are covered metrics in the following regression and classification 

(binary and categorical). 

3.4.1 Classification accuracy metrics and confusion matrix 

3.4.1.1 Cross entropy Loss functions 

In this section, loss functions are investigated, which are appropriate for binary classification 

predictive modeling problems. The binary classification will be used to classify the channel within 

LoS and NLoS scenarios as described in chapter 5.  The binary classification models are those 

predictive models which examples are allocated to one of two classes (labels). However, the 

default loss function used for binary classification problem is called Cross-entropy (CE). The CE 

is also known as Log Loss, which measures the performance of classification model whose output 

is a probability value between 0 and 1 [35].  As the predicted likelihood differs from the actual 

class or label, cross-entropy loss rises. Moreover, a perfect model loss would have a log loss equal 

0. The CE loss is described as follows [35] : 

  CE =  -� yi log(y�i)
C

i

 (3.33) 

Where yi and y�i are the real and the predicted for each class i in C.  

In a binary classification problem, it usually uses a binary target value, either class 0 or 1. 
Therefore, C = 2 in the equation (3.33). Before applying the Binary Cross Entropy (BCE) loss, 

the sigmoid activation method is applied in the case of two classes, as presented in Figure 3-10 

(a). The BCE is defined as follows [36] : 

  CE =  -� yi log(y�i) =
C=2

i

-y1 log(y�1) -(1-y1) log(1-y�1) (3.34) 
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As such, two classes are assumed C1 and C2 referred to 0 and 1, respectively. y1, y�1 are the real 

and predicted the class C1, respectively.  y2 = 1-y1 and y�2 = 1-y�1 are the real and predicted the 

class C2, respectively. 

One of the CE losses used for multi-class problem (M > 2) is a Categorical Cross Entropy loss 

(CCE). It is also called SoftMax loss due to the use of the SoftMax activation function before the 

evaluation CCE loss (Figure 3-10 (b)). The  CCE loss is defined as follows [35] : 

 CCE =  -� yi log(y�i)
M

i>2

 (3.35) 

Where M is the number of classes. 

  

(a) 

(b) 
Figure 3-10 Loss functions for classification problem, (a) BCE loss, (b) CCE loss. 



41 

 

3.4.1.2 Accuracy  

The classification accuracy  is the basic metric which is used for channel classification in chapter 

5. It uses the number of right predictions divided by the total number of predictions multiplied by 

100. It is described as follows.  

 
Accuracy =  

number of True predictions
total of predictions

× 100 

   = 
TP

TP + TN + FP + FN
× 100 

(3.36) 

Where :  

TP   = Describes the true positive in which cases the model classifies positively the data, and 

the input data is positive (e.g., the predicted data is 1 and the input is 1) 

TN   = Describes the true negative in which cases the model negatively classifies the data, 

and the input data is negative (e.g., the predicted data is 0 and the input is 0) 

FP   = Describes the false positive in which cases the model classifies positively the data, 

and the input data is negative (e.g., the predicted data is 1 and the input is 0) 

FN   = Describes the false negative in which cases the model negatively classifies the data, 

and the input data is positive (e.g., the predicted data is 0 and the input is 1) 

3.4.1.3 Precision 

In many situations, classification accuracy is not a reliable measure of model performance. As it 

doesn't differentiate between the amount of successfully categorized instances of various types, 

such as in the case of  the class distribution is unbalanced (one class is more frequent than others). 

Even if all samples are predicted as the most frequent class , a high accuracy rate in this scenario 

is obtained, which makes no sense (since the model is not learning anything and is just predicting 

everything as the most frequent class). As a result, a class-specific performance measures are 

considered. One of these measures is precision, which is defined as: 

 Precision =  
TP

TP + FP
 (3.37) 
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3.4.1.4 Confusion matrix 

Several tools exist to provide a good resolution for the classification. Therefore, in this thesis is 

limited to both accuracy and precision.  The accuracy and precision are calculated by using the 

confusion matrix (Matlab) which describes the performance of a classifier on a set of test data. Let 

us consider the example of a confusion matrix in a binary classification to see what information it 

might supply to the classifier. The example is forecasting the existence of a LoS and NLoS 

scenarios for 200 collected CFR data where only 105 are in LoS. However, two potential 

anticipated classes are shown in Figure 3-11 as "1" and "0." where it is described as follows:  

- 1:  would indicate that the data are in LoS scenario 

- 0:  would indicate that the data are NLoS scenario 

A total of 200 predictions were produced by the classifier. The classifier correctly predicted "1" 

110 times and "0" 90 times out of 200 instances. In fact, 105 of the data in the CFR are in LoS, 

whereas 95 do not. Therefore, on 105 identified data, 5 of them were negatively classified, where 

the model is supposed to classify them correctly. This is defined as False negative. The 10 of 95 

identified in LoS but actually they are NLoS. This is defined as False positive earlier. 
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Figure 3-11 Confusion matrix  
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Given the TP, TN, FP, and FP in this cases, it can be shown in Table 2. However, with the 

confusion matrix for binary classification, several rates are computed such as accuracy, precision, 

etc. As results, in the proposed classification model only the confusion matrix is computed. 

Table 3-2 Description of the terms for the example 

TP These are situations when we predicted LoS and it turned out to be correct. 

TN They are in NLoS, as expected by the classifier. 

FP The classifier predicted LoS, but they are NLoS 

FN The classifier predicted NLoS, but they are LoS 

3.4.2 Regression Metrics  

Regression models are a type of machine learning and statistical model that is used to predict the 

values of a continuous target. Considering The LSTM network as regression model, the Mean 

Square Error (MSE) used for prediction loss [37]. However, the MSE is described as follows: 

     MSE =
1
N
�(yi-y�)2
N

i=1

    (3.38) 

Where N is the number of samples, y� and y are the predicted and actual value, respectively. 

However, the MSE is used in this thesis as prediction loss in channel frequency prediction for both 

SISO and WBAN-MIMO cases. 
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CHAPTER 4 CHANNEL PREDICTION FOR INDOOR 

ENVIRONMENT IN SISO SYSTEMS 

4.1  Introduction  

Several applications have arisen to characterize the channel within different environments using 

DL algorithms. Tong et al [1], proposed a method based on Long Short-Term Memory (LSTM) to 

achieve low prediction errors compared with other machine learning algorithms. However, the 

data processing for the input data remains undetermined. Wang et al [2], proposed a method to 

predict the uplink and downlink Channel State Information (CSI) using different networks, such 

as convolutional and LSTM networks. The method fairly predicted the CSI, where the learning 

curve (LC) and the data processing were not illustrated. Joo et al [3], proposed channel state 

prediction in vehicle-to-vehicle scenarios, where, IQ (in-phase and quadrature) samples are 

collected under the line-of-sight (LOS) and the non-LOS scenarios. In fact, the training process is 

used in all the reported scenarios which increases the computational complexity, with a loss on the 

generalization efficiency of DL algorithms. Recently, Luo et al [4], introduced a learning 

framework design with convolutional and LSTM networks. The framework used an online 

prediction scheme that updates the model once new data are available. The input data processing 

and the Learning Curve (LC) during the training are not well illustrated, even though the methods 

accurately predicted the channel. Furthermore, the training process is usually used in all scenarios, 

which increases the computational complexity with the loss on the generalization efficiency of DL 

algorithms. Even though the statistic, the empirical and the deterministic propagation models 

combined with several applications of the DL are powerful, the CFR remains deprived of a proper 

model. Consequently, it is crucial to develop a model that will characterize the channel without 

the need of experimental measurements and be deprived of any updates once new data are collected 

from the new environment. 

In this contribution, an efficient model of the CFR based on DL LSTM is proposed and studied. 

The learning framework algorithm is developed to predict the CFR using the LSTMs networks 

combined with linear layers, in smooth, rough corridors and underground mine environments. 

Then, channel characterization is performed for every measured and predicted CFR. From the 

model learning process in a smooth corridor environment, the model is evaluated in different 
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environments without prior information and update during the learning process. To the best of the 

authors' knowledge, no such prediction scheme was performed to model the CFR within different 

complex environments, different frequency bands, and different antenna combinations. The 

novelty of this study consists of the following: 

First, a novel CFR model is proposed for different environments such as smooth, rough corridors 

and underground mine environments. The SISO-LoS scenario has been carried out for different 

antenna configurations and frequency bands. 

Second, the learning framework is designed based on LSTM combined with linear networks. The 

learning curve is performed in only one environment, which is crucial in the DL field to 

demonstrate the ability of the model to learn from the collected CFR. 

The model is evaluated for CFR prediction in different environments, considering different 

antenna radiation patterns. Hence, three different antenna combinations were used: (1) directional 

transmitter versus directional receiver antennas (D vs. D), (2) directional transmitter versus patch 

receiver antennas (D vs. Prx) for the corridors environments, and (3) patch antennas used in 

underground mine environment (P vs. P). 

Hence, several experimental campaigns were conducted to validate the proposed approach and 

channel characterization was carried out to compare the predicted CFR with the measured ones. 

The chapiter is organized as follows: Section 4.2 briefly introduces the CFR prediction. Then, the 

proposed model for CFR prediction is described in Section 4.3. Afterwards, the experimental 

results are presented in Section 4.4. Finally, the chapiter is concluded in Section 4.5. 

4.2 CFR prediction scheme: 

4.2.1 CFR prediction framework 

As mentioned previously, the channel modeling and the characterization depends on a large 

number of experimental measurements. Furthermore, they depend on several factors, such as the 

frequency range, the antenna radiation patterns, and the environment characteristics. Several 

researchers investigated properly the wireless channel modeling to predict the main impact on the 

signal transmission [5,6]. Regarding to previous related works [1-4,7-10], the proposed model is 

based on three main modules. First, the data processing module is focused to transform the data 
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into appropriate short sequence input, to achieve better performance by avoiding the gradient 

descent problems in the training and validation process [11]. Then, the training and validation 

module is developed to assure the efficiency of the module, where the LC during the learning 

process is observed to optimize the internal parameters of the deep learning LSTM networks 

combined with linear layers. As depicted in Figure 4-1, the model evaluation was carried out by 

the measured data in different scenarios and considering additive noise. This model uses only one 

type of data, explicitly time series data. The LSTMs network combined with linear layer achieved 

high performance compared to Gated Recurrent Units (GRU) which has been introduced in several 

models [12-14] to predict time series data. In section 4-4, a comparison between the proposed 

model and some results in the literature was carried out to show the performance assessment in 

terms of accuracy expressed in different metrics. To explore more accuracy of the model, some 

information that is present in every measurement should be considered, such as Radiation Patterns 

(RP), antenna heights, indoor geometry namely Environment Features (EFs), which are repeated 

in each measurement. In the following, measurement procedures and data processing are 

described. 

Figure 4-1 The framework for the CFR prediction model 
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4.2.2 Measurement procedure 

The measurement procedures were conducted at three different environments, smooth and regular 

rough walls, located at the University of Quebec in Outaouais, and underground mine gallery, 

located at Val d’Or city in northern Quebec. The measurement system consists of an Agilent 

Vector Network Analyzer (VNA), and Low Noise Amplifiers (LNA) connected to the receiver. 

The VNA is used to measure the CFR within the range of 8 GHz to 12 GHz band for the first and 

second scenario and 2.3 GHz to 2.5 GHz band for the third scenario. During this measurement, the 

Transmitter (Tx) was placed at a fixed position, and the Receiver (Rx) location was varied from 

1 m to 6 m away from Tx in the LOS-SISO scenario, as illustrated in Figure 4-3. Several data 

samples (up to 2049 points) are considered at each position. The measurement parameters are 

described in Table 4-1.  

The measurement scenarios are described as follows: 

i. Scenario 1 (smooth environment): the measurement was conducted in the corridor 

shown in Figure. 4-2(a). The corridor is 2.4 m in height and 2.05 m in width. The Tx 

and Rx antennas have 1.2 m in height. Two antenna combinations D. vs. D and D. 

vs. Prx were considered.  

ii. Scenario 2 (irregular periodic rough environment): the measurement was conducted 

in the corridors shown in Figure 4-2(b). This corridor is 2.4 m in width and 3.4 m in 

height. Same antenna combinations were used for this scenario. 

iii. Scenario 3 (underground mine environment): the measurements were conducted in 

a real underground mine (2.5 m by 5 m) as shown in Figure 4-2(c). The gallery is 

characterized by rough and random surfaces. Patch antennas are used for this 

scenario (P vs. P).    
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Table 4-1 Measurements system configuration 

Parameters Scenario 1,2 Scenario 3 

Frequency 8 GHz-12 GHz 2.3 GHz-2.5 GHz 

Transmitted power -10 dBm -10 dBm 

IF bandwidth 1 kHz 200 MHz 

Average noise floor -110 dBm -90 dBm 

Sweep points: 1601 2049 

Directional antenna gain 13.8 dBi N/A 

Patch antenna gain 7.7dBi 6.6 dBi 

Cable loss 3.1dB-3.8dB 0.6 db/m 

Antenna height 1.20 m 1.5 m 

Sweep time 60s 60s 

 

 
(a) (b) 
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4.2.3 Data processing modules 

The data processing is illustrated by the diagram in Figure 4-4. Following the measurement  

procedure, six measured CFR at each position are collected. Then, all the sequences were linked 

        (c) 
Figure 4-3 Measurement environments : 

 (a) Scenario 1,(b) Scenario 2 and (c) Scenario 3. 

Figure 4-2 Experimental setups used for smooth, rough corridors and underground mine 

environments 
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horizontally by every CFR position from D. vs. D and D. vs. Prx antenna combinations, 

respectively. Accordingly, twelve CFR sequences concatenated will be provided in one vector 

dataset for the first and the second scenarios. Since only one antenna combination for the third 

scenario is used, six CFR sequences are horizontally concatenated to give the dataset vector D.   

 D = horzconcat(CFRi
n) (4.1) 

Where i= 1, 2, and 3 represent D. vs. D, D. vs. Prx and P vs. P antenna combinations, respectively, 
and i = 1…. 6 represent the number of the positions. Then, the vector D is converted into a 

Supervised Learning Problem (SLP) described in the next section. Finaly, The Width (W), lengths 

(L), height (H), antenna heights  and the radiation patterns (RPs) were added. 

4.2.4 Convert to the supervised learning problem 

To achieve the CFR prediction, the concept of the sliding window method is used [15].This 

technique allows converting any real problem into supervised machine learning problems [15]. 

Thus, the data must be restructured to convert them into supervised learning, by using a previous 

time steps as the input and the next time step as the output variables (Figure 4-5). 

From Figure 4-5. It is denoted that the previous time step is the input (X), and the next time step 

is the output (y) in the SLP. The order between the observations is preserved, even using this 

dataset to train the supervised model. Due to the fact that no prior value can be used to estimate 

Figure 4-4 Data processing module 
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the first series (red row) and it is not possible to predict a non-existent value (yellow row). The red 

and yellow rows are deleted during the training process. 

 

4.2.5 Normalization and data transformation 

After the SLP process, the antenna radiation patterns [16] and the environment features in terms 

of antenna heights and environment width, height, and length, are horizontally concatenated to the 

data V as shown in Figure. 4-4. To make the model converge faster, it is important to normalize 

the data V .In this case, the standard score normalization is considered by using the mean and 

standard deviation of all the dataset sequences. It is defined as [17]  

 NV =  
V- μ
σ

  (4.2) 

Where μ,σ are the mean and the standard deviation of the data V. Indeed, the actual feature data 

are at consecutive points in time. Even though, the LSTM networks are designed for long 

sequences. Practically, the training process could be a real issue, where the gradient descent 

trajectory leads to the saddle point [11,18]. Therefore, for better performance of the model, the 

dataset will be transformed to an appropriate mini-batch sequence [19]. During the training 

process, the long dataset sequence is converted to many shorter sequences. In this case, the dataset 

will be transformed to shorter sequences length of hundred points where the best performance of 

the model is observed in section 4. The sequences are shifted by single time step where the first 

Figure 4-5 Example of sliding window method 
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and second sequences in the training set are shown in Figure. 4-6. The only difference is that the 

target is moved by once a step in the ytrain (target) and xtrain (feature) sequences, as seen in the 

first (green) and last (magenta) time step. An explanation will be provided to understand the benefit 

of using the sequences during the training process (section 4). 

4.3 Proposed Model 

The block diagram of Figure. 4-7 shows a high-level process of the proposed model. Unlike the 

previous research works [1-4,7-10], the training process is performed just once and only in one 

environment. The first scenario is used to train the model and to predict the CFR in the first 

environment. From the second and third environments, the new data, which are not used during 

the training process, are used to evaluate the model capability to predict the CFR in different 

environments. Finally, the channel characterization is performed. Therefore, measured and 

predicted results are compared. 

4.3.1 LSTM networks 

Like other neural network architecture, the LSTM is composed of an input, a hidden and, an output 

layer. The number of the neuron in the input layer is equal to the number of the features. Using the 

combination of these equations described in chapiter 3 (3.27 to 2.32), the LSTM unit can be 

expressed as 

         (a)          (b) 

Figure 4-6 Feature and target sequences in the training process: (a) Sequence 1,(b) Sequence 2 
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 ht = f(ht-1, xt,ψ) (4.3) 

Where f is the LSTM function and ψ is the vector parameter in the LSTM. 

4.3.2 Train and validation mechanism  

To predict the CFR, the model is trained with the data collected from the first scenario. The 

normalized dataset V is then separated into train and validation sets. Moreover, the sets have been 

transformed into short sequences to train the model. In fact, the LSTM network is considered 

excellent in sequential task learning; hence, it is used to predict the current values. Using equation 

(4.10), the sequential vector can be determined as 

 hCV = f(hCV-1, D,ψ) (4.4) 

The result hCV will be used as an input to the linear layer to have the target dimensionality as 

 y� = W*hCV (4.5) 

After conducting the training and validation process, the loss is reduced by using the Adam 

optimizer [20]. Mean Square Error (MSE) and Root Mean Square Error (RMSE) metrics are then 

performed as prediction loss of the model, which is given in the equation 3.38 where RMSE is the 

described as the root square of the MSE [21]. 

Figure 4-7 Proposed model for CFR prediction 
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4.4 Experimental Validation  

4.4.1 Experimental results 

As mentioned in the data processing, an Inverse Fourier Transform  (IFT) was carried out to the 

average of six measured CFR at each position. Figure 4-8. shows the CFR and CIR in different 

scenarios with different antenna configurations. The LOS component carries the highest power 

over the multipath  component in different situations.  

4.4.2 Training in the first scenario 

Using the measurement procedure for the first smooth corridor environment and data processing 

scheme, up to 20 000 frequency points are considered. To train the model, 2/3 of the normalized  

dataset V is the training set and 1/3 is the validation set. y vector is the test set in this case. To 

understand the way that the proposed model uses the sequences in the training phase, we use the 

sequences shown in Figure. 4-6. From the first sequence, the model takes the feature of the time 

step at the first index and tries to predict the target in the second index. Then, the model exploits 

the feature of the time step at the second index to predict the target of the time step at the third 

index, etc. The features of the second sequences are shifted by once a step from the first sequence, 

where the third sequence is shifted by once a step from the second sequence. Using this procedure, 

we get many shifted sequences by a single time step which allows the model to easily learn the 

pattern and acquire more information about the dataset. As discussed previously, the training and 

validation procedure is very crucial for the learning process. In this matter, the LC must be 

performed for monitoring the model performances [22,23]. Hence, the LC is used in deep learning 

neural network algorithms to optimize the internal parameters where the train learning curve 

(evaluated on the training dataset) gives a representation of the learning process of the model. In 

the same area, the validation learning curve (evaluated on the validation dataset) provides an 

indication of how well the model is generalizing by measuring the models’ error in the validation 

set. The LC can be crucial for the performance of the model and the accuracy of the test results. 

Therefore, a good fit as described in [22,23] must be fulfilled to ensure that the model is learning 

sufficiently to avoid under-fitting (the model is not learning well from the training dataset) or  
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(a) 

(b) 

(c) 

Figure 4-8 Channel frequency response vs Channel impulse response :  

(a) Scenario 1, (b) Scenario 2, (c) Scenario 3 
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overfitting (the model is learning too well from the training dataset) [22,23]. Figure 4-9 

demonstrate the LC of the proposed model achieved by using the parameters in Table 4-2. 

A learning rate is initialized at a small value, then, the dynamic learning rate schedule is used to 

help the learning model to introduce randomness during the training [23,24]. It is observed that 

the training and validation loss decreases to a stability point with a small difference between the 

two final loss values which characterizes a good fit learning curve as reported in [22,23]. However, 

the training and validation MSE loss stability is observed at the 6th epoch with 7.42% and 7.45%, 

respectively. From the LC, the model is certainly learning well from the training dataset. The 

predicted value is estimated with the test set, afterward. Therefore, MSE is evaluated at 7.76%, 

same as RMSE evaluated at 27%.  Figure. 4-10. shows the predicted and the measured CFR results. 

It can be observed that the proposed model has a good ability to predict the measured CFR in the 

first environments with low MSE and RMSE in terms of percentage. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Table 4-2 : Simulation parameters 

Parameters Values 

Hidden layers 100 

Batch size 100 

Learning rate 0.001 

Loss function Mean square error 

Training dataset size 38790 

Validation dataset size 19395 

Training optimizer Adam 
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4.4.3 Evaluate the model within different environments 

To evaluate the efficiency of the proposed model to predict the CFR in a new environment, new 

datasets, which are not included during the training from the second and third environments, are 

used in the evaluation and test module. Therefore, the data processing is applied. Figure. 4-11 

shows the prediction model of the CFR in the second and third rough environments with lower 

MSE and RMSE values in terms of percentage as illustrated in Table 4-3. 

Figure 4-9 The learning curves for the proposed model 

Figure 4-10 Measured and predicted CFR for scenario 1 
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The prediction accuracy of the model was based on measured data in different environments, 

however, the performance assessment in terms of accuracy was estimated with additive noise to 

test data. Figure. 4-12. shows the effect of the noise on the learning process. The x-axis represents 

the Signal-to-Noise Ratio (SNR) of the datasets, where the large value corresponds to noiseless. 

As illustrated, it is challenging for the model to predict noisy channels. It implies that any attempt 

to increase accuracy against noise should be made to enhance the capacity of the model to predict 

the CFR within noisy channels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4-3 MSE and RMSE for scenario 2 and 3 

Scenarios MSE (%) RMSE (%) 

2 4.22 20.5 

3 0.046 2.1 

 

(a) 



62 

 

 
 
 
 
 
 
 
 
 
 
 

(b) 

Figure 4-12 Measured and predicted CFR:(a) Scenario 2, (b) Scenario 3 

Figure 4-11  Model performance evaluation in terms of additive noise 
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4.4.4 LSTM versus proposed models for channel prediction 

The model efficiency was compared to another network used for time series prediction namely 

Gated Recurrent Units (GRU) [12,25]. However, this comparison justifies the choice of the LSTM 

networks in this proposed model. The RMSE is used to compare both networks in terms of 

percentage. Even though both networks seem to have a lower RMSE, but the LSTMs networks 

perform better than GRU, which justifies the choice for the proposed model, as shown in Table 4-

4 

As discussed previously, to avoid the gradient descent problems, shorter sequences are used as 

input in the LSTM networks during the training process. Therefore, the optimal batch size depends 

on the elapsed time during the training process implemented within a system with a 

CPU @2.70GHz-2.71 GHz, 8Go RAM, and the performance of each batch size at a given scenario. 

Figure. 4-13 and 4-14, illustrate the impact of the batch size on the performance of the model in 

terms of the RMSE percentage. It is observed, when smaller sequences are used, the elapsed time 

is significantly large, and the RMSE value increases. On the other hand, when larger sequences 

are used, the elapsed time, during the learning process, is very small compared to the other ones 

and the RMSE values decrease. Thus, the optimal input sequence size satisfies a better RMSE and 

a lower elapsed time during the training process. However, the small value of the RMSE is noticed 

at the batch size of 200 as seen in Figure. 4-15. (c) in the third scenario. Therefore, for the sake of 

generalization and high performance in all the environments, the value of 100 is chosen as an  

optimal batch size for the proposed model. 

 
 
 
 

Table 4-4 LSTM and GRU performances 

RMSE (%) LSTMs GRUs 

Scenario 1 27 28 

Scenario 2 20.5 22 

Scenario 3 2.1 4 
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Figure 4-13 Elapsed times within smaller and larger batch size 

Figure 4-14 RMSE evaluated within smaller and larger batch size 
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To validate the efficiency of the proposed prediction scheme, we compare the proposed model 

performances to a published related work in channel prediction in the SISO-LOS scenario. 

Table 4-5, demonstrates a comparison of the proposed model performance with published ones in 

terms of some metrics used in their developments such as Normalized Mean Square Error (NMSE) 

[21] in both linear and decibel values. Different datasets and techniques were used. Therefore, the 

LC which is considered an efficient technique for performance evaluation [23], remains unverified 

in their models to give more consistency to the reported models’ accuracy.   

 

(a) (b) 

(c) 

Figure 4-15 Model performance in terms of batch size:  

(a) Scenario 1, (b) Scenario 2, (c) Scenario 3. 
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4.4.5 Correlations properties 

In this section, the spatial autocorrelations, as well as Pearson’s correlation (test statistics), are 

evaluated to measure the statistical relationship between two continuous datasets (variables) [26]. 

The measured datasets and the predicted sequences, from all the environments, were processed to 

estimate the correlations properties. The Pearson correlation coefficient is given by the following 

equation [27] 

 ρX,Y =
cov(X, Y)
σX σY

 (4.6) 

Where X, Y are the pair of continuous variables, cov(X,Y) is the covariance, σX σY are the standard 

deviation of X and Y, respectively. The pair of variables represents the measured and the predicted 

sequences for both antenna combinations. Figure 4-16 shows the matrix correlation which is used 

to investigate simultaneously the multiple variables dependence. In the diagonal, the distribution 

of each variable is shown. At the bottom of the diagonal, the bivariate scatter plots with a fitted 

line, are displayed. At the top of the diagonal, the values of the Pearson correlation coefficients 

between the data of all scenarios are shown. The predicted CFR undertake almost the same 

 Table 4-5 Model performance comparison 

Published models Ref Metrics Values 

LSTMs [1] NMSE 0.0878 

ConvLSTM [2] NMSE Up to -37.84 dB 

Autoregresion+LSTMs [3] RMSE Up to 2.26% 

CNNs + LSTMs [4] MSE 0.551 

Proposed model N/A 

NMSE 
Up to 8.67e-05 

Up to -40.61 dB 

MSE Up to 4.6e-04 

RMSE Up to 2.1% 
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distribution as the measured ones in all scenarios, as shown in the matrix diagonal. A linear fitting 

is observed between the measured and the predicted data in each scenario. Hence, a very strong 

relationship of 0.99 is noticed between the measured and the predicted CFR, within any 

environment. Therefore, it is perceived a strong correlation estimated at 0.92 and linear fitting 

between the measured CFR in the first and the second environments. Moreover, this strong 

relationship makes a CFR prediction in the second environment easier for the model which is 

validated by the lower RMSE. On the other hand, the data from the third scenario shows a moderate 

linear fitting. The correlation is evaluated at 0.52 and 0.49, with the measured CFR within the first 

and the second scenario, respectively. Consequently, the prediction of this data is not easier for the 

model to evaluate, especially, when it does not have enough prior information (not used during the 

training). The proposed model shows the strength to acquire the general pattern of its data. 

Therefore, as mentioned in the LC, the model is well learning during the training process, then, 

through the evaluation process, the model validates more important patterns in the measured 

dataset. Moreover, the efficiency of using the LSTM networks which can remember the most 

important information in the datasets [28], is shown by the moderate correlation between the data 

from the first (used during the training process) and third environment. In addition, some of the 

CFR data in the first and third environment share a linear relationship which was enough for the 

model to predict the behaviour of the CFR in the third complex environment. As shown in the 

correlation matrix, it can be noticed that the proposed model learns the trend of the CFR within 

any environment. Furthermore, it is well known from previous studies [29,30], that the CFR 

relatively decreases away from the transmitter within any frequency band. As well, the fact that 

the impact of the radiation pattern of the antenna is crucial to channel propagation, the model 

indicates that it was necessary to obtain the antennas information during the training phase. It, 

therefore, empowers the prediction of the datasets from the second and the third environment 

where the same antenna characteristics were shared, such as a patch antenna (it was used in all the 

environments). 
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4.5 Channel characterization 

After the validation of the proposed model, channel characterization is carried out using the 

predicted and measured CFR to compare the efficiency of the model to reproduce the same 

behaviour. The measured and predicted characteristics of the channel within different scenarios in 

terms of Path Loss (PL), RMS delay spread, coherence bandwidth, k-factor, and channel capacity 

are shown in this section 

4.5.1 Path Loss 

The PL is the attenuation in the transmitted signal caused by the effects of the environment. It was 

obtained by applying the equations 2.3 and 2.4   As shown in Figure. 4-17, 4-18 and 4-19, the 

model predicted the path loss values for all antenna configurations. The path loss exponent can be 

Figure 4-16 Matrix correlation of measured and predicted CFR. 
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evaluated from the linear analysis, within the first, second and third scenarios as illustrated in 

Table 4-6.  

 

 

 

 

 

 

 

 

 

 

 

Table 4-6 Path loss exponent 

Path Loss exponent 𝛽𝛽 

Scenarios Antennas D vs. D D vs. Prx P vs. P 

Scenario 1 
Measured 3.1595 2.0533 N/A 

Predicted 2.8717 2.1388 N/A 

Scenario 2 
Measured 2.9795 2.5417 N/A 

Predicted 2.8042 2.6882 N/A 

Scenario 3 
Measured N/A N/A 1.5353 

Predicted N/A N/A 1.3553 

 

(a) (b) 

Figure 4-17 Measured PL (MPL), predicted PL (PPL) and Linear Regression (LR) for scenario 1: 
 (a) D vs D, (b) D vs Prx. 
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(a) (b) 

Figure 4-18 Measured PL (MPL), predicted PL (PPL) and Linear Regression (LR) for scenario 2: 
 (a) D vs D, (b) D vs Prx. 

Figure 4-19 Measured PL (MPL), Predicted PL (PPL) and Linear Regression (LR) for scenario 3 
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4.5.2 RMS delay spread and coherence bandwidth 

RMS delay is the time dispersive property of wideband multipath channel [29,30], and the 

coherence bandwidth is considered as the range of frequencies over which the channel can be 

considered flat The RMS delay spread is equal to the square of the second central moment of PDP, 

and it is calculated using the formula reported in equations 2.7 to 2.9 [30]. The coherence 

bandwidth was evaluated for the 50% correlation using the RMS delay spread such as mentioned 

in equation 2.10. Figure. 4-20, 4-21 and 4-22, show the RMS delay spread calculated using the 

measured and the predicted power delay profile which is obtained by the CIR. The results show 

that the RMS delay spreads are between 0 ns and 5 ns and the coherence bandwidth (at 50% 

correlation) belongs to the range of 8–20 MHz for D vs. D in all environments. RMS delay spreads 

are higher (between 5 ns -20 ns) and the coherence bandwidth lower for D vs. Prx in all 

environments. On the other hand, the result of the RMS delay spread is variable at different 

distances in underground mine environments. This is due to the specific geometry of the mine. 

Moreover, it is observed that the same observation could be made with the predicted results. 

 

 

(a) (b) 

Figure 4-20 RMS delay spread and coherence bandwidth for scenario 1: 
(a) Coherence bandwidth (b) RMS delay spread 
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(a) (b) 

Figure 4-21 RMS delay spread and coherence bandwidth for scenario 2: 

(a) Coherence bandwidth (b) RMS delay spread 

(a) (b) 

Figure 4-22 RMS delay spread and coherence bandwidth for scenario 3: 

(a) Coherence bandwidth (b) RMS delay spread 
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4.5.3 Rician k-factor 

The Rician factor is determined from the impulse response as described in chapter 2 equation 2.6 

[31]. Since the measurements involved in the LOS scenarios for different path lengths, the K-factor 

(denoted in Figure 4-23) varied with the antenna configurations and the distance Tx-Rx. The K-

factor for the D vs. D antenna configuration is clearly higher than that of a D vs. Prx configuration 

due to the strong dominant components in the first and second environments. Moreover, the K-

factor values in the third environment are low. This is due to the roughness and randomness of the 

surfaces in the underground mines which produces multipath richness. Hence, the proposed model 

predicted the same as the measurement that the K-factor is higher in the first and second 

environments within D vs. D antenna configuration, and lower in underground mine environment 

with P vs. P antenna configuration. Similarly, the measured and the predicted values are between 

-20 dB and 2 dB within all the scenarios, respectively. Moreover, the predicted and the measured 

K-factor values are decreasing while the distance is increasing in all the environments. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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4.5.4 Channel capacity 

In this section, the channel capacity is evaluated using both measured and predicted channel 

impulse responses. The SISO channel capacity is extracted from the measurement by using 

Shannon’s capacity equation [32] 

 CN �
bps
Hz

� = log2(1 + ρ|H|2)  (4.7) 

H is the normalized CIR and ρ is the signal-to-noise ratio. Figure. 4-24, 4-25 and 4-26, show the 

channel capacity results at SNR of 10 dB, for all scenarios. As expected, the predicted and the 

measured average capacity decreases with distance for all antenna configurations. This is 

explained by the fact that small distances correspond to a higher received power in both 

environments using the same antenna configurations. As seen, the channel capacity, extracted by 

the predicted data, perfectly expresses the same conclusion as the measured ones. 

 

 

(c) 

Figure 4-23 Rician K-factor :  

(a) Scenario 1, (b) Scenario 2 (c) Scenario 3 
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(a) (b) 

Figure 4-24 Channel capacity at SNR =10dB for scenario 1:  

(a) Average capacities (b) Capacity CDFs 

(a) (b) 

Figure 4-25 Channel capacity at SNR =10dB for scenario 2: 

 (a) Average capacities (b) Capacity CDFs 
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4.6 Conclusion 

In this chapiter, we presented an efficient propagation channel modeling based on LSTM networks 

combined with a linear layer in SISO-LOS. A CFR prediction was performed under different 

environments and frequency bands, where different antenna configurations were used. The CFR 

prediction results in scenario 1, 2 in indoor corridor environment and scenario 3 in underground 

mine environment, showed low MSE, NMSE, and RMSE metrics in comparison with that of the 

literature models. Although only the data of one environment was considered for the training, the 

model achieved better performance in all environments. This is due to the improved data 

processing which is justified by the good fit learning curve during the training process and the 

model’s ability to learn the important channel parameters between the datasets. Channel 

characterization was carried out afterward, to visualize the model’s capability to procreate same 

behavior of the channel and to demonstrate that the same observations could be made. As result, 

the model significantly Predicted (PPL) the Measured Path Loss (MPL), RMS delay spread, 

coherence bandwidth, K-factor, and channel capacity.  

(a) (b) 

Figure 4-26 Channel capacity at SNR =10dB for scenario 3:  

(a) Average capacities, (b) Capacity CDFs 
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The methodology demonstrated its use in forecasting the CFR, considering the antenna variety, 

where the same discussions could be held as the measured ones. Hence, the proposed model could 

promote the design of wireless communication systems in any complex area. 
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CHAPTER 5 CHANNEL PREDICTION FOR INDOOR 

ENVIRONMENT IN MIMO SYSTEMS 

5.1 Introduction 

As mentioned in the chapter 4, several DL algorithms have been developed to channel 

characterization SISO and MIMO channels. However, the studied models are validated 

experimentally with extensive measurements, where high number of the data is collected. In this 

area, the Deep-Learning algorithms (DL) were applied to outdate the statistical models and bring 

new applications such as localization [1] and channel prediction accuracy [2]. The DL capability 

to model the nonlinear problems brought a great interest in the channel propagation research field 

[3]. It was introduced to predict SISO channels using LSTM. Ding et al [4] used a complex-valued  

neural network to forecast frequency domain channel characteristics, while Jiang et al [5] provided 

a novel MIMO channel predictor built on a deep recurrent neural network that incorporates LSTMs 

or Gated Recurrent Units (GRUs) memory cells. Moreover, simulations in terms of prediction 

accuracy in multi-antenna flat-fading channels are also proposed in [4]. Convolution Neural 

Networks combined with Recurrent Neural Networks design (CNN-RNN) to predict CSI have 

been proposed in [6-8]. Arnold et al [9] investigated the feasibility of DL algorithms for MIMO 

configuration based on the Orthogonal Frequency Division Multiplex (OFDM). Dense layers were 

used with two-step training strategies to predict the NLOS position. Even though, these techniques 

are considered as efficient tools to apply the DL algorithm for CSI prediction and LOS-NLOS 

detection. It required high computational complexity especially for harsh environments. Therefore, 

a new efficient technique is effectively needed which leads to the proposed work for underground 

mine environments. In this contribution, a stacked model (SM) based on LSTMs deep learning 

networks is proposed to predict the WBAN-MIMO channels in harsh environments. The model is 

validated with extensive WBAN-MIMO channel measurements published by Elazhari et al [10]. 

The SM is composed of three parallel models, where only one input data is used. Therefore, the 

collected magnitude and phase of the Channel matrix were used in the SM to simultaneously 

predict the receiver position, the LOS-NLOS scenario and the channel matrix (H) as illustrated in 

Figure 5-1 and 5-2. 
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To the best of the authors “knowledge”, no such algorithms were used to model the WBAN-MIMO 

systems in underground mines environments. The novelty of this study consists of the following: 

First, a new model of channel matrix is proposed for underground mines. Second, the SM 

framework is designed to predict the channel matrix H, the position and the LoS-NLoS 

identification from only one input. Third, the model is evaluated for different antenna setups, such 

as linearly polarized (Lin) patch antennas MIMO system, circularly polarized patch antennas 

MIMO system, co-polarized (CP) and 90 degrees rotated (90 deg) configurations. The chapter is 

organized as follows: Section 5-2 briefly introduces the channel matrix prediction. Then, the 

measurement procedure used to collect the experimental data is described in Section 5-3. 

Afterwards, the proposed model is detailed and implemented in Section 5-4. The model validation 

is addressed in section V. Finally, the chapter is concluded in Section 5-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1 The proposed stacked model scheme 
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5.2  Stacked model prediction scheme 

In this section, a stacked model prediction scheme is presented. First, the channel prediction 

framework is introduced where it is expressed as a regression problem. Then, the position and the 

LoS-NLoS classification scheme are presented. The SM is validated experimentally in 2X2 MIMO 
system with frequency band 2.3 GHz - 2.5 GHz [10]. In MIMO systems, an 𝑚𝑚𝑡𝑡 × 𝑛𝑛𝑡𝑡  transfer 

channel matrix 𝑯𝑯 is created, which represents the complex sub-channel gains from the 𝑚𝑚𝑡𝑡 

transmitting to the 𝑛𝑛𝑡𝑡 receiving antennas [11]. The channel matrix 𝑯𝑯 for a 2X2 MIMO system is 

expressed as [11, 12]: 

 𝑯𝑯 = � 𝐻𝐻11 𝐻𝐻12 
𝐻𝐻21  𝐻𝐻22  �   (5.1) 

Where 𝐻𝐻𝑖𝑖𝑖𝑖 represents the complex sub-channel gain from the ith transmitting antenna to the jth 

receiving antenna. Indeed, Elazhari et al [10] measurements’ campaigns were conducted to 

estimate the matrix H in underground mine using different antennas types, polarizations and link 

configurations (LoS-NLoS) in body-to-body (B2B) scenarios. The channel prediction framework 

is developed using an Encoder-Decoder algorithm [13-16] based on LSTM networks combined 

Figure 5-2 The framework for stacked model prediction. 
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with time-distributive linear layer. The model is performed to simultaneously predict each element 

of the matrix H at each measured position with considering the magnitude and the phase. Using 

the same input as channel prediction scheme, the position and the LoS-NLoS classifier established 

respectively on a combination of the LSTM network and the dense layers. Therefore, the 

categorical and the binary classifications are considered for the position and the LoS-NLoS 

scenarios, respectively. Similarly, same as the LSTM architecture used in chapter 3, the LSTM I 

is given using the relevant mathematical formulas in equations 2.27 to 3.32 and 3.40.  

5.2.1 Measurement Procedure 

The measurement procedure was carried out in a real gold mine (located in Val d’Or city in 

northern Quebec) within a gallery at 90 meters underground with a width and a height of 4 m and 

2.45 m, respectively (Figure 5-3). The underground mine environment is characterized of rough, 

random surfaces and non-uniform gallery dimensions. The measurements were performed in B2B-

configuration as reported in [10]. Two antenna configurations are considered, namely, co-

positioned (CP) and 90 degrees rotated antenna (90deg) systems. The different antenna 

configurations are listed in Table 5-1. 

The measurement system setup consists of: Vector Network Analyzer (VNA), power amplifier 

and low noise amplifier connected to the transmitter (Tx) and the receiver (Rx), respectively. The 

VNA is used to measure the channel frequency response magnitude and phase, in the desired 

frequency range. During measurements, the propagation channel is considered as stationary for 

both scenarios. The Tx was placed at a fixed position, and the Rx location was changed up to 10 m 

away from Tx, as shown in Figure 5-4. The measurement parameters are described in Table 5-2. 

 

 

 
  Table 5-1 Measurements scenario 

Polarization Circular (Cir) Linear 

Scenario CP-LoS 90 deg-LoS CP-NLoS CP-LoS 

Position 10 10 9 7 
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Figure 5-3 Photo of the gallery 

(a) 

(b) 

Figure 5-4 Experimental scenarios (a) LoS, (b) NLoS 
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5.2.2 Data processing 

The data processing is illustrated by the diagram of Figure 5-5. Following the experimental 

scenarios, the channel matrix magnitude and the phase measurements were carried out for 10 

different positions. At each position, ten snapshots with 2049 samples were measured from 2.3 

GHz to 2.5 GHz. Moreover, the snapshots have been horizontally concatenated to provide a dataset 

for the training and the validation process. 

 𝐷𝐷 =  𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑡𝑡�𝐻𝐻𝑖𝑖𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀,𝐻𝐻𝑖𝑖𝑖𝑖𝑃𝑃ℎ𝑀𝑀𝑎𝑎𝑎𝑎� (5.2) 

Where 𝑖𝑖 ∈ (1,2);  𝑗𝑗 ∈ (1, 2) represents the transmitted and the received link. The framework uses 

the dataset 𝐷𝐷 as a multivariate (Multiple-Variables) magnitude and phase datasets. Then, to predict 

 
Table 5-2 Measurement system configuration 

Parameters Values 

Frequency 2.3 GHz - 2.5 GHz 

Transmitted power -10 dBm 

Average noise floor -80 dBm 

Bandwidth 200 MHz 

Rx gain 6.6 dBi 

Tx gain 6.6 dBi 

Cable loss 0.6 dB/m 

Antenna height (B2B) 1.50 m 

Sweep time 60 s 

Antenna types Linearly and circularly polarized patches 
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the four matrix sub-channels at each position, the sequences are divided into input and output 

samples. To achieve the model high accuracy in terms of classification and regression, the concept 

of the sliding window is adopted [17]. As the nature of the collected data are time-series data, the 

concept of sliding window is used to convert the problem into supervised learning one. Thus, this 

method resolves the prediction problem for sub-channel prediction. Specifically, regression and 

classification problems are simultaneously used in the stacked model. The model input is the 

dataset X and the output (𝑦𝑦𝑐𝑐) is only used for the channel prediction in case of regression problems. 

For the classification problems, different outputs are used. A binary output for LoS-NLoS 

(𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿−𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 ) detection is created and a categorical output (𝑦𝑦𝑝𝑝𝐿𝐿𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝐿𝐿𝑛𝑛 ) with a matrix of ten features 

is created. However, all the target outputs are 3-dimensional size. 

From the input shape of Figure 5-5, it can be noticed that 8 parameters must be considered in the 

prediction along with two variables (magnitudes and phases) for each sub-channel matrix. In fact, 

it is complicated to put the three stacked model to converge and achieve high prediction accuracy 

in both regression and classification. The Z-score normalization [18] standard has to be applied in 

order to shed the values between variables without losing the relevant information of the model. 

The Z-score normalization is described as follows [18]:  

 𝑁𝑁𝑋𝑋 =
𝑋𝑋 − 𝜇𝜇𝑋𝑋
𝜎𝜎𝑋𝑋

 (5.3) 

 𝑁𝑁𝑦𝑦𝑐𝑐 =
𝑦𝑦𝑐𝑐 − 𝜇𝜇𝑦𝑦𝑐𝑐
𝜎𝜎𝑦𝑦𝑐𝑐  

 (5.4) 

Where 𝜇𝜇,𝜎𝜎 are the mean and the standard deviation, respectively. Moreover, the input data is 

transformed into small batch size sequences to facilitate the learning process and to avoid the 

gradient descends problems [19, 20]. 
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5.3 Train and validation mechanism 

The diagram of Figure 5–6 shows the high-level process of the proposed model. The stacked model 

was trained in the collected channel matrix H. Afterwards, the model is evaluated to test the model 

capability to classify the position, the LoS-NLoS identification and the channel prediction. Finally, 

using the prediction channel H, the channel characterization and modeling were compared to the 

model results of the published ones [10]. After the data processing scheme, the 1/3 and 2/3 of the 

normalized datasets are split into validation and training datasets, respectively. The target datasets 

are different for classification and regression problems. In this case, binary output (𝑦𝑦𝑙𝑙𝐿𝐿𝑎𝑎/𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 ) is 

used for LoS-NLoS detection where the true value (one) is for LoS scenario, and the false value 

(zero) is for NLoS. As illustrated in Figure. 5–7, categorical classification matrix, for position 

classification output �𝑦𝑦𝑝𝑝𝐿𝐿𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝐿𝐿𝑛𝑛� is used. Up to ten positions were collected in the experimental 

measurements. Finally, for channel prediction, the output 𝑁𝑁𝑦𝑦𝑐𝑐 
 is used. Therefore, for the stacked 

model outputs, different losses are considered in Figure 5–8. For binary classification, Binary 

Cross Entropy loss (BCE) [21] is assigned, where it is compared to each of the predicted 

probabilities to the actual class output (LoS [one] or NLoS [zero]) [21, 22]. Before using the BCE, 

a sigmoid function is applied independently to each element 𝑥𝑥𝑖𝑖 of the vector 𝑥𝑥 in the last layer to 

squash the vector data range between 0 to 1. It is described in equation 3.2 [23, 24] .On the other 

hand, for the position classifier, different losses are considered in the multiple-class classification. 

Figure 5-5 Data processing module 
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However, Categorical Cross Entropy loss (CCE) [21]  is selected, which has the same performance 

as BCE. In this case, a SoftMax activation function is considered to calculate the probability of 

each target class overall potential target classes. The probabilities obtained will be useful in 

defining the target class for the provided inputs [25, 26]. In fact, the output probability range is the 

key benefit of adopting SoftMax. The probability range will be from 0 to 1, and the total of all 

probabilities will be one. When the SoftMax function is used to a multi-classification model, the 

probability of each class is returned, with the target class having the highest one (probability) [54–

57]. Therefore, the SM model used the SoftMax in case of position classification. The SoftMax 

formula is given in equation (3.3). [23-26] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6 Proposed stack model for regression and classification. 

Figure 5-7 Activation functions and stacked model’s losses. 
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Once the input data and the target output data are settled, the training and validation process are 

monitored by the learning curve (LC) [27]. Moreover, different problems with different 

approaches to quantify the LC are used. Figure. 5-9, 5-10 and 5-11 showed the binary and 

categorical cross entropy in terms of loss and accuracy for LoS-NLoS and position classification, 

respectively. Then, the MSE error in terms of percentage is used for channel prediction loss. Since 

the data is collected mostly in LoS scenarios (more than NLoS data), the stacked model has 

difficulties learning in the proper fashion. Specifically, when the training process begins to be 

adjusted for NLoS (more LoS data in the input). However, the data processing module assisted the 

model to adapt and predict appropriately the NLoS data, as seen in the Figure 5-9 high 

classification accuracy (up to 100%), as well as smaller BCE losses, were achieved by the stacked 

model for LoS-NLoS detection. A good agreement between the training and the validation is 

obtained. Furthermore, high accuracy is noticed up to 85% classification accuracy and lower CCE 

loss values in case of position classifiers (Figure 5-10). For channel prediction in Figure 5-11, the 

MSE in terms of percentage is lower with respect to the training epochs. Moreover, the training 

loss decreases and starts to settle in at approximately 300 epoch and 0.75% of MSE. Monitoring 

the learning curves is crucial for the model performance and the accuracy of the test results. As 

described in [27, 28] a good fit must be fulfilled to ensure that the model is learning sufficiently  

from the training sets, which is called underfitting, or the opposite is the overfitting. However, as 

Figure 5-8 Target outputs for regression and classification 
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observed in Figure 5-9, 5-10 and 5-11, the stacked model is learning appropriately to properly 

predict the test sets. The learning curves obtained by the stocked model used the parameters shown 

in Table 5-3. The dynamic learning rate schedule [29] is introduced to assist the learning model to 

incorporate some learning randomness. once a learning rate is established at lesser values [29]. 

 

 

 

 

 

 

 

 

 
Table 5-3 Simulation parameters 

Parameters 

Stacked model 

Position classifier 
Channel 

prediction 

LoS-NLoS 

detection 

Hidden layers 100 

Batch size 100 

Loss functions CCE MSE BCE 

Training dataset size 136 600 

Validation dataset size 68300 

Optimizer Adam 

Learning rate 0.001 
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(a) 

(a) 

Figure 5-9 The training and validation learning curves for LoS-NLoS detection: 

(a) BCE loss curves, (b) Accuracy classification curves.  
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(b) 

Figure 5-10 The training and the validation learning curves for position classification: (a) 

CCE loss curves, (b) Accuracy classification curves. 

(a) 
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5.4 Test and evaluation module 

For the test and evaluation module, the test data is used from the measured dataset. Therefore, the 

data processing is performed along with the training and the validation data. Moreover, the module 

aims to test the model capability to predict new samples, identify the position and whether it 

belongs to LoS or NLoS scenarios. In this case, the model is evaluated to predict the channel, 

classify the position and LoS-NLoS detection at the chosen position of 5 m.  

5.4.1 Channel Matrix Prediction  

For the MIMO channel prediction, Figures 5-12 and 5-13 demonstrate the measured and the 

predicted H within different antenna configurations in terms of magnitude (Mag [H]) and phase 

(Phase [H]) at 5m. Nevertheless,  the Root Mean Square Error (RMSE) in terms of percentage was 

used to quantify the prediction losses [30] as illustrated in Figure 5-14. As seen, the prediction 

errors are lower for each sub-channels for the magnitude and the phase prediction. Even though, 

the RMSE values for the magnitude are less than the phase RMSE values, the model predicted 

well both parameters. This is due to the fact that the model is learning sufficiently as demonstrated 

by the learning curves.  

Figure 5-11 MSE loss in terms of percentages for channel matrix prediction 
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(a) 

(b) 

(c) 
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(a) 

(b) 

Figure 5-12 Measured and predicted channel matrix magnitude (Mag [H]) at 5m for different 

antenna configurations: (a) 90deg-CIR (b) CP-CIR (c) CP-LIN (d) CP-LIN-NLOS 

(d) 
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(c) 

(d) 

Figure 5-13 Measured and predicted channel matrix phase (Phase(H)) at 5m for different antenna 

configurations: (a) 90deg-CIR (b) CP-CIR (c) CP-LIN (d) CP-LIN-NLOS 
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5.4.2 LoS-NLoS Identifier and Position Classifier 

In this section, the classification results are illustrated. Moreover, as demonstrated in the training 

and the validation process, the model has achieved an efficient prediction process in terms of loss 

and accuracy. On the other hand, the confusion matrix (CM) [31] is used in the case of 

classification. The CM is considered as a summary of prediction results for any classification 

problem on a machine leaning field. It quantifies the number of correct and incorrect for the model 

predictions. Therefore, when the classification model generates predictions, the CM displays how 

it gets confused [27]. 

(a) 

(b) 

Figure 5-14 RMSE evaluation for channel prediction. (a) Magnitude (b) Phase  
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In Figure 5-15, the CM results are demonstrated in terms of position classifier where it is 

considered as multiple class classification (Up to 10 position to classify). The SM reached up to 

87% accuracy prediction in terms of sample classification within all the antenna configurations. 

Even though, the SM is trained to classify 10 positions (output feature shape is 10). Hence, the 

proposed model shows its capability to predict positions within all the configurations with less 

collected positions, such as the CP-LIN-LOS and CP-CIR-NLoS configurations, where only seven 

and nine positions were measured, respectively. 

Regarding the LoS-NLoS detection, the model achieved a 100% classification accuracy as 

demonstrated by the LC. Therefore, the CM is also used (Figure 5-16) in this case, which is 

considered as a binary output, where 0 and 1 refers to NLoS and LoS, respectively. It is worth 

mentioning that more data samples were collected in LoS scenario. However, the LC shows that 

the SM is learning properly to classify all the samples within Both LoS and NLoS scenarios. In 

both classifications, the SM aims to classify every sample collected at every position. Therefore, 

the SM will classify a sample collected at the position of 5 in LoS and NLoS scenarios. Considering 

that most of the data was collected in LoS scenario, only two configurations were considered in 

the Figure 5-15 and 5-16. The classification of the collected samples in the position 5 was 

evaluated within 2049 points (which length of collected data in each position, see Table 5-2 ) due 

to the hardware limitations. Moreover, the model classified with 87.9% of accuracy with the CP-

LIN configuration in LoS scenario. As illustrated in Figure 5-15 (a), 1802 samples were correctly 

classified as of the rest of the sample were classified incorrectly between positions 1 to 10. 

Similarly, as CP—CIR configuration in NLoS scenario, 85.4% of accuracy is achieved by the SM 

where 1749 samples were correctly classified. Therefore, more significant incorrect classified 

samples (14.6%) are noticed as illustrated in Figure 5-16. It implies that, even though the model is 

learning well, it is challenging for the SM model to predict all the positions of the NLoS samples. 

This is due to the collected measurements, where more balanced datasets are needed to reach 100% 

of prediction accuracy. In fact, the collected position samples are not sufficiently balanced which 

does not optimize the SM prediction in a multiple class classification. On the other hand, the LoS-

NLoS detection is well predicted in both configurations. Therefore, a 100% accuracy was achieved 

by the SM. Hence, it is noticed that the collected measured datasets were enough for the SM to 

identify the difference between the binary results (zero for NLoS and one for LoS). 
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 (a) 

(b) 

Figure 5-15 Confusion matrix for CP-LIN configuration in LoS scenario: 

(a) position classifier, (b) LoS-NLoS detection (LoS : 1 and NLoS: 0 
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(a) 

(b) 

Figure 5-16 Confusion matrix for CP-LIN configuration in LoS scenario:  

(a) position classifier, (b) LoS-NLoS detection (LoS : 1 and NLoS: 0). 
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5.5 Channel Characterization and Modeling  

In this section, the magnitude and the phase were used to evaluate the path loss and the channel 

modeling to compare with the measured ones which published by Elazhari [1]. 

5.5.1 Path Loss 

As mentioned in previous chapiter, the Path Loss (PL) is calculated using the equation 2.3 and 2.4. 

The  PL is defined as the signal attenuation caused by the effects of the environment. As noticed 

from the linear analysis, the values of the path loss exponent of the antenna configurations are 

evaluated and illustrated in Table 5-4.  

The SM predicted model results were significantly close to the published values reported in [10]. 

Therefore, the SM predicts the measured path loss in all the different antenna combinations within 

2X2 MIMO system as illustrated in Figure 5-17. Hence, the same behaviour as the published results 

in [10] can be made with the SM prediction results. The Cir-CP-B2B channel performs well with 

regards to the other path loss values for the different configurations.   

 

 

 

 

 
Table 5-4: Path loss exponent  

Polarization Circular (Cir) Linear 

Scenarios CP- 
LOS 

90 deg— 
LOS CP-NLOS CP-LOS 

PL exponent 

Published 2.33 1.71 2.18 1.26 

Predicted 2.38 1.77 2.56 1.70 
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(a) 

(b) 
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(c) 

(d) 

Figure 5-17 Measured Path Loss , predicted Path Loss and linear regression (LR) :  

(a) 90deg-CIR (b) CP-CIR (c) CP-LIN (d) CP-LIN-NLOS. 
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5.5.2 Channel Modeling 

As mentioned in [10], channel modeling consists on developing the impulse response to describe 

SISO—B2B system in mining environment which is characterized by rough and random surfaces. 

The impulse response is presented in [32]:  

Where 𝑁𝑁 is the number of multipath components, 𝑐𝑐𝑖𝑖  ,𝑡𝑡𝑖𝑖  and 𝜃𝜃𝑖𝑖 are the random amplitude, arrival 

time and phase of the 𝑖𝑖𝑡𝑡ℎmultipath components. 𝛿𝛿 is the Kronecker delta function. Regarding the 

modeling procedures reported in [10], two modeling procedures were discussed in terms of path 

amplitudes and arrival times. In fact, the path amplitude 𝑐𝑐𝑖𝑖 is modeled as independent complex 

Gaussian random variables with average power that follow the exponential power delay profile. 

The time arrivals of the multipath components were derived from  measurements [10]. In this 

section, the SM impulse response model is compared with the measured and the stochastic—

empirical (SE) modeled impulse response as illustrated in Fig 18. Table 5-5 illustrates the 

compared MSE values obtained by the SM and the stochastic model. It can be observed that the 

SM model MSE is the lowest, which provide more accuracy than the stochastic model to describe 

the impulse response for Body-to-Body channel. 

 

 

 

 

 

 ℎ(𝑡𝑡) = � 𝑐𝑐𝑖𝑖𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)𝑒𝑒𝑖𝑖𝜃𝜃𝑖𝑖
𝑁𝑁−1

𝑖𝑖=0

 (5.5) 

 

     Table 5-5 IR model performance 

 SE model SM model 

MSE 1.8437e-04. 1.7250e-04 
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5.6 Conclusion 

In this chapter, a new efficient MIMO channel modeling based on deep learning algorithm was 

presented. A stacked model is introduced to predict channel magnitude, phase, for each 

subchannels of the channel matrix H. Then, it classifies the position where the measurements were 

collected for LoS and NLoS scenarios. Moreover, different losses were applied to measure both 

classification and channel prediction problems. Published results in [10] were used to validate the 

SM model. The SM has achieved high accuracy in terms of performance assessment of the 

classification up to 100% and channel prediction with lower RMSE. Furthermore, the predicted 

path loss achieved more accuracy than the stochastic—empirical model.   

The model was validated in estimating each subchannels, position classifier, and LoS-NLoS 

detection, while considering antenna diversity in underground mine environments.  

 

Figure 5-18 SM impulse response model compared to both stochastic empirical (SE) and 

measurement impulse response. 
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CHAPTER 6  CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

This thesis is intended to contribute to the design and development of wireless communication in 

two part. 

In this thesis, we presented the results for applied machine learning in propagation channel within 

MIMO and SISO systems. The contributions are demonstrated in two parts. The first part tends to 

bring a new methodology to apply machine learning field to predict the propagation channel in 

any complex indoor environment within SISO-LoS scenario. CFR predictions were made in a 

variety of environments and frequency bands, with various antenna designs. Despite the fact that 

just one environment's data was used in the training and validation process, the model performed 

high accuracy prediction in all of environments. This is related to enhanced data processing, which 

is justified by the model's capacity to learn the relevant channel parameters between datasets and 

a good fit learning curve throughout the training and validation process. Channel characterization 

was carried out afterward, to visualize the model’s capability to procreate same behavior of the 

channel and to demonstrate that the same observations could be made. As result, the model 

significantly Predicted (PPL) the Measured Path Loss (MPL), RMS delay spread, coherence 

bandwidth, K-factor, and channel capacity. The methodology demonstrated its use in forecasting 

the CFR, considering the antenna variety, where the same discussions could be held as the 

measured ones. Hence, the proposed model could promote the design of wireless communication 

systems in any complex area. 

In the second part, the main contribution is attributed to design a data driven model for MIMO 

channel in underground mine environment. To achieve this objective, published measurements 

and results were considered  [1] for the modeling validation purpose. Consequently, a new efficient 

WBAN-MIMO channel modeling based on deep learning algorithm was presented. A stacked 

model is introduced to predict channel magnitude, phase, for each subchannels of the channel 

matrix H, classify the position where the measurements were taken and whether in LoS or NLoS 

scenario, simultaneously. The SM, which is made up of three separate deep learning algorithms 
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based on LSTM networks, was employed since diverse results were predicted. Furthermore, 

various losses were used to assess both the classification and channel prediction problems. The 

SM model was validated using published results. Within the LoS and NLoS scenarios, the SM 

exhibited good accuracy in terms of performance assessment of the classification up to 100%, and 

channel prediction with low RMSE up to 0.6 percent and 4 percent for the magnitude and phase, 

respectively. Furthermore, path loss and channel modeling were performed to visualize the model 

capability to procreate the same behaviours as published model and to demonstrate that same 

observation could be made by the SM. As results, the SM predicted the path loss and achieved 

more accuracy than the published stochastic model. While considering antenna variety in 

underground mine environments, the model was proven in predicting each subchannel, position 

classifier, and LoS-NLoS detection. Furthermore, it enables the same conversations and 

observations as the measured ones to be concluded. As a result, the proposed model could aid in 

the development of wireless communication systems and increase underground miner safety. 

 

6.2 Future work 

Applying deep learning algorithm for channel propagation field,  is currently a vast topic. Many 

areas can be exploited where were not covered by this PhD work. For instance,  while different 

scenario and frequency bands were thoroughly investigated, with different antenna (different 

polarization), the important of the continuity to investigate other bands such as millimetre wave 

(mm-Wave) and the surface characteristic is very crucial.  Hence, an open problem that future 

research works need to consider is the exploration of surface characteristic, mm-Wave band, and 

the dynamic effect of the body on the channel system. This exploration will enhance the proposed 

model especially for WBAN-MIMO system which contribute the safety of the miners in 

underground mine environment. Other deep learning algorithms combined with modeling 

techniques should be investigated for indoor application such as inside the mine. This includes the 

deterministic techniques using the uniform theory of diffraction and approximating the mine walls 

roughness to some reasonably close geometrical shapes.  
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