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SOMMAIRE

La texture est une caractéristique fondamentale de nombreux types d’images,

et sa représentation est l’un des problèmes essentiels et difficiles de la vision par ordi-

nateur et de la reconnaissance de formes, qui reste un sujet de recherche intensive. L’enjeu

principal est alors de développer des méthodes capables de résumer, représenter n’importe

quelle texture, monochrome ou couleur dans une signature compacte qui incarne autant

d’informations que possible permettant de distinguer cette texture d’une autre. Diverses

méthodes de représentation texturale et de modélisation ont été proposées au cours des

dernières décennies, mais le problème reste d’actualité. Récemment, des méthodes statis-

tiques ont montré leur efficacité pour discriminer les textures, mais ces méthodes conti-

ennent des imprécisions et des insuffisances concernant la représentation de certains types

de textures tels que les textures couleurs dont les distributions des coefficients des trans-

formées Muli-résolution exhibent une multi-variabilité et une multimodalité.

Notre objectif principal dans ce travail est de développer des modèles statistiques pour la

représentation de texture qui abordent ces limitations pour une représentation de texture

efficace. Premièrement, nous avons proposé un nouvel algorithme capable de détecter

et de localiser les défauts dans la plupart des groupes de tissus. L’algorithme utilise

l’apprentissage supervisé pour distinguer les tissus sans défaut des tissus défectueux, sur la

base des signatures RCT-MoGG. En plus d’être compactes et rapides à calculer, ces signa-

tures permettent une localisation précise des défauts. En fait, les défauts sont détectés lors

de l’inspection de l’image en testant des patchs locaux à l’aide du classificateur bayésien
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appris (BC). Notre approche peut traiter plusieurs types de textiles, des plus simples

aux plus complexes. Des expériences sur la base de données TILDA ont démontré que

notre méthode donne de meilleurs résultats par rapport aux méthodes de pointe récentes.

Deuxièmement, nous avons généralisé le modèle, pour le cas des données multivariées et

multimodales. Le nouveau modèle appelé MoMGG permet non seulement de modéliser la

corrélation entre les coefficients avec un emplacement, des échelles et des orientations ad-

jacents dans la même transformée multi-résolution, mais également entre des sous-bandes

de différentes transformations (par exemple, des contours et des ondelettes) pour créer une

signature de texture plus riche et plus représentative. La nécessité de développer un tel

modèle unifié est de pouvoir représenter tout type de texture, qu’elle soit monochrome ou

couleur. Nous avons appliqué notre approche pour la recherche d’image par le contenu en

utilisant une divergence approximative de Kullback-Leibler (KLD) entre MoMGGs pour

mesurer la similitude de texture. Les expériences menées sur certaines bases de données

de référence ont démontré les capacités de nos modèles et leurs performances par rapport

aux travaux récents de la littérature. De plus, des expérimentations sur la reconstruc-

tion d’images à partir du MoMGG ont montré de très bonnes performances, ce qui offre

un potentiel énorme pour des applications telles que la super-résolution et la compression

image/vidéo.



ABSTRACT

Texture is a fundamental characteristic of many types of images, and texture representation

is one of the essential and challenging problems in computer vision and pattern recognition

which remains a topic of intensive research. The main challenge is then to develop methods

capable to summarize, represent any texture, monochrome or color in a compact signature

that embodies as much information as possibles allowing distinguish this texture from

another. Various methods of textural representation and modelling have been proposed

in the recent decades, but the problem is still topical. Recently, statistical methods have

shown their effectiveness to discriminate textures. But these methods contain imprecisions

and insufficiencies concerning multimodal and multivariate texture representation.

Our main goal in this work, is to develop statistical models for texture representation

that adress these limitations for effective texture representation. First, we have proposed

a new algorithm that has capability to detect and locate defects in most of the fabric

groups. The algorithm uses supervised learning to discriminate between defect-free fabrics

from defective ones, based on RCT-MoGG signatures. In addition to being compact and

fast to compute, these signatures enable accurate localization of defects. Actually, defects

are detected during image inspection by testing local patches using the learned Bayesian

classifier (BC). Our approach can deal with multiple types of textile fabrics, from simple

to more complex ones. Experiments on the TILDA database have demonstrated that

our method yields better results compared with recent state-of-the-art methods. Second,

we generalized the model, for the case of multivariate and multimodal data. The new
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model called MoMGG enables not only to model correlation between coefficients with

adjacent location, scales and orientations within the same multi-resolution transform, but

also between subbands of different transforms (e.g., contourlets and wavelets) to build

richer and more representative texture signature. The need to develop such unified model

is to be able to represent any type of texture, whether monochrome or color. We applied

our approach for texture retrieval by using an approximate Kullback-Leibler divergence

(KLD) between MoMGGs to measure texture similarity. Experiments on some benchmark

databases. Obtained results have demonstrated the capabilities of our models and their

performance compared to recent work in the literature. Furthermore, from our model,

we carried out experiments on image reconstruction which showed very good performance,

which offers enormous potential for applications such as super-resolution and image / video

compression



REMERCIEMENTS

Tout dabord, je voudrais exprimer ma sincère gratitude à mon conseiller M. Said Allili
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Chapter 1

Introduction

1.1 Texture representation problem

Our visual world is richly filled with a great variety of textures, present in images, ranging

from multispectral satellite views to microscopic pictures of tissue samples. As a powerful

visual cue, texture provides a useful information in identifying objects or regions of interest

in images. Texture is different from color in that it refers to the spatial organization of a set

of basic elements or primitives (i.e., textons), the fundamental microstructures in natural

images and the atoms of preattentive human visual perception [1] . A textured region will

obey some statistical properties, exhibiting periodically repeated textons with some degree

of variability in their appearance and relative position [2]. Textures may range from purely

stochastic to perfectly regular and everything in between (see Fig. 1.1 ).

1
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Figure 1.1: Texture images from the VisTex [3] databaseTexture

As a longstanding, fundamental and challenging problem in the fields of computer

vision and pattern recognition, texture analysis has been a topic of intensive research since

the last decades. This is due to its significance both in understanding how the texture

perception process works in human vision as well as in the important role it plays in a wide

variety of applications. Texture analysis covers a very wide spectrum of methods. It can

be structured into three levels of concentrations : the low-level analysis which concerns

the representation and modelling of texture, the middle-level analysis embraces several

operations including discrimination, classification, segmentation, synthesis [4], and the

high-level characterized by the applications derived from the middle-level such as remote

sensing, medical imaging, inspection, detection of defects, content based image retrieval

and so on [5, 6, 7, 8, 31]. Texture representation and modelling are basic steps for texture

discrimination, classification and segmentation, so they represent a fundamental analysis

operation. Texture representation, i.e., the extraction of features that describe texture

information, is at the core of texture analysis. There are several methods to represent
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textures, some of them are presented in the next section.

1.2 Texture representation methods

Various methods of textural representation and modelling have been proposed in recent

decades, but the problem remains a subject of intensive research. Tuceryan and Jain [4]

identified three major methods for texture representation: structural, spectral and statis-

tical methods. Structural approaches represent texture by well-defined primitives (micro-

texture) and a hierarchy of spatial arrangements (macrotexture) of those primitives [1, 10].

Structural methods include Voronoi partitions [11] which characterize and segment textures

by building a mosaic of Voronoi polygons and calculating descriptors on each Voronoi mesh.

Topological invariant methods use for exemple texture descriptor which relies on Hough

transform for finding line structures in highly structured textiles.

Spectral approaches represent an image in a space whose co-ordinates have an interpre-

tation that is closely related to the characteristics of a texture (such as frequency or size).

Among these methods, there are Fourier transform [12], Gabor filters [13, 14], wavelet

transform [15], the Laplacian pyramids [16] , and contourlets transform [17]. The Fourier

Transform allows to obtain a complex value module, called the Fourier spectrum which pro-

vides information on the power of the signal in each frequency. The other methods in this

frequency group provide multiresolution representation allowing images to be successively

decomposed, from coarse to fine resolutions. Wavelets and more recently contourlets have

emerged as a signal processing effective tool to analyze texture information as they provide

a multiresolution and orientation representation of an image. Among the most successful

methods in texture representation and modelling there are statistical based methods [18].

In contrast to structural methods, statistical approaches do not attempt to understand



Chapter 1. Introduction 4

explicitly the hierarchical structure of the texture. Instead, they represent the texture

indirectly by the non-deterministic properties that govern the distributions and relation-

ships between the grey levels of an image. We can find the usual statistical reference

method named cooccurrence matrix method, introduced by [19, 10], which provide spatial

dependencies of the gray levels. Textures descriptors are generated from the co-occurrence

matrices. Among statistical methods we also have random field method, Independent

component analysis (ICA) [20], which is a factorial method which allows to explain a mul-

tidimentional signal in terms of components that are as independent as possible. We can

also find many parametric statistical methods called generative methods or probabilistic

methods or model-based models that describe the texture by a probabilistic model as an

achievement of a random process [21]. Texture is then represented by the model parame-

ters representing texture signature. Parametrics methods are the most powerful since they

have proven their ability to successfully model texture [22]. Recently several parametric

methods have been proposed, for example probabilistic principal component analysis den-

sities, Weibull density, Generalized Gamma and Generalized Gaussian densities. A semi

parametric modelling have been proposed using Generalized Gaussain density [23] which

showed most flexibility and many image decompositions have been investigated jointly

with. For these reasons, our method in this work focus mainly on generative models based

on the generalized gaussian formulation.

1.3 Parametric models for texture representation

In the last decades, several parametric statistical models have been proposed to model

multiscale transforms in texture image. The pioneering works used the parametric class

of Gaussian scale mixtures, which allow to generate heavy-tailed distributions, by convo-

lution of a normal distribution with a random one [21]. For example, generalized gamma,

Student, Pearson Type VII, uniform power, generalized t (GT) and exponential power
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distributions [21] have been used to model the distribution of wavelets. Among all these

distributions, exponential distributions have been very successfully used for the represen-

tation and discrimination of multiscale transforms, in particular the generalized Gaussian

density which has had a growing interest in texture modeling in the last decades. Recently,

many works used the GGD model for gray level texture modelling in the frequency domain.

The GGD as univariate distribution of wavelet subbands, has been applied in texture image

retrieval and showed a good performance [23], [24], [7]. This success is achieved in part

due to the fact that the GGD has a parameter that controls the shape of the distribution

which provides some flexibility in the fitting of platykurtic and leptokurtic histograms of

the transforms of most natural images.

Aside from ICA method, few researchers have attempted to address the multidimen-

sional representation of texture. Studies have used multivariate generalized gaussian den-

sity (MGG) for representation of the distribution of spatial dependency in color texture

[25], [26], [27]. Other models have been used such as spherical invariant random vectors

(SIRV) [28] and models based on the copulas [29]. However, these multivariate models

achieved an average performances, with sometimes too small number samples from generic

texture database such as BRODATZ [34] et VISTEX [3]. Moreover, these methods have

several restrictive assumptions that strongly limit the scope and comparability of their re-

sults, for example, most of the proposed models were all of zero mean as well as non-existent

inter-band correlation. But it is well known that there is often a strong inter-band depen-

dency at the frequency level. Also these works do not take into account the multimodalities

observed in subbands for certain images, called multicomponent images [7]. This author

[7] is one of the rare authors who modeled multimodality in the wavelet subbands, how-

ever this modeling was suitable for only with grayscale texture data i.e. univariates data,

and not multivariate ones. The taking into account of mutimodility for multivariate data,

for instance for wavelet subbands resulting from the decomposition of the three channels
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(RGB) of color image, is still lacking.

It can be observed, through the aforementioned works, that the simultaneous modelling

of multimodality and multidimensionality ( in the sense of the correlation between data)

in a unified study is still lacking. That is, previous works failed to address simultane-

ously, multicomponent and multidimensionality in texture representation. For example, to

represent more accurately color texture taking account implicit correlations [25] observed

between different subbands, it is necessary to use an appropriate full covariance model. Un-

fortunately this model does not exist to date, which is why we work on this in this work.

In most of the cases, image representation methods extract the color features at each color

channels independently, when in fact, there exist dependencies caused by linear transform

in the color space and this fact has been highlighted in various works [25] . So, it is well

known that there is often a strong inter-band dependency at the frequency level. Also, [22]

highlighted other kind of correlations in grayscale image sub -bands, which capture the

spatial distribution. The exploitation of these implicit inter-band, and spatial correlations

in the multivariate framework could therefore lead to compact and robust signatures that

embodies as much information as possible on the texture. It is this fact that motivated

us to build-up a full covariance mixture of multivariate generalized Gaussian (MoMGG)

model for texture representation.

More recently, deep learning methods using convolutional neural networks (CNN) have

been proposed for the texture representation [30, 31, 32]. These methods learn filter weights

and convolved labeled data with input images to create a spatial feature map of activations.

They have the advantage of exploiting large datasets. However, they require the estima-

tion of millions of parameters and a very large number of images which require enormous

computing power, thus limiting their applicability with very little data. In the other and in

[32, 33]., The authors found that the elaborated CNN models were not powerful for synthe-
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sizing textures that humans cannot distinguish from natural textures. It would therefore

be opportune to develop an efficient method, which could be used either upstream or down-

stream of such methods. A parametric method would be the best candidate to avoid these

limitations.

Given previous works limitations, we need to develop an effective way that can im-

prove and optimize the modelling and representation of the texture whether it is color or

grayscale. In the context of applications such as Content-Based Image retrieval (CBIR),

it is often necessary to discriminate a texture from others that have been described by

models, and therefore it is necessary to develop also suitable similarity measures. There

already exist similarity measures based on statistical distances. Some statistical methods

have been used such as the Kullback Leibler distance (KLD) [23], Cauchy-Schwarz proba-

bility density function (pdf) distance [36, 37], the Rao geodesic distance (GD) [26] based

on the Fisher information. In our work, we will propose appropriate approximations for

the KLD in multivariate and multimodal in context of texture representation.

1.4 Contributions

Given the aforementioned challenges, we note that the main goal concerns improving pre-

cision for texture representing. The problem is to get a compact signature that is repre-

sentative of the texture. First, this implies improving the existing methods of represen-

tation for univariate multicomponent textures, and then the build-up suitable models for

multivalued, multicomponent textures. Herein, the approach considered is the parametric

statistical characterization which, in addition to having demonstrated its ability to describe

texture sparingly in reference works, can be used upstream and downstream of any tex-

ture representation method. With such advantages, statistical modeling still has a bright

future ahead. Concerning multivalued multicomponent textures the problem is the lack of
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unified model which fully exploit all the textural information contained in multivariate and

multimodal subband distributions, for example for color texture. This latter challenge is

addressed in one of the contributions of this work as a major contribution. Loosely speak-

ing the general contribution of thesis, is to build-up a general framework which can handle

not only unimodal or monochrome texture but also multivariate or multimodal texture.

We can briefly summarize our main contributions in the following points:

1. In the first contribution, we propose an improved approach for applying MoGG

model for local ( in block sense) texture discrimination. Then, more specifically

we applied the MoGG signatures in a blockwise discrimination leading to efficient

texture classification. KLD distances between MoGGs were used as features which

allows to discriminate defect from non-defective fabric texture. So far, MoGG has

been most often used for texture retrieval. Here, we show that it is also valid as

signature for texture discrimination. We adress this texture discrimination problem

through a learning based approach using Bayes classifier. By opposite to several

existing approaches for fabric defect detection, which effective in only some types of

fabrics and/or defect, our method can deal with not only almost all type of pattern,

that is motif-based and non motif-based one, but also all type of defects thanks to

the RCT+ MoMG. The method enable both detection and localization of defects.

2. In a second contribution, we develop a new formal framework that extends the MoGG

model to the mixture of multivariate generalized Gaussian (MoMGG) which allows

representing and modelling both multimodality and correlations between multivari-

ate data. Our method is an unified model for multivariate and multimodal distri-

butions of coefficients in multi-resolution transforms of color texture images. The

new MoMGG enables description of multivariate data with full covariance matri-

ces. Strictly speaking, we propose a MoMGG with full covariance matrices to model

arbitrary combinations of multi-scale decomposition bands. These can be bands orig-

inating from different color channels produced by different types of image transforms
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(e.g., wavelets, contourlets, etc.) that many exhibit a strong inter-band and spatial

correlations. So, the new MoMGG model enables not only to model correlation be-

tween coefficients with adjacent location, scales and orientations within the same

multi-resolution transform, but also between subbands of different transforms (e.g.,

contourlets and wavelets) to build richer and more representative texture signature

Given the flexibility of our MoMGG, we can fit any distribution of the combined

coefficients without restrictions to previous work assumptions about unimodal and

centered data. On the other hand, the MoMGG will enable accurate fitting of heavy-

tailed mixture components which encourages more parsimonious models more dis-

seminative capacity for texture classes. This second contribution is a major contribu-

tion in the sense that it paves the way for many applications such as discrimination

of dynamic texture in video.

3. We then validate our MoMGG model in a context of content-based color image

retrieval, where we used a multivariate approximation of Kullback-Leibler divergence

(KLD) between MoMGGs using monte-carlo sampling in order to measure similarity

between texture images.

1.5 Organisation of the thesis

Chapter 2 present a review of texture representaion and modelling methods. The principle

of each method will be described and examples of their use will be presented. In chapter 3,

since data of our models come from the spatio-frequency analysis notably multiresolution

transform sub-bands, we will present the multiresolution transforms commonly used in

texture analysis. Chapter 4 presents the generative methods used for textures representaion

and modelling. Chapter 5 present our first contribution, the supervised Bayesian learning-

base approache for Automatic Defect Detection in monochrome textured images. Chapter

6 presents the new framework of MoMGG parameters estimation and its application in
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color texture retrieval as well as the multivariate approximation of the Kulback-leilber

divergence. Through these applications we will show that our approaches far outweigh

the works that has attempted to address the same topics. Finally, Chapter 7 concludes

the work with a summary and discussion of the presented approaches and future work

perspectives.



Chapter 2

A review of texture representation

methods

2.1 Introduction

The term texture is commonly used to describe the structural components of images of

natural scenes. In these images, we can observe more or less pronounced variations of

intensity. Since the early work of Julesz [38], many methods of texture characterization

have been proposed that rely on a range of approaches such as statistical analysis of spatial

dependencies, structural analysis of textural patterns, frequency filtering of image content,

probabilistic modelling. The goal sought in these numerous attempts to analyze the texture

concerned mainly the extraction of sufficient distinguishing characteristics representing a

compact signature of the texture. A compact signature is advantageously a large size

reduction and allows automated processing of the texture. Unfortunately, there is no

precise formal definition of texture, despite its omnipresence in almost all images (medical

images, aerial, textiles, real scenes, etc.).

The pioneering work of Julesz [38] allowed to postulate that two textures are distin-

11
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guished mainly by their first and second order statistics. This would mean that it is difficult

to distinguish between two textures if their first and second order statistics are identical.

[38] has also stated in his early work that it is difficult to distinguish between two textures

if their three-order statistics are identical. Gagalowicz [39] has proposed counter-examples

of textures having the same moments of orders three but which could easily be distin-

guished from each other. In the light of these observations, Julesz [1] established a new

approach to interpreting the visual perception of textures, the texton theory. A texture in

this approach would consist of primitives (texons). The human perception of the texture

would then be governed by the first order statistics of the distribution of these primitives.

The notion of primitives also provides a basis for the definition of texture made by [10]

according to which a texture can be described by the number and type of its primitives

as well as by the spatial organization or arrangement of the latter. Cross [40] argued that

a texture is a stochastic two-dimensional field, possibly periodic. On the other hand, [41]

and [42] have been among those who demonstrated the multi-frequency aspect of the visual

perception of textures by the human cerebral cortex.

All these definitions have a common point: the notion of texture is used to translate a

homogeneous aspect of the surface of an object into an image. The texture is manifested

by a visual information that can describe it qualitatively according to the following criteria:

coarse, fine, smooth, spotted, granular, mottled, regular or irregular etc. Texture can be

seen as an important spatial feature, which can be used to identify objects or regions of

interest in an image.

2.2 Texture representation methods

Texture is a ubiquitous cue in visual perception, and therefore an important topic within

the science of vision. In particular, it has been studied in the fields of visual perception,

computer vision and computer graphics [43, 44, 45]. All these fields require that texture
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can in some way be mathematically modelled. Typically, a texture starts with a surface

that exhibits local roughness or structure, which is then projected to form a textured

image. Such an image exhibits certain aspects such as contrast, granularity, orientation,

shape, regularity and roughness as the visual criteria that can be used for modelling. Due

to the vague notion of texture, a multitude definitions have already been proposed in the

literature. Generally, the analysis tends to be more driven by the desired application rather

than any pure fundamentals.

This chapter introduces the most common methods in texture analysis. According to

Tuceryan [46], these methods may be broken down into three broad categories of approaches

: a structural approach, a statistical approach and frequency filtering approach. It should

be noted that statistical approaches may belong to more than one of these categories. Also

links can exist between descriptors resulting from methods of distinct categories.

2.2.1 Structural methods

The underlying assumption of structural methods is that textures consist of basic patterns

called primitives repeating themselves in spatial directions in a quasi-regular way [10, 1].

Therefore, a structural description of a texture in this case involves the search for elemen-

tary patterns, their description, and then the determination of the rules of arrangement.

These structural methods rely on an explicit definition of primitives and their placement

rules. They are particularly well adapted to simple and regular textures said macroscopic.

Voronoi partition according to [11] is one of the usual techniques of the category of struc-

tural methods. It is used to characterize and segment textures. The Voronoi partition

consists of extracting the primitives texture (called tokens) and in building a mosaic of

Voronoi polygons and calculating descriptors on each Voronoi mesh using the moments of

the surfaces of the polygons. Another method is a topological invariant method [47] which

shows a topologically invariant texture descriptor which relies on Hough transforms for

finding line structures in highly structured textiles.
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Another recent structural approach often classified as a statistical approach is local

binary partterns (LBP) [48]. The original LBP texture operator is a rotation-invariant

measure of a gray level texture, computed from pixel neighborhood analysis. LBP operator

labels the pixels of an image with decimal numbers, called LBP codes, which encodes the

local structure around each pixel. It proceeds thus, as illustrated in Fig. 2.1,

Figure 2.1: An example of the original LBP operator

where each pixel is compared with its neighbors in a 3x3 or 7x7 neighborhood by subtracting

to them the center pixel value. The results that are strictly negative are put to 0 and the

others to 1. A binary number is obtained by concatenating all these binary codes in a

clockwise direction starting from the top-left one and its corresponding decimal value is

used for labeling. The derived binary numbers are referred to as LBP codes. The method

is considered to be mixed, combining the structural and statistical approach for texture

analysis. The LBP method has many variants. For example, to deal with the texture at

different scales, the operator was later generalized to use neighborhoods of different sizes.

For more readings consult [49, 50], a detailed presentation can be seen in [51].

2.2.2 Spectral methods

Julesz [1] has highlighted the ability of the human brain to analyze images according to

their frequency content. This caused the proliferation of texture analysis methods using a
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frequency filtering of the image. They are motivated by the assimilation of perception to a

selective, multi-scale and multi-orientations filtering mechanism [1]. Different methods of

texture analysis (structural, statistical or model-based) can be exploited in a transformed

space. Frequency approaches that have been used in recent decades for texture analysis are:

The Fourier transform [12], Gabor filters [13, 14], the wavelet transform [15], the Laplacian

pyramids [16], and contourlets transform [17]. Apart from the Fourier transform, the

other four transform methods are used as multiresolution techniques in texture analysis.

Multiresolution representation allows images to be successively approximated, from coarse

to fine resolutions. Multiscale and multiresolution analysis maximizes the simultaneous

localization of energy in both spatial and frequency domains. These tools are those that

motivated the signal processing methods such as Gabor filters and wavelet transform.

Wavelet, contourlet transforms and Laplacian pyramids will be developed in more depth

in subsequent chapters due to the fact that they will be the basis of our contributions, i.e.

our new approaches developed in this thesis.

2.2.2.1 The Fourier transform

The Fourier transform allows, in the domain of the image, to obtain a spatial frequency

representation of the data. This contains a real part and an imaginary part, and we are

mainly interested in its module, called the Fourier spectrum (See Fig. 2.2). Concerning

texture, the Fourier transform highlights the frequency characteristics of a texture. Indeed,

the spectrum allows accounting for the energy distribution of the image, to respect the peri-

odicity as well as the orientation of the patterns of the texture image, which is particularly

useful in the study of textures. Although the Fourier spectrum provides information on the

location of frequencies, it does not allow any temporal and spatial location in the spectrum.

It is therefore not very suitable for the detection and localization of textures.
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Figure 2.2: A chest radiograph is illustrated in (a), its 2-D Fourier spectrum in (b)

2.2.2.2 Gabor filters

The Gabor Filters have received considerable attention for texture representations because

the characteristics of certain cells in the visual cortex of some mammals can be approx-

imated by these filters. In addition, these filters have been shown to possess optimal

localization properties in both spatial and frequency domain, and thus are well suited for

many application in textural analysis [52, 53, 54, 55]. A Gabor filter can be viewed as

a sinusoidal plane of particular frequency and orientation, modulated by a Gaussian en-

velope. A typical configuration of the use of Gabor filters in texture analysis is to use a

filter bank as illustrated in Fig. 2.3. Each filter corresponds to a channel decomposing

the image in certain frequency bands and orientation. We are talking about multichannel

filtering. Low-pass filters are used in image denoising, high-pass filters in edge detection.

They allow a good localization, both in the frequency and space domains. One limitation

of Gabor filter is that it is high dimensional and computational intensive.
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Figure 2.3: Fourty Gabor filters used to extract the Gabor features: Each row rep-
resent a different scale (wavelengths top to down: 3, 6, 12, 24, 48); whereas each
column stands for a different orientation.

2.2.2.3 The Laplacian pyramid

The Laplacian Pyramid (non-oriented) has been used for multiresolution synthesis of tex-

tures [16]. It has been also used by [17, 56] for texture classification. Initially introduced

by Morlet [57] for the analysis of seismic signal, it gives access to a multi-resolution spectral

representation of the initial image. It is a powerful tool for spatio-frequency localization.

The Laplacian pyramid was applied by [103] to image compression to remove redundancy.

Compared to the Gaussian pyramid, the Laplacian pyramid is a more compact representa-

tion. Each level of a Laplacian pyramid contains the difference between a low-pass filtered

version and an upsampled “predication” from coarser level, e.g.:

I
(n)
L = I

(n)
G − S ↑ I(n+1)

G , (2.1)

where I
(n)
L denotes the nth level in a Laplacian pyramid, I

(n)
G denotes the nth level in

a Gaussian pyramid of the same image, and S ↑ represents upsampling using nearest

neighbours.
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2.2.2.4 The Wavelet transform

Wavelet transform, unlike the Gabor method, provides a uniform multiscale analysis re-

quiring a single parameterization for all scales and allows the image to be decomposed

into orthogonal and independent subbands, thereby, limiting the information redundancy.

It is has been adopted by many authors, especially in segmentation [58, 59, 60], classifi-

cation [24, 61, 62] or in content-base image retrieval [63, 23, 64]. However, the wavelets

are limited in two points: directional selectivity and translational invariance [65]. The

three possible analysis directions limit the detection capability of certain contours by the

wavelets. Therefore, several extensions have been proposed to take into account oriented

textures or presenting singular geometrical features not taken into account by the classical

transforms. Among these extensions, we mention the bandelets [66], contourlets [67], the

ridgelets [68] and curvelets [69].

2.2.2.5 The Contourlet transform

The Contourlet transform (CT) introduced by N. Do et al. [70, 71] is one of a multiresolu-

tion methods that recent texture analysis research has been focused on. The CT bears to

the major limit of the two-dimensional discrete wavelet transform. It allows capturing more

directional information in the image by a process of multiresolution and multidirectional de-

composition of the image by iterations of filter banks using non-separable quincunx filters.

It performs a multiresolution directional image representation that can efficiently capture

and represent singularities along smooth objects in natural images. The decomposition is

therefore carried out in two stages which produce low-frequency (LF) and high-frequency

(HF) coefficients from the original input image as shown in the CT general structure illus-

trated in Fig. 2.4.

The first stage uses a Laplacian pyramid to transform the image into a series of band-

pass levels and a low-pass level (low-frequency approximation of the image). The second

stage appropriately applies 2D directional filter bank (DFB) and a critical sampling to
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decompose each LP bandpass level into a number of directional bands, thereby capturing

directional or oriented information. The DFB application is called directional subband

decomposition (DSD). The DFB decomposition at each pyramidal level is defined by a

vector, nLevs.

Figure 2.4: Process of the Contourlet Transforms

2.2.3 Statistical methods

The past decades have seen a strong emergence of statistical methods for texture analysis

and representation. In these methods, texture is described by a collection of statistics

of selected features. They are based on Julesz’s finding [38, 72, 1] that the human vi-

sual system uses statistics features for texture discrimination because visual perception

of texture is sensitive to their statistical properties. Some statistical methods are based

on spatial analysis considering the spatial dependence of pixels, others are based only on

order statistics while others consider texture as random process that can be describe by

a probabilistic law. In spatial analysis, methods consist of studying the relationships be-

tween each pixel and his neighbors. They follow from the first conjectures of Julesz [38] in

evaluating the distribution of the gray levels contained in the texture by statistical order

descriptors computed according to a distance d and a particular orientation θ between a

central pixel and its neighboring pixels. Among the methods in this category, one finds

the matrices of co-occurrence which constitutes the reference in texture analysis and often

serves as comparative method for the new approaches.
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2.2.3.1 Cooccurrence matrix method

The cooccurrence matrices introduced by [19, 10] constitute a two-order method represent-

ing the spatial dependencies of the gray levels. They allow determining the frequency of

observation of a pattern formed of a pair of pixels to which a translation is applied (which

is decomposed in a direction θ and a translation d). The performance of this method is

dependent on the choice of translation. Several statistical parameters serving as descriptors

of the texture are then generated from the co-occurrence matrices. The most used of these

descriptors are angular second moment, variance, energy, contrast, entropy, and correlation

which allow describing the global aspect of the image. The problem with this approach is

in that using grey-scale images discards information contained in the differences of hue and

saturation that may provide further relevant information for classification tasks, thereby

making the co-occurrence method less accurate. On the other hand, co-occurrence matrices

do not provide any measure of texture that can easily be used for classification. The infor-

mation in the matrix needs to be extracted as a set of values, such as entropy, correlation

or homogeneity.

Among the statistical methods allowing to describe the global aspect of the image, we

can find order statistics, which measure the probability of occurrence of a gray level at a

random location without considering the spatial dependence of pixels. These statistics are

calculated from the probability distribution (histogram) of the light intensity. The most

commonly used study parameters are mean, variance, flattening (skewness), dissymmetry

(kurtosis) and signal-to-noise ratio, which reflects the heterogeneity of the texture.

2.2.3.2 Grey-level run length method

The Grey-level run length method, a higher order method has been also used for texture

analysis. A run is called a set of consecutive pixels in a given direction with the same

gray level. The length of a run is then the number of pixels for a given run. The texture
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descriptor in this method is then a set of matrices. Each matrix element (i, j) contains the

number of runs of length j and gray level i in the direction θ. The most important statistical

attributes calculated in this method are, the number of beach lengths, the portion of small

and large beaches as well as the heterogeneity of the run lengths. One will be able to

consult [73, 74, 75] for more details on these methods .

2.2.3.3 Independent component analysis (ICA)

Recently, new methods qualified as statistical methods have emerged. These do not proceed

to the study of the relations between each pixel and its neighborhood as it is the case with

the traditional statistical methods. One of the most famous is the Independent Component

Analysis (ICA). The ICA method processes vectorial (multivariate) observations to extract

linear components that are ”as independent as possible”. In other words, it seeks to explain

a vector n-dimensional (which can represent a signal) in terms of components that are

linear and statistically independent. Under the assumption that each of the components

is one-dimensional and that the number of components is equal to the dimension of the

observation, the model can then be written in the following form:

x = As, (2.2)

where A is mixing matrix n × m invertible and s vector m × 1 whose coefficients are

statistically independent. Originally, this method was introduced to separate blindly. The

different independent sources that compose a mixed signal. Blindly means without having

any prior information on the sources. In the image processing domain, the signal to be

processed is two-dimensional image. We start on the basis that each window of the image

is considered as a linear combination of components that are statistically independent [20].
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2.2.3.4 Multiresolution auto-regressive model

In statistics, econometrics and signal processing, an autoregressive (AR) model is a repre-

sentation of a type of a random process; as such, it is used to describe certain time-varying

processes in nature. An autoregressive model specifies that the output variable depends

linearly on its own previous values and on a stochastic term; thus the model is in the form

of a stochastic difference equation. Comer [76] has proposed the multiresolution auto-

regressive model for the characterization of texture in a multi-scale representation using a

Gaussian pyramid. [77] and [78] have developed new grayscale and color texture segmen-

tation methods, respectively based on AR models. Dubuisson et al [79] have proposed a

characterization of textures by simultaneous autoregressive model (SAR), then segmented

the image using maximum likelihood. In [80] textures are also characterized by the SAR

model but the segmentation is done using markov random field models.

2.2.3.5 Parametric models

Generative or probabilistic methods, also called model-based methods, describe the tex-

ture probabilistically as an achievement of a random process that can be described by a

probability law. Texture is then represented by the model parameters constituting a sort of

texture signature. Among these model we can cite Hidden marckov chain, Markov random

field, etc.

One of the oldest approaches in this statistical parametric models category is the gen-

eralized gaussain dstribution (GGD) [15] which is a family that includes the Gaussian

and Laplacian distributions, to fit an observed histogram. Basically, the GGD model is

a function of two parameters, namely, scale and shape parameters. The scale parameter

represents the standard deviation of the probability density function while the shape pa-

rameter controls the shape of the GGD. The GGD has received a lot of interest and is

widely used in different areas.
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Recently several generative models have been proposed for modeling wavelet coefficients

using distribution using parametric distribution families [81, 82, 83, 84]. Among these we

can find product Bernoulli distribution (PBD) and its associated signature so-called bit-

plane probability (BPP) signature [85, 86], generalized Gamma density [87], hierarchical

probabilistic principal component analysis [88]. However another recently popular methods

so-called mixture of Generalized Gaussian MoGG [89, 7], [90] has been developed and have

obtained the best success so far. All of these methods are only dealing with monochrome

textures.

2.2.4 Conclusion

In this chapter, we have outlined a non-exhaustive set of methods for texture represen-

tation. We started by exploring the meaning of texture. Typically, a texture represents

a surface that exhibits local roughness or structure, which is then projected to form a

textured image. Such an image exhibits both regularity, randomness to varying degrees on

the one hand, and directionality and orientation on the other hand. These features have

been relevant in texture representation and modelling. Techniques that have been used for

this purpose include co-occurrence, Markov random fields, hidden Markov models, auto-

correlation, run length method, ICA, Fourier transform, Gabor filters, GGD, and so on.

These techniques can be structured into three broad categories of approaches : structural

approaches, statistical approaches and frequency filtering approaches. Almost all of the

above texture representation methods have limitations in term of precision, computational

efficiency, invariance to translation, to rotation, robustness to noise, etc. Statistical para-

metric models have shown encouraging performance, particulary the generalized Gaussian

densities in frequency domain.

Among the succesfull methods for texture representaion, multiresolution transforms
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have shown a good performance. The reason is that the level of detail within an image

varies from location to location. Finer resolution for analysis is required at regions where

significant information is contained. Multiresolution representation of an image provides

complete detail about the extent of information present at different locations. The main

concept of multiresolution analysis is that for each vector space, there is another vector

space of higher resolution until the final image is obtained. The basis of each of these

vector spaces is the scale function. For textures, it provides scale invariant interpretation

of a texture. Different multiresolution analysis tools will be present in next chapter.



Chapter 3

Texture representation using

multiresolution transforms

3.1 Overview

Generally structures to be analyzed in an image have different sizes, which eliminates the

existence of a single resolution adapted to all the objects present in the image. Therefore,

it is desirable to analyze these structures in a progressive way using multiresolution rep-

resentation which allows interpreting the image content in a hierarchical way. Objects at

different resolutions characterize then the different physical structures present in the scene.

Multiresolution analysis can be interpreted as the vision of the same image successively

with a microscope, a magnifying glass and a human eye moving away progressively [15]. A

multiresolution analysis considers that any signal can be built iteratively by adding details

at different scales. The concept of multiresolution analysis introduced by Mallat [15] comes

from the pyramidal algorithms of Burt and Adelson [91]. In the case of a digital image,

these algorithms generate successive and increasingly coarse approximations of the original

image. Multiresolution analysis is a special case of pyramidal algorithms. In this chap-

25
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ter, we focus on the multiresolution analysis commonly used in texture analysis: Gabor,

wavelets, standard and redundant contourlets.

3.2 Multichannel Gabor filters

Gabor filters are used to model spatial summation properties of simple cells in the visual

cortex and have been adapted and popularly used for texture analysis [92, 93, 94]. They

have been long considered as one of the most effective filtering techniques to extract useful

texture features at different orientations and scales. Gabor filters can be categorized into

two components: a real part as the symmetric component and an imaginary part as the

asymmetric component. The 2D multichannel Gabor filter is a windowed signal processing

method. It can be used for texture analysis for several reasons: they have tunable orien-

tation and radial frequency bandwidths, tunable center frequencies and optimally achieve

joint resolution in spatial and frequency domains. A very detailed analysis of the Gabor

function using localized spatial filters for texture feature extraction is given in [95, 96]. A

typical 2D Garbor model used in the texture analysis is given as follows:

G(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2x
+
y2

σ2y

)]
exp(2πju0x+ 2πjv0y) (3.1)

where σx and σy define the Gaussian envelope along the x and y directions respectively,

u0 denotes the radial frequency of the Gabor function, and j =
√
−1. Fig. 3.1 shows the

frequency response of the dyadic Gabor filter bank with the centre frequencies

2−
11
2 , 2−

0
2 , 2−

7
2 , 2−

5
2 , 2−

3
2 , and orientation 00, 450, 900, 1350 [97].

Gabor filters provide a mean for better spatial localization. However, their usefulness

is limited in practice because there is usually no single filter resolution at which one can

localize a spatial structure in natural textures
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Figure 3.1: The frequency response of the dyadic bank of Gabor filters. The maxi-
mum amplitude response over all filters is plotted. Each filter is represented by one
centre-symmetric pair of lobes. The axes are in normalised spatial frequencies.[97]

3.3 Wavelets transforms

Wavelet based texture analysis uses a class of functions that are localised in both spatial

and frequency domain to decompose texture images. It is a very powerful model for texture

desscription. The wavelet transform decomposes a texture image into a set of frequency

channels that have narrower bandwidths in the lower frequency regions. The transform is

suitable for textures consisting primarily of smooth components, so that their information

is concentrated in the low frequency region.

A wavelet is a small wave that has a beginning and an end. Contrarly to the the Fourier

transform which performs signal decomposition in a sinusoidal summation, the wavelet

transform decomposes the input signal (finite energy function) into a weighted sum of

small wavelets (wavelets). These elementary functions, also called analytic functions, are

generated by translation and/or expansion of a unique function ψ, called wavelet-mother.

Below are the analytic functions (wavelets) in the one-dimensional case:

ψa,b =
1√
a
ψ

(
x− b
a

)
(3.2)
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where a and b represent respectively the scale factor which plays the role of the inverse

of a frequency and the translation factor which determines the position. The wavelet

decomposition of an image f(x, y) is then the convolution product between the image

f(x, y) and the wavelet functions ψa,b:

C(a,b) =

∫ +∞

−∞
f(x, y)

1√
ab
ψ

(
x− b
a

,
y − c
a

)
dxdy (3.3)

The wavelet coefficients therefore contain information about the image at different scales.

The wavelets can then be considered as a filter bank composed of bandpass filters with

relatively constant bandwidths. Moreover, the wavelet ψ and its associated scale function

sometimes have no analytical form and therefore the use of their expressions in a filter form

is preferable. Fig.3.2 presents an example of generation of a wavelet basis. The result of

the decomposition is a set of coefficients called wavelet coefficients C from which we can

also reconstruct the original function, i.e. the image f(x, y). The functions or wavelet basis

oscillate at a frequency equal to 1/a around the vector (b, c) creating a kind of ”zooming”

at the neighborhood of the considered point. Thus, the wavelet transform decreases its

scale in high frequency and increases it in low frequency. The wavelet coefficients therefore

contain information concerning the image at different scales.

3.3.0.1 Implementation of the wavelet transform

We focus in this work on the 2D discrete wavelet transform (DWT). It allows image repre-

sentation in the spatio-frequency domain and it is based on multiresolution analysis which

hierarchically breaks down a two-part signal. The first part, low frequency, is a kind of av-

erage of the original signal commonly called approximation image. The second part is a set

of subbands in the image details; at each level of resolution, details are organized as three

oriented subbands horizontally, verticaly and diagonally. These details are commonly re-

ferred to as wavelet coefficients. The applications of wavelet transforms to two-dimensional

signals dates from Mallat [15]. He is at the origin of the fast decomposition/reconstruction
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Figure 3.2: Examples of the ”Mexican hat” wavelet family for some values of a.

Analytical equation ψ(x) =
(

2√
3
π−1/4

)
(1− x2)exp(−x2/2).

algorithm by wavelets. This algorithm is recursive and essentially based on two operations

:

• Filtering : convolution of the original signal with a low-pass filter (h0) or a high-pass

filter (g0).

• Downsampling: reducing the number of samples of the signal. Indeed, horizontal

downsampling (1 : 2) leads to eliminate one column out of two, which reduces the

number of pixels per line of half.

Fig.3.3 shows the diagram of Mallat’s algorithm which can be explained as follows: Let

Sj approximation image at a resolution level j and let DX
j be the orientation subband X

extracted at resolution level j. As shows in the figure, the image Sj goes into the input

of the algorithm. It undergoes both filtering highpass and lowpass. The two resulting

images are subsampled on the lines. The two subsampled images are each filtered by a

highpass and a lowpass filters to produce four images. The latter are subsampled again

giving thus 4 images of the same size: an approximation image (Sj+1) and three details

images DX
j+1,X ∈ {H,V,D}.
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Figure 3.3: Recursive wavelets decomposition diagram and obtaining the four sub-
bands.

Indeed, the scanning (filtering) of the lines leads to decomposing the image vertically

into left approximation coefficients and into straight detail coefficients. After each scan

of the rows, the column scan allows to decompose the image horizontally in two parts

approximation and detail. The image is thus analyzed in different directions; the horizontal

details are contained in DH , vertical details in DV and diagonal details in DD. Block S

contains an image of lower resolution (4 times less pixels than the initial image) whose

details in different directions have been subtracted (principle of multiresolution). Each

of these sub-images contains some of the information of the original image. Blocks DH ,

DV and DD contain details of the image, or high-frequency information. In the case of

decomposition at more than one level, the decomposition procedure is iterated on the

approximation subband S. Fig.3.4 shows an example of the application of the discrete

wavelet transform of a pattern with two decomposition levels.
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(a) (b)

Figure 3.4: Example of wavelet decomposition. (a) original image, (b) Result of the
image decomposition by DWT with two decomposition levels.

In addition to benefiting from a fast decomposition/reconstruction algorithm, the

wavelet transform offers several other advantages. It offers a compact representation in

that the total number of wavelet coefficients is equal to the number of pixels of the asso-

ciated image. Wavelet coefficients are real coefficients in contrast to the Fourier transform

(FFT) which provides complex coefficients. Note also that the reconstruction of the image

from its wavelet representation is perfect and this shows that all the information contained

in the image is preserved in its wavelet transform.

Several families of discrete wavelets can be used. These offer various forms of com-

promise between the regularity of the function and the more or less compact aspect of

its support. Among these families, Daubechies filters [98] remain one of the most used

wavelet base for texture analysis because of their quasi-fractal properties, the wide variety

of functions they allow and the orthogonality of the subbands produced favoring perfect

reconstruction. The different filters of this family are defined by their number of vanishing

moments. We thus speak of Daubechies filters 2 (db2), 4 (db4), 6 (db6), 8 (db8), etc.,

functions going from quasi-fractal to softer ones with a growing number of zero moments.

The simplest function, the Haar wavelet, which represents the special case of Daubechies

filters has one vanishing moment. Haar wavelet uses a door function as scale function.
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Chang and kuo [99] have used the tree-structured wavelet transform for texture classifi-

cation. [100, 101] develops the wavelet transform for invariant texture analysis based on the

Daubechies four-tap wavelet filter coefficients. In his method, the texture is decomposed

into 10 channels, which are obtained through the three level wavelet decomposition. In

[102], wavelet transform is used both to analyse the image prior to segmentation enabling

feature selection as well as to provide spatial frequency-based descriptors for segmenting

textures. The quality and accuracy of segmentation ultimately depend on the type of fea-

tures used. Images consisting of a number of textured regions are best segmented using

frequency-based features, whereas images made up of smoother regions can more easily be

segmented using local mean and variance of intensity levels.

Wavelets have a limited ability in the representation of the directional information of

the image, which causes a weakness in smooth contours detection. This limit comes from

the limited number of orientations captured by wavelet filters during decomposition. It

only allows three directions of analysis, horizontal, vertical or diagonal. This weakness led

to the search for new forms of two-dimensional discrete transforms. Among the most recent

and relevant, we can cite the contourlet transforms and their redundant variant [70, 71] .

3.4 The contourlet transform

The contourlet transform (CT) introduced in [70, 71] bearing to the major limit of the

two-dimensional discrete wavelet transform. It consists of two parts, laplacian pyramid

(LP) and directionnal filter bank (DFB). LP comprises a decimation part and an interpo-

lation part. These two parts produce low-frequency (LF) and high-frequency (HF) coeffi-

cients from the original input image [103]. DFB analyzes the high-frequency coefficients,

generated by LP, to show directionality in the frequency domain. CT can be constructed

hierarchically applying low-frequency coefficients (LF) from one LP (e.g., n1 in Fig. 3.5(a))

to the input of another LP (e.g., n2 in Fig. 3.5(a)) as illustrated in Fig. 3.5(a).
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(a) (b)

Figure 3.5: hierarchical block diagram of CT (a), 2D frequency plane decomposition
for nLevs = [2, 3] (b)

The DFB decomposition at each pyramidal level is defined by a vector, nLevs =

[nt . . . n2n1]. Fig. 3.5(b) illustrates the 2D frequency plane decomposition of nLevs = [2, 3].

It shows two sets of directional sub-bands (A and B) that are eight and four wedgeshaped

directional sub-bands.

3.4.1 The Laplacian pyramid

The construction of the LP is based on the manipulation of a Gaussian pyrzamid whose

main purpose is to represent an image at decreasing levels of resolution [91]. The LP is the

dual element of the Gaussian pyramid. More precisely, a level Gk of the LP is the result of

a subtraction of a level Gk of a Gaussian pyramid and its estimated version by expansion

of the upper level Gk + 1. Each level of the Laplacian pyramid represents an estimation

error, due to the expansion algorithm used.

To generate the LP of an image G0 low-pass filtering followed by a downsampling

according to each dimension to obtain a low-pass filtered image G1 and whose total size
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is reduced by 4 compared to the original image G0. The iteration of this filtering process

gives the Gaussian pyramid. The difference (prediction error) between a level Gk of the

Gaussian pyramid and its version estimated by expansion (oversampling with interpolation

filter) of the upper level, leads to a level Lk of the LP. Lk therefore represents an estimation

residue associated with the k level resolution. The initial prediction error image denoted

L0 is obtained by the following equation:

L0 = G0(i, j) −R0, (3.4)

where R0 is an interpolated version of G1 which have the same size as the image S0 and g

is a low-pass filter. Iteration of this process leads to a sequence of prediction error images

L0, L1, L2,...,Ln such that the size of each image is the quarter-size of its predecessor. This

sequence is the LP of the image G0. Thus, the decomposition stores the high frequencies

in the bottom stages of the LP as can be seen in the example of the Fig. 3.6.

Figure 3.6: An example of laplacian pyramid decomposition

Indeed, Lk is widely decorrelated and its binary representation requires fewer bits than
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the image Gk. In addition, the image Gk is filtered low-pass and can then be encoded at a

reduced sampling rate. The Gaussian pyramid, which is the basis of the LP decomposition,

is computed as follows. The original image is convolved with a Gaussian kernel whose values

of the discrete coefficients approximate the values of a Gaussian curve. As described above,

the resulting image is a low-pass filtered version of the original image. The Laplacian is

then computed as the difference between the original image and the low pass filtered image.

This process is continued to obtain a set of band-pass filtered images (since each is the

difference between two levels of the Gaussian pyramid). Thus the LP is a set of band pass

filters. The kernel typically used is 5 × 5 and the coefficients of this kernel must meet

certain constraints relating to their separability, their normalization, their symmetry and

their equicontribution [91]. Fig. 3.7 shows the generation process of the approximation

image and the prediction error.

Figure 3.7: Laplacian Pyramid decomposition procedure: generation of the approx-
imation and the prediction error.

3.4.2 Directional filters bank (DFB)

The original 2D directional filter bank (DFB) constructed by Bamberger and Smith [104]

that uses two-dimensional quincunx filter banks with diamond-shaped filters and a critical

decimation, decomposes the image into some components containing the directional infor-

mations.
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The DFB is efficiently implemented via an l-level binary tree decomposition that leads

to 2l subbands with wedge-shaped frequency partitioning as shown in Fig. 3.8.

For the contourlet transform, it is a simplified version of the original DFB that avoids

modulating the input image and has a simpler rule for expanding the decomposition tree,

which is used in the decomposition process. The simplified DFB used for the contourlette

transformation consists of two steps and leads to subbands with frequency partitioning in

conical form [105], where l is the decomposition level.

The first stage of the DFB is a two-channel quincunx filter bank (see Fig. 3.9.) [106]

with fan filters that divide the 2D spectrum into vertical and horizontal directions, while

the second stage is a shearing operator, which reorders the image samples. By adding

a pair of 45 − degree shearing operator and its inverse (unshearing), before and after a

two-channel filter bank (Fig. 3.9.), a different directional frequency partition is obtained

(diagonal directions), while maintaining the ability to perfectly reconstruct the original

image . Thus, the key in the DFB is to use an appropriate combination of shearing

operators together with two-direction partition of quincunx filter banks at each node in a

binary tree-structured filter bank, to obtain the desired 2-D spectrum division as shown in

Fig. 3.8.
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Figure 3.8: Directional filter bank. (a) Frequency partitioning where l = 3 and there
are 23 = 8 real wedge-shaped frequency bands. Subbands 0 − 3 corresponds to the
mostly horizontal directions, while subbands 4−7 corresponds to the mostly vertical
directions

Figure 3.9: Two-dimensional spectrum partition using quincunx filter banks with
fan filters. The black regions represent the ideal frequency supports of each filter. Q
is a quincunx sampling matrix.

3.4.3 The standard contourlet transform

The combination of the LP and the DFB is a dual filter bank called Pyramidal Directional

Filter Bank (PDFB) or contourlet filter bank (see Fig. 3.10). In order to capture directional

information, bandpass images from LP decomposition are fed into a DFB so that directional

information can be captured. This scheme can be repeated on the levels of approximation

images. The combined result is the contourlet filter bank, which is a double iterated

filter bank, which decomposes the images into directional subbands at multiple scales.

In addition to offering perfect reconstruction and high computational efficiency, the CT is
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almost critically sampled with a redundancy factor up to 4 : 3 due to the Laplacian pyramid.

When compared to the DWT, the CT yields some improvements and new potentials in

texture analysis applications with its improved directional selectivity [107]. To better

understand the benefit of contourlets, we present in Fig. 3.11 an example of application

of the wavelet transform and the contour line transform on an image, thus illustrating

the operation of these two transforms. Part (a) of the examples of five images based

on 2-D wavelets. Part (b) shows examples of four images based on contour lines. In

part (c), we present an illustration showing how wavelets with square supports cannot

capture the points of discontinuities, while contourlets with elongated supports can capture

linear segments of contours, and thus can effectively represent a smooth contour with less

coefficients [67]. Contourlets offer a much richer set of directions and shapes, and thus they

are more effective in capturing smooth contours and geometric structures in images.

Figure 3.10: Contourlet filter bank.
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Figure 3.11: Comparing wavelet Vs. contourlet: on the left five 2D wavelets and
four 2D contourlets on the right.

In Fig. 3.12, we show the execution of the contour transformation algorithm on an image

called ’zoneplate’. The image passed as an input parameter of the contourlet transform

algorithm is represented by (a) while (b) represents its contourlet transform. At first

glance, it is clear that this is a 2-level contour contour transform (L = 2). We also notice

that the first level admits 4 frequency directions while the second level admits 8 frequency

directions. In this example, the Laplacian pyramid has 2 levels and 1 approximation. The

bank of contourlets has subdivided L0 into 8 sub-bands (2 levels). L1 is subdivided into

4 sub-bands (1 level) and the approximation image is subdivided into 4 sub-bands (also 1

level). Fig. 3.12 exhibits clearly orientations in all directions other than vertical, horizontal

and diagonal.
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(a) Zoneplat image (b) 2-level contourlet decomposition

Figure 3.12: Example of application of the 2-levels contourlet transform

3.4.4 The Redundant contourlet transform (RCT)

There are a few variants of the discrete contourlet decomposition according to the specific

applications. One of the most important is the redundant contourlet transform, which

provides a major modification consisting to maintain a high redundancy in the contourlet

subbands [108]. This change ensures an image representation scheme where all directional

subbands are equal size (having the same number of contourlet coefficients), facilitating and

increasing the precision of treatments that appeal to cooperation or the fusion of several
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subbands. In general, in image analysis, hierarchical processes that require cooperation or

mapping between different levels of resolution are made easier when all these resolution

levels are the same size (in number of samples). The RCT shares the same decomposition

scheme with the SCT. However, all downsampling operations in the RCT are discarded

from the Laplacian stage achieving the redundancy of the contourlets transform.

By using L low-pass filters with the appropriate frequency characteristics, the L low-

pass approximations of the original image are created. The difference between each ap-

proximation and its subsequent low pass version is a bandpass image. The final result is

a redundant Laplacian pyramid (RLP) with L + 1 levels of equal sizes; an approximation

image and L bandpass images. The redundancy factor is equal L given that each resolution

level has the size of the original image and since the pyramid has L + 1 levels. Applying

the same directional decomposition on the D dirirections desired (by a DFB with pseudo

Gaussian filters and critical sampling) on each redundant Laplacian level, we obtain a re-

dundant contourlet decomposition (RCD) with L ∗D directional subbands of same sizes,

plus the low-pass approximation of the image having the same size as the original image.

Fig. 3.13 illustrates the multiscale representation and directional partition of the RLP and

RCT in the frequency domain and Fig. 3.14 shows the whole diagram of the RCT. At the

end of the process, each Contourlet subband is represented by a subimage Cl,d where l is

its resolution level and d its frequency direction (or frequency orientation).
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Figure 3.13: Three level RCT decomposition scheme (L = 3) and corresponding
frequency partition. No downsampling operations performed at the Laplacian stage
[108].

Figure 3.14: Whole diagram of three level RCT decomposition scheme (L = 3) and
corresponding frequency partition [108].
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Fig. 3.15 presents an example of image decomposition that compares between the CT

and RCT. We can clearly notice that the RCT has a richer description than the CT in

the different subbands. For example, contrarily to the CT, the size of subband images in

lower (coarse) levels is the same as for the first level in the RCT, which is very important

propriety for texture analysis.

Figure 3.15: Example comparing the CT (a) with the RCT (b). The first row
represents the texture image (ref. Tile 1 in the VisTex database [3]). For each
transform, from left to right, we show subbands Cl,1, Cl,2, Cl,3 and Cl,4, l ∈ 1, 2, 3,
respectively. From top to bottom, we show subband levels C1,d, C2,d and C3,d, d ∈
1, 2, 3, 4, respectively. [109]
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3.5 Conclusion

We have presented in this chapter different types of multiresolution transforms used for tex-

ture representation: wavelets, contourlets and redundant contourlets. Although wavelets

are still a powerful tool in the processing and texture analysis, they admit limits to capture

certain directionalities. The contourlets has improved the wavelets capability in this aspect.

Therefore, the contourlets provide a good support for multiresolution analysis, thanks to

their flexibility to choose the directionality of the subbands. Thus, the detection of smooth

contours has been improved.We have also presented the redundant contourlet transform,

a variant of the standard contourlets transformation which allow to have subbands of the

same size. Thus, we obtain more coefficients facilitating the hierarchical processing of the

image, leading to the stability of the modeling.
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Statitistical parametric models for

texture representation

4.1 Univariate models

Many kinds of statistical models have been applied to texture representation, but most suc-

cessful models are generative ones, which describe the texture as a realisation of a random

process that can be described by a probability law. Recently, several works have proposed

generative modeling of wavelet and contourlet distributions for texture characterization

[23, 17, 26]. Since the shape of wavelet coefficients histogram is a representativecharacter-

istic for the image content, it is important to have flexible statistical models to capture the

various histogram shapes [23]. Hereafter, some of these distributions are presented.

4.1.1 Generalized Gaussian density (GG)

The most popular parametric model investigated so far is the univariate generalized Gaus-

sian (GG) density, which has been successfully used for texture classification and retrieval

in [23, 24]. Compared with the Laplacian or Gaussian distributions, the GG density has

45
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an additional free parameter that controls the shape of the distribution, which provides

flexibility to fit platykurtic and leptokurtic shapes of data [110, 111]. Due to this property,

the GG has been also successfully used in image denoising [112], image and video coding

[113, 114, 115], image segmentation [116, 89, 7], and texture discrimination and retrieval

[23, 117]. Do and Vetterli [23] demonstrated the superiority of using the GG signature over

energy-based methods for texture discrimination and retrieval. Other useful applications

of the GG also include, speech recognition [118], blind source separation (BSS), [119, 120].

Below the univariate GG formalism.

Let x be a univariate random variable with values in R. If x follows a generalized

Gaussian distribution, its PDF in its general form [111] is given by:

p(x|µ, α, β) =
β
√

Γ(3/β)
Γ(1/β)

2αΓ (1/β)
exp

(
−A(β)

∣∣∣∣
x− µ
α

∣∣∣∣
β
)
, (4.1)

where α > 0 , β > 0. A(β) =
[
Γ(3/β)
Γ(1/β)

]β

2
, Γ(·) denotes the gamma function. µ and α are re-

spectively the mean and the standard deviation of the distribution. α is the scale parameter

which is related to the width of the peak of the distribution. β is the shape parameter that

allows fitting the distribution flattening and thus models its shape in a flexible way. What

makes the GGD appropriate in so many applications is its flexible form parameter β which

adapts to a large family of symmetric distributions, from super-Gaussian to sub-Gaussian.

When β →∞ the distribution becomes uniform on
[
−α
√

3Γ(3/β)
Γ(1/β) , α

√
3Γ(3/β)
Γ(1/β)

]
, whereas in

the case where β → 0, the distribution becomes a delta function centered around µ. Well-

known special cases of the General Gaussian Density (GG) function include a Laplacian

distribution β = 1 and Gaussian β = 2. In the particular case where X follows a zero

mean GG law, its PDF is given by,
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p(x|σ, β) =
β

2αΓ(1/β)
exp

(
−
( |x|
α

)β
)

x ∈ R (4.2)

when β = 2 and β = 1 zero mean GGD distribution becomes are the Gaussian and

Laplacian distributions respectively. Fig. 4.1 (a) shows the various forms of GG of unit

variance for different values of β. Fig. 4.1 (b) illustrates the effect of the scale parameter

α on dispersion around zero for a GG with a given β shape parameter. In effect, smaller

values of the shape parameter β correspond to heavier tails and therefore to more peaked

distributions. There are three parameters needed to be estimate in 4.1 which includes the

most important parameter β. µ and α can be obtained by the sample average and sample

variance respectively, while for the most important parameter (β)the exist many method

to estimate it. A review of β estimation can be seen in [121].

(a) (b)

Figure 4.1: (a) The probability density of the generalized Gaussian plotted for dif-
ferent values of the shape parameter β ∈ 0.7, 1, 1.5, 2, 8. All distributions are
normalized to unit variance. (b) The effect of the scale parameter α for GGs with a
shape parameter β set to 1.5.
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4.1.2 Generalized Gamma density

Recently, texture representation has been improved by replacing the GGD by the gener-

alized Gamma distribution model (GΓD) for wavelet subband characterization [87, 122].

GΓD (see Fig. 4.2 ) can only model positive values of the coefficients, so absolute value

of coefficients is needed to achieved modelisation with this method, consequently one can

observe a certain imprecision. In addition to the GΓD used is unimodal.

Figure 4.2: Density function for a generalized gamma distribution whith parameter
c = 1, 1.5, 2, 2.5, 3 from right to left.

4.2 Mixture of generalized Gaussians (MoGG)

Finite mixture densities allow modelling naturally observations that are supposed to have

been generated by a set of different random sources. This allows to perfectly captured

the exact forms of the data distributions. By combining the properties of the individual

probability density functions, mixture models are capable of approximating any arbitrary

distribution. Consequently, finite mixture models are a powerful and flexible tool for

modeling complex data. In case of multimodal or suspected multimodal data, the marginal

distribution of a random variable x ∈ R which is assuming or suspected to be a mixture of



Chapter 4. Statistical parametric models 49

densities ( MoGGDs in our case ) with components, K is given by:

p(x|~θ) =
K∑

i=1

πip(x|µi, σi, βi), (4.3)

where 0 < πi ≤ 1 and
∑K

i=1 πi = 1. ~θ denotes the set of model parameters {πi, µi, σi, βi, i =

1, . . . ,K}. The goal in modeling is to find the parameters of a model that best fits the shape

of the data while keeping a reasonable complexity of the latter (number of components).

The parameters are as follows:

• K : Number of components. That is, the number of generalized Gaussians in a

model.

• πi : weight of the component i.

• µi : mean of the component i.

• σi : standard deviation of the component i.

• βi : shape parameter of the component i.

For estimate the optimal number of components K, the modeling algorithm uses Minimum

message length (MML) [123], [124]. The MML principle provides an optimal way for model

selection, providing a good compromise between model complexity and data fit [89, 124].

MML is an optimal way for coding data, because it selects the model with its parameters

that gives the shortest overall message length. A more complex model needs a longer

message length to encode model parameters, but gives a better fit for the data. On the

other hand, a simple model needs a shorter length, but may decrease the accuracy of data

fitting. Therefore, the MML provides a natural tradeoff between model complexity and

goodness of fit [7]. Given a data sample X = {x1, x2, ..., xn}. To estimate the optimal

MoGG model, which provides the best tradeoff between data fitting accuracy and model

complexity (i.e., the number of components ). The message length that encodes the wavelet

coefficients in a given subband is given by (see [43] and [54])
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The MML of a set of data X = {x1, x2, ..., xn} is given by:

MessL ≃ − log p(~θ) +
1

2
log |I(~θ)|+ c

2
(1 + log

1

12
)− log p(X|~θ), (4.4)

where, p(~θ), I(~θ) and p(X|~θ), denote respectively, the prior distribution of the parame-

ters ~θ, the (expected) fisher information matrix and the data likelihood. |I(~θ)| denotes the

determinant of the matrix I(~θ). The constant c = 4K the total number of model param-

eters. Number 4 is the number of parameters (of the set ~θ) per component of generalized

Gaussian density. ~θ parameters initialization is done as indicated in [7].

4.3 Multivariate models

4.3.1 Probabilistic principal component analysis

Probabilistic principal component analysis (PPCA) [125] is a statistical method that esti-

mates the latent variables which generate an input data. PPCA is similar to deterministic

principal component analysis (PCA) [126] and often provides the same result. However, un-

like deterministic PCA, PPCA is a probabilistic model or generative model which assumes

that the input data would be generated under the Gaussian distribution and the Gaussian

noise. The extension of plain PCA to PPCA conveys additional practical advantages [125]

as follows.

(a) Multiple PCA models may usefully be combined as a probabilistic mixture and how

PCA projections may be obtained when some data values are missing.

(b) For dimensionality reduction, probabilistic PCA can be utilized as a constrained Gaus-

sian density model. The benefit of so doing is that the maximum likelihood estimates

for the parameters associated with the covariance matrix can be efficiently computed

from the data principal components.
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4.3.2 Hierarchical probabilistic principal component

Hierarchical probabilistic principal component analysis (HPPCA) [88] is an extention of

PPCA (Fig. 4.3 shows a schematic diagram of the HPPCA).

Figure 4.3: Schematic diagram of the hierarchical probabilistic principal component
analysis. Input will be divided into known groups and contracted with distinct linear-
PPCA. After that, the final linear-PPCA makes a conclusive reduced representation

The HPPCA applies a hierarchical dimension reduction which is based on a known

structure or correlation of the input data namely Portilla-Simoncelli statistics (PSS) [22].

Suzuki et al [88] have shown that HPPCA is easier to grasp the latent structure of the

input space because of the plain PPCA could not grasp the latent variables of the PSS

sufficiently and so, using known group structure of the Portilla’s features makes dimension

reduction more efficient. The schematic diagram shows that, first, the HPPCA applies

a dimension reduction for each classes C1 ∼ C10 with distinct PPCA models. Second,

reduced representations will be concatenated into an intermediate vector, finally, conclusive

reduced representation
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4.3.3 Multivariate generalized Gaussian density (MGG)

Despite their effectiveness for classification and retrieval of grey scale texture, univariate

modeling do not fully describe the statistical behavior of the coefficients because they do

not include information on the spatial dependences between the coefficients. To exploit

this spatial information, multivariate models are needed to describe the joint distributions

of transforms coefficients. Multivariated generalized Gaussian distributions (MGG) has

been proposed recently in the image processing field, specifically in the analysis of mul-

tiresolution transforms coefficients [27]. For instance, it is well known that there is a very

important intraband spatial dependence in color image wavelet subbands which can not

be captured by univariate models.

To take advantage of the intrinsic information of this dependence, multivariate models

should be used to describe the joint statistics of subband coefficients of transforms. The

passage from the univariate version to the multivariate one for the joint fitted of the mul-

ticomponents is not trivial. Paradoxically, there does not seem to be a general agreement

on the multivariate extension of the univariate generalized Gaussian distribution. However

we define the centred multivariate GGD (MGG) by the following density:

f(X|Σ, β) =
Γ(p2 )β

π
p

2 Γ( p
2β )× 2

p

2β |Σ| 12
× exp

{
−1

2

[
x

′

Σ−1
x

]β}
(4.5)

where p is the dimensionality of the probability space (e.g. p = 3 for the three color space

bands of a textured color image). Σ a positive define scale matrix. The scalar β is the

shape parameter, which controls the peakedness of the distribution and the heaviness of

its tails. When β = 1, we have the multivariate Gaussian distribution, when β = 1/2, we

have the multivariate Laplacian distribution.

Due to the complexity of developing probabilistic metrics in the multivariate case, there
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is little work that has involved these models. Recently, considerable attention has been paid

to use the MGGD for transform coefficients modeling. Verdoolaege et all ([25], [26], [27])

and [127] have used MGGD for texture retrieval. However, a key limitation of these works

is that these multivariate models were mainly applied on wavelet decomposition subbands

and their performance evaluated in almost every work in indexing and content-based image

retrieval contexts with sometimes too few samples from textures database [34] and [3].

Another limitation concerning these works is that they do not adressed multimodality in

texture.

4.3.4 Parameter estimation of the MGG

Note that Gaussian and Laplacian distributions as special cases of MGG. MGG are po-

tentially interesting for modeling the statistical properties of various images or features

extracted from these images. In particular, the distribution of wavelet or contourlet coef-

ficients has been shown to be modeled.

Considering the important attention devoted to MGGs, estimating the parameters of

these distributions is clearly an important issue. Classical estimation methods that have

been investigated for univariate GGDs include the maximum likelihood (ML) method [128]

and the method of moments [129]. In the multivariate context, MGG parameters can be

estimated by a least-squares method as in [130] or by minimizing a χ2 distance between

the histogram of the observed data and the theoretical probabilities associated with the

MGG [131]. Estimators based on the method of moments and on the ML method have

also been proposed in [27], [132].

Several works have analyzed covariance matrix estimators defined under different mod-

elling assumptions. On the one hand, fixed point (FP) algorithms have been derived and

analyzed in [133], [134] for spherical invariant random vectors (SIRVs). On the other hand,
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in the context of robust estimation, the properties of M-estimators have been studied [135].

M-estimators are a broad class of extremum estimators for which the objective function

is a sample average. Both non-linear least squares and maximum likelihood estimation

are special cases of M-estimators. The definition of M-estimators was motivated by robust

statistics, which contributed new types of M-estimators. The statistical procedure of eval-

uating an M-estimator on a data set is called M-estimation. Based on [135], Pascal [127],

shows that the MLE of MGGD parameters exists, and it is unique and can be computed

it by an FP algorithm. This latter author establish successfully some properties related to

the FP equation of the MLE for MGGs.

All of these estimation methods estimate a single shape parameter for all dimensions which

is a limitation. The improvement that we will bring in our contribution will be to have for

each dimension a shape parameter in order to realize a more precise estimate.

4.3.5 Summary and discussion

Despite of the univariate models perform well in the areas where they were applied, they

share a same limitation, namely that it fails to accurately estimate distributions of the

transform coefficients of natural images that can be multimodal [89]. Indeed, it can be

observed that the frequency subband distribution for a wide range of natural images is

symmetrical and sharply peaked around zero [15, 23, 87]. One can also find a range of

images where this distribution is asymmetrical and/or multimodal, as is the case for im-

ages exhibiting approximate periodicities [24, 136]. Cossu et al. [136] have observed that

wavelet packets histograms can have Gaussian, leptokurtic, or multimodal forms. Using a

single GGD or any unimodal distribution to model the wavelet coefficients, in this case,

would not perfectly capture the shape of the coefficients distribution, which, in turn, may

deteriorate the performance of the wavelet signature for texture discrimination and re-

trieval. Hence, Since the shape of the wavelet histogram is a critical characteristic for the

image content, it is important to have flexible statistical models to capture the various
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histogram shapes.

The MoGG models come to some extent to solve this problem capturing multiimodality.

However MoGG is designd for univariate date. So, the common limit of these works that

used the MoGG models for multicomponent textures representation is that they failed to

adress multicomponent and multivalued color texture. So they failed to address simulta-

neously multicomponent and multidimensionality in texture representation and modelling.

To represent and model more accurately the color texture, it is necessary to use a suitable

full covariance. That’is another objective of our work where, we propose a new statisti-

cal framework based on finite mixtures of multivariate generalized Gaussian distribution

(MoMGG).

4.4 Similarity measurement between parametric

distributions

There are many similarity measures that are used to discriminate between two distributions.

Among them there is the Kullback-leiber divergence (KLD). To measure the difference be-

tween two probability distributions over the same variable x, the KLD similarity measure,

has been popularly used in literature. The concept was originated in probability theory

and information theory. [137]

The KLD, which is closely related to relative entropy, information divergence, and in-

formation for discrimination, is a non-symmetric measure of the difference between two

probability distributions p1(x) and p2(x). Specifically, the Kullback-Leibler (KL) diver-

gence of p2(x) from p1(x), denoted KL(p1, p2), is a measure of the information lost when

p2(x) is used to approximate p1(x).

Let p1(x) and p2(x) are two probability distributions of a discrete random variable X. That

is, both p1(x) and p2(x) sum up to 1, and p1(x) ≥ 0 and p2(x) ≥ 0 for any x in X, then
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KL(p1, p2) is defined by

KL(p1||p2) =
∑

X

p1(x|θ1)ln
p1(x|θ1)

p2(x|θ2)
(4.6)

The KLD measures the expected number of extra bits required to code samples from p1(x)

when using a code based on p2(x), rather than using a code based on p1(x). Typically

p1(x) represents the ”true” distribution of data, observations, or a precisely calculated the-

oretical distribution. The measure p2(x) typically represents a theory, model, description,

or approximation of p1(x). The continuous version of the KLD is given by:

KL(p1||p2) =

∫
p1(x|θ1)ln

p1(x|θ1)

p2(x|θ2)
dx (4.7)

Although the KLD measures the ”distance” between two distributions, it is not a distance

measure. This is because that the KLD is not a metric measure. It is not symmetric:

the KLD from p1(x) to p2(x) is generally not the same as the KLD from p2(x) to p1(x).

Furthermore, it need not satisfy triangular inequality. Nevertheless, KL(p1||p2) is a non-

negative measure. KL(p1||p2) ≥ 0 and KLD(p1||p2) = 0 if and only if P1 = P2.

4.4.1 KLD for GGs

Do et al. [23] have used a closed-form Kullback-Leibler divergence (KLD) to measure

similarity between two univariate GGDs. Closed-form KLD distance between two centred

univariate GGDs characterized by β1, σ1 and β2, σ2 is given by [23] :

KL(β1, σ1||β2, σ2) = ln


β12

1
2β2 σ2Γ( 1

2β2
)

β22
1

2β1 σ1Γ( 1
2β1

)


+

(
2

1
2β1 σ1

2
1

2β2 σ2

)2β2
Γ(2β2+1

2β1
)

Γ( 1
2β1

)
− 1

2β1
(4.8)

where β1, β2 the shape parameters, and σ1, σ2 the scale parameters.
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4.4.2 KLD for MoGGs

When these distributions are multimodal, a closed-form solution is intractable [138]. To

circumvent this issue, we resort to approximating the KLD using Monte-Carlo sampling

methods, as proposed by [109]. Given two MoGG models p1(x) =
∑K

i=1 πip1(x|θi) and

p2(x) =
∑M

j=1 ωjp2(x|αj), the KLD between these models is defined as follows:

KL(p1||p2) =

∫
p1(x)log

(
p1(x)

p2(x)

)
dx. (4.9)

Since there is not closed form for eq.(4.9), we resort to Monte-Carlo integration is given

by:

KLmc(p1||p2) =
1

n

n∑

i=1

log
p1(xi)

p2(xi)
≈n→∞ KL(p1||p2) (4.10)

The approximation method by sampling aims to generate a sufficiently large sample

X = {x1, x2, ..., xn} drawn independently from P in order to approximate the KLD using

the Monte-Carlo integration [139].

4.4.3 KLD for MGGs

A KLD closed-form between two centered Multivariare generalized Gaussian distributions

p-variate (case where β = 1 ) was developed by [137].

KLD(Σ1||Σ2) =
1

2

[
ln
|Σ2|
|Σ1|

+ tr(Σ−1
2 Σ1 − p

]
(4.11)

with Σ1 and Σ2 are respective covariances. The closed-form extension to the general case

between two MGGs of zero means (where β1 6= β2 6= 1)) is not easy, however [25] have
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been able to obtain a closed-form for this KLDs between two bivariate GGDs.

KLD(β1,Σ1||β2,Σ2) = ln

[
Γ( 1

β2
)

Γ( 1
β1

)
2
( 1
β2

− 1
β1

)
( |Σ2|
|Σ1|

) 1
2 β1
β2

]

+

[
−2

1
β1

β1
+ 2

β1
β2

Γ(β2+1
β1

)

Γ( 1
β1

)
×
(
γ1 + γ2

2

)β2

2
F

(
1−β2

2
,−β2

2
;1;A2

)]
(4.12)

where γi ≡ (λi2)
−1, i = 1, 2, λi2 the eigenvalues of Σ−1

1 Σ2. A ≡ γ1−γ2
γ1+γ2

· 2F(.,.;.;.)

the hypergeometric function of Gauss which can be tabulated for realistic values of β and

−1 < A < 1. For β1 = β2 = 1 the hypergeometric function becomes 1 and 6.17 is reduced

to 6.18. However, It was impossible to find closed-form for for the KLD between MGGs of

zero means for a dimension over to 2.

4.4.4 MoMGG expected potential

The Table 4.1 exhibits a comparison of well-known methods of texture representation in

the literature with the potential of our expected unified MoMGG model; subsequently

in the pursuit of our contribution, we will demonstrate theoretically and practically its

effectiveness. The comparison criteria being the types of data processed. Clearly, we

can observe that our method is the only one which could take into account any type of

distribution, whether univariate, unimodal, multivariate and/or multimodal.
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Univariate Multivariability
reliying on joint
marginal distri-
butions

Multivariability re-
liying on the full
covariance

Multimodality

MoMGG X X X X

MoGG X X

MGG X X

GG X

SIRV X X

Copulas X X

Table 4.1: Comparison of capabilities to address different types of data distributions

4.5 Conclusion

In this chapter we have reviewed some relevent statistical parametric models of texture

representation. We represented the most popular models investigated so far, namely the

univariate and MoGG models commonly used to statistically describe data. For univariate

data modeling case, we have shown for multimodal, asymmetric, non-Gaussian data, that

a single GG cannot correctly fit these data, and that mixture models are the most appro-

priate. To represent multimodal data, univariate MoGG has received a lot of attention in

the last decade. It have been successfully applied to monochrome texture discrimination

and retrieval, fabric texture defect detection and IR face recognition. Multivariate ( MGG)

modelling has also received much attention in the literature to model multivariate texture

data, particularly in the image processing community even if its parameters estimation

require many restrictive assumptions.

Multivariate finite mixture of generalized multivariate Gaussian modeling (MoMGG)

has never been investigate. So, there is clearly a lack of a unified statistical framework

integrating multimodal and multidimensional data. Therefore, an efficient formalism of

MoMGG parameters estimations is still lacking. We also reviewed a particular similarity
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mesure between GGDs and MGGs. Concerning the distance between MGGs, we note that,

not only, it has not been possible in the previous work to determine an analytical nor an

approximate distance between more than two MGGs. Also, there is no work dealing with

distance measurements between MoMGGs.



Chapter 5

Automatic fabric Defect Detection

Using Learning-Based Local

Textural Distributions in the

Contourlet Domain

5.1 Motivation

In this first contribution, we will apply the MoGG in the context of the binary classification

of textures. More specifically, we use MoGG to detect defects in texture images. We applied

the siganture to image defect detection in local block level in a Bayesian learning-based

approach. Our approach is based on a local statistical representation of fabric patterns

using the redundant contourlet transform (RCT). The distribution of the RCT coefficients

are modeled using finite mixtures of generalized Gaussians (MoGG), which constitute sta-

tistical signatures distinguishing between defected and defect-free fabrics. In addition of

being compact and fast to compute, these signatures enable accurate localization of defects.

61
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Our defect detection system is based on three main steps. In the first step, a pre-

processing is operated on the fabric image to detect basic pattern size for image decom-

position and signature calculation. In the second step, labeled fabric samples are used

to train a Bayes classifier (BC) to discriminate between defect-free and defected fabrics.

Finally, defects are detected on inspected new images by testing local patches using the

learned BC. Our approach can deal with multiple types of textile fabrics, from simple to

more complex ones. Experiments on the TILDA databaset [140] have demonstrated that

our method yields better results compared to recent state-of-the-art methods.

5.2 Introduction

Textile is used in multiple products such as clothing, filters, wipes, and in housing and

transportation materials. However, the presence of defects in fabrics can reduce prices

with losses reaching 45%-65% [142]. To enhance the efficiency of fabric defect detection,

it is necessary to replace the fastidious manual inspection with automatic inspection for

better productivity and improving quality of fabric as well (see Fig. (5.1) as an example

for automatic inspection systems).

Automated defect detection of fabrics reduces the labor cost and enables to cover a

broader range of different fabrics, from homogenous texture to the most complex one.

Currently, there exist more than 70 established categories for fabric defects defined by the

textile industry [143]. Most of these defects are caused by machine malfunctions, yarn

problem, stain of oil caused by the knitting device, among others.

Fabric can be considered as a two-dimensional (2D) patterned texture [143, 144]. All fab-

rics can be classified into the 17 established wallpaper groups denoted as p1, p2, p3, p3m1,

p31m, p4, p4m, p4g, pm, pg, pmg, pgg, p6, p6m, cm, cmm and pmm, that are lattices

composed of elementary elements called motifs which are organized repetitively along par-
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Figure 5.1: Example of an automated inspection machine for textile fabric.

allelogram, rectangular, rhombic, square or hexagonal shapes [145]. The p1 group defines a

texture with just one fundamental lattice repeating itself over the complete fabric such as

plain, twill and plain weave fabrics (see Fig. (5.2) for illustration). This group involves only

pattern translations. The other groups involve one or more other types of symmetries such

as rotations, reflections and glide-reflections (see Fig. (5.3) for illustration). Considering

the classification of inspected fabric types, Ngan et al. [143] have proposed a taxonomy

for defect detection methods which broadly categorizes the methods into two main groups.

The first group of methods (non-motif-based), do not take into consideration the basic

motif distribution for fabric inspection. They rely instead on analysing textural properties

of fabric images. These methods can, therefore, deal with fabrics of type p1 (e.g., plain

and twill) as well as with other types of fabrics in the wallpaper groups. The second group

of methods (motif-based) relies on the analysis of the structure of the fabric basic motifs

to detect potential defects. Since it is very difficult to model statistically/geometrically

the distribution of basic motifs in these groups, methods use mainly pattern matching and
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image subtraction to localise potential defects [146].

Several fabric defect detection methods have been proposed in the last three decades

[130, 142, 143]. The majority of these methods is specific to the non-motif-based category

and deal mainly with fabrics of type p1 [147, 148, 149, 150, 151, 152]. Recently, some

approaches have been proposed for motif-based defect detection [150, 146]. These have

been evaluated mainly on texture patterns of p1 and pmm fabric types. However, they do

not generalize well for other types of fabric. In addition, these methods detect defects at

the image level (i.e., an image contains a defect or not) and do not provide defect details

at the lattice or motif level. To resolve the above limitations, some authors have proposed

generic methods that can be applied to multiple types of fabrics to localise the defects

[147, 153]. These methods are often based on template-matching or statistical techniques

that compare inspected fabric to defect-free reference one to detect defects [148, 143]. Ngan

et al. [153] have proposed to analyse the energy of motif subtraction to detect defects. This

method can be applied to 16 of the 17 wallpaper groups and has shown some robustness

to noise and slight motif shift. However, it requires a defect-free ground truth to compare

the motifs. In addition, it uses a circular shift to perform image subtraction which incurs

a huge computation time. Ng et al. [148] have used energy minimization to decompose

an image into two structures: a cartoon image representing the defect and the texture

structure representing the repetitive patterns. This method yields very good results for

defect localisation and can be applied practically to all fabric types. However, it requires

the inspected image to be perfectly aligned with the ground truth. In addition, it is not

efficient for detecting defects with small contrast in the image (e.g. oil stains, etc.).

In this chapter, we introduce a novel defect detection algorithm which has the capability

to cope with different types of defects in the p1 and non-p1 groups. Therefore, our method

can be considered as a hybrid one since it relies mainly on analysing texture patterns for

fabric defect detection. Strictly speaking, our method does not consider elementary motifs

as a basic manipulation unit [143]. Instead, it decomposes the image into elementary repet-
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itive units (ERUs) characterized by their periodicity along the fabric lattice. Contrarily to

analysing the fabric at the image level [148] or using the basic motifs [143], ERUs consti-

tute an intermediate representation coarsely describing the local structure of the texture to

allow an analysis similar to methods of type p1 group to be performed. Each ERU under-

goes first a multi-scale Contourlet decomposition describing local directional and structural

properties of the fabric texture. A statistical signature of generalized Gaussian distribu-

tions (MoGG) is then calculated on the Contourlet coefficients [138, 154], which constitute

our representation for fabric comparison. Given a set of labeled samples of signatures rep-

resenting defect-free and defective fabric ERUs, we train a Bayes classifier (BC) to separate

between defect-free and defective fabrics, which is then applied to inspect new images for

defect detection. Experiments conducted on the TILDA database [140] have shown that

the proposed algorithm yields better results when compared to other previous works. The

main contributions of our work in this chapter can be summarized in the following points:

• A generalized non-motif-based method is proposed for fabric defect detection. Our

method not only can deal with the p1 fabric group, but also with other fabric groups.

It relies on an intermediate representation of fabrics using ERUs which facilitates

local inspection of images with complex patterns and enables accurate localisation

of defects.

• To describe fabric texture structure, we use multi-scale contourlet decomposition

(RCT) and mixtures of generalized Gaussian distributions (MoGG) which allow ro-

bustness to noise and non-uniform illumination. It has also invariance to fabric

translation and scale changes. These descriptors calculated on the ERUs are called

RCT-MoGG signatures.

• Our defect detection method is based on a learning-based approach which separates

RCT-MoGG signatures of defect-free and defective fabrics using a set of learning

examples with their ground-truth. After decomposing a fabric image into ERUs, a
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Fabric images from TILDA database representing the p1 wallpaper group:
(a) plain fabric without defects , (b) twill fabric without defects, (c) plain weave
fabric without defects, (d) plain fabric with defects, (e) twill fabric with defects and
(f) plain weave fabric with defects.

classification of the ERU blocks is performed to assess whether each ERU is defect-

free or contains defects. Our method provides an overall high detection accuracy

and very low false alarm rate compared to recent state-of-the-art methods.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Non-p1 wallpaper group fabric images in the TILDA database: (a) ging-
ham fabric (p4m), (b) gingham oblique fabric, (c) fabric with vertical stripes (p2),
(d) fabric with horizontal stripes, (e) fabric with vertical stripes and (f) fabric with
oblique stripes.

The remainder of this paper is organized as follows: Section 5.3 presents a brief lit-

erature review on fabric defect detection methods. Section 5.4 presents our method for

automatic defect detection. Section 5.5 presents some experimental results. We end the

paper with a conclusion.

5.3 Related work

The majority of existing work on fabric inspection is related to the non-motif-based category

of methods [142]. These methods have been designed for the simplest patterns of the

p1 homogenous fabrics [155], which include plain and twill fabrics. Proposed non-motif-

based methods can be classified into four main approaches: statistical, spectral, model-based

and learning-based approaches [143]. Compared to the non-motif-based category, a small

number of methods have been proposed for the motif-based one [153].
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5.3.1 Inspection approaches for the p1 fabrics

Statistical methods include mainly the analysis of the auto-correlation function (AF) and

the co-occurrence matrix (CM) [156, 186]. The AF has been applied to detect fabric defects

by assuming that auto-correlation maxima stay constant for repetitive patterns with perfect

replication throughout the fabric [156, 170]. In the same vein, the AF is applied to describe

translational and rotational symmetry in plain fabric images [186]. This approach although

interesting has not been evaluated by explicit performance metrics on fabric defects [143].

Tsai et al. [186] have used features calculated from the CM to classify fabrics as normal or

defective using neural networks. Likewise, Amet et al. [157] have applied CM analysis in

the wavelet domain to detect defects. In [167], CM features are fed into a neural network

to detect defects at the pixel level. The major limitation of using CM features is that they

incur a huge computation time for their calculation. In addition, since CM computing is

based on adjacent pixels analysis, CM features can be sensitive to scale changes in the

fabric texture.

Spectral approaches consist of locating defects in the spectral domain [142]. These

approaches include the Fourier transform (FT) [158, 183], the wavelet transform (WT)

[179, 187, 188] and the Gabor transform (GT) [94, 166, 167]. The main drawback of using

the FT is that it lacks local support (i.e., lack of information support in the spatial domain)

which can prevent it from detecting defects in random patterned texture such as twill and

plain fabrics. Contrarily to the FT, wavelet and Gabor filters make use of a spatial-

frequency analysis which enables them to detect local defects. For instance, Chin et al.

[156] have proposed a wavelet-based approach to detect defects on plain and twill fabrics.

The authors reported a detection success rate of 97.5%, but the method is computationally

intensive.

Model-based approaches address the defect detection problem by fitting parametric

models to feature distribution of the fabric [142, 175]. Inspired by existing works on

texture modelling, Cohen et al. [161] have used Gaussian Markov fields (GMFs) to model
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defect-free texture on fabric images. In the same vein, Ozdemir et al. [176] have applied

Markov random fields (MRFs) for fabric inspection. Although GMFs and MRFs are good

for extracting local contextual information of texture patterns, they are not efficient in

detecting small defects. In addition, these methods are computationally intensive. To

exploit linear dependency between pixels, Limas et al. [173] have used autoregressive

models (AR) to detect defects on leather surfaces. Although this method can operate in

real-time scenario, it is sensitive to the size of defects and non-uniform illumination.

Learning-based approaches use labeled samples to train classifiers that assign images to

defective or defect-free classes. For instance, Kuo et al. [169] have used back-propagation

(BP) neural networks for defect detection. They achieved very good detection rates on

defective samples of plain fabric. This method, however, does not generalize well to other

types of fabric and it is computationally intensive. Sezer et al. [180] have used indepen-

dent component analysis (ICA) on a sample of images to detect defects at the block level

of fabrics. This approach has yielded good results on uniform textures (plain fabric). How-

ever, it does not generalize well for irregular random textures (e.g., twill and plain weave

textures).

5.3.2 Inspection approaches for the non-p1 fabrics

These are also named hybrid approaches since they use a combination of techniques for

defect detection on fabrics in the p1 and non-p1 groups [143]. They can be broadly classified

as template-matching (TM) and statistical/spectral approaches. Approaches using TM use

image subtraction methods to compare inspected fabric to defect-free ones [153]. Kuo et

al. [147] have proposed a method using features calculated from the co-occurrence matrix

(CM) and correlation analysis to detect defects. This method has been successfully applied

to Jacquard fabrics belonging to the p2 group. However, CM features are highly sensitive

to small variation or misalignment in patterns and their calculation is computationally

prohibitive. Tajeripour et al. [181] have proposed a method based on local binary patterns
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(LBP) and adaptive thresholding for defect detection. The LBP technique has been first

proposed for texture description and has good properties for rotation invariance and multi-

scale analysis. This method has shown good results for p1 and several non-p1 groups, but

it may yield too many false positives for erroneous thresholds. Besides, the size of the

windrow is not adaptable since it its always fixed to 16× 16.

Direct thresholding (DT) [149] has been used for the analysis of horizontal and vertical

sub-bands of the Haar wavelet transform for defect detection. This method named wavelet

golden image subtraction (WGIS) is computationally fast and leads to good performance

on several types of fabrics. However, the calculated thresholds can be hard to determine for

some fabrics like charter-box pattern. Recently, Tsang et al. [152] have proposed a fabric

inspection method based on the Elo-rating formalism [163]. This method can effectively

deal with non-p1 fabric groups like dot-patterned (pmm group) and star-patterned (p2

group) and box-patterned fabrics (p4m group). However, it showed weak generalization

to other types of fabric. Bollinger bands (BB), originally introduced for financial analysis,

have been successfully applied for defect detection in fabric groups p2, pmm and p4m [150].

But , defects near the image border or smaller than one repetitive unit may not be detected

by the method.

Recently, Ng et al. [148] have proposed an energy minimization method for decom-

posing an image into defect and normal fabric images. This method can be applied for

several types of fabrics. However, the method can be very sensitive to noise, defect con-

trast and errors of alignment between reference (defect-free) and inspected fabrics. Finally,

sparse coding (SC) is another successful technique that has been used for defect detection

[189, 190]. SC aims at approximating an input signal as a linear combination of a few

components selected from a dictionary of basic elements called atoms [171]. Zhou et al.

[190] have proposed to use SC for defect-free fabric reconstruction. Thus, reconstruction

error acts as an indicator for the presence of defects in an inspected fabric. The major

limitation of the method, however, is its computation time and weak robustness to noise.
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To reduce the noise effect, Gabor filters can be used before applying the SC technique as

proposed in [191]. The authors have reported a significant improvement on plain, twill and

plain weave fabrics from the Tilda dataset [140].

5.3.3 Motif-based methods

Among recent studies for defect detection, only few papers consider elementary fabric motifs

as a basic manipulation unit [143]. Ngan et al. [153, 146] are among recent works falling into

this category of methods. They try to handle explicitly fabrics in the non-p1 groups and use

symmetry properties of motifs to calculate the energy of moving subtraction and its variance

among motifs. Decision boundaries are determined by learning the distribution of those

values among the defect-free and defective patterns in the energy-variance space [153]. An

extensive performance evaluation on defects in 16 out of 17 wallpaper groups has achieved

an overall detection success rate of 93.86%. However, the method is computationally

intensive because too large database of defect-free and defective samples is needed for

training. Besides, it uses a decision boundary (a sort of threshold) which requires to be

manually set for each fabric to guarantee good results, thus the method is not easy to

generalize to all types of fabric. To isolate defects on fabric images, Jing et al. [165] have

proposed to subtract a golden template from a filtered fabric image using Gabor filters.

The method has shown good results for defect detection and localisation on patterned

fabrics. However, it can be sensitive to noise and non-uniform illumination which increases

the amount of false positives. In addition, because of the difficulty of calculating the golden

image template, the performance decreases for irregular patterned fabrics.

5.4 The proposed approach for defect detection

The proposed method aims at developing a principled methodology ensuring full automa-

tion of defect detection while enabling to efficiently cope with several types of fabrics and
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defects. As stated before, our approach is composed of three basic steps. In the first step,

a pre-processing is used to determine the ERUs for image decomposition. The second step

consists of calculating statistical signatures on labeled samples of fabric images. This step

involves also training a Bayes classifier to discriminate between defective and non-defective

fabrics. In the third and final step, images of inspected fabrics are passed through the

signature generator and the Bayes classifier to detect potential defects. In what follows,

we give details about each of the above steps separately:

5.4.1 Image decomposition into ERUs

To make our approach generalizable to multiple fabric groups, we use an intermediate

representation of the fabric called elementary repetitive unit (ERU). In a nutshell, an ERU

can be considered as a super motif which enables dealing with non-p1 fabric group using

methods of type p1 group. We calculate these units by analysing texture patterns of the

fabrics using the autocorrelation function (AF) on the fabric image.

Let I be a fabric image of size n ×m. We denote by Ihs(i) the image resulting from

using i horizonal circular shifts for the image I. Likewise, we denote by Ivs(j) the result

of using j vertical circular shifts for I. The size of a repetitive pattern (i.e., period) is

determined by peaks of the AF of the image I that can be calculated using the original I

and its shifts in the horizontal and vertical directions , respectively. The following functions

can be used to compute the size of the period in the two directions:





h′ = arg max1≤i<n

{
N(I) ◦N(Ihs(i))

}

w′ = arg max1≤j<m

{
N(I) ◦N(Ivs(j))

} (5.1)

where N(·) is a function having the role of normalizing and putting an image in a vector

form. The operator ◦ indicates the correlation function between vectors. Basically, Eq.

(5.1) determines the horizonal and vertical dimensions of the repetitive pattern. Finally, to

enable robust RCT decomposition and MoGG parameter estimation, we should maintain a
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(a)

(b)

Figure 5.4: Illustration of ERU calculation for some fabric samples: (a) original
fabric and (b) image grid with ERUs.

minimum size of the ERU such that a sufficient number of pixels are contained in the unit.

By taking δ as the minimum size of each side of an ERU, the optimal height and width of

an ERU are given by: h = kh ·h′ and w = kw ·w′, such that kh = {arg mink

(
k ·h′

)
|k ·h′ > δ}

and kw = {arg minr

(
r ·w′)|r · w′ > δ}, where k, r ∈ N

∗. Fig. (5.4) gives some examples of

ERU calculation on fabric images where the parameter δ is set to 64. We can notice that

the periodic patterns have been clearly identified using our method.

Once the size of the ERU is determined, the image is divided into blocks which are

used to calculate the statistical signatures for defect detection. In other words, taking the

detected ERU as an elementary fabric motif, any fabric can be brought to the p1 group,

since the only transformation undergone by the ERUs consist of horizontal and vertical

translations. Note that having an ERU for each fabric image incurs that before analysing

inspected fabric for defect detection, it must be decomposed into ERUs in the same way

as the reference fabric. Consequently, in order to have comparable ERU, a preprocessing

step might be required to align the inspected image with the reference one.

5.4.2 MoGG modeling for redundant contourlet transform

The standard contourlet transform (SCT) has been proposed [162] to improve represen-

tation of texture over wavelets. Later on, the redundant contourlet transform (RCT) has
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been proposed as an alternative to the SCT [154] to overcome the limitation due to sub-

sampling in the (SCT). In addition of having the good properties of the SCT, the RCT

reduces the decimation, avoids the multi-scale interpolation in the SCT and enables easy

correspondence between the different levels of image resolutions. The RCT shares the same

decomposition scheme with SCT. However, all down-sampling operations in the RCT are

discarded from the Laplacian stage and a set of symmetric low-pass filters having ade-

quate frequency selectivity and pseudo-Gaussian properties are employed. Filter impulse

responses gb(s), as given in Eq. (5.2), are finite and symmetric, where s is the spatial

row/column location and b is a factor influencing the frequency bandwidth:

gb(s) = e−2 s
b − e−2

(
e−2( s−b

b
)2e−2( s+b

b
)2
)

(5.2)

Using L filters (with b = 2ℓ, ℓ ∈ {1, 2, .., L}) results into a redundant Laplacian pyramid

(RLP) having L + 1 equal-size sub-images: one coarse image approximation and L band-

pass sub-images. Then, a directional filter bank (DFB) with D = 4 orientations and 1:4

critical down-sampling is applied on each of the L RLP subbands to obtain 4L equal-size

directional subbands (Cld, l = 1, . . . , L; d = 1, . . . ,D) in addition to a 1:4 down-sampled

image approximation CL. The RCT has been successfully used in [159, 109] for texture

retrieval and defect detection on plain fabrics.

In the present work, we use the RCT for describing the texture structure of several types

of fabrics, from the p1 to the non-p1 groups. More specifically, let x1, ..., xn be the produced

RCT coefficients at a given sub-band after decomposition. Since the distribution of these

coefficients can be multi-model, we propose to model this distribution using a mixture of

generalized Gaussians (MoGG) [7, 160]. By supposing a mixture of K components, the

marginal distribution of the coefficient variable x ∈ R is given by:

p(x|Θ) =

K∑

i=1

πip(x|θi), (5.3)
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where θi = {µi, σi, βi} and πi, i = 1, ...,K, are the mixing parameters, with 0 < πi ≤ 1

and
∑K

i=1 πi = 1. Each component of the mixture is modeled using a general Gaussian dis-

tribution (GGD): p(x|θi) = C(βi)
2σi

exp
(
−A(βi) |(x− µi)/σi|βi

)
, where A(βi) =

[
Γ(3/βi)
Γ(1/βi)

]βi
2

,

C(βi) = βi

√
Γ(3/βi)
Γ(1/βi)

/Γ (1/βi), and Γ(·) denotes the Gamma function. The parameters µi

and σi denote the distribution mean and standard deviation, respectively. The param-

eter βi is the shape parameter which fits the kurtosis of the ith GGD and determines

whether the distribution is peaked or flat. The details of parameter estimation of the

MoGG are given in [138]. We use a Bayesian estimation to learn the model parameters θi,

i = 1, ...,K, whereas the minimum message length (MML) principle is applied for selecting

the best value of the parameter K [124].

Fig. (5.5) shows comparison of the RCT-MoGG signatures of two blocks in the same

fabric (Fig. (5.5).a: a defect-free block (green) and a defective one (red). Note first

that the shape of coefficients histogram can be sharply peaked, heavy-tailed and slightly

asymmetric. Thanks to its flexibility, the MoGG has enabled to precisely fit to the different

shapes. We can note also the discrepancy between the signatures of defective and defect-

free blocks for both high- and low-pass subbands. This makes RCT-MoGG description a

very efficient tool to assess about defects present in the fabric.
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(a) (b)

(c)

Figure 5.5: RCT-MoGG signature calculation for defective and defect-free fabrics:
(a) shows examples of defective (dashed red) and defect-free (solid blue) blocks, In
(b) and (c), we show in yellow the histograms of low- and high-pass RCT coefficients
of the defect-free block in (a). The dashed-red and solid-blue lines show MoGG
signatures of the defective and defect-free blocks, respectively. In (c), from left to
right, we show the four directional decompositions, and from top to bottom, we show
levels 1, 2 and 3 of the RCT-MoGG signatures, respectively.
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5.4.3 Similarity measurement for defect detection

Do et al. [162] have used a closed-form Kullback-Leibler divergence (KLD) to measure

similarity between two statistical distributions of wavelet subband coefficients. When these

distributions are multi-modal, a closed-form solution is intractable [138]. To circumvent

this issue, we resort to approximating the KLD using Monte-Carlo sampling methods,

as proposed by [109]. Given two MoGG models P1(x) =
∑K

i=1 πip1(x|θi) and P2(x) =

∑M
j=1 ωjp2(x|αj), the KLD between these models is defined as follows:

KLD(P1||P2) =

∫
P1(x)log

(
P1(x)

P2(x)

)
dx. (5.4)

The KLD by Monte-Carlo integration is given by:

KLDmc(P1||P2) =
1

n

n∑

i=1

log
P1(xi)

P2(xi)
≈ KLD(P1||P2). (5.5)

The Monte-Carlo method aims at generating a sufficiently large sample X = {x1, x2, ..., xn}

drawn independently from the distribution P1 to approximate the KLD integration [139].

We used n = 104 as typical value which gives satisfactory results.

5.4.4 Learning-based defect detection algorithm

The flow diagram for our algorithm is shown in Fig. 5.6. As mentioned previously, our

approach works into two stages: a learning phase, in which a Bayes classifier is trained on

a set of labeled fabric examples, and an inspection phase, which uses the trained classifier

on a set of newly seen images to detect potential defects. Our algorithm operates at the

block level of images which aims at localising defects at fine resolutions allowed by the

ERU decomposition.
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Figure 5.6: Block diagram of the proposed defect detection method.

5.4.4.1 The learning stage

Let T = B ∪ B̃ be the set of training examples composed of two subsets B = {B1, ..., Bn}

and B̃ = {B̃1, ..., B̃m}, containing defect-free and defective blocks, respectively. For each

block in T , we calculate its RCT-MoGG signature which combines several orientations and

scales of the texture. The training process of the defect detection system is given by the

script of Algorithm 5.1. The algorithm trains a Bayes classifier BC and results into a set

of reference blocks R that will be used to inspect newly-seen textile images. The set R is

a sort of a landmark signature that contains the different configurations and patterns of

the textile type to be inspected.

The training process iterates on the sets B and B̃ by choosing at each time a new

reference block to add to the set R. The first reference block Br1 ∈ R can be chosen

randomly from B. After calculating the KLDs of all the training blocks with Br1 , we
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obtain the sets D = {d1, ..., dn} and D̃ = {d̃1, ..., d̃m} for B and B̃, respectively. Then, we

train a Bayes classifier (BC) on D ∪ D̃ where a Gaussian PB (resp. PB̃) is fitted to class

B (resp. B̃). After classifying the training blocks using BC, we obtain the classification

error ε (i.e., number of badly classified blocks) and the set C of false defect detections (i.e.,

blocks in B classified as defect by BC).

To augment the set R with a new reference block, we search for a block in C corre-

sponding to either the median or the maximum of distances in C. Using the new set R, we

update the distances D and D̃ as follows. Let Bk be a block in T and KLDr1 , ...,KLDrN

are the set of KLDs calculated with all reference blocks in R, where N is the cardinality

of R. The new KLD assigned to the block for the next iteration (Step 2 of the algorithm)

is given by dk = min{KLDr1 , ...,KLDrN } and a new BC is trained with the new sets D

and D̃. This process is repeated until the classification error ε is null or higher than εp,

the classification error at previous iteration. The threshold εp is set experimentally using

cross-validation.

Algorithm 5.1: Defect detection learning phase.

Data: B = {B1, ..., Bn} and B̃ = {B̃1, ..., B̃m}.
Result: Set of reference blocks: R, Bayes classifier: BC.

1 Generate RCT-MoGG signature for each block in B and B̃

R ← B1; ε←∞; C ← ∅; N ← 0;
repeat
1- N ← N + 1;
2- εp ← ε;
3- Update the set R from C;
4- Calculate the KLDs {d1, ..., dn} and {d̃1, ..., d̃m};
5- Train a Bayes classifier on the KLDs;
6- Classify the ERUs and calculate the error ε;
7- Update C the set of false defect detections;

until (ε = 0 OR ε ≥ εp )
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5.4.4.2 The inspection phase

The inspection phase is performed on a newly-seen textile image of the same type as the

one used in the learning phase. The steps of the inspection process are given in the script

of Algorithm 6.1. First, the input textile image is decomposed into blocks with the same

dimension as the training ones. Each block is then classified as containing defects or defect-

free using the reference set R and the trained Bayes classifier BC. Note that in order to

achieve very precise localisation of defects, image subdivision into blocks may be performed

with overlapping.

Algorithm 5.2: Inspection for defect detection.

Data: Input image I, R = {Br1 , ..., BrN} and the Bayes classifier BC.
Result: Image with blocks classified.
Decompose the image into blocks;
Generate RCT-MoGG signature for each block;
for (each block Bk) do
1- Calculate the KLDs {KLDr1 , ..., KLDrN};
2- Choose dk = min{KLDr1 , ..., KLDrN};
3- Use BC to classify Bk.

end for

5.4.4.3 Enhancing defect localisation

A straightforward idea to enhance the defect localisation is to reduce the block size. How-

ever, this cannot be achieved by our method since a minimal size of data is required to

have stable RCT-MoGG signatures [138]. In fact, the RCT cannot be calculated for images

under a minimal size of 64× 64 [154]. In addition, significance of statistical parameters for

the MoGG models are dependent of the number of data [174, 178].

To enhance the precision of defect localisation without affecting the quality of RCT-

MoGG signatures, we devise a new procedure based on subdividing the image into blocks

using an appropriate overlapping as illustrated in Fig. (5.7).
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Figure 5.7: Illustration of block overlapping for enhancing defect localisation. In this
example, the resolution of defect detection is half the size of an ERU.

This allows for each block to cast one vote for all its contained pixels (1 for defect

and 0 for non-defect). Then, the label having the highes t proportion at a given pixel is

assigned for its final classification. In the given example, the original block size is h ×w

and the desired overlapping is 1/2 (half) block. This enables to have a decision at block

size h/2×w/2 for the middle colored block. This is achieved by combining the votes from

all the original-sized blocks that contain the shaded middle block.

5.5 Experimental results

We have conducted experiments on the popular TILDA database [140], (see Fig. 5.8).

Figure 5.8: TILDA database architecture.
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This database consists of eight types of fabric which are stored in four class directories

{C1, C2, C3, C4}, and each class directory contains two sub-directories. Therefore, each

sub-directory contains one fabric type images which are partitioned into 8 sub-directories

containing each fifty texture images. The first sub-directory named ’E0’ contains defect-free

images, while the other sub-directories (’E1’ ... ’E7’) contain defective images.

5.5.1 Parameter setting

In the group p1 of the dataset, most images contain plain and twill fabric with texture

constituted of very small homogenous patterns. Therefore, we have fixed a block size to

64 × 64 pixels to allow a reliable estimation of the statistical signatures. In addition,

to achieve a good defect localisation, the blocks are spatially overlapped as proposed in

Section 5.4.4.3. For fabrics in the non-p1 groups, the block size is automatically calculated

by our proposed method in Section 5.4.1. For our study, we have used three homogenous

fabric types: C1R1, C2R3, C2R3 in the p1 group and two periodic fabrics: C3R1 and

C3R3 in the non-p1 groups. Note that C1R1 is a uniform plain fabric, C2R2 and C2R3

are twill and plain weave fabrics, respectively. For the non-p1 periodic fabrics, C3R1 and

C3R3 are gingham (p4m group) and striped fabrics (p2 group), respectively, which have

either vertical, horizontal or oblique orientations.

5.5.2 Performance evaluation metrics

5.5.2.1 Image-level performance metrics

To be consistent with other methods in the literature, we have first evaluated the perfor-

mance of our detection algorithm at the image level by calculating detection rates DR,

false alarm rates FR, detection success rates (also known as detection accuracy) DACC .

These metrics measure the accuracy of tagging images as containing defects or defect-free.

These rates are defined as follows:



Chapter 5. Automatic fabric Defect Detection 83

DR =
TP

Ndefect
× 100%, (5.6)

FR =
FP

Ndefect-free
× 100%, (5.7)

DACC =
TP + TN

TP + FN + TN + FP
× 100%, (5.8)

whereNdefect-free andNdefect designate the total numbers of defect-free and defective images,

respectively. Table 5.1 gives the definitions of true positive (TP), false positive (FP), true

negative (TN) and false negative (FN) in the context of defect detection.

Actually defective Actually defect-free

Detected as defective True positive (TP ) False positive(FP )
Detected as defect-free False negative (FN) True negative (TN)

Table 5.1: Definition of true positive (TP ), false positive (FP ), true negative (TN),
false negative (FN) in defect detection.

5.5.2.2 Local-level performance metrics

For most of existing methods for defect detection, performance is measured at the image

level (i.e., whether an image contains defaults or not). However, such an approach lacks the

information about defect localisation which can be important for accessing the accuracy of

algorithms. Indeed, even if an image is classified as containing defects by an algorithm, it

does not necessarily mean that the right defect is detected. Therefore, we should establish

new metrics that can reflect the strength of any method in terms of defect localisation.
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In order to evaluate the performance of defect localisation, we propose local metrics

calculated at the block level of the image, namely: Local Precision (PL) and Local Recall

(RL), often called hit rate. We use also local accuracy (ACCL) that is calculated using local

true positive (TPL), true negative (TNL), false positive (FPL) and false negative(FNL)

values. TPL is the number of defective blocks identified as such, TNL is the number of

defect-free blocks identified as such, FPL is the number of defect-free blocks identified as

defective and FNL is the number of defective blocks identified as defect-free. We define

the local precision, recall and accuracy metrics as:

PL =
TPL

TPL + FPL
× 100%, (5.9)

RL =
TPL

TPL + FNL
× 100%, (5.10)

ACCL =
2× PL ×RL

PL +RL
× 100%. (5.11)

where ACCL is the harmonic mean of PL and RL (balanced mean between precision and

recall), which will be used throughout the experiments to assess the merit of the compared

methods.

5.5.3 Results and discussion

5.5.3.1 Image-level performance results

We have compared the performance of our method with the following defect detection

methods: independent component analysis (ICA) [180], local binary patterns (LBP) [181]
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and slope difference distribution (SDD) [184]. Note that since SDD is a segmentation

method based on histogram thresholding [160], it can be applied only for the p1 group.

For non-p1 groups, this method gives arbitrary results for defect detection.

Fig. (5.9) shows some results obtained for images in the p1 group using ICA, LBP,

SDD and RCT-MoGG with different levels of block overlapping, respectively. We can

see that most of methods perform generally well, but the ICA method has failed for the

illumination (lighting) defect. Note also that for some images containing small defects

(column 5), the LBP method has detected almost the entire image as defective. This is

due to the fact that LBP use one experimental threshold which can produce several false

positives. In addition, the LBP is sensitive to small changes in the structure of the texture

patterns. It is worth pointing that the SDD method has proven some accuracy for localising

some defects. However, because the method is based on histogram thresholding [185], it

can generate several false positives in case of non-uniform illumination, for example (see

columns 4 and 5). Finally, we can see that our approach has yielded good performance

and prevents most of the false alarms. In addition, by applying the block overlapping

procedure, our method provides a very good accuracy for localising the different defects.

Fig. (5.10) shows some examples comparing our algorithm to ICA and LBP on images of

non p1 groups (striped fabrics). We can note that our algorithm provides better accuracy

for localising the defects than the other methods. Finally, some detection results for both

p1 and non-p1 groups are shown in Fig. (5.11) where we can observe that our algorithm

has yielded very accurate localisation of defects for all types of fabrics.

For quantitative evaluation, Table 5.2 shows obtained metric values for the homogenous

fabrics in the p1 group and Table 5.3 for fabrics of non-p1 groups in the TILDA dataset

[140]. For this type of fabric, we included also the provided results of the recent method

SSOCBS [191]. From Table 5.2, we note that our detection rate, ranging from 90% to

100%, is slightly higher than the three compared methods (ICA, SSOCBS and LBP). In

addition, the detection accuracy of our method on the fabrics C1R1, C1R3, C2R2, C2R3,
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which are 98%, 96.4%, 95% and 91.2%, respectively, are clearly higher than those of the

ICA and LBP methods. Note that SSOCBS has not provided figures about the accuracy

measure. From Table 5.3, we can observe that the detection rates of our method using

fabrics in the non-p1 group C3 is 100%. The LBP method exhibits the same result. For

these types of fabrics, the ICA almost failed with detection rates ranging from 5 to 30%

only. We can also observe for the C3 class in Table 5.3 that the accuracy of our method

is higher on average, followed by LBP method, while ICA has the worst performance for

this measure.

The most important observation in the above results is the performance of the false

alarm rates (FR). Generally, our method generates a lesser number of false alarms than

the other methods with both p1 and non p1 groups (see C1 and C2 in Table 5.2 and C3

in Table 5.3). This means that our method has a good capability to accurately recognize

an actual defect-free image as defect-free. This makes our method more effective since

this capability is an attractive property required in the textile industry in order to prevent

defect-free rejection. This fact is more emphasized in fabrics of the non-p1 group, with

0% to 9% false alarms as shown in Table 5.3. The ICA method is very sensitive in the

sense that there are acceptable imperfections (small holes and stains) in texture structure

that are not regarded as defects but detected as defective, which causes an increase in

false alarm rates for some fabrics. This problem is due also to thresholding where small

imperfections can disrupt correct detection of defect-free fabrics. Although LBP is more

robust than the ICA and is a supervised approach, it suffers from the same problem that

it is also based on thresholding.
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C1 C2
R1 R3 R2 R3

ICA
DR (%) 98.5 98 94.5 96
FR (%) 100 30 52 84

DACC (%) 78.8 92.4 85.2 80

LBP
DR (%) 92.5 94 100 100
FR (%) 36 20 100 100

DACC (%) 87 91 80 80

SSOCBS[191]
DR (%) 98.5 97.5 97 86
FR (%) - - - -

DACC (%) - - - -

OUR algorithm
DR (%) 99.5 97.5 96 92
FR (%) 4 6 10 12

DACC (%) 98 96.4 95 91.2

Table 5.2: Comparing the detection rate (DR), false alarm rate (FR) and the accuracy
(DACC) of our algorithm versus similar algorithms based on fifty fabric images in each
of the five sub-directory (E0, ..., E4).
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Figure 5.9: Comparison of detection results for homogenous fabrics in p1 group from
classes C1R1 (columns 1 to 4) C2R2 (column 5) and C2R3 (column 6). (a) represents
original fabric images, (b), (c), (d) and (e) represent results obtained using ICA, LBP,
SDD and RCT-MoGG without overlapping. (f), (g) and (h) represent results using
RCT-MoGG with 1/2, 3/4 and 7/8 block overlapping, respectively.
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C3
R1 R3

Straight Oblique Vertical Horizontal Oblique

Our algorithm
DR (%) 100 (103) 100 (38) 100 (16) 100 (16) 100 (16)
FR (%) 9(11) 10 (10) 0 (8) 0 (8) 0 (8)

DACC (%) 99.5 (114) 96 (48) 100 (24) 100 (24) 100 (24)

ICA
DR (%) 5 (103) 5 (38) 18 (16) 30 (16) 4 (16)
FR (%) 9 (11) 20 (10) 50 (8) 88 (8) 87 (8)

DACC (%) 14 (114) 20 (48) 38 (24) 25 (24) 8 (24)

LBP
DR (%) 100 (103) 100 (38) 100 (16) 100 (16) 100 (16)
FR (%) 55 (11) 100 (10) 75 (8) 40 (8) 88 (8)

DACC (%) 95 (114) 79 (48) 100 (24) 100 (24) 100 (24)

Table 5.3: Comparing the detection rate (DR), false alarm rate (FR) and the accuracy
(DACC) of our algorithm with similar ones based on fabric images in each of the five
sub-directories (E0, ..., E4). The number of fabrics used for detection are put between
brackets. The absence of brackets means all fabric images with defects were used.
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Figure 5.10: Comparison of some detection results for striped fabrics.
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Figure 5.11: Examples of defect detection obtained using our approach on fabric
images in the TILDA dataset. The original images are shown in rows 1, 3, 5 and 7
and are as follows: C3R1 (images 1 to 3), C3R3 (images 4 to 7), C2R2 (images 8 to
12) and C2R3 (images 13 to 16). Below each image, we show the detected defects.
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5.5.3.2 Local-level performance results

Performance of the proposed method is evaluated in terms of the metrics: local precision

(PL), local recall (RL) and local accuracy (ACCL), respectively. We have also built a

ground truth where each block of the tested images is tagged as defective or not defective.

Using the same numbers of images as in Table 5.2 and Table 5.3, respectively, we have

compared the performance of our method with the other methods (ICA and LBP).

The average values of the local metrics calculated for p1 and non-p1 groups for each

method are shown in Tables 5.4 and Table 5.5, respectively. Note that small values of

RL indicate that there are many false negatives, whereas small values of PL indicate the

presence of several false positives generated by an algorithm. Compared to the other

methods, our algorithm is more effective in defect localisation where obtained results with

regard to he metric ACCL where values range from (90.6% to 98.3%) for the p1 group

(see Table 5.4) and (97.8% to 99.2%) for non-p1 group (see Table 5.5). Compared to our

method, the obtained values of ACCL by the LBP method, for example, range from 4.1%

and 6.4% in fabric C2R2 and C2R3 of the p1 group. This clearly indicates that the 100%

detection rate (DR) in Table 5.2 do not actually reflect the effectiveness of this method for

defect localisation in patterned fabrics. Also, the ICA method suffers from missing large

parts of the defects in the non-p1 group of fabrics (C3R1 and C3R3), where ACCL has

drastically dropped.
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C1 C2
R1 R3 R2 R3

ICA
PL (%) 86 85.2 86 78.1
RL (%) 90 88.2 87.1 80

ACCL (%) 88 86.7 86.5 79

LBP
PL (%) 91.2 93.7 2.1 3.8
RL (%) 80 77 100 100

ACCL (%) 85.2 84.5 4.1 6.4

OUR algorithm
PL (%) 97.1 95.5 95.8 90
RL (%) 99.5 97.4 95.5 91.2

ACCL (%) 98.3 96.4 95.7 90.6

Table 5.4: Comparing the local precision (PL), recall (RL) and accuracy ACCL of
our algorithm versus similar algorithms based on fifty fabric images in each of the
five sub-directory (E0, ..., E4).

C3
R1 R3

Straight Oblique Vertical Horizontal Oblique

Our algorithm
PL (%) 99 98.6 99.2 99 97.5
RL (%) 99.4 98.8 99 99 98.2

ACCL (%) 99.2 98.7 99.1 99 97.8

ICA
PL (%) 4.5 5.6 7.8 9.5 15.2
RL (%) 1.1 1.5 1 1 1.1

ACCL (%) 1.8 2.4 1.7 1.8 2.1

LBP
PL (%) 40.2 25.4 7.1 7.5 5.8
RL (%) 85 80.4 77.2 78.6 79.1

ACCL (%) 54.6 38.6 13 13.7 10.8

Table 5.5: Comparing the local precision (PL), recall (RL) and and accuracy ACCL

of methods based on fabric images in each of the five sub-directories (E0, ..., E4).
The number of test images for these types of fabrics is the same as the specified in
Table 5.3.
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5.6 Conclusions

We have proposed a new algorithm that has capability to detect and locate defects in

most of the fabric groups. The algorithm uses supervised learning to discriminate between

defect-free fabrics from defective ones, based on RCT-MoGG signatures. Experiments on

several fabric images have shown that our algorithm yields to good detection rates and very

low false alarms. Compared to other methods, the proposed algorithm has shown better

performance for plain, plain, twill and weave fabrics in the p1 group, as well as for non-

p1 groups such as gingham fabric (p4m) and striped fabric (p2) with vertical, horizontal

and/or oblique orientations.



Chapter 6

Mixture of multivariate

generalized Gaussian with

applications

6.1 Motivation

In this chapter, our second contribution is developed. In the pursuit of the best texture

representation, we present a unified statistical model for multivariate and multi-modal sub-

band coefficient distribution in multi-resolution transforms of color-texture images. This

model, based on the formalism of finite mixtures of multivariate generalized Gaussians

(MoMGG), enables an accurate description of vectorial coefficients in multi-scale image

decomposition. The MoMGG model is proposed using an expectation-maximization algo-

rithm that combines a numerical estimation of parameters via newton-raphson method.

The MoMGG not only enables to model inter-band correlation between sub-bands of dif-

ferent scales and orientations but also between intra-band correlation between adjacent

locations at different orientations and scales which gives it the capability of better describ-

95
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Figure 6.1: Example image containing of arbitrarily shaped components of random
colored textures.

ing the spatial layout of texture patterns. It enables also to seamlessly combine different

transforms (e.g., contourlets, wavelets) to build a richer and more representative texture

signature for texture search and classification. We successfully applied our approach to

texture retrieval and reconstruction where promising results have been obtained compar-

atively to state-of-art approaches using standard datasets. Fig. 6.1 shows an image of

multicomponents of colored textures.

6.2 Introduction

Given the importance visual texture analysis and understanding, texture characterisation

has received much scientific attention from vision science, computer vision & graphics, sig-

nal processing and arts [33]. The texture analysis field can be structured into three levels

of investigation: 1) low-level analysis concerns the representation and modelling of texture,

2) the mid-level analysis which embraces several operations, including discrimination, seg-

mentation and synthesis [4], and 3) high-level analysis which is characterized by domain

applications such as remote sensing, medical imaging, inspection and content based image
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retrieval [138, 192, 213]. Usually the first level focusing on texture representation, i.e., the

extraction of features describing texture information [194] - is basic step for the two other

levels and is at the core of texture analysis.

Several methods of textural representation and modelling have been proposed in the

past. The point is to find a powerful texture representations lies in balancing of two com-

peting goals: high quality representation and high efficiency. High quality requires texture

representations to account for intra-class variations due to changes in illumination, rotation,

scale and blur while ensuring distinctiveness between different classes with close appear-

ance. High Efficiency requires methods to be scalable to large amounts of data while being

highly compact to deploy in resource-limited platforms such as embedded and hand-held

devices. Tuceryan and Jain [4] identified three major methods for texture representation:

structural [198, 197], spectral [200, 17, 199, 201], statistical methods [18, 194, 204]. While

each method has its advantages and limitations, their combination has been proven to be

powerful for building meaningful texture representations. For example, statistical distribu-

tion of coefficients in the multi-scale wavelet transform can reveal some properties of first

and second order statistics of the image [138, 18]. Therefore, several parametric models

have been proposed along with multi-scale transforms for modelling texture images. Para-

metric models aim at matching the appearance of natural textures by examining artificial

textures synthesized by the model [22]. Pioneering works in this regard used the paramet-

ric class of Gaussian scale mixtures which allow to generate heavy-tailed distributions by

convolving the normal with a uniform distribution [21]. Then, the generalized Gaussian

(GGD), Gamma, Student, Pearson Type VII, uniform power, generalized-t [21] have been

used to model the distribution of wavelets. The GGD has been particulary explored for its

ability to fit platykurtic and leptokurtic distributions [138, 23, 24]. However, since these

models are tuned only to univariate representations, they are not able to capture correla-

tions between intra-band and inter-band coefficients.
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Multi-band texture modeling of texture features has been investigated in several past

works. For example, Markov random fields have been used to model joint statistics of

pairs of complex wavelet coefficients at adjacent spatial locations, orientations and scales

in texture [22]. This statistical model yields realistic appearance matches for texture anal-

ysis and synthesis, and has had a broad impact on the field of human texture perception

[210, 211, 33]. In [206], joint modeling of neighboring wavelet coefficients using product of

centred Gaussians has been proposed. Although the model has been proven suitable for

image denoising, it is not easily applicable for texture image discrimination. In [56], joint

alpha-stable sub-Gaussian distribution is used to model wavelet coefficient distributions. In

order to better capture the texture statistics, a computationally complex Gaussianization

step is required. Other methods to model correlation use spherical invariant random vec-

tors [28] or copulas [29]. [35] used a Gaussian copula-based multivariate model to capture

dependencies between complex wavelet coefficients for texture image retrieval. However,

the model does not capture multi-modal and is zero-centered data. The full covariance

in color texture has been addressed by [26, 27] using multivariate generalized Gaussian

density (MGG) to model color wavelet coefficients. However, multimodality has not been

addressed like [138, 109, 208]. On the other hand, most of past methods focused on describ-

ing the distribution for a single transform. To the best of our knowledge, no method has

tried to combine coefficients from different multi-resolution transforms in order to increase

the accuracy of texture representation. Strictly speaking, the goal is to find a flexible, yet

accurate parametric model for describing the joint statistics of arbitrary sub-band combi-

nations while offering a handy way to compare texture images in high-level applications.

Recently, deep learning methods using Convolutional Neural Networks (CNNs) have

proposed for texture representation [30]. Briefly, weights of filters are learnt using labeled

data and convolved with input images to create a spatial feature map of activations, sim-
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ilar to a traditional bank of Gabor filters. These methods have the ability to leverage

large datasets to learn high quality features. However, their training requires estimating

millions of parameters and a very large number of annotated images which requires a huge

computational power, an issue which rather constrains their applicability problems with

very limited resources and training data. For example, [31] have used CNNs for texture

synthesis exploiting several layers of the VGGNet [32]. In [33], the authors compared fea-

tures encoded by a deep CNN (VGGNet) with the simpler model [22] for texture synthesis

and concluded that the former performed slightly better than latter, but no model can

synthesize textures that humans cannot discriminate from natural textures.

In the goal of improving the accuracy of parametric models to match the appearance

of natural textures, we propose a new semi-parametric statistical model for multivariate

and multi-scale decomposition of color texture images. We formulate our model using

mixtures of multivariate generalized distributions (MoMGG) where all mixture components

are endowed with full covariance matrices to account for full inter-band correlation. This

model enables to seamlessly combine arbitrary numbers of sub-bands at different inter-band

or intra-band coefficients in multi-scale decompositions. Thanks to the flexibility of the

MoMGG, we can fit any distribution of the combined coefficients without restrictions to

previous work assumptions about unimodal and centered data. The MoMGG is also able

to accurately fit heavy-tailed distributions in a multidimensional setting which characterize

natural image statistics [22]. Finally, to compare texture images using MoMGG models,

we develop an approximate Kullback-Leibler divergence using monte-carlo sampling. Our

contributions can be summarized in the following points:

1. Our MoMGG model extends several previous statistical methods for modelling multi-

scale decompositions of texture. Indeed, [26, 29] constitute special cases of our model

by assuming unimodal and centered distributions of data. Also, [138, 109] are special

cases of the MoMGG by having only one-dimensional data. In addition to its ability
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to model multi-modal and heavy-tailed distributions, the MoMGG enables accurate

joint modeling of arbitrary combinations of intra-band and inter-band texture in-

formation with full covariance potential. To estimate the MoMGG parameters, we

propose a method based on the expectation-maximization algorithm. Furthermore,

to ensure a suitable similarity measurement between MoMGG models, and thus

compare images, we propose an approximate Kullback-Leiber divergence by using

multidimensional monte-carlo sampling. Beside being computationally efficient.

2. For texture representation, we explore MoMGG modelling using different combina-

tion scenarios of multi-scale decomposition sub-bands. In the simple scenario, we

combine bands with the same scale and orientation generated from different color

channels. In the second scenario, we combine subbands with different orientations

at the same scale, then with orientations at different scales. In the third scenario, we

model cross-joint correlation between spatial translational of the image. This com-

bination aims at finding a way to better describe the spatial layout of the texture

patterns. These different scenarios are incremental in the sense that scenario 3 is an

extension of scenario 2 which is in intrinsically an extension of scenario 1. In the

final scenario, we combine subbands of different image transforms (e.g., contourlets

and wavelets).

3. To evaluate the potential of the MoMGG model for texture representation, we con-

ducted experiments on content based color-texture retrieval (CBIR) and image re-

construction using various standard datasets. We compared our performance with

recent methods based on parametric statistical models, all based on compact mod-

elling of multi-scale decomposition coefficients. Qualitative and quantitative evalu-

ation results have shown that our method performs tetter in both CBIR and image

reconstruction applications.

The remainder of this chapter is organized as follows. Section 2 presents our MoMGG
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model parameter estimation. Section 3 presents the texture modeling and retrieval using

MoMGG. Section 4 present derivation of multivariate KLD sampling between MoGGDs.

Section 5 presents the experimental results. Finally, Section 6 concludes the chapter and

we also provide an outlook toward possible improvements.

6.3 Mixture of multivariate generalized Gaussians

(MoMGG)

6.3.1 Formulation of the MGG

The density of a random vector x following a p-dimensional multivariate generalized Gaus-

sian (MGG) distribution (also known as the power exponential distribution) is given as

follows [221]:

f(x|µ,Σ, β) = r|Σ|− 1
2 exp

{
−1

2
δ(x)β

}
, (6.1)

where

r =
pΓ(p2 )

π
p

2 Γ
(

1 + p
2β

)
2
1+ p

2β

,

with δ(x) = (x−µ)TΣ−1(x−µ). The parameters µ, Σ and β give the location (mean), a

positive-define scale matrix and a positive shape parameter, respectively. The parameter

β controls the peakedness of the distribution and the heaviness of its tails. When β = 1

we retrieve the multivariate Gaussian (MG) distribution, in this case Σ becomes the co-

variance matrix. When β = 1/2, we obtain the multivariate Laplacian (ML) distribution.

Furthermore, when β −→ ∞ the MGG distribution becomes a multivariate uniform distri-

bution. The covariance and multidimensional kurtosis coefficient for the MGG distribution
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are given by [221]:

C =
21/βΓ

(
p+2
2β

)

pΓ
(

p
2β

) Σ (6.2)

and

γ2 =
p2Γ

(
p
2β

)
Γ
(
p+4
2β

)

Γ2
(
p+2
2β

) − p(p+ 2), (6.3)

γ2 denotes the multidimensional kurtosis [221]. For β ∈ (0, 1), the MGG distribution is

a scale mixture of Gaussian distributions [223]. The MGG has been extensively used in

the literature [130, 224]. Since the estimation of the MGG distribution parameters can

not be obtained in a closed form, especially the covariance over the entire support of the

shape parameter β ∈ (0,∞), some authors resorted to numerical techniques such as the

Newton-Raphson method [127]. The authors have focused mainly on the special case where

0 < β < 1.

6.3.2 Mixture of MGGs (MoMGG) and model estimation

It is well known that finite mixture models provide a convenient yet a formal framework

for investigating heterogeneity in data, which makes them suitable for clustering and clas-

sification. Based on the MGG distribution, a mixture of MGGs (MoMGG) can be defined

as:

h(x|Θ) =
K∑

k=1

αkf(x|µk,Σk, βk), (6.4)

where f(·) is the kth component density and Θ denotes the set of parameters. µk, Σk and

βk denote the mean, scale matrix, and shape parameter, respectively, of the kth compo-

nent. The parameters α1, . . . , αK are the mixing weights such that αk > 0 (k = 1, ...,K)
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and
∑K

k=1 αk = 1. Fig. 6.2 presents in (a) and (c) two mixtures of bivariate generalized

Gaussians and their respective iso-contour plots in (b) and (d). We can see in (a) that

the MGGs are leptokurtic with heavy tails with the same shape parameter β = 0.6. The

model in (c) is composed of a peaked bivariate Laplacian with β = 1/2 and a flat (uniform)

bivariate generalized Gaussian with β = 8. We note that as β →∞, the MMG converges

to a multivariate uniform distribution. The directions of the main axes of the iso-contours

centered on their respective means, clearly show correlations in the data.

Herein we develop a mixture of MGGs in which the full covariance over the entire

support of the shape parameter β ∈ (0,∞) is estimated using the expectation-maximization

algorithm. Furthermore, our approach combines a numerical estimation of the parameters

via the Newton-Raphson method and the minimum message length (MML) principle for

model selection [138]. Given a sample of data S = {x1, ...,xN}, the likelihood of the

MoMGG is defined as:

L(Θ|S) =

N∏

i=1

K∑

k=1

αkrk|Σk|−
1
2 exp

{
−1

2
[δik(xi)]

βk

}
, (6.5)

where δik(xi) = (xi − µk)TΣ−1
k (xk − µk) and rk =

pΓ(p
2
)

π
p
2 Γ

(
1+ p

2βk

)
2
1+

p
2βk

.

The S is considered incomplete since no information is provided about the component

membership of each data instance. The complete data is given by Sc = {(x1,z1), . . . , (xN ,zN )},

where the missing variable zi = (zi1, . . . , ziK)T is the mixture component label vector such

that zik = 1 if xi comes from the kth component and 0 otherwise, hence zik ∈ {0, 1} and

∑K
k=1 zik = 1. By applying the logarithm, the complete log-likelihood is then given by:

Lc(Θ) =

N∑

i=1

K∑

k=1

zik log

[
αkrk|Σk|−

1
2 exp

{
−1

2
[δik(xi)]

βk

}]
(6.6)

The estimation of the parameters αk, βk, µk and Σk, k = (1, ...,K), can not be estimated

in a closed form. We use rather the expectation-maximization (EM) algorithm which is
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Figure 6.2: Examples of mixtures of bivariate generalized Gaussians: (a) A mixture
of two MGGs plotted for the same shape parameter β = 0.6 and different values of
full covariances matrix Σ and means µ, (b) represents the isocontours of mixture
(a), (c) a mixture of two MGGs, one is a bivariate Laplacian (β = 1/2) and the other
is a bivariate uniform density (β = 8), with their isocontours in (d).

an iterative method based on the complete-data log-likelihood (6.6). The E-step involves

calculating the expected complete-data log-likelihood. We need the expected values given

by:

τ
(t)
ik = E

Θ̂(t) [Zik|x] =
α̂kf(xi|µ̂k, Σ̂k, β̂k)

∑K
j=1 α̂jf(xi|µ̂i, Σ̂j, β̂j)

, (6.7)
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for i = (1, . . . , N) and k = (1, . . . ,K). Here α̂k, µ̂k, Σ̂k, β̂k are the estimation of the

parameters obtained from he tth iteration. The M-step on (t + 1)th iteration involves

maximization of the expected values of the complete data log-likelihood with respect to

the parameters. The update for αt+1
k can simply be obtained as follows:

α̂
(t+1)
k =

∑N
i=1 τ

(t)
ik

N
(6.8)

The maximization of the expected log-likelihood with respect to the parameters βk, µk

and Σk can be obtained using the Newton-Raphson method. To find µk update, we

calculate the first and second derivatives of the expected complete log-likelihood Q(Θ, Θ̂)

with respect to µk, as follows:

∂Q
∂µk

= β̂k

N∑

i=1

τikδik(xi)
β̂k−1Σ̂−1

k mik (6.9)

∂2Q
∂µ2

k

= β̂k

N∑

i=1

τik

[
−δik(xi)

β̂k−1Σ̂−1
k + (β̂k − 1)δik(xi)

β̂k−2Σ̂−1
k mik

(
−2Σ̂−1

k mik

)T]
(6.10)

where mik = (xi− µ̂k). Likewise, the derivatives for the update of βk are given as follows:

∂Q
∂βk

=
pnk

2β̂2k
ψ(a) +

pnk log(2)

2β̂2k
−

N∑

i=1

τik
2
δik(xi)

β̂k log δik(xi) (6.11)

∂2Q
∂β2k

=
−pnk
β̂3k

ψ(a)− p2nk

4β̂4k
ψ1 (a)− pnk log(2)

β̂3k

−
N∑

i=1

τik
2
δik(xi)

β̂k [log δik(xi)]
2.(6.12)

where a = 1 + p

2β̂k

, ψ(·) and ψ1(·) are the digamma and trigamma functions and
∑K

k nk =

N .

We can find estimation of the scale matrix Σk by ignoring terms not involving Σk in the

complete log-likelihood:

Q(Σk) =
N∑

i=1

K∑

i=k

τik
2

log |Σk|−1 − τik
2

(
mT

ikΣ
−1
k mik

)βk (6.13)
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The updates could be obtained by some numerical methods such as fixe point, minorization-

maximization framework and Newton-Raphson. Upon taking the derivative of Q(Σk) with

respect to Σ−1, we can obtain the following fixed-point update:

∂Q
∂Σk

=

N∑

i=1

τik
2

Σk − τikβk
(
mT

ikΣ
−1
k mik

)βk−1
mikm

T
ik (6.14)

∂2Q
∂Σk

2 =
N∑

i=1

βk(βk − 1)
(
mT

ikΣ
−1
k mik

)βk−2
vec (mik ⊗mik) vec

(
Σ−1

k mikm
T
ikΣ

−1
k

)T
(6.15)

where vec(·) is a transformation of a matrix into a vector.

The parameter estimation and model selection of the MoMGG model are summarized

in the algorithm given below. Given a candidate numberK of components, the mixture

parameters are estimated iteratively using the expectation-maximization (EM) steps. Note

that the convergence of the EM is detected when the distance between the parameters

resulting from two successive iterations l and l + 1 is smaller than a pre-defined threshold

ǫ, i.e. ||Θl+1 − Θl|| < ǫ. Note also that the initialization of parameters is performed using

mixture of multivariate Gaussian densities. Then, we iterate on mixture of multivariate

generalized Gaussians (MoMGG) by readjusting the parameters. The model selection and

parameter estimation of the MoGG are achieved in an unsupervised fashion using the

minimum message length (MML) principle[138].

6.4 Multivariate texture modelling usingMoMGG

6.4.1 Multi-band texture combinations for MoMGG mod-

elling

To take advantage of the MoMGG to model multivariate data, we propose different scener-

ies of combining arbitrary numbers of bands in multi-scale decomposition of color texture.

Contrary to past methods describing only the marginal distributions of different bands
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Algorithm 6.1: Parameter estimation and model selection for the MoMGG.

Data: Input data : S = {x1, ...,xN}.
for K = Kmin to Kmax do
Initialize β̂k, Σ̂k, µ̂k, α̂k, (k = 1, ..., K).

repeat
Update α̂k using (6.8);
Update µ̂k using (6.9) and (6.10).
Update β̂k using (6.11) and (6.12).
Update Σ̂k using (6.14) and (6.15).

until (Convergence)
Calculate the associated minimum message length (MML) criterion;

end for
Select the optimal model K∗ such that K∗ = argminKMessLength(K).

[138], our statistical model provides a powerful way to describe jointly the distribution

of multiple bands. Analyzing the joint statistics of the different band aims at extracting

valuable information about the texture structure at different color bands as well as between

different orientations and scales.

As presented in the introduction, we build different types of combinations of texture

channels in the multi-scale decomposition of images (as shown in Fig. 6.3). In the simplest

scenario, we combine bands with the same scale and orientation generated from different

color channels. The second scenario combines subbands with different orientations at

the same scale, then with orientations at different scales. The third scenario combines

spatially-translated bands of the image in order to capture the texture layout of the texture

patterns. These two scenarios are similar to the ones proposed in the seminal work [22]. The

final scenario consists of combining different decompositions transforms such as wavelets

and contourlets [109] in order to take advantage of the benefits of each transform. All

these combinations will generate multidimensional vectors that will be combined using the

MoMGG model.
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Figure 6.3: Different scenarios of multi-band combination in the MoMGG model.

6.4.2 Similarity measurement between texture images

Since each texture image is represented by a MoMGG model, the similarity between images

will be determined by the distance between their representative MoMGG models. In gen-

eral, let P (x) and Q(x) be two probability distributions of a multi-dimensional variable

x ∈ R
p. Typically P (x) represents the ”true” distribution of data (observations), or a

precisely calculated theoretical distribution, whereas Q(x) represents a model (or approx-

imation) of P (x). To measure the difference between two probability distributions over

the same variable x, there exist a number of similarity measures [212]. Among the most

popular measure, the Kullback-leiber divergence (KLD) has been extensively used in the

literature.

The KLD, which is closely related to relative entropy and mutual information, is a

non-symmetric measure of the difference between two probability distributions P (x) and
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Q(x). Specifically, the KLD of P (x) from Q(x)), denoted by KLD(P,Q), is a measure of

the information lost when Q(x) is used to approximate P (x). Its formulation is given by:

KLD(P ||Q) =

∫
P (x|ΘP )ln

P (x|ΘP )

Q(x|ΘQ)
dx (6.16)

The KLD from P to Q is not a distance since it is not symmetric and does not satisfy the

triangular inequality. Nevertheless, KLD(P ||Q) is a non-negative measure and expresses

a good similarity measure between two distributions. Note that KLD(P ||Q) ≥ 0 and

KLD(P ||Q) = 0 if and only if P = Q. Note that a closed-form KLD between two centered

MGG distributions in the case β = 2 (normal distributions).

KLD(Σ1||Σ2) =
1

2

[
ln
|Σ2|
|Σ1|

+ tr(Σ−1
2 Σ1 − p

]
(6.17)

with Σ1 and Σ2 are respective covariances of P and Q. The closed-form extension to the

general case between centered MGGs (where β1 6= β2 6= 1)) has been obtained in [27] as

follows:.

KLD(β1,Σ1||β2,Σ2) = ln

[
Γ( 1

β2
)

Γ( 1
β1

)
2
( 1
β2

− 1
β1

)
( |Σ2|
|Σ1|

) 1
2 β1
β2

]

+

[
−2

1
β1

β1
+ 2

β1
β2

Γ(β2+1
β1

)

Γ( 1
β1

)
×
(
γ1 + γ2

2

)β2

2
F

(
1−β2

2
,−β2

2
;1;A2

)]
(6.18)

where γi ≡ (λi2)
−1, i = 1, 2, λi2 the eigenvalues of Σ−1

1 Σ2. A ≡ γ1−γ2
γ1+γ2

· 2F(.,.;.;.)

the hypergeometric function of Gauss which can be tabulated for realistic values of β and

−1 < A < 1. For β1 = β2 = 2 the hypergeometric function becomes 1 and Eq. (6.18) is

reduced to Eq. (6.17). However, the above formulation is not generalizable to non-centered

MGGs, let alone for calculating the KLD between MoMGGs.

When these distributions are multimodal, a closed-form solution is intractable even for
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univariate data [138]. One way to circumventing this issue is by designing a fast way to

approximate the KLD between two unconstrained mixture models. The approximation is

based on Monte-Carlo sampling methods [109] where given two MoMGG models P (x) =

∑K
i=1 πiP (x|θi) and Q(x) =

∑M
j=1 ωjq(x|αj), the approximate KLD between these models

can be defined as follows:

KLDmc(P ||Q) =
1

n

n∑

i=1

log
P (xi)

Q(xi)
≈n→∞ KLD(P ||Q) (6.19)

The approximation method by sampling aims to generate a sufficiently large sample

X = {x1,x2, ...,xn} drawn independently from P in order to approximate the KLD us-

ing the Monte-Carlo integration [139]. The sample in our case is generated using the

Metropolis-Hasting (MH) algorithm [139] which is a powerful Markov Chain Monte Carlo

method (MCMC) for producing dependent simulations from an arbitrary distribution. In

brief, the MH algorithm involves the construction of a Markov sequence of random vari-

ables whose equilibrium distribution is the desired posterior distribution. In our case, we

used n = 105 as typical value which gives satisfactory results.

6.5 Experimental setup

To measure the performance of the proposed approach, we conducted a series of experi-

ments using three benchamark texture databases. The first one is ALOT [218], containing

250 different texture classes with 100 images per class. The second one is the 40 textures se-

lected from MIT Vistex [3] database called VisTex(small). The third one is the full VisTex

which consists of 167 textures, called VisTex (full). In the different combination scenarios

described in Section 6.4.1, we used mainly the Daubechies wavelets for the multi-scale de-

composition except for the forth scenario where wavelets are coupled with contourlets. For

the third scenario, we applied three horizontal and three vertical shifts to generate spatial

layout information about the texture.
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The evaluation of our method is done mainly in the context of content-based image re-

trieval. We carried out a comparative evaluation with several advanced recognition methods

on the three databases under the same experimental conditions as the authors, basing on

our four modeling scenarios. However, as a first experiment, we tested our approach only on

the ALOT database in order to evaluate its performance for different decomposition(scale)

levels (1 to 3). All our experiments were performed in the MATLAB environment.

6.5.1 Scale levels evaluation with ALOT database

In this experiment we retain 20 classes corresponding to different themes. Similar to many

previous researches in the literature, we have divided the original images 512 × 512 into

16 non-overlapping sub-images 128 × 128. Therefore, the number of sub-images used in

the evaluation are 400 in each class and 8000 in the whole dataset. We measured the

retrieval performance in terms of the average retrieval rate (%) which refers to the fraction

of the number of relevant images found among the top-retrieved images. More formally,

the retrieval rate for each query is given as: ARR = RI/R, where ARR is average retrieval

rate, RI is the number of relevant images among top N retrieved images from the dataset

and R is the total number of relevant images which is always 16 in our case. A sub-image

is considered relevant if it is a part of the same original 512512 image as the query sub-

image. The similarity between the query image and a target image is computed thanks to

the MCMC-KLD approximation in Eq. (6.19).

To concretely evaluate the retrieval performance of the proposed approach, each of

25 images in each class from the dataset is considered as a query image. So in each

class, the retrieval rate is calculated by averaging retrieval rates corresponding to 250

= 10 × 25 randomly-selected queries (10 random queries for each image). Therefore in

the whole dataset, the retrieval rate is calculated by averaging retrieval rates correspond-
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ing to 5000 = 10 × 25 × 20 randomly-selected queries (10 random queries for each im-

age for each of 20 classes). The next sections show evaluation results where we denote

scenario 1 as MoMGG+KLD+CD, where CD denotes color-based descriptor, scenario 2

MoMGG+KLD+CCOS, where CCOS denotes cross-correlation between different orienta-

tions and scales, scenario 3 MoMGG+KLD+Sh, where Sh denotes image shift and scenario

4 by MoMGG+KLD+CombT, where CombT indicates transform combinations.

Table 6.1 shows influence of scale level on the average retrieval rate for the top 16

retrieved images by considering the four scenarios, respectively. We can observe that

increasing the number of decomposition levels improves generally the retrieval accuracy.

However, the first two levels embody most of the discrimination power in the high-pass

subbands. The third level improves slightly the retrieval accuracy when combined with

the first two levels. On the other hand, keeping low-pass subbands improves the retrieval

accuracy leading up to 100%.

Level J scenario 1 scenario 2 scenario 3 scenario 4

J=1 94 97,5 98,2 94,5
J=2 95 97,7 98,7 96
J=3 96 98,5 99,7 97,1
J=3 + A 97 99,2 99,8 98

Table 6.1: Average retrieval rate (%) in the top 16 images retrieved in 5000 queries in
the ALOT dataset. MoMGG+KLD+CD (scenario 1),MoMGG+KLD+CCOS (sce-
nario 2), MoMGG+KLD+Sh (scenario 3) and MoMGG+KLD+CombT (scenario 4).

Fig. 6.4 presents a comparison of retrieval precision as a function of the number of top

matches considered. It exhibits the average retrieval rate in the dataset of 5000 queries

using different levels of decomposition J and the image approximation for all studied

scenarios. From model (scenario) 1 to 3, we observe that the results improve from one

model to another. This is due to the incremental process where model 2 improves model

2 and model 3 improves model 2. Note that model 4 is a different model from the three
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preceding models since it combines different transforms, namely wavelet and contourlet

coefficients.
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Figure 6.4: Average retrieval rate of 5000 queries as function of the number of top
matches considered. (a) Model 1. (b) Model 2. (c) Model 3. (d) Model 4

6.5.2 Comparative evaluation with other methods

To further illustrate the performance of the proposed method, we compared our method

with three state-of-the-art methods using the same experimental setting. We used the three

benchamark texture datasets are ALOT [218], containing 250 different texture classes with

100 images per class, VisTex(small) containing 40 textures and VisTex (full) which consists

of 167 textures. We compute the Average Retrieval Rate (ARR) which is defined as the
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average percentage of the retrieved subimages from the same original texture class in the

top 16 retrieved subimages. The ARR of the sub-images is given by:

ARR =
1

Nt

Nt∑

k=1

rNr(Ik)

Nr

where Nt denotes the total number of sub-images in the dataset, Ik represents the kth query

sub-image, and rNr(Ik) is the query function which represents the number of correctly

retrieved sub-images corresponding to Ik among the Nt retrieved sub-images (i.e. sub-

images that belong to a unified image along with the query image Ik). In the experiments,

three-scale decomposition is adopted.

Method ALOT VisTex(Full) VisTex(Small)

MoMGG + KLD + CCOS (Scenario 2) 99,5 99,8 100
MoMGG + KLD + CD (Scenario 1) 96,4 97,4 99.8
GC-GG NSST/JD [192] 72,82 69,47 97,02
GC-tLS NSST/JD [192] 70,95 68,43 96,21
MPE/Geodesic [26] 50,1 70,1 91,5
Gabor Wavelet-Copula/KLD [193] 60,8 66,1 92,4

Table 6.2: ARR values of our proposed method along with the existing state-of-the-
art methods on the three ALOT, VisTex(Full), and VisTex(Small) datasets. Scenario
1 (accounting the inter-band correlation), Scenario 3 (accounting the spatial distri-
bution)

Table 6.2 compares the ARR that a query retrieved its class images. As can be seen,

our proposed MoMGG+KLD+CD (scenario 1) and MoMGG+KLD+CCOS (scenario 2)

already obtained the highest ARR values in the three datasets ALOT, VisTex(Full) and

VisTex(Small). Moreover, scenario 3 which takes account spatial distribution in texture

exhibit impressive retrieval performances. Loosely, taking into account full covariance

between coefficients with spatial location, scale and orientation within multi-resolution

transform, and multi-modality made a significant difference in the quality of the descriptors,

which significantly improves the color texture retrieval.
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6.6 Image Reconstruction

This experiment has the objective of evaluating the representativeness of the MoMGG

model for texture description. The experiment consists of performing the inverse of the

multi-scale decomposition from re-sampled high-frequency bands instead of the original

ones. That is to say, after estimating the MoMGG models using the high-frequency bands

data, we discard these bands and replace them with re-sampled versions from the calcu-

lated MoMGG models and use them jointly with the low-resolution image approximation

to reconstruct the original image. We performed this experiment using scenario 3 of bands

combination with a two level decomposition. For the sake of comparison, we performed

also the same reconstruction using the MoGG [138]), MGG [26] and GG [23] models, re-

spectively.

Fig. 6.5 shows qualitative comparison of reconstruction by the MoMGG compared to

other models. We can see that the visual quality of the reconstructed images obtained by

our method is generally better than the other models.
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Image 1 Image 2 Image 3 Image 4

(ORIGINAL)

(MoMGG)

(MGG)

(MoGG)

(GG)

(COARSE)

Figure 6.5: Comparison of the visual quality of image reconstruction using sampling
from different statistical models. The top row shows the original images, the second
to fifth rows show the reconstructed images using the MoMGG (our method), MGG
[26], MoGG [138] and GG [23] models, respectively. The last row shows the image
approximation used jointly with the re-sampled high-frequency images to reconstruct
the original images.
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For quantitative evaluation of the reconstruction, we used two popular similarity met-

rics : the peak-signal-to-noise ratio (PSNR) [232] and the structural similarity index mea-

sure (SSIM) [233]. A higher PSNR value provides a higher image quality and a small

value of the PSNR implies high differences between images. The SSIM measures the image

distortion by combining the loss of luminance, contrast, and correlation between images.

The SSIM values range between 0 to 1, where 1 means a perfect match between the re-

constructed image and the original one. It is considered to be correlated with the quality

perception of the human visual system (HVS). Table 6.3 shows the obtained values of these

metrics for the images in Fig. 6.5, while Table 6.4 exhibits their averages for 90 images

chosen randomly from the ALOT dataset. We can see that for both metrics, our MoMGG

model performed better than the other methods for reconstructing the original image.

Metric Image 1 Image 2 Image 3 Image 4

MoMGG (Ours Model)
SSIM 0,982 0,956 0,971 0,940

PSNR 47,000 45,700 46,220 44,800

MoGG (Allili, 2012)
SSIM 0,850 0,790 0,820 0,780

PSNR 41,000 40,000 40,000 37,350

MGG (Verdoolaege, 2011)
SSIM 0,820 0,800 0,800 0,780

PSNR 40,000 41,000 39,000 37,000

GG (Min Do, 2002)
SSIM 0,650 0,560 0,511 0,510

PSNR 34,000 34,000 35,000 33,000

Coarse image
SSIM 0,570 0,520 0,480 0,480

PSNR 33,000 32,000 33,000 31,000

Table 6.3: Values of the SSIM and PSNR quality metrics for a reconstructed sample
of images from the ALOT dataset.
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Quality metric type Average (90 images)

MoMGG (Ours Model)
SSIM 0,961

PSNR 46,900

MoGG (Allili, 2012)
SSIM 0,810

PSNR 39,200

MGG (Verdoolaege, 2011)
SSIM 0,800

PSNR 38,250

GG (Min Do, 2002)
SSIM 0.554

PSNR 34,000

Coarse image
SSIM 0,500

PSNR 31,000

Table 6.4: Average values for SSIM and PSNR metrics for 90 reconstructed sample
of images from the ALOT dataset.

6.7 Conclusion

We have proposed a new statistical model, coined MoMGG, for multi-modal and mul-

tivariate color texture image representation. This model generalizes several well-known

statistical models for building compact statistical signatures that facilitate image search

and classification. In addition of its flexibility to represent the distribution of multi-scale

decomposition coefficients, it enables arbitrary combinations of decomposition bands to

build a richer and more representative texture signatures. These bands could originate

from different color channels or from different image transforms with inter-band correla-

tion. On the other hand, the MoMGG enables accurate fitting of heavy-tailed distribu-

tions which makes it more parsimonious. We proposed an EM algorithm based on the via

Newton-Raphson method for MoMGG parameter estimation. We then validate the model

in the context of content-based texture image retrieval by comparing it to other models in

well-known datasets. We observed that our approach outperforms most of statistical-based

methods in the literature. Furthermore, we conducted experiments on image reconstruc-
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tion re-sampling high-frequency bands from the estimated MoMGG models. Again, our

model has shown a very good performance in reconstructing images which gives a huge po-

tential for applications such as super-resolution and image/video compression. Finally, our

approach can readily be applied for multivariate representation in dynamic video textures

and hyper-spectral images.



Chapter 7

Conclusion and discussion

In this thesis, we have proposed a unified statistical model for texture representation and

discrimination based on the formalism of generalized Gaussian distribution (GGD). The

new model enables to accurately fit heavy-tailed multi-modal and multivariate data which

makes it a ideal tool for representing the distribution of multi-scale transforms in texture

images. From this property, we have capable at building high-level applications based on

texture discrimination, namely fabric defect detection and content-based texture retrieval.

In summary we have made two main contributions in this thesis.

In the first contribution s, using the formalism of univariate mixture of generalized

gaussian (MoGG), we have developed an algorithm for defect detection in fabric gray-scale

images. This algorithm uses block-wise texture discrimination to detect local fabric de-

fects. The algorithm uses supervised learning to discriminate between defect-free fabrics

from defective ones, based on RCT-MoGG signatures. Experiments on several fabric im-

ages have shown that our algorithm yields a good detection rates and very low false alarms

opposite to state-of-the-art methods. By opposite to several existing approaches for fabric

defect detection, which effective in only some types of fabrics and/or defect, our method

can deal with not only almost all type of pattern, that is motif-based and non motif-based

one, but also all type of defects thanks to the RCT+ MoMG. The method enable both

120



Chapter 7. Conclusion and discussion 121

detection and localization of defects.

In the second contribution building on previous works, we extended the univariate

mixtures of GGDs (MoGG), to take into account multidimensional and multimodaldata.

We generalized the MoGG model to the mixture of multivariate generalized Gaussians

(MoMGG) which allows representing and modelling both multimodality and correlation

between transform coefficients. Our method unifies several past approaches for statisti-

cal representation of multi-scale transforms. Actually, we have proposed a new statistical

model, coined MoMGG, for multi-modal and multivariate color texture image represen-

tation. This model generalizes several well-known statistical models for building compact

statistical signatures that facilitate image search and classification. In addition of its flex-

ibility to represent the distribution of multi-scale decomposition coefficients, it enables

arbitrary combinations of decomposition bands to build a richer and more representative

texture signatures. These bands could originate from different color channels or from dif-

ferent image transforms with inter-band correlation. On the other hand, the MoMGG

enables accurate fitting of heavy-tailed distributions which makes it more parsimonious.

We proposed an EM algorithm based on the via Newton-Raphson method for MoMGG

parameter estimation. We then validate the model in the context of content-based texture

image retrieval by comparing it to other models in well-known datasets. We observed that

our approach outperforms most of statistical-based methods in the literature. Furthermore,

we conducted experiments on image reconstruction re-sampling high-frequency bands from

the estimated MoMGG models. Again, our model has shown a very good performance in

reconstructing images which gives a huge potential for applications such as super-resolution

and image/video compression. Finally, our approach can readily be applied for multivariate

representation in dynamic video textures and hyper-spectral images.
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