
Formal Framework for

Security Policy Enforcement

in Computer Systems

by

Liviu Pene

Thesis submitted in partial fulfillment

of the requirements for the degree of

Philosophiæ Doctor in Computer Science

Département d’informatique et d’ingénierie

UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS

Gatineau, Québec

JANUARY 2018

c© Liviu Pene, 2018





Cadre formel pour le renforcement

des politiques de sécurité

dans les systèmes informatiques

par

Liviu Pene

Thèse présenté comme exigence partielle

pour l’obtention du grade de

Philosophiæ Doctor en Informatique

Département d’informatique et d’ingénierie

UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS

Gatineau, Québec

JANVIER 2018

c© Liviu Pene, 2018





i

Examination Committee

Dr. Jurek Czyzowicz Examination Committee Chair

Dr. Kamel Adi Director of Research

Dr. Luigi Logrippo Internal Examiner

Dr. Mohamed Mejri External Examiner

Dr. Marc Frappier External Examiner





To my beloved wife Raluca and my wonderful son George.





Abstract

The swift evolution of networks and computer systems has generated sub-
stantial improvements and marked benefits in several aspects of our personal
and professional lives. However, these advantages come at the expense of an
increased complexity of the security mechanisms protecting them. Defending
the systems has become a big challenge both for individuals and for enter-
prises. The age of cloud computing and the Internet of Things significantly
aggravated the problem. The main reason is that these technologies call into
question the classic centralized security models and require contemplating
completely distributed approaches. Given this context, computer systems
security can no longer be assured solely by the application of best practices,
and a formal and rigorous approach is henceforth necessary.

This thesis tackles the question of automatic protection of computer systems
by exploring the use of formal methods for policy specification, verification
and enforcement. In order to build our formal framework, we have defined
algebraic formalisms and modal logics that allow specifying information sys-
tems and their behaviour in an elegant and concise manner. We have also
defined formal verification techniques for assessing the compliance of the
systems with the security policies. Finally, we have devised an enforcement
operator capable of generating an automatic enforcement process. The latter
has the ability to rewrite the algebraic specification of a computer system in
a way that renders it compliant with a security policy.

v



Résumé

Le développement accéléré des systèmes et réseaux informatiques a engen-
dré des améliorations et avantages substantielles dans plusieurs aspects de
notre vie quotidienne et professionnelle. Cependant, ces avantages viennent
souvent au détriment d’une complexité accrue dans les mécanismes de sécu-
rité de ces systèmes dont la protection représente un grand défi aussi bien
pour les individus que pour les organisations. À l’ère de l’infonuagique et
de l’internet des objets, le problème s’est grandement amplifié. La raison
principale est que ces technologies remettent en cause les modèles de sécu-
rité centralisés classiques et exigent de considérer des approches totalement
distribuées. Dans ce contexte, la sécurité informatique ne peut plus être as-
surée par l’unique application de règles de bonnes pratiques et une approche
formelle et rigoureuse est désormais nécessaire.

Cette thèse traite de la question de la protection automatique des systèmes
informatiques en explorant l’utilisation des méthodes formelles pour la spé-
cification, la vérification et le renforcement automatique des politiques de
sécurité. Pour construire notre cadre formel, nous avons défini des formal-
ismes algébriques et des logiques modales pour spécifier de manière élégante
et concise les systèmes informatiques et leurs comportements. Nous avons
aussi défini des techniques de vérification formelle pour vérifier la conformité
des systèmes par rapport aux politiques de sécurité. Finalement, nous avons
élaboré un opérateur de renforcement capable de générer un processus de
renforcement automatique. Ce dernier a la capacité de réécrire une spécifica-
tion algébrique d’un système informatique de manière à la rendre conforme
à une politique de sécurité.

vi





Acknowledgments

First and foremost, I wish to thank my research director and thesis advisor,
Dr. Kamel Adi, who has guided my work on this project from beginning to
end. His classes may have sparked my interest in computer systems security,
but his knowledge, dedication, and passion for the field inspired me to seek
answers through research. Throughout the thesis, I have often asked for his
advice about a plethora of good and not-so-good (or outright bad) ideas I
may have had. Dr. Adi has supervised the development of all published
articles, from the early stages of validating the approach to the selection of
conferences and journals. His valuable remarks and constructive criticism
have always pushed me to think and write clearer and more concise. His
assistance with thesis content, macros, templates, and style in general was
invaluable. It is largely due to him that my thesis does not look like a 200
pages-long phrase.

My thanks are extended to the members of the doctoral committee, who
accepted the tedious and ungrateful task of evaluating this thesis: Dr. Jurek
Czyzowicz, Dr. Marc Frappier, Dr. Mohamed Mejri, and Dr. Luigi Logrippo.
I am fortunate to have my research assessed through the lens of their vast and
inspiring expertise. Their comments and questions are anxiously expected,
as they will undoubtedly improve the quality and legibility of the thesis.

Some of the work described in chapters 5, 6 and 7 was done in collaboration
with Lamia Hamza, a fellow PhD student from University of Bejaia, Algeria.
She is also responsible for several aspects of the development of the PEA
application. PEA inherited topology and system specification features from
GenSpec, which was originally developed by Marc St-Laurent based on my
requirements.

viii



ix

Finally, I would like to thank my family for being very supportive and con-
cerned all along. Their genuine interest in the subject of this thesis helped me
feel less guilty for not sharing enough of my time with them. I am so grateful
for having them always by my side. My late father’s excellent coffee kept me
awake many nights when needed and my mother-in-law’s cakes gave me the
desired energy supplement. My brother and in-laws constantly bugged me
about the status of the thesis, reminding me that I will eventually have to
finish it. My son added a sense of urgency to the situation, giving me the
greatest motivation for the final push required. Above all, my wife showed
me unquestioning faith in my abilities, relentless support, and unconditional
love.





xi

List of Papers

1. K. Adi, A. El-Kabbal, and L. Pene. Distributed firewalls verification
with mobile ambients. In Proceedings of the Workshop on Practice and
Theory of Access Control Technologies, pages 29-34, Jan 2005.

2. K. Adi and L. Pene. Secrecy Correctness for Security Protocols. In Pro-
ceedings of the First International Conference on Distributed Frame-
works for Multimedia Applications (DFMA ’05), pages 22-29. IEEE
Computer Society, 2005.

3. L. Pene and K. Adi. Calculus for distributed firewall specification and
verification. In Proceedings of the 5th International Conference on
Software Methodologies. SoMeT ’06, pages 301-315. IOS Press, 2006.

4. K. Adi, L. Hamza, and L. Pene. Formal Modeling for Security Behav-
ior Analysis of Computer Systems. In Proceedings of the 2008 Inter-
national MCETECH Conference on e-Technologies (MCETECH ’08),
pages 49-59. IEEE Computer Society, 2008.

5. K. Adi and L. Pene. Formal Reasoning for Security Protocol Correct-
ness. In Proceedings of the 7th International Conference on Software
Methodologies. SoMeT ’08, pages 63-83. IOS Press, 2008

6. K. Adi, L. Pene, and L. Sullivan. Games for non-repudiation protocol
correctness. In International Journal of Wireless and Mobile Comput-
ing - IJWMC , vol. 4, no. 4, pages 305-313, Oct 2010.

7. L. Pene, L. Hamza, and K. Adi. Compliance Verification Algorithm
for Computer Systems Security Policies. In Proceedings of the 2017
International MCETECH Conference on e-Technologies (MCETECH
’17), pages 96-115. IEEE Computer Society, 2017.

8. L. Pene, L. Hamza, and Kamel Adi. Automatic Security Policy En-
forcement in Computer Systems. In print, to appear in Computers &
Security Journal, vol. 73, pages 156-171. Elsevier, Mar 2018.





Contents

Introduction 1

Building Blocks: Main Concepts and Literature Review
8

1 Process Algebras and Logics 10
1.1 Process Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.2 The π-Calculus . . . . . . . . . . . . . . . . . . . . . . 13
1.1.3 The Ambient Calculus . . . . . . . . . . . . . . . . . . 17

1.2 Process Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.1 The Hennessy-Milner Logic . . . . . . . . . . . . . . . 24
1.2.2 The ADM Logic . . . . . . . . . . . . . . . . . . . . . . 25
1.2.3 The Ambient Logic . . . . . . . . . . . . . . . . . . . . 27

1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Security Policy Verification and Enforcement Techniques 35
2.1 Formal Verification of Security Policies . . . . . . . . . . . . . 37

2.1.1 Tableau-Based Model Checking in Mu-Calculus . . . . 38
2.1.2 Tableau-Based Proof System for a E-Commerce Protocol 41
2.1.3 LoTREC Tableaux Theorem Prover . . . . . . . . . . . 42

2.2 Formal Enforcement of Security Policies . . . . . . . . . . . . 44
2.2.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1.1 Proof-Carrying Code . . . . . . . . . . . . . . 47
2.2.1.2 Type Systems . . . . . . . . . . . . . . . . . . 49

2.2.2 Execution Monitoring . . . . . . . . . . . . . . . . . . 51
2.2.3 Program Rewriting . . . . . . . . . . . . . . . . . . . . 55

xiii



xiv

2.3 Security Policy Enforcement with Ambients and Related Calculi 63
2.3.1 Control Flow Analysis . . . . . . . . . . . . . . . . . . 63
2.3.2 Safe Ambients and Derived Approaches . . . . . . . . . 68
2.3.3 Guarded Boxed Ambients . . . . . . . . . . . . . . . . 73
2.3.4 Controlled Ambients . . . . . . . . . . . . . . . . . . . 74

2.4 Critical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 77

Applicability to Security Behaviour Analysis 82

3 A Calculus for Distributed Firewall Specification and Verification 84
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2 Ambients and Firewall Policies . . . . . . . . . . . . . . . . . . 85
3.3 Distributed Firewall Specification . . . . . . . . . . . . . . . . 86

3.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Distributed Firewall Verification . . . . . . . . . . . . . . . . . 92
3.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Intruder Oriented Security Behavior Analysis of Computer Systems104
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2 Computer Systems Security Specification . . . . . . . . . . . . 105

4.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.1 Regular Process Behavior . . . . . . . . . . . . . . . . 115
4.3.2 Intruder . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.3 Security Correction . . . . . . . . . . . . . . . . . . . . 119

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Security Policy Verification 122

5 Tableau Based Verification Algorithm for Security Policies 124
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2 System Specification Calculus . . . . . . . . . . . . . . . . . . 126

5.2.1 Specification Syntax . . . . . . . . . . . . . . . . . . . 128



xv

5.2.2 Specification Semantics . . . . . . . . . . . . . . . . . . 128
5.3 Security Policy Logic . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.1 Logic Syntax and Sematics . . . . . . . . . . . . . . . . 130
5.3.2 Formula Closure . . . . . . . . . . . . . . . . . . . . . 134

5.4 Tableau-based Proof System for SPL . . . . . . . . . . . . . . 137
5.4.1 Building the Tableau . . . . . . . . . . . . . . . . . . . 137
5.4.2 Tableau Finiteness, Soundness, and Completeness . . . 140

5.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.5.1 System Specification . . . . . . . . . . . . . . . . . . . 147
5.5.2 Proof Tree . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.6 LoTREC Implementation of the Tableau Proof System for SPL150
5.6.1 SPL Connectors . . . . . . . . . . . . . . . . . . . . . . 152
5.6.2 SPL Rules and Strategies . . . . . . . . . . . . . . . . 153

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Security Policy Enforcement 161

6 Formal Framework for Security Policy Enforcement 163
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3 Security Enforcement Calculus . . . . . . . . . . . . . . . . . . 166

6.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.4 Security Enforcement Logic . . . . . . . . . . . . . . . . . . . 170
6.5 Security Policy Enforcement . . . . . . . . . . . . . . . . . . . 175
6.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.6.1 System Specification . . . . . . . . . . . . . . . . . . . 184
6.6.2 Security Policy Enforcement . . . . . . . . . . . . . . . 187

6.7 Software Implementation . . . . . . . . . . . . . . . . . . . . . 189
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7 Conclusion and Future Work 197



List of Tables

1.1 The syntax of the π-calculus . . . . . . . . . . . . . . . . . . 15
1.2 The operational semantics of π-calculus . . . . . . . . . . . . . 16
1.3 Ambient calculus syntax . . . . . . . . . . . . . . . . . . . . . 19
1.4 Structural congruence in ambient calculus . . . . . . . . . . . 20
1.5 The syntax of the Hennessy-Milner logic . . . . . . . . . . . . 25
1.6 The satisfaction relation of the Hennessy-Milner logic . . . . . 25
1.7 The syntax of the ADM logic . . . . . . . . . . . . . . . . . . 26
1.8 The denotational semantics of the ADM logic . . . . . . . . . 27
1.9 Logical formulas in ambient logic . . . . . . . . . . . . . . . . 29
1.10 Satisfaction in ambient logic . . . . . . . . . . . . . . . . . . . 30

2.1 Syntax of the propositional mu-calculus . . . . . . . . . . . . . 39
2.2 Tableau rules for the propositional mu-calculus . . . . . . . . . 40
2.3 Tableau proof system for the ADM logic . . . . . . . . . . . . 42
2.4 µ-KLAIM syntax . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5 Security monitors syntax . . . . . . . . . . . . . . . . . . . . . 54
2.6 Syntax of BPA∗

δ,1 . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.7 Syntax of ACP φ . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.8 Syntax of Lϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.9 Representation function for Control Flow Analysis . . . . . . . 64
2.10 Specification of Control Flow Analysis . . . . . . . . . . . . . 66
2.11 Control flow analysis of firewall validation . . . . . . . . . . . 67
2.12 Reduction semantics of Safe Ambients . . . . . . . . . . . . . 69
2.13 Typing rules for Secure Safe Ambients . . . . . . . . . . . . . 71
2.14 Control Flow Analysis of Safe Ambients . . . . . . . . . . . . 72
2.15 Categories in Guarded Boxed Ambients . . . . . . . . . . . . . 74
2.16 Transition rules in Guarded Boxed Ambients . . . . . . . . . 75
2.17 Controlled Ambients syntax . . . . . . . . . . . . . . . . . . . 76

xvi



xvii

2.18 Typing rules for Controlled Ambients . . . . . . . . . . . . . 78

3.1 Syntax of FPC . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2 Structural Congruence . . . . . . . . . . . . . . . . . . . . . . 90
3.3 Reduction Relation . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4 Distributed firewall topology specification . . . . . . . . . . . . 94
3.5 Local policy of firewall FWAC . . . . . . . . . . . . . . . . . . 97
3.6 Local policy of firewall FWAB . . . . . . . . . . . . . . . . . . 97
3.7 Local policy of firewall FWBC . . . . . . . . . . . . . . . . . . 97

4.1 Syntax of SSC . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2 Structural Congruence . . . . . . . . . . . . . . . . . . . . . . 110
4.3 Reduction Relations . . . . . . . . . . . . . . . . . . . . . . . 113
4.4 Reduction Relations for the Regular Process . . . . . . . . . . 116
4.5 Reduction Relations for the Intruder - From A to B . . . . . 117
4.6 Intruder Alternatives Inside B . . . . . . . . . . . . . . . . . 118
4.7 Intruder’s Choice . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Syntax of CS2 . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Structural Congruence for CS2 . . . . . . . . . . . . . . . . . 129
5.3 Reduction Relation for CS2 . . . . . . . . . . . . . . . . . . . 131
5.4 Syntax of SPL . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.5 Semantics of SPL . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.6 Tableau rules for SPL . . . . . . . . . . . . . . . . . . . . . . 139
5.7 Tableau system proof for case study . . . . . . . . . . . . . . 149

6.1 Syntax of CS2+ . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 Structural Congruence for CS2+ . . . . . . . . . . . . . . . . 169
6.3 Process Termination for CS2+ . . . . . . . . . . . . . . . . . 171
6.4 Reduction Relation for CS2+ . . . . . . . . . . . . . . . . . . 172
6.5 Syntax of SPL+ . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.6 Semantics of SPL+ . . . . . . . . . . . . . . . . . . . . . . . . 174
6.7 The elimination of the ¬Φ form . . . . . . . . . . . . . . . . . 174
6.8 Quotient Operator . . . . . . . . . . . . . . . . . . . . . . . . 176



List of Figures

1.1 The reduction relation in ambient calculus . . . . . . . . . . . 21

2.1 LoTREC’s black box . . . . . . . . . . . . . . . . . . . . . . . 43
2.2 Sample LoTREC graph . . . . . . . . . . . . . . . . . . . . . 45
2.3 Security policy enforcement methods . . . . . . . . . . . . . . 46
2.4 Proof-carrying code . . . . . . . . . . . . . . . . . . . . . . . 48
2.5 A taxonomy of security policies . . . . . . . . . . . . . . . . . 53
2.6 Approach to formal and automatic security policy enforcement 59
2.7 Algorithm for formal security policy enforcement . . . . . . . 60

3.1 Network topologies and distributed firewalls . . . . . . . . . . 93
3.2 Example network with distributed firewalls . . . . . . . . . . . 96

4.1 Intruder Network Exploration Capabilities . . . . . . . . . . . 112

5.1 LoTREC implementation of the tableau proof system for SPL 151
5.2 LoTREC SPL tableau rule for R¬ . . . . . . . . . . . . . . . 155
5.3 LoTREC SPL tableau rule for R| . . . . . . . . . . . . . . . . 155
5.4 LoTREC SPL tableau strategy . . . . . . . . . . . . . . . . . 156
5.5 LoTREC SPL tableau predefined formula . . . . . . . . . . . 156
5.6 LoTREC SPL tableau proof for the case study . . . . . . . . 158

6.1 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2 Case study - Library network . . . . . . . . . . . . . . . . . . 185
6.3 PEA: network specification . . . . . . . . . . . . . . . . . . . 190
6.4 PEA: ambient modification . . . . . . . . . . . . . . . . . . . 191
6.5 PEA: process modification . . . . . . . . . . . . . . . . . . . . 191
6.6 PEA: library security policy . . . . . . . . . . . . . . . . . . . 192
6.7 PEA: library enforcement process . . . . . . . . . . . . . . . . 194

xviii





Introduction

Context and Motivation

There are no such things as secure networks. They only exist in the imagina-
tion of those willing to believe it: IT support personnel, company managers,
shareholders, business partners, etc. As soon as two or more computers
systems are connected, there is a risk associated with the act of communica-
tion. Eavesdropping, content alteration and impersonation have been used
for centuries. Nowadays, such hazards are mitigated by implementing basic
mechanisms in the hope to ensure, at least partially, security properties such
as confidentiality, integrity, availability, etc.

The new age of identity theft, cyber-harassment, and cyber-war has settled in
and is here to stay. As the amount of stored digital information is increasing,
the rate of security incidents is constantly on the rise. High-profile exploits
are uncovered daily and they impact the lives of billions of direct or collat-
eral victims. All incidents have one thing in common: illegal access to a host
computer system. Leaked confidential information, be it personal or corpo-
rate, may cause embarrassment (e.g. private photos), damage to reputation
(e.g. Hillary Clinton’s email hack), financial loss (e.g. stolen prototypes or
patents), or strained inter-governmental relations (Snowden, Wikileaks). The
inability to access a system may lead to widespread panic (unavailability of
Amazon, Twitter, Paypal, Sony’s Playstation Network, and Netflix) or even
serious safety consequences (Stuxnet, ransomware in the hospital infrastruc-
ture, identity of undercover agents). This climate imperatively requires to
be addressed with sound mitigation measures.

This thesis is motivated by the dire need for better defined and managed

1



2

cyber protection. Numerous access control models have been created and
implemented, with various degrees of success. User interfaces for defining
security rules are also common, particularly for perimeter security devices
(routers, switches, firewalls, etc.). Best practices and guidelines are useful
references whenever plain language policies need to be translated into rules.
Nonetheless, there are still serious challenges to overcome. The rapid pace of
technological advances makes it difficult to cope with intricate new features
and standards that become obsolete in a matter of months. Extensive testing
is often ignored due to tight implementation timelines. Moreover, policy
implementation is not a fully matured process and this is often done manually.

Meanwhile, significant progress has been made in the area of security en-
forcement mechanisms. Such mechanisms can be used to prevent behavior
that is deemed unacceptable by the security policy. They require a descrip-
tion of the computer system and authorized behavior and formal methods
have been successfully employed for developing accurate representations of
both. Security policy enforcement has been formalized through frameworks
that involve, among other methods, the use of process algebras and various
modal logics. One advantage of this approach is that static and dynamic
policy enforcement can be automated. The other major advantage is that
the resulting framework enjoys useful properties that can be mathematically
proven. This aspect is essential in policy compliance exercises. Therefore,
we strongly believe that formal methods are ideally positioned for addressing
security policy enforcement issues.

Research Goals

The problem of accurate implementation of security policies is very hard,
especially for large and distributed networks. In the present thesis, we ad-
dress this problem by elaborating a formal framework for security policies
specification, automated verification and enforcement. These major issues
justify and motivate a serious academic discussion and their resolution is, in
our opinion, a coherent and considerable contribution to the field.

The main components of formal framework we envisioned must meet the
following goals:



3

• Specification for computer systems and security policies: the process
algebra and modal logic developed to specify systems and policies, re-
spectively, must be suitable for representing mobility, process interac-
tions, administrative domains, and permission to access those domains;

• Policy verification technique: the formal technique must determine, in
a provable and automatic manner, whether the system specification
satisfies a logic formula that models a security policy;

• Policy enforcement methodology: the methodology must allow the au-
tomatic calculation of necessary enforcements for policy compliance.

Original Contributions

The merits of the related research efforts are undeniable. Their limitations,
however, prompted us for further investigation and eventually led to the
development of the ideas presented here. The approach we adopted contains
a number of substantial differences from previous works. The most notable
are the support for both formal verification and enforcement, automation,
and software implementation. Automation, in particular, was imperative in
order to make the framework easy to implement, practical, and more than
just another theoretical result. The complete list of research contributions
in the thesis includes:

1. Extensive literature review: The related work in the areas of pro-
cess algebras, logics, and security policies is presented and assessed
from the mobility and access control perspectives. In order to show-
case the variety of options, we covered in more detail the techniques
and methodologies that are relevant for our research.

2. In-depth analysis: Critical reviews of the related research point out
the merits and shortcomings of the various approaches. The analysis
of their strengths and weaknesses influenced our choice of techniques
and led to the development of the present study.

3. Distributed firewall calculus: The FPC calculus represents our orig-
inal effort for understanding system specification and verification. We
considered firewalls a good fit as they implement security policies. The



4

specific challenge we tackled is the consistency of filtering rules among
distributed firewalls. While useful for system specification, our calculus
also facilitates resolution of conflicting rules.

4. Intruder-oriented calculus: The intruder’s perspective is often ig-
nored while applying protective measures. The main effort usually goes
into the implementation of the strongest possible authentication, en-
cryption, etc. The SSC intuder-oriented calculus offers a different point
of view and focuses on whether a malicious entity can take advantage
of system flaws to advance their exploitation process. Therefore, it
gives an analyst the ability to identify what series of vulnerabilities is
required for compromising a system.

5. CS2 calculus: This calculus introduces a different vision to system
specification. The implementation-related constructs of FPC and SSC
are discarded in favour of a richer illustration of process interaction.
The syntax accommodates the notions of successful termination, pro-
cess mobility and ambient protection with access keys. The seman-
tics gains expressiveness and CS2 becomes more appropriate for model
checking, which is its intended purpose.

6. SPL logic: The logic is tailored for specifying security policies. The
concepts of the CS2 calculus are also supported in our SPL logic. To-
gether, the calculus and logic allow for computer systems specification
and verification with respect to a given security policy.

7. Tableau-based proof system: The tableau system devised for secu-
rity policy verification enables formal model checking of SPL-expressed
policies. Tableau finiteness, soundness, and completeness proofs sup-
port and augment the validity of the result. Nevertheless, proofs have
to be produced manually, which is not ideal, especially for complex
systems. This elicited the next contribution in the list.

8. Implementation of the verification algorithm: The tableau-based
verification algorithm has been completely automated through an im-
plementation in LoTREC, which is a tableau theorem prover. The
implementation produces almost-instant formal proofs of policy com-
pliance, eliminating the need for manual work.



5

9. Extended CS2+ calculus: Additional syntactic constructs have been
added to CS2 in order to support dynamic enforcement of security
policies. The extended calculus gains the ability to model protection
changes, enforcement processes, and communication channels.

10. Quotient operator: The computation of enforcement with the aid
of our quotient operator is a novelty. The corrective enforcement re-
quired to satisfy a security policy can be easily calculated with the
technique we propose. The results of the enforcement can be verified
by applying the calculus reduction rules. However, the enforcement
correctness proof presented in this thesis eliminates the need for such
manual verification.

11. Automatic enforcement implementation: A Java-based imple-
mentation has been developed under our guidance. The application
is capable of producing topology diagrams through an intuitive drag-
and-drop GUI. Given a security policy and system description, the
application calculates automatically the enforcement needed.

12. Policy enforcement framework: To conclude, the integration of
all the specification, verification, and enforcement components into one
cohesive and comprehensive framework is another original contribution.

Thesis Outline

The structure of this thesis follows a classic layout, as described below:

• The Introduction outlines the thesis content: the motivation for our
research, an overview of the problem to be addressed, our objectives,
and a detailed account of our original contributions.

• Chapter 1 provides a literature review of the main concepts we employ
throughout the thesis, grouped in distinct sections for process algebras,
logics, and access control.

• Chapter 2 covers the related work in the area of policy verification
and enforcement. The main focus is on policy classes, static enforce-
ments, execution monitors and program rewriting. We also assess in
this chapter the advantages and limitations of each technique.



6

• Chapter 3 proposes a calculus for firewall specification and verification.
The FPC calculus permits detection of conflicting firewall rules in single
and distributed firewall configurations. This was the first of a series
of calculi we experimented with while searching for the most suitable
syntax and semantics for compliance assessment.

• Chapter 4 presents our intruder-oriented analysis of a system’s behav-
ior. The SSC calculus we developed is used for computer system spec-
ification and for simulating the exploratory power of a malicious ad-
versary. Additionally, it helps identifying system changes that would
block the intruder’s unauthorized access to system components.

• Chapter 5 introduces CS2 and SPL, a process algebra and a logic de-
vised for capturing mobility aspects in computer systems. The two
formalisms are used in conjunction with a tableau-based proof system
to verify policy compliance. The verification algorithm works on SPL
formulas and is automated through an implementation in the LoTREC
theorem prover.

• Chapter 6 proposes further enhancements to the calculus and logic that
enable policy verification and, if required, policy enforcement through
a quotient operator. The addition of the automatic enforcement cal-
culation completes our formal framework. Moreover, all aspects of the
framework, from system and policy specification to enforcement calcu-
lation, are implemented in an application called PEA.

• Chapter 7 summarizes the research and results presented in the thesis
and suggests potential developments of our work.

• Finally, the Bibliography section lists all the articles, reports, books,
and all other references that were cited in this thesis.





Building Blocks: Main Concepts

and Literature Review

8





Chapter 1

Process Algebras and Logics

Abstract

The key concepts presented in this chapter, such as mobile ambients and
modal logics, are at the core of our research. The comprehensive review of
those concepts gathers the background knowledge needed to fully comprehend
our aim, methodology and results. The merits and limitations of the various
theories are also debated.

Introduction

There is no shortage of studies on the generic concept of computer processes.
New results are always surfacing, enhancing previous work or stimulating
completely new directions of research. Some of the methodologies come from
maturing approaches, while some others are spawned by newer technology
paradigms such as grid and cloud computing.

Our interest in the topics covered in the current chapter comes from the
necessity to carry forward useful results and the desire to avoid their limi-
tations. Our methodology involves defining a process calculus for specifying
computer systems, a logic for describing formally security policy requirements
and automatic enforcement of security policies based on system description
and security policies. The reviewed literature covers specifically those issues
over the lengths of the current chapter and the next.

10



1.1 Process Algebras 11

1.1 Process Algebras

Processes are used to describe a system’s behavior. This definition is common
across all theories, irrespective of the domain. There are however different
representations of processes. The oldest representation is the simple function
input/output. In automata theory, a process is an automaton with states and
transitions. The representations became more detailed as the field steadily
matured. With concurrency theory, for instance, processes gain the ability
to interact within parallel or distributed systems.

Process algebras represent a formal manner of concurrent systems model-
ing. Process interaction is depicted by means of more complex processes
and dedicated operators for sequential, parallel, and alternate composition,
along with some neutral elements. All aspects of process interaction and
communication can be illustrated through algebraic laws that can be further
analyzed. An exhaustive depiction of the capabilities of the system is ob-
tained from the formal analysis of the model. The addition of non-algebraic
methods, such as modal logic, produced the more appropriate term process
calculus. Still, the original process algebra denomination is preferred by most.
The relatively large number of existing process algebras and calculi that ex-
ist today is due to the variety of problems they are attempting to address:
parallel composition, process equivalence, mobility, expressiveness, tooling,
verification, timing, etc.

The most prominent early process algebras are CCS [76], CSP [56], ACP [13],
and LOTOS [14, 71]. They share common features such as operators, atomic
actions, operational semantics, etc. There are however distinct traits that
make them fit for different applications. Milner and Hoare developed CCS
and CSP around the same time, with CCS being published earlier and gaining
notoriety as the first modern process algebra. An interesting comparison
between CCS, CSP, and LOTOS is provided in [34].

The popularity of process algebras spans across several decades - from late
1970’s to mid 1990’s - and new variants or implementation tools are still
being published. They are often the main topic of academic curriculum
and constitute an excellent choice for demonstrating principles and concepts
through small system case studies. A brief history of process algebras and



1.1 Process Algebras 12

a comprehensive bibliography are presented in [5]. We only introduce the
main concepts of CSP, the π-Calculus, and the mobile ambients calculus at
this stage as the most relevant for the scope of this thesis. CSP has been
given preference over CCS as we chose to highlight another one of Milner’s
creation, the π-Calculus.

1.1.1 CSP

The final version of Hoare’s CSP (Communicating Sequential Processes) [56]
was published in 1985, although some ideas have been presented in a 1976
academic report and an early, model lacking, CSP was introduced in 1978.
The algebra was inspired by Pascal and by Dijkstra’s guarded command
language. It promotes the use of message passing in synchronous communi-
cations depicted in a trace-based model where events are treated as instan-
taneous. Process specification (or behavior) is described in terms of action
sequences, which constitute the actual traces. Processes can be assembled
into systems, where they coexist and interact, hence the concurrency and
communication aspects of the algebra. The elements of the CSP syntax are:

• Prefix : for specifying events that precede a certain process;

• Recursion: for representing repetitive tasks;

• Choice: for expressing alternate behavior;

• Mutual recursion: for accommodating multiple solutions.

Let s and t be traces and let A be a set of events. The following operations
are defined on traces:

• Catenation sat: for trace construction from individual events;

• Restriction t ↾ A: for extracting the subset of events in A from a trace
t;

• Head s0 and tail s′: for identifying the first and last elements of a trace;

• Star A∗: for denoting all the finite traces with symbols of A;



1.1 Process Algebras 13

• Ordering s ≤ t: for defining an ordering relation between traces s and
t;

• Length #t: for counting the number of events of a trace t.

Other trace operations include symbol changing, interleaving, selection, re-
versal, and composition. CSP has dedicated operators for expressing both
deterministic and non-deterministic choice, and is the lone well established
process algebra that has them. It also has operators for alternating processes,
subordinate processes and restart after catastrophe.

The aim of CSP as declared by its author is to be the simplest mathematical
theory that will "provide clear assistance to the programmer in his tasks of
specification, design, implementation, verification and validation of complex
computer systems" [56]. While not optimal for all these tasks, the results
yielded by this approach are proof of the considerable success CSP still enjoys.

1.1.2 The π-Calculus

The π-Calculus was introduced by Milner [77, 78] and further developed
by Parrow [86] and Walker [104]. The calculus is based primarily on CCS,
but it is not necessarily considered an extension of it, since it introduces
many new concepts. For instance, new communication channel names can
be transmitted along established channels. This brings forward the notion of
mobility, which is central to our research and many others. The syntax and
operational semantics of the π-Calculus are presented below.

π-calculus Syntax

The syntax of the π-calculus consists of agents, prefixes, and definitions. It
differs from the syntax of CCS by the ability to send and receive communica-
tion port names through actions. Port names range over a, b, ..., z and they
intuitively represent access rights. Names are also used for denoting data
values and variables. An agent can take one of the following eight forms:

• Nil : the empty agent 0 that does not execute any action;



1.1 Process Algebras 14

• Prefix : denoted by α and used for describing communication; an agent
can send and receive data (the name x) along a port (channel a), or
can evolve without interacting with the environment (through the silent
prefix τ);

• Sum: denotes the choice of an agent to act as either P or Q;

• Parallel : represents concurrency through the parallel execution of P
and Q;

• Match and Mismatch: define conditions for behaving like P ;

• Restriction: describes the creation of a new name, which can be used
as a communication channel;

• Identifier : represents an invocation of an agent P where the declared
parameters are replaced by the actual parameters y1, ..., yn.

Later versions of the π-Calculus also consider agent replication, !P , which
can be used for representing persistent services. The syntax only introduces
a bare minimum of constructs, making it impractical for programming pur-
poses. Still, several variants of the calculus exist that either lack Sum or
the Match and Mismatch pair. Other variants appropriately extended it to
address data types, loops, recursion, asynchronous communication, etc.

Operational Semantics of π-Calculus

Table 1.2 presents the operational semantics of π-Calculus. Most rules are
similar to those in CCS. The main differences are in the OPEN, RES, and
PAR rules. The OPEN rule allows lifting the restriction of a channel a

and transforms an unbound Output action denoted by
ax
−→ into a bound one

denoted by
aνx
−−→. The bn (bound names) and fn (free names) functions appear

in the RES and PAR. bn(P ) represents the set of bound occurrences in P ,
while fn(P ) represents the set of free occurrences in P . Similarly, bn(α) and
fn(α) correspondent respectively to the set of bound and free occurrences in
a prefix α.



1.1 Process Algebras 15

Table 1.1: The syntax of the π-calculus

Prefixes α := ax Output

| a(x) Input

| τ Silent

Agents P,Q := 0 Nil

| α.P Prefix

| P +Q Sum

| P | Q Parallel

| if x = y then P Match

| if x 6= y then P Mismatch

| (νx)P Restriction

| A(y1, ..., yn) Identifier

Definitons A(x1, ..., xn)
def
= P where(i 6= j ⇒ xi 6= xj)



1.1 Process Algebras 16

Table 1.2: The operational semantics of π-calculus

STRUCT
P ′ ≡ P, P

α
−→ Q, Q ≡ Q′

P ′ α
−→ Q′

PREFIX
α.P

α
−→ P

SUM
P

α
−→ P ′

P +Q
α

−→ P ′

MATCH
P

α
−→ P ′

if x = x then P
α
−→ P ′

MISMATCH
P

α
−→ P ′, x 6= y

if x 6= y then P
α
−→ P ′

PAR
P

α
−→ P ′, bn(α) ∩ fn(Q)=∅

P | Q
α
−→ P ′ | Q

COM
P

a(x)
−→ P ′, Q

au
−→ Q′

P | Q
τ
−→ P ′{u/x} | Q′

RES
P

α
−→ P ′, x /∈ α

(νx)P
α
−→ (νx)P ′

OPEN
P

ax
−→ P ′, a 6= x

(νx)P
aνx
−→ P ′



1.1 Process Algebras 17

The sets fn and bn are defined as follows:

fn(0) = ∅
fn(ax.P ) = {a, x} ∪ fn(P )
fn(a(x).P ) = {a} ∪ fn(P )
fn((vx)P ) = fn(P )

bn(0) = ∅
bn(ax.P ) = bn(P )
bn(a(x).P ) = {x} ∪ bn(P )
fn((vx)P ) = {x} ∪ bn(P )

The π-Calculus is the main focus of a book on mobile systems analysis pub-
lished by Sangiorgi and Walker [92]. Their landmark study provides a solid
framework for understanding theoretical and practical aspects of process mo-
bility. The book is among the most respected references for using π-Calculus
to express systems and reasoning about their behaviors and properties.

Many computational models, languages, and calculi are based on the π-
Calculus. Some are focused on security (Spi), other on typing systems, or
replication issues. Milner himself developed different variants of his original
calculus. However, none of them treat the security aspects of mobility in a
manner that is suitable for our work.

1.1.3 The Ambient Calculus

The concept of ambient calculus was first introduced by Cardelli and Gordon
in [21]. An ambient is a named domain and it can contain processes that
operate inside it. The delimited space representing an ambient has a name,
an interior and an exterior. Administrative boundaries and processes can be
expressed in terms of ambients that can travel from one site to another. The
movement of an ambient process is governed by its capabilities, including the
possibility to move inside or outside another ambient.

The ambient calculus aims to capture the notion of process mobility by
modeling the various movement possibilities between different administra-
tive sites. In particular, security is expressed through movement capacity
rather than access controls or cryptographic primitives. Processes can go in
and out of ambients or open them. Moreover, an ambient can move inside
or outside another ambient, carrying the enclosed processes with it. The



1.1 Process Algebras 18

corresponding capabilities of the enclosed ambient processes are: in, out and
open.

The Language

We present in Table 1.3 the syntax of the Mobile Ambient calculus (or sim-
ply ambient calculus) [21, 22, 43]. The syntax consists in three syntactic
categories: names, processes, and capabilities. Names are used for denoting
administrative sites (or locations). Six primitives are employed for describing
processes and their interaction: restriction, inactivity, composition, replica-
tion, ambient and action. The restriction primitive captures local scope.
Inactivity indicates that a process does nothing. Composition allows pro-
cesses to execute in parallel. Replication permits generating several copies of
a process. An ambient denotes a process that operates inside a named zone.
The use of a movement capability by a process is called an action. The three
capabilities are straightforward: in n facilitates entrance into a co-located
ambient called n, out n enables a process to leave its parent ambient n, and
open n dissolves the borders around the ambient n.

The operational semantics of the calculus comprises a structural congruence
between processes, denoted by ≡, and an action regulating reduction rela-
tion, denoted by →. The process equivalence classes in Table 1.4 define
structural congruence as identity rather than structural equivalence. The
comprehensive list of classes is derived from the following properties: reflex-
ivity, symmetry, transitivity, restriction, parallelism, replication, ambient,
action, commutativity, associativity and replication of parallelism, restric-
tion, parallelism and ambient for restriction and parallelism, restriction and
replication for inactivity. The ambient calculus reduction relation is defined
by the rules in Figure 1.1. Summarily, the rules stipulate that the reduction
manages restrictions, ambient processes and parallel compositions of pro-
cesses, and that structural congruence can help rearranging expressions of
ambient processes.

Applications

There are two known software implementations of the ambient calculus: one



1.1 Process Algebras 19

Table 1.3: Ambient calculus syntax

n names

P,Q ::= processes

(νn)P restriction

0 inactivity

P | Q composition

!P replication

n[P ] ambient

M.P action

M ::= capabilities

in n can enter n

out n can exit n

open n can open n



1.1 Process Algebras 20

Table 1.4: Structural congruence in ambient calculus

P ≡ P (Struct Refl)

P ≡ Q⇒ Q ≡ P (Struct Symm)

P ≡ Q ∧Q ≡ R⇒ P ≡ R (Struct Trans)

P ≡ Q⇒ (νn)P ≡ (νn)Q (Struct Res)

P ≡ Q⇒ P | R ≡ Q | R (Struct Par)

P ≡ Q⇒!P ≡!Q (Struct Repl)

P ≡ Q⇒ n[P ] ≡ n[Q] ((Struct Amb)

P ≡ Q⇒ M.P ≡M.Q (Struct Action)

P | Q ≡ Q | P (Struct Par Comm)

(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)

!P ≡ P |!P (Struct Repl Par)

(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)

(νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P ) (Struct Res Par)

(νn)(m[P ]) ≡ m[(νn)P ] if n 6= m (Struct Res Amb)

P | 0 ≡ P (Struct Zero Par)

(νn)0 ≡ 0 (Struct Zero Res)

!0 ≡ 0 (Struct Zero Repl)



1.1 Process Algebras 21

in m.P | Q

open m.P open m.P | m[Q] → P | Q

RRout m.P | Q P | Q

P | Q

P | Q

m

Q

m
n

n m

RR

m[n[out m.P | Q] | R] → n[P | Q] | m[R]

n[in m.P | Q] | m[R] → m[n[P | Q] | R]

m
n

m n

(RedIn)

(RedOut)

(RedOpen)

(a) The basic reduction rules

(RedRes)

(RedAmb)P → Q ⇒ n[P ] → n[Q]

P → Q ⇒ P | R → Q | R (RedPar)

(Red ≡)P ′ ≡ P, P → Q,Q ≡ Q′ ⇒ P ′ → Q′

P → Q ⇒ (νn)P → (νn)Q

(b) Other reduction rules

Figure 1.1: The reduction relation in ambient calculus



1.1 Process Algebras 22

non-distributed - in Java (by Cardelli [23]), and one distributed - in JoCaml
(by Fournet, Levy, and Schmitt et al. [39, 93]). Several developments of the
initial calculus were introduced by Cardelli, Gordon and their collaborators,
such as typed ambients [22], equational properties [43], a modal logics for
mobile ambients [24], etc.

Gordon and Cardelli provided some examples [21] for the expressiveness of
their calculus. They use the capabilities of mobile ambients to model locks,
choice, dissolution, renaming, iteration, synchronization, firewall access and
some other complex actions. We present in this section the interesting ex-
amples of locks and firewalls, cited directly from [21] in the authors’ own
words.

Locks

Let release n.P be a non-blocking operation that releases a lock n and
continues with P . Let acquire n.P be a potentially blocking operation that
attempts to acquire a lock n, and that continues with P if and when the lock
is released. These operations can be defined as follows:

acquire n.P , open n.P

release n.P , n[] | P

Given two locks n and m, two processes can "shake hands" before continuing
with their execution:

acquire n.release m.P | release n.acquire m.Q

Firewall Access

This is another example of a mobile agent trying to gain access to an ambient.
In this case, though, we assume that the ambient, a firewall, keeps its name
completely secret, thereby requiring authentication prior to entry. The agent
crosses a firewall by means of previously arranged passwords k, k′, and k′′.
The agent exhibits the password k′ by using a wrapper ambient that has
k′ as its name. The firewall, which has a secret name w, sends out a pilot



1.1 Process Algebras 23

ambient, k[out w.in k′.in w], to guide the agent inside. The pilot ambient
enters an agent by performing in k′ (therefore verifying that the agent knows
the password), and is given control by being opened. Then, in w transports
the agent inside the firewall, where the password wrapper is discarded. The
third name, k′′, is needed to confine the contents Q of the agent and to
prevent Q from interfering with the protocol.

The final effect is that the agent physically crosses into the firewall; this can
be seen below by the fact that Q is finally placed inside w. (For simplicity,
this example is written to allow a single agent to enter.) Assume (fn(P ) ∪
fn(Q)) ∩ k, k′, k′′ = ∅ and w /∈ fn(Q):

Firewall , (νw)w[k[out w.in k.in w] | open k′.open k′′.P ]

Agent , k′[open k.k′′[Q]]

Agent | Firewall

≡ (νw)(k′[open k.k′′[Q]] | w[k[out w.in k′.in w] | open k′.open k′′.P ])

→∗ (νw)(k′[openk.k′′[Q] | k[in w]] | w[open k′.open k′′.P ])

→∗ (νw)(k′[k′′[Q] | in w] | w[open k′.open k′′.P ])

→∗ (νw)(w[(k′[k′′[Q]] | open k′.open k′′.P ])

→∗ (νw)w[Q | P ]

There is no guarantee here that any particular agent will make it inside the
firewall. Rather, the intended guarantee is that if any agent crosses the
firewall, it must be one that knows the passwords.

We use an equation to express the security property of the firewall. If
(fn(P ) ∪ fn(Q)) ∩ k, k′, k′′ = ∅ and w /∈ fn(Q), then we can show that
the interaction of the agent with the firewall produces the desired result up
to contextual equivalence.

(ν k k′ k′′)(Agent | Firewall) ≃ (νw)w[Q | P ]

Since contextual equivalence takes into account all possible contexts, the
equation above states that the firewall crossing protocol works correctly in the



1.2 Process Logics 24

presence of any possible attacker that may try to disrupt it. The assumption
that an attacker does not already know the password is represented by the
restricted scoping of k, k′, k′′.

1.2 Process Logics

The modal logic that we define in this thesis is inspired from the ambient
logic of Cardelli and Gordon [24, 25], which has been further developed by
Sangiorgi [91] and Hirschkoff [54]. Our logic also builds on the mobile pro-
cesses application of the Milner’s π-Calculus [77, 78] due to Sangiorgi [92],
and the spatial logic for mobile processes of Hirschkoff [55]. Milner’s contri-
bution to the field of process logics, adding to his famous process calculus,
is briefly presented in a subsection dedicated to the Hennessy-Milner logic
[51, 52]. The ADM logic for security protocols of Adi et al. [2], closely re-
lated to our area of interest, is also reviewed here. The BAN logic [20], a
modal logic of belief devised by Burrows, Abadi, and Needham, is another
fine example of related work, as it tackles the specification and verification
of cryptographic protocols. The µ-logic [63] and the modal logic for mobile
processes of De Nicola and Loreti [81] are among our other related resources.

1.2.1 The Hennessy-Milner Logic

The Hennessy-Milner logic [51, 52, 99] is used for depicting local capabilities
of a process. The syntax of the Hennessy-Milner logic, presented in Table 1.5,
involves boolean connectives for modal formulas Φ1 and Φ2 and two modal
operators for a set of actions {K1, . . . , Kn}, n ≥ 0. The abbreviation 〈K〉Φ
is used for the formula 〈K1〉Φ ∧ . . . ∧ 〈Kn〉Φ. The abbreviation [K]Φ is used
for the formula [K1]Φ ∨ . . . ∨ [Kn]Φ.

The fact that a process E satisfies (or not) a property described by the
formula Φ is defined inductively on the structure of formulas. Formula satis-
faction, denoted by �, is presented in Table 1.6. All processes satisfy tt and
none satisfy ff . A process satisfies Φ1 ∧ Φ2 (and respectively, Φ1 ∨ Φ2) if it
satisfies both Φ1 and Φ2 (respectively either Φ1 or Φ2). A process satisfies
〈K〉Φ if it is possible to perform action K and thereby satisfy property Φ. A



1.2 Process Logics 25

Table 1.5: The syntax of the Hennessy-Milner logic

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K]Φ | 〈K〉Φ

Table 1.6: The satisfaction relation of the Hennessy-Milner logic

E � tt

E 2 ff

E � Φ1 ∧ Φ2 iff E � Φ1 and E � Φ2

E � Φ1 ∨ Φ2 iff E � Φ1 or E � Φ2

E � [K]Φ iff ∀F ∈ {E ′ : E
a
−→ E ′ and a ∈ K}.F � Φ

E � 〈K〉Φ iff ∃F ∈ {E ′ : E
a
−→ E ′ and a ∈ K}.F � Φ

process satisfies [K]Φ if the state it reaches satisfies Φ irrespective of which
process K is executed.

1.2.2 The ADM Logic

The ADM logic [2] developed by Adi, Debbabi and Mejri allows the spec-
ification of security protocols properties. Both classical security properties
(authentication, secrecy and integrity) and electronic commerce properties
(non-repudiation, anonymity, good atomicity, money atomicity, certified de-
livery, etc.) can be expressed with this modal logic. The logic is compact,
linear, dynamic, and expressive.

The classic view of a protocol as a distributed algorithm is employed by
the authors. Thus, it is specified as a finite sequence of statements that
describe internal and external actions performed as messages are transmitted.



1.2 Process Logics 26

Protocol executions (or runs) generate sequences of events (or traces) related
to send and receive actions. Dynamic executions representation is achieved
through a trace-based model. A trace t belongs to a set of traces T and can
be empty (ε). Traces reflect valid protocol executions in the presence of a
malicious smart intruder.

Several other elements support the construction of a model suitable for veri-
fication. A pattern, denoted by p, is a trace abstraction where some actions
are replaced by variables, while p1 # p2 is a modal operator indexed by the
patterns p1 and p2. Substitutions, represented by σ, are internal parameters
used for giving a semantics to p1 # p2. An environment e helps dealing with
recursive formulae and giving a semantics to X. Finally, the formula νX.Φ is
a recursive formula in which the greatest fixed point operator ν binds all free
occurrences of X in Φ. The resulting model is suitable for the detection of
security flaws, which are identified as traces that violate security properties.

The logic’s linearity and use of recursive formulas allows actions in a trace to
be counted. Security properties can be specified in terms of modalities sup-
ported by the logic (before, after, necessary, possible, etc.). The construction
of formulas is based on patterns. Each variable in a pattern abstracts a pos-
sibly empty sequence of actions. The syntax of the logic is depicted in Table
1.7 below, where X is a formula variable, ¬, ∧, and ν represent negation,
conjunction, and a recursive formula.

Table 1.7: The syntax of the ADM logic

Φ ::= X | ¬Φ | [p1 # p2]Φ | Φ1 ∧ Φ2 | νX.Φ

The denotational semantics of the logic is presented in Table 1.8, where σ, σ′

denote substitutions, e[X 7→ U ] is an environment where the formula variable
X has been replaced with U , and t↓ contains all traces that can be extracted
from t by eliminating some actions.

The tableau-based proof system of the logic leads to a modular denotational



1.2 Process Logics 27

Table 1.8: The denotational semantics of the ADM logic

[[ X ]]t,σe = e(X)

[[ ¬Φ ]]t,σe = t↓ − [[ Φ ]]t,σe

[[ Φ1 ∧ Φ2 ]]t,σe = [[ Φ1 ]]t,σe ∩ [[ Φ2 ]]t,σe

[[ [p1 # p2]Φ ]]t,σe = {u ∈ t↓ | ∀σ′ : p1σσ
′ = u⇒ p2σσ

′ ∈ [[ Φ ]]p2σσ
′,σ′◦σ

e }

[[ νX.Φ ]]t,σe = νf where







f : 2T → 2T

U → [[ Φ ]]t,σ
e[X 7→U ]

semantics and local model checking. This is a significant advantage, since
not all traces in t↓ need to be verified. Instead, only the traces used in the
construction of the formula-labeled tree are visited. This backward-chaining
proof search method involves a set of inference rules that constitute the
tableau proof system. The system includes inference rules for all syntactic
constructs: negation, conjunction, patterns and recursive formulas. Tableau
finiteness, which is formally proven, ensures that the verification is bounded.
The expressiveness of the logic is demonstrated by specifying security prop-
erties such as authentication, secrecy, money atomicity and goods atomicity.

1.2.3 The Ambient Logic

The ambient logic [24, 25] is a modal logic based solidly on the ambient
calculus and it is closely related to intuitionistic linear logic and to bunched
logics. The ambient logic is specifically devised for expressing name, time
and location properties of mobile processes with the aid of logical operators.



1.2 Process Logics 28

Syntax and Semantics of The Ambient Logic

The syntax of logical formulas is summarized in Table 1.9. The propositional
logic is given by the true, negation and disjunction formulas. The tree-like
structures of locations are modeled through five formulas: void, composition
and its adjunct, and location and its adjunct. Revelation and its adjunct
are used for publicizing or hiding a name. The sometime and somewhere
modalities state that certain states are possible "further away" in space or
time, respectively. Only names can contain quantified variables, denoted by
η in the table. Therefore, such variables can only be part of the location,
placement, revelation and hiding formulas.

The satisfaction relation P � A defined inductively in Table 1.10 means that
the process P satisfies the closed relation A. Each syntactic formula has a
corresponding satisfaction relation. The sort of processes is represented by
Π, the sort of formulas by Φ, the sort of variables by ϑ, and the sort of names
by Λ. The relations P ↓ P ′ and P ↓∗ P ′ mean that P contains P ′ within one
level or at some nesting level, respectively. The meaning of the connectives
in Table 1.10 is the following:

• The first three connectives (for the true, negation and disjunction for-
mulas) give the classical propositional logic

• A process P satisfies the formula 0 if P ≡ 0

• A process P satisfies the formula A | B if there exist processes P ′ and
P ′′ such that P has the shape P ′ | P ′′ with P ′ satisfying A and P ′′

satisfying B

• A process P satisfies the formula n[A] if there exists a process P ′ such
that P has the shape n[P ′] with P ′ satisfying A

• A process P satisfies the formula A✄B if P (together with its context)
manages to satisfy B under any possible attack by an opponent that is
bound to satisfy A

• A process P satisfies the formula n[A] if P ≡ 0

• A process P satisfies the formula A@n if P (together with its context)
manages to satisfy A even when placed into a location called n



1.2 Process Logics 29

Table 1.9: Logical formulas in ambient logic

η, µ a name n or a variable x

A,B, C ::=

T true

¬A negation

A ∨ B disjunction

0 void

A | B composition

A✄ B guarantee

η[A] location

A@η placement

ηrA revelation

A⊘ η hiding

⋄A sometime modality

♦A somewhere modality

∀x.A universal quantification



1.2 Process Logics 30

Table 1.10: Satisfaction in ambient logic

∀P ∈ Π P |= T

∀P ∈ Π,A ∈ Φ P |= ¬A , ¬P |= A

∀P ∈ Π,A,B ∈ Φ P |= A ∨ B , P |= A ∨ P |= B

∀P ∈ Π P |= 0 , P ≡ 0

∀P ∈ Π,A,B ∈ Φ P |= A | B , ∃P ′, P ′′ ∈ Π.P ≡ P ′ | P ′′ ∧ P ′ |= A

∧ P ′′ |= B

∀P ∈ Π,A,B ∈ Φ P |= A✄ B , ∀P ′ ∈ Π.P ′ |= A ⇒ P | P ′ |= B

∀P ∈ Π, n ∈ Λ,A ∈ Φ P |= n[A] , ∃P ′ ∈ Π.P ≡ n[P ′] ∧ P ′ |= A

∀P ∈ Π, n ∈ Λ,A ∈ Φ P |= A@n , n[P ] |= A

∀P ∈ Π, n ∈ Λ,A ∈ Φ P |= nrA , ∃P ′ ∈ Π.P ≡ (νn)P ′ ∧ P ′ |= A

∀P ∈ Π, n ∈ Λ,A ∈ Φ P |= A⊘ n , (νn)P |= A

∀P ∈ Π, n ∈ Λ,A ∈ Φ P |= ⋄A , ∃P ′ ∈ Π.P →∗ P ′ ∧ P ′ |= A

∀P ∈ Π,A ∈ Φ P |= ♦A , ∃P ′ ∈ Π.P ↓∗ P ′ ∧ P ′ |= A

∀P ∈ Π, x ∈ ϑ,A ∈ Φ P |= ∀x.A , ∀m ∈ Λ.P |= A{x← m}



1.2 Process Logics 31

• A process P satisfies the formula rA if it is possible to pull a restricted
name of P to the top and call it n, and then strip off the restriction to
leave a residual that satisfies A

• A process P satisfies the formula A⊘ n if (νn)P satisfies A; this con-
nective is used for hiding a name

• A process P satisfies the formula ⋄A if A holds in the future for some
residual P ′ of P , where P →∗ P ′

• A process P satisfies the formula ♦A if A holds at some sublocation
P ′ within P , where P ↓∗ P ′

• A process P satisfies the formula ∀x.A if for all names m we have that
P satisfies A{x← m}.

Many other connectives have been derived, of which the most useful are:
logical equivalence, every component satisfies A, some component satisfies
A, everytime and everywhere modalities, A is unsatisfiable. The logic can be
used to derive rules for the directives and to express properties guaranteed
by type systems. The logical rules for abstract reasoning freshness have been
provided by fresh-name quantification. A model checking algorithm for a
fragment of the logic has also been developed by the authors.

Expressiveness, Extensionality and Intensionality of the Ambient
Logic

The ambient logic was proposed by Cardelli and Gordon for the purpose
of expressing properties of process mobility in the ambient calculus. The
results obtained by Hirschkoff et al. [54] demonstrate that ambient logic is
a very expressive formalism. They were capable to derive, using non-trivial
technical developments, some formulas that express capabilities of processes
for movement and for communication, the persistence of processes, and free
occurrences of names in processes. The results are remarkable given that
there is no connective in the logic that is directly related to such properties
(neither a construct, nor an infinitary operator).

Hirschkoff and his co-authors use the temporal modality and exploit adjunct



1.2 Process Logics 32

connectives to introduce a form of contextual reasoning in order to ana-
lyze the desired properties. Their first important result is the definition of
characteristic formulas for image-finite ambient processes. Those formulas
capture the equivalence class of a process with respect to the induced logical
equivalence, which is unusual in modal logics since the ambient logic has
no fixed-point operator. Also, they demonstrate that the image-finiteness
condition on processes is weaker than finite-state, since computations con-
taining visible actions (such as input and output actions) are not taken into
consideration.

Their second expressiveness result proves that ambient logic is an intensional
logic. This is due to the fact that the logic allows inspecting the structure
of processes by capturing its interaction capabilities. More formally, the
equivalence induced by the logic coincides with structural congruence on
processes. This result says that ambient logic is a very fine grained logic.

The work presented in [54] is a direct continuation of Hirschkoff’s previous
study on spatial logics [55]. He defines a logic for concurrency that is not
only intensional, but also extensional. The intensional aspect is expected, as
most existing spatial logics induce an equivalence that coincides with struc-
tural congruence. The contextual spatial logic for the π-calculus developed
by Hirschkoff only has composition adjunct and hiding, but it induces an
equivalence that coincides with strong early bisimilarity. This particular
property allows decomposing spatial logics into two parts: one that counts
and one that observes. The first part is extensively used in the later study
[54] for counting the parallel components of a process.

The intensionality and extensionality of the ambient logic have also been
discussed by Sangiorgi [91]. The intensional and extensional aspects are ver-
ified by comparing the equivalence =L induced by the logic on processes with
the structural congruence ≡ of processes from the ambient calculus and the
behavioral equivalence ≈. The logic permitted the observation in very fine
detail of the internal structure of processes similar to that of the structural
congruence ≡. The author demonstrates that =L is strictly included in ≈
and that, for a synchronous version of the ambient calculus, =L is precisely
the structural congruence ≡.



1.3 Conclusion 33

1.3 Conclusion

We chose to build on the foundation of the powerful ambient calculus be-
cause of its expressiveness. The ability to model mobility aspects such as
location, entering, exiting and restricting access are its strong points and
underline its potential. The flexibility and scalability offered by representing
computer systems with ambients is also an important factor in our decision.
We can depict each machine by an ambient, each message on the network
by an ambient, each application by an ambient, and the network itself by
an ambient. Likewise, to represent a file or an external hard drive we could
employ ambients.

However, the ambient calculus was not built for the purpose of modeling
security aspects of mobility. Specifying anything beyond the basic name
protection can be cumbersome and more or less accurate. For instance, the
mobile ambients fail to capture the actual firewall behavior. The firewall
example offered by Cardelli and Gordon, involving an agent that brings the
processes on the other side of the firewall by using predefined keys, resem-
bles more to the creation of a secure channel used by a server-agent pair.
The addition of new syntactic components such as keys, protection actions,
communication channels, and policy enforcement in our calculus facilitates a
more natural manner of modeling a much richer process behavior.

The ambient logic was our main inspiration for the logic that we devised.
Logic formulas can be used for describing security policies, which can be
imposed on computer systems specified with the process algebra. The differ-
ences from our logic are, however, very obvious to the attentive reader. The
correlation between our logic and calculus prompted for several changes. For
instance, we have eliminated all primitives that were not relevant to our
calculus (guarantee, revelation, hiding, etc.), and introduced new ones (ca-
pability, protected location).

Once the process algebra and logic were chosen as the basic building blocks
for modeling computer systems and security policies, we changed our focus
on the formal model checking aspect of the framework, which we review in
the next chapter.





Chapter 2

Security Policy Verification and

Enforcement Techniques

Abstract

The main focus of our research are the formal verification and enforcement
of security policies. This chapter introduces the concept of security policy and
presents several approaches to formal enforcement, including the state-of-the-
art theories and implementations. The shortcomings of each methodology are
highlighted and analyzed.

Introduction

Security policies have always been associated with computer systems, in man-
ners more or less obvious or formal. There are two main types of limitations
for system use: capability based and restriction based. The capability based
limitations come from either hardware (simply not able to perform certain
tasks), design (lack of functionality), or user proficiency. The restriction
based limitations can be largely associated with security policies.

Restrictions on system resources use can be imposed at the physical level
(printers, network connections, USB ports) or the logical level (files, CPU
utilization, bandwidth). They can also refer to data flow manipulation and
distinct access permissions. Given the diversity of systems and requirements,

35



36

it is difficult to define and enforce a standard, universally applicable fash-
ion for stating such restriction in the form of security policies and enforcing
them. The opinions on the best implementation stage and strategy range
from application design to runtime execution, covering mostly every inter-
mediate stage. Section 2.3 in the previous chapter deals with some aspects of
access control and information flow in mobile ambients. This chapter intro-
duces some state of the art studies on various techniques for security policy
enforcement in a more generic context.

The term of security policy was introduced in 1982 by Goguen and Meseguer
[42] as a response to the need to restrict the rights to read, add, modify, or
delete information in specific contexts. Their innovative approach to defin-
ing and verifying security involves static and dynamic security policies that
stated which information flows are to be denied. The information system
is modeled as an automaton called a capability system. The authors also
advocated the utility of a security policy definition language based on simple
noninterference assertions. A sketch of possible verification models is also
presented. Their short article has a surprising density of excellent new ideas
and presents a remarkably clear vision of a field that was barely born at the
time.

The modern, more practical definition of security policies is given by Schnei-
der [94]:

"A security policy defines an execution that, for one reason or another, has
been deemed unacceptable. For example, a security policy might concern:

• access control, and restrict what operations principals can perform on
objects,

• information flow, and restrict what principals can infer about objects
from observing system behavior, or

• availability, and restrict principals from denying others the use of a
resource."



2.1 Formal Verification of Security Policies 37

2.1 Formal Verification of Security Policies

Verification or validation of security policies is one proactive incident miti-
gation measure. Routine changes in system operation or slight adjustments
of policies can have disastrous consequences in critical environments such as
aerospace systems, nuclear plants, traffic control consoles, medical institution
infrastructure, and so on. In a society that relies more and more on automa-
tion, verification is crucial. Its object is the relation between a system’s
observed and intended behavior. The formal tools presented in Chapter 1
enable us to specify both. Formal verification can be done on a system
specification (through a process algebra, for instance) and a description of
the security policy (through logic formulas, for example). The aim of such
verification is to prove that the system satisfies the specified properties.

The type of properties to be verified depends on the nature of the program.
Termination and correction need to be proven for transformational system.
Reactive systems, on the other hand, require proofs for safety and liveness.
The verification technique will also differ for the various purposes. Viable so-
lutions include testing, simulation, deductive methods, and model-checking.
Testing and simulation take into account a finite number of test cases or
scenarios. While the coverage might be broad, it is rarely comprehensive
enough and often misses less obvious behaviors or system flaws. In this sec-
tion we focus on a couple of model-checking techniques involving the semantic
tableaux.

Model-checking implies an exhaustive evaluation of all possible paths, mean-
ing that all possible inputs and system states need to be assessed. The
staggering number of possibilities may be intimidating, but the assurance
given by the result is worth the effort. The approach requires three com-
ponents: a model to be analyzed, a logic formula to assess against, and a
verification algorithm that produces a truth statement about the satisfaction
relation between the model and the formula.

A semantic tableau, or simply a tableau, refers to a model-checking tech-
nique that analyses all possible interpretations of a logic formula. Handwrit-
ten proofs have been produced since the 1950’s. Gentzen’s sequent calculi
and Kripke’s explicit accessibility relation [64] were instrumental in the ad-



2.1 Formal Verification of Security Policies 38

vancement of the field. Smullyan and Fitting also contributed by proposing
a uniform notation for the proofs. Fitting’s technique [36] is presented as an
alternative to the modal logic proof methods from Fitch [35] and Kripke. His
methodology involves explicit tableau rules for every logical construct.

The verification process is straightforward. The exhaustive application of
rules, called saturation, leads to a proof tree rooted in an initial statement.
A tree branch is considered closed iff both formulas Φ and ¬Φ are in that
branch. If all branches are closed, than the corresponding tableau is closed.
If, however, there is at least one branch that is not closed, but no further
rule applies, then the tableau is open.

Tableau proofs were further developed and diversified by Fitting [37, 38] and
others. Among many noteworthy contributions, we mention Cleaveland’s im-
plicit tableau rules [28], Avron’s hypersequents [4], the free variable tableaux
of Beckert [11], and Lellmann’s linear nested sequents [68]. The research area
is still very active, with field-specific conferences such as the TABLEAUX In-
ternational Conference on Automated Reasoning with Analytic Tableaux and
Related Methods.

The tableau systems lend themselves easily to automation. Software im-
plementations of the rules, both explicit and implicit, has been successfully
attempted by several research groups. Some of the most popular applications
are either dedicated tableau frameworks, such as LoTREC [27, 41] and TWB
(Tableau Work Bench) [1], or more generic theorem provers such as Isabelle
[87, 88].

We review three of the works that influenced our research: Cleaveland and
Adi’s tableaux systems, and the LoTREC Tableaux Theorem Prover.

2.1.1 Tableau-Based Model Checking in Mu-Calculus

The procedure introduced by Cleaveland in [28] is used for determining
whether properties expressed with the propositional mu-calculus hold for
given finite-systems. The choice is motivated by the logic’s expressiveness
and its ability to characterize the behavior of finite-state processes. The
syntax of mu-calculus is presented in Table 2.1.



2.1 Formal Verification of Security Policies 39

Table 2.1: Syntax of the propositional mu-calculus

Φ ::= A

| X

| ¬Φ

| Φ ∨Ψ

| 〈a〉Φ

| νX.Φ

The calculus is parameterized with respect to a set A of atomic formulas, a
set Act of actions, and a set V of propositional variables, ranged over by A, a,
and X, respectively. The models to be verified against mu-calculus formulas
involve sets of process states, transitions and actions. Cleaveland proposes a
proof system that operates on sequents of the form H ⊢ s ∈ Φ, where s is a
state, H is a set of hypotheses on state s, and Φ is the formula that needs
to be satisfied. The tableau rules, with premises below conclusions in typical
tableau-based top-down fashion, are presented in Table 2.2.

The eight rules address mu-logic’s connectors and operators and their nega-
tions. They are employed for building the tableau for a given sequent. The
original premise serves as the basis for branches, which are extended by
further application of the rules. This creates parent-child pairs and the pro-
cedure continues until no more children can be obtained. The last child in
each chain is called a leaf and is considered successful if one of four defined
conditions are met. If all leaves of a tree are successful, then the tableau
is successful. This means that the original sequent is correct, therefore the
formula is satisfied by the model.

Cleaveland proves tableau finiteness by showing that for models with a finite
set of states, every sequent has a maximum height tableau. He demonstrates
that for any given sequent, there are a finite number of distinct tableaux
rooted in that sequent. Moreover, proofs of soundness and completeness



2.1 Formal Verification of Security Policies 40

Table 2.2: Tableau rules for the propositional mu-calculus

R1
H ⊢ s ∈ ¬¬Φ

H ⊢ s ∈ Φ

R2
H ⊢ s ∈ Φ1 ∨ Φ2

H ⊢ s ∈ Φ1

R3
H ⊢ s ∈ Φ1 ∨ Φ2

H ⊢ s ∈ Φ2

R4
H ⊢ s ∈ ¬(Φ1 ∨ Φ2)

H ⊢ s ∈ ¬Φ1, H ⊢ s ∈ ¬Φ2

R5
H ⊢ s ∈ 〈a〉Φ

H ⊢ s′ ∈ Φ
(s′ ∈ {s

a
−→ s′})

R6
H ⊢ s ∈ ¬〈a〉Φ

H ⊢ s1 ∈ ¬Φ, H ⊢ s2 ∈ ¬Φ, . . .
({s1, s2, . . .} ∈ {s

a
−→ s′})

R7
H ⊢ s ∈ νX.Φ

H ′ ∪ {s : νX.Φ} ⊢ s ∈ Φ[νX.Φ/X ]
(s : νX.Φ /∈ H)

R8
H ⊢ s ∈ ¬νX.Φ

H ′ ∪ {s : νX.Φ} ⊢ s ∈ ¬Φ[νX.Φ/X ]
(s : νX.Φ /∈ H)



2.1 Formal Verification of Security Policies 41

round up an impressive approach to formal verification that inspired some of
the work in Chapter 5.

2.1.2 Tableau-Based Proof System for a E-Commerce

Protocol

The tableau method is not restricted to modal logics. It may be applied in
contexts that involve satisfaction of formulas specified, for instance, in terms
of temporal, belief, intuitionistic, and hybrid logics. Once a logic is defined,
the tableau rules can be derived and then the model checking can occur.

Adi et al. employ the tableau methodology for their ADM logic [2], which
has already been reviewed in section 2.3.2 of chapter 1. Their model checking
technique is performed on traces of the e-commerce protocol defined in the
same article. We remind the reader that a protocol trace is, in the authors’
own words, a sequence of protocol events resulting from any interleaving of
(possibly partial) protocol runs. The definitions of the other elements of the
logic are as presented in section 2.3.2. Local modal checking is used in this
case as opposed to global modal checking. This allows visiting only the sub-
traces that are required by the tableau, which is significantly more efficient
than verifying all possible protocol traces.

The ADM logic’s tableau-based proof system is shown in Table 2.3. The
tableau rules R¬, R∧, Rν , and R[] verify whether a trace t satisfies a formula
Φ or not. The construction of the tableau is different than Cleaveland’s in
several ways. Firstly, the sequents have a richer syntax, which allows for
a more compact, but equally expressive set of rules. Secondly, the rules’
premise and conclusion are presented in reversed positions, with the premise
at the bottom and the conclusion on top.

The rules’ sequents are of the form H, b, e, σ ⊢ t ∈ Φ, where the trace t
ranges over T , H is a mapping in [V → 2T ], b is a variable ranging over
{ε,¬}, e is an environment, and σ is a substitution. The flag b is particularly
useful, as it alleviates the need for negative forms of the rules. Tableaux
are derived by applying rules to sequents and obtaining new formula-labelled
nodes until saturation, and the resulting leaves are assessed for success. If



2.1 Formal Verification of Security Policies 42

Table 2.3: Tableau proof system for the ADM logic

R¬
H, b, e, σ ⊢ t ∈ ¬Φ

H,¬b, e, σ ⊢ t ∈ Φ

R∧
H, b, e, σ ⊢ t ∈ (Φ1 ∧ Φ2)

H, b1, e, σ ⊢ t ∈ Φ1 H, b2, e, σ ⊢ t ∈ Φ2
b1 × b2 = b

Rν

H, b, e, σ ⊢ t ∈ νX.Φ

H [H 7→ H(X) ∪ {t}], b, e, σ ⊢ t ∈ Φ[νX.Φ/X ]
T /∈ H(X)

R[]
H, b, e, σ ⊢ t ∈ [p1 # p2]Φ

θ1 . . . θn
C

where :
θi = H, bi, e, σi ◦ σ ⊢ p2σσi ∈ Φ, i ∈ {1, . . . , n}
and

C





{σ1, . . . , σn} = {σ′ | p1σσ′ = t} 6= ∅
and

b1 × . . .× bn = b, n > 0





all leaves are successful, then the tableau is successful.

Adi et al. formally prove the finiteness, soundness and completeness of
their tableau-based system. These essential properties demonstrate that the
methodology produces finite models that are suitable for verification against
ADM logic formulas.

2.1.3 LoTREC Tableaux Theorem Prover

Theorem proving is a deductive technique that relies on inferences or rewrit-
ing to automatically generate proofs and verify their correctness. LoTREC
[27, 41] is an automated theorem prover developed by researchers at IRIT



2.1 Formal Verification of Security Policies 43

(Institut de Recherche en Informatique de Toulouse). The theoretical basis
of the framework have been laid out by L. Farias del Cerro, O. Gasquet,
and A. Herzig in the late 1990s. Significant features have been added by D.
Fathoux, M. Sahade, and B. Saïd. The improvements include, among others,
model checking and a host of predefined logics, along with their completeness
and termination proofs. Tableaux proofs can also be built for user-defined
logics. The basic operating principles of LoTREC are depicted in Figure 2.1
below.

Figure 2.1: LoTREC’s black box

The syntax allows for atomic propositions and formulas involving logical
connectives such as not, or, and, always, etc., for which the arity and priority
must be specified. The priority corresponds to the order of precedence for
the connectives, with 0 being the highest. The precedence order of some
classical connectives is: ¬ > ∧ > ∨ >→ > ⊕. The order can, of course,
be different for user-defined logics. For example, the formula A ∧ B can be
written as "or variable A variable B", will have an arity of 2, a priority of 1,
and will be displayed by LoTREC as the label "A & B".



2.2 Formal Enforcement of Security Policies 44

Rules for a user-defined logic take into account truth conditions and struc-
tural constraints. A tableau for a given sequent can then be drawn based
on the ruleset applicable. The rules can either modify the graph by adding
nodes (i.e. structural rules) or can alter formulae used for node labelling (i.e.
propagation rules). They are applied to every formula in every node, which
helps expediting the proofs. The graphs are expanded by adding or removing
nodes, links, formulas, or by duplicating the graph. There is a restricted set
of predefined constructs that can be employed for rule writing. The formal
semantics of LoTREC ensure that correctly specified rules always produce
"correct" results.

Rules are consolidated in strategies, which define what rules are applied,
in which order, and when does the strategy stop. Depending on how the
strategy is built, a rule can be applied once, several times, or never. This is
achieved by means of rule groupings called blocks and predefined combina-
tors (repeat, allRules, firstRule) in conjunction with end, which prompts for
the conclusion of the strategy’s execution. A repeatable block of rules may
however be sufficient for simple logics. Multiple strategies may be built for
the same logic either for efficiency reasons or for demonstrating specific pur-
poses. However, note that termination, soundness, and completeness must
be proven for each strategy.

The tableau successfulness is evaluated as in the previous sections, and the
truth assessment can be marked in the associated graph by the TRUE or
FALSE labels. The following figure shows a relatively simple LoTREC graph.

2.2 Formal Enforcement of Security Policies

Stating the expected behavior of the system is a necessary requirement. How-
ever, the simple enunciation of a policy is not very useful in the absence of
an enforcing mechanism. Different approaches for implementing or guaran-
teeing security policies have been proposed over the years. The enforcement
can be applied at various levels of the computing infrastructure, and can
support policies ranging from a single security property (e.g. authentication,
confidentiality, integrity) to a complete set of system constraints.



2.2 Formal Enforcement of Security Policies 45

Figure 2.2: Sample LoTREC graph

There are multiple manners of enforcing security policies, as depicted in
Fig. 2.3. The system can be subjected to an assessment of the underlying
code prior to execution. This technique is called static analysis and can be
applied, for instance, through model checking or in languages that permit
type-checking. Dynamic analysis employs reference monitors that constantly
watch untrusted programs for suspicious or non-compliant behavior. Pro-
gram rewriting is another enforcement mechanism that modifies an untrusted
program prior to the execution to prevent policy violations. The remainder of
this section is dedicated to the most notable approaches to computer security
policy enforcement.



2.2 Formal Enforcement of Security Policies 46

Figure 2.3: Security policy enforcement methods

2.2.1 Static Analysis

Portions of a programs that do not change during execution can be statically
analyzed for compliance with security policies. Running an assessment at
this stage has several advantages. Static analysis is decidable, meaning in
this context that it would provide an answer with certainty, in finite time,
about whether the system satisfies a security policy or not. There is no
time contraint, since the analysis can be planned and performed prior to
the actual execution. Also, there is no impact on the performance of the
program. No cycles are wasted by running execution monitors, for instance,
to check whether the behavior is acceptable or not. Finally, static analysis
can complement, rather than exclude, the use of other enforcement methods,
as it has the ability to evaluate policies that other methods can’t. This
last aspect will become more evident in the next section where some light is



2.2 Formal Enforcement of Security Policies 47

shed onto the unsatisfiable policy. The are several techniques for performing
a static analysis of a system against a given policy. Model checking and
automatic theorem provers have been covered in the previous section. We
briefly introduce here two other interesting approaches to static analysis:
proof-carrying code and type systems.

2.2.1.1 Proof-Carrying Code

Necula [80] devised a software mechanism that allows to determine whether
code from an untrusted source can be executed on a target system. The
author uses the terms "code producer" and "code consumer" to identify the
party that compiles and certifies the code and the beneficiary of the formally
validated code, respectively. The mechanism, called proof-carrying code, is
illustrated in Figure 2.4. The principle is simple, yet powerful. The pro-
ducer’s code implements security properties requested by the consumer and,
in addition, carries a certificate of compliance. The consumer verifies that
the certificate is acceptable, pertinent, and actually matches the producer’s
code. If all three conditions are met, the code is run with assurance that the
security properties are satisfied.

PCC is well fitted for enforcing safety policies. It features typical advantages
of static analysis approaches:

• decidability: verification completes in finite time, and it give a clear
answer (either safe or not safe to execute);

• no performance impact: since it operates at load time, the execution is
not slowed down by runtime validation;

• complements other approaches, such as cryptographic techniques (dig-
ital signatures can be used for freshness and authenticity, rather than
safety).

However, the original PCC system need to use a verification-condition gener-
ator (VCgen) on both the producer and the consumer systems. The VCgen
employs typing rules and is quite substantial (over 20,000 lines of code).
Moreover, it has to be invoked for each program and each new version of



2.2 Formal Enforcement of Security Policies 48

the program. The Foundational PCC, a type-independent variant of PCC,
sidesteps the necessity of the VCgen. It employs the more-expressive higher-
order logic, allowing the producer to "explain" safety arguments, but requires
machine-checked proofs generated with the help of typed assembly language.

Figure 2.4: Proof-carrying code



2.2 Formal Enforcement of Security Policies 49

2.2.1.2 Type Systems

Sablefeld and Myers [90] offered a solution for ensuring end-to-end informa-
tion flow confidentiality through programming language techniques. Their
method protects the information against an attack through observations of
the system’s output. The security-typed language they propose uses policy-
specifying annotations for the types of program variables and expressions.
The associated compile-time security-type checking adds almost no overhead
and is compositional: a system composed of secure subsystems is inherently
secure. Nevertheless, the solution does not allow verifying policy compli-
ance and no policy manager errors introduced at system’s inception can be
detected.

Another security policy-enforcing type system was presented by Gorla and
Pugliese [45]. Their system addresses issues related to code mobility in
distributed systems such as e-commerce and online banking. The type is
expressly designed for the process calculus µ-Klaim [44], a calculus of dis-
tributed and mobile processes. The syntax of µ-Klaim is presented in Fig.
2.4. It allows the assignment of different privileges to users over different
resources, which mimics the behavior of a real-life system. This makes the
system practical, as demonstrated by their bank account management sys-
tem model. In contrast to Sablefeld and Myers’ system [90], µ-Klaim also
allows dynamic type checking along with the static one. The approach is in-
teresting and a variant adapted to our calculus could be used to complement
our framework.

Martins [72] introduced a different type system applicable to complex net-
works in need of better security. He uses Dπ [50, 53] to control the migration
of code between the nodes of large distributed systems. Resource policies are
expressed with types and enforced via a type system. The network topology
is reflected by shared security policies within sites. The result is a system
that is free of any policy violation at runtime.

The framework presented by Miksad in [75] has some common traits with
the approach of this thesis. This is to be expected, as both involve formal
means of verifying security policies. The verification process requires policy
specification, system specification, and policy verification components. The



2.2 Formal Enforcement of Security Policies 50

Table 2.4: µ-KLAIM syntax

N ::= 0 (empty net)

l ::△ P (single node)

N1 ‖ N2 (net composition)

P ::= nil (null process)

a.P (action prefixing)

P1 | P2 (parallel composition)

A (process invocation)

e ::= V x . . . (expressions)

a ::= read(T )@ l (process actions)

in(T )@ l

out(t)@ l

eval(P )@ l

newloc(u :△)

T ::= F F, T (templates)

F ::= f !x !u : π (template fields)

t ::= f f, t (tuples)

f ::= e l (tuple fields)



2.2 Formal Enforcement of Security Policies 51

main purpose of Peri’s study (security policy enforcement) and the framework
functionality (two specification pieces and a verification part) play a major
role in our framework, too. However, his approach differs greatly from ours.
Peri uses Z [32] for system specification, a temporal logic based language for
security policies specification, and a trace based system for policy verification.

2.2.2 Execution Monitoring

Schneider [94] initiated the research on the class of runtime-enforceable se-
curity policies. He precisely characterized the EM (Execution Monitoring)
class of enforcement mechanisms and specified it with security automata.
A security automaton (named recognizer by Schneider and Alpern in their
previous work) is defined by:

• a countable set Q of automaton states,

• a countable set Q0 ⊆ Q of initial automaton states,

• a countable set I of input symbols, and

• a transition function δ : (Q× I)→ 2Q.

The automaton starts in state Q0 and reads one symbol st at a time from a
list of input symbols s1s2 . . .. The symbols correspond to security policy re-
quirements (actions or system states). The current state Q′ of the automaton
evolves to:

⋃

q∈Q′

δ(q, st)

A security automaton is used for modeling a particular policy. The automa-
ton contains two sections: one for the declaration of state variables and
one for the definition of allowed transitions. Security policy enforcements in
EM are accomplished through security automata simulations, which are exe-
cuted in tandem with the target. The simulations are fed with input symbols
generated by each step that the target is about to take. The state of the au-
tomaton changes if it can make the transition on the input symbol, otherwise



2.2 Formal Enforcement of Security Policies 52

the simulation ends and the target is terminated. In terms of security policy
enforcement, the security automaton grants the target the right to perform
the step if the transition is possible, or else it denies execution because of a
policy violation.

The EM class includes security kernels, reference monitors, firewalls, and
most other enforcement mechanisms, but excludes compilers and theorem
provers. Since a security policy is specified by giving a predicate on sets of
executions, the monitored execution steps vary from single actions to complex
configuration changes.

Schneider et al. [49] enhanced the result in [94] by defining a new class of
policies enforceable by program rewriting. In this context, program rewriting
refers to any enforcement mechanism that, in a finite time, modifies an un-
trusted program prior to execution. The RW class enables some policies that
are not enforceable through program monitoring. The use of program rewrit-
ing for enforcing security policies originated in the late 1960’s, but it has been
revived in recent years. Schneider and Erlingson’s analysis of software-based
fault isolation (SFI) led to the development of SASI (Security Automata SFI
Implementation) [103]. SASI enforces security policies by modifying object
code for a target system before that system is executed. The approach has
been prototyped for two architectures: Intel’s x86 and SUN’s JVM (Java
Virtual Machine). The prototypes explored the use of an SFI-like approach
for EM-enforceable policies.

The taxonomy of enforceable security policies described in [49] is depicted
in figure Fig. 2.5. This new approach corrects some subtle flaws in Schnei-
der’s previous work [94] by eliminating the group of EM class policies that
cannot be implemented. A formal model of security enforcement is built and
used for characterizing three enforcement methods: static analysis, execution
monitoring, and program rewriting. The untrusted programs are modeled as
a particular form of a Turing Machine. They need to be prevented from
executing steps that would violate a given security policy through one of
the enforcement methods. The coRE (co-recursively enumerable) subclass
of EM policies illustrated in Fig. 2.5 represents the policies that satisfy a
set of constraints (EM1-EM4) and can determine, at any step of the pro-
gram’s execution, an appropriate policy violation detector. The authors of
the study formally demonstrate that the statically enforceable policies are a



2.2 Formal Enforcement of Security Policies 53

subset of the coRE class. They are also a subset of the RW class, except
for the unsatisfiable policy. The EM-enforceable class is characterized by
policies that are at the same time coRE and RW≈-enforceable. Finally, there
are EM policies that cannot be enforced through program rewriting, as well
as RW-enforceable that cannot be enforced through execution monitoring.

Figure 2.5: A taxonomy of security policies

The runtime enforcement of policies through automata enjoys some popular-
ity among many other researchers. Bauer, Ligatti and Walker [8, 9, 10] issued
a series of studies on the subject. Their enforcement technique relies on se-
curity automata working as program monitors that examine and, if needed,
transform the sequence of program actions. The syntax of security monitors
is presented in Table 2.5. The automata enforce a certain class of Schneider’s
security policies discussed in [49] by inserting or suppressing actions.

A new language and system that supports the development of easy-to-maintain,



2.2 Formal Enforcement of Security Policies 54

but complex runtime security policies for Java applications is also introduced.
Policies are first-class objects and consist of two types of methods: one for
security-sensitive actions and one for state updates. Complex systems can be
modeled by means of parameterized meta policies [10] or higher-order poli-
cies [9]. A library of powerful policy combinators is supplied, demonstrating
the use of programming features that permit policies composition. A formal
semantics has been defined for a subset of the language consisting of the key
features only. The system is fully implemented in a large-scale security policy
for an email client.

Table 2.5: Security monitors syntax

(types) τ ::= Bool | (−→τ ) | τ Ref | τ1 → τ2 | Poly | Sug | Act | Res

(programs) P ::= (
−→
F ,M, epol, eapp)

(monitored F ::= funf(x : τ1) : τ2{e}

functions)

(memories) M ::= · |M, l : v

(values) v ::= true | false

(expressions) e ::= v | x | (−→e ) | e1; e2

(patterns) p ::= x | true | false

One of the newest problems in distributed environments is the dynamic of



2.2 Formal Enforcement of Security Policies 55

its mobile components. On-demand computing in academic and industrial
grids and the outbreak of laptops and mobile devices are just two exam-
ples of challenging security issues. Orlovsky [83] analyzed security policies in
the context of distributed environments. Global and local security policies
have been specifically defined for this reason. The author proposes a secu-
rity mechanism based on smart sandboxes (which are multiple instances of
execution monitors) that can share security information. The decentralized
mechanism is efficient and scalable. Global information flow policies are an
example of a subclass of EM policies enforceable by this mechanism.

2.2.3 Program Rewriting

Program rewriting is another interesting approach, well worth investigating
since it complements other methodologies. Irrespective of the fact that a
given program (or application) satisfies or not a certain security property
or policy, the application is rewritten to ensure that the policy is satisfied.
The resulting rewritten program has to be equivalent with the original one
in the sense that no new behavior can be added, and only those behaviors in
conflict with the security policy are removed. Several approaches to program
rewriting and an enforcement technique are discussed in this section.

Edit Automata and Algebraic Approaches

Rewriting can be done, for instance, by automata injection, as shown by
Ould-Slimane et al. in [84]. The authors turn to edit automata for enforc-
ing security properties through a formal rewriting technique. Edit automata
have the capability of feigning the execution of sensitive actions, which is an
advantage over the conventional Execution Monitoring (EM) security mech-
anisms. Feigning refers to an undetectable blocking of the execution of a
program actions. However, classic EMs are not always reliable in the sense
that they cannot feign all actions. Ould-Slimane’s framework uses Extended
Finite State Machines (EFSMs) for representing a program and injecting
an edit automaton that targets enforced security properties. The authors
demonstrate that the program operates in a transparent manner. Moreover,
the injection produces a version of the program that is formally proven to



2.2 Formal Enforcement of Security Policies 56

be secure, meaning that all observable outputs respect the intended security
property.

Enforcement of security policies on concurrent programs can also be achieved
by transformation of formulas and processes, as demontrated by Langar et
al in [66, 73, 67]. The authors transform the security policy into a process
that is executed in parallel with the target system. The original program is
rewritten to allow only control and approval of its actions by an execution
monitor that implements the enforced security policy. The language used
for the specification of security policies, shown in Table 2.6 and denoted by
BPA∗

δ,1, is an extension of BPA (Basic Process Algebra).

Table 2.6: Syntax of BPA∗
δ,1

P1, P2 ::= δ | 1 | a | P1.P2 | P1 + P2 | P1
∗P2

The algebraic framework for the specification of the concurrent systems is
provided by ACP φ, displayed in Table 2.7. ACP φ is an extended version of
ACP (Algebra for Communicating Process). The meaning of most operators
names in Table 2.7 is obvious. The three merge operators correspond to
different interaction manners that model synchronization, execution priority,
and communication. Encapsulation imposes restrictions on what actions can
be executed. The process ∂H(P ) can only evolve if its actions are not part of
the set H . Abstraction replaces all actions of the process τI(P ) from the set
I, called internal actions, by the silent action τ . Finally, enforcement allows
a process to evolve only if its actions comply with the security policy.

Langar defines a Kleen algebras-inspired Lϕ logic that allows the specification
of security properties. The semantics of Lϕ is presented in Table 2.8. The
operator ⊗ is used for defining enforcements. The composition P ⊗ φ of
program P and a security policy φ is an enforced program denoted by δξφ(P ).
The secure program preserves only those traces of the original program P
that do not violate the security policy φ.



2.2 Formal Enforcement of Security Policies 57

Table 2.7: Syntax of ACP φ

P ::= 1 (Constant representing successful termination)

| δ (Constant representing deadlock)

| a (Atomic action)

| P1.P2 (Sequential composition)

| P1 + P2 (Non− deterministic choice or sum)

| P1 ||γ P2 (Merge, parallel composition)

| P1 |⌊ P2 (left merge)

| P1 |γ P2 (Communication merge)

| P1
∗P2 (Iteration operator)

| δH(P ) (Encapsulation operator, H ⊆ A)

| τI(P ) (Abstraction operator, I ⊆ A)

| ∂ξ
φ(P ) (Enforcement operator)

Table 2.8: Syntax of Lϕ

ϕ1, ϕ2 ::= tt | ff | 1 | a | ϕ1.ϕ2 | ϕ1 ∨ ϕ2 |ϕ1 ∧ ϕ2 |¬ϕ1 | ϕ1
∗ϕ2



2.2 Formal Enforcement of Security Policies 58

This is achieved by applying the following two transformations. Firstly, each
action a of a policy φ is replaced by a sequence ad.af that marks start and
end of the action. Consequently, the Lϕ policy specification is transformed
into a synchronization ACP φ process by a specialized function. Synchro-
nization actions allow the controlled program to evolve when the actions it
intends to execute are allowed by the formal monitor. Secondly, each action
a of the synchronization process is transformed into ad.a.af by another spe-
cialized function. The properties are then checked against infinite behavior
through the formal monitor. An optimization technique reduces the num-
ber of required tests for a certain class of security properties. The innovative
approach can be applied to commonly used programming languages like Java.

Sui et al. carry forward the work of Langar in [101]. They modify BPA∗
δ,1

slightly to obtain BPA∗
0,1 and eventually extend it into the new algebra

εBPA∗
0,1, which adds syntactic constructs for variables, conditions and envi-

ronment. Since BPA is not well suited for addressing concurrent programs,
their rewriting approach targets for enforcement only some critical points in
the program. The approach is presented in Figure 2.6.

The program P is expressed in BPA∗
0,1 either directly or by transformation

from its C-like language form. The security policy Φ to be enforced is nor-
mally given as a νLTL (Linear Temporal Logic) formula and will also be
translated into a BPA∗

0,1 formula. The policy Φ is enforced on the program
P by means of the ⊓ operator. The notation P ⊓Q, called the greatest com-
mon factor (gcf) of P and Q, is a process R such that all traces of R are
both in P and Q, and for any other process R′ with all traces in P and in
Q, R′ ⊑ R. Security policy enforcement becomes in this case a problem of
computing the gcf of a process P representing the system and a process Q
representing the policy.

The enforcement operation consists in solving the set of BPA∗
0,1 equations

obtained by applying ⊓. In order to convey the notion of trace equivalence,
the authors use an adapted definition of Brzozowski’s derivates, denoted by
∂a(x), and a termination function o(x) to know whether a process terminates
immediately or not. The computation algorithm is displayed in Figure 2.7.

The program obtained is sound, and therefore guarantees that all traces of



2.2 Formal Enforcement of Security Policies 59

Figure 2.6: Approach to formal and automatic security policy enforcement

the secured process satisfy the security policy. Moreover, the enforced pro-
gram is complete and preserves all compliant traces of the original program.
The expressiveness of the BPA∗

0,1 algebra makes it applicable to some script-
ing languages such as PHP and Perl, and to a simplified version of C-like
programs. A combination with approaches like Langar’s may also permit
better enforcement of concurrent programs. A web application prototype
called FASER (Formal and Automatic Security Enforcement and Rewriting)
implements the methodology proposed. The theoretical foundations for the
Java and JSP environment FASER are introduced in [100].

Towards Enforcement through Interface Equations

Norris [79] was the first to use the expression "interface equation", in 1985,
while Shields [95, 96, 97] strongly promoted it and helped firmly establishing
the term. It was considered a potential solution to the problem of general
system synthesis as it encapsulates the general problem of concurrently oper-
ating systems which have to communicate via some interface. In our context,
an interface equation can be formulated as follows: for two processes P and
Q and a given equivalence relation denoted by ∼, we need to find another



2.2 Formal Enforcement of Security Policies 60

Figure 2.7: Algorithm for formal security policy enforcement

process X such that P | X (read "P combined to X using a given operator |")
is equivalent to Q:

P | X ∼ Q

where, P and Q cannot communicate.

The success of the equation as a specification generator is due to two main
research groups. The first one, composed of Cerny, Marin and Zafiropulo et
al., focused on the applicability of this theory to logic circuits and protocol
generation. The second group, lead by Merlin and Bochmann, formulated
the interface equation in the modern shape known today. Cerny and Marin
[26] used Boolean equations for fault detection in the case of logic circuits.
Their methodology consisted in the deduction of all the receive actions when
all the send actions are known, along with a certain set of properties about



2.2 Formal Enforcement of Security Policies 61

the searched module.

Zafiropulo [17, 105] and his collaborators concentrated more on protocols
generation, while Merlin and Bochmann [60, 74, 89] focused on generating
specifications. Ince [30, 57] addressed the problem of protocol converters
by blending together automata theory and topology. His technique employs
topological graphs for deriving quotient graphs as solutions to the interface
equation. Khedri [62] attempted a general formulation of the equation in the
case of parallel processes.

The relatively small number of techniques for solving the equation proves the
complexity of the issue and shows that the most important factor is a proper
definition of the problem. We briefly present two methods: the specifications
generators of Merlin and Bochmann and the relational processes approach of
Khedri.

The research work of Merlin, Bochmann [74], and their followers in the field
of protocol specification covers more than two decades. The extraction of
protocol specifications from a given service specification [60] seems to enjoy
more popularity than the other approaches. The service primitives have to
be executed in a particular order using operators for sequential, parallel and
alternative executions. The proper ordering is ensured through synchroniza-
tion messages between the derived protocol entities. The derivation algo-
rithm, which is elegant and efficient, allows for finite and infinite behaviors
and results in optimal protocol specifications.

A comprehensive review of the protocol synthesis methods was given by
Probert in [89]. The eleven methods presented, including those of Bochmann,
are classified and compared based on their features: synchronous communi-
cation, interactivity, semantic correctness, error-recovery patterns, etc. The
protocol synthesis methodology inspired some of our less successful attempts
in our own quest for the proper interface equation solution. However, the
approach soon became of limited interest to us in the specification area, as
we made the choice to employ a calculus and a logic for the purpose of system
and policy specification.

A general formulation of the interface equation has been provided by Khedri
in [62]. He analyzes process modeling, concurrency, integration, simulation



2.2 Formal Enforcement of Security Policies 62

and L-bisimulation. The use of relational formalisms helps solving the chal-
lenging problem. In his work, the interface equation for the interlaced parallel
composition of processes is denoted by P ≀ X ≈σ Q, where P,Q and X are
processes, ≀ is a parallel composition operator and σ is a known relation
between the processes.

A slightly different shape of the equation, devised for the totally synchronous
parallel composition of processes, involves another composition operator (�)
and presents a different solution. The unknown process X can designate a
controller, a protocol converter or a specification. Processes are represented
by a mathematical entity called a relational process which is denoted by
the quintuple ((J,K : J,K ∈ U : PJK), αP , EP , ωP , FP ). The first
component represents the resources of a process and its actions. The other
four represent the input and output relations (αP and ωP ) and the variables
associated with them (EP and FP ), respectively.

The interface equation can take various forms: protocol conversion, controller
generation, reutilization, etc.. Khedri manages to gather them all as a set
of solutions in a comprehensive framework. The benefit of having such a
set available is that one can easily choose the appropriate solution to their
application domain. It is possible that one solution fits a certain purpose,
but not another. For instance, for the same interface equation, a solution
can work very well in a reutilization context with constraints to use specific
hardware components, while it fails to be useful in a protocol conversion
context. However, the framework is not particularly well suited for the broad
scope of security policies.

Interface equations provide a calculation technique for applicable enforce-
ments. Once the system and the security policy have been specified, we want
to extract automatically an enforcement process that imposes the behavior
stipulated by the policy. The main intent of this approach is to automat-
ically identify the components that enforce a given policy on a system. In
Chapter 6, we state the problem in terms of interface equations as defined in
[62, 85, 97] and use a process algebra to solve it.



2.3 Security Policy Enforcement with Ambients and Related Calculi 63

2.3 Security Policy Enforcement with Ambients

and Related Calculi

Several research activities have used ambient calculus to address a number
of issues related to access control and information flow policies. The so-
lutions came in the form of information and control flow analysis, ambient
guardians, safe ambients, and specification calculi. We present in this section
the representative works in these areas.

2.3.1 Control Flow Analysis

This approach employs the ambient calculus as a base for an information flow
analysis. The defining factor of the investigation is given by mobility aspect
of ambients. Policies are used for determining which flows are permitted,
therefore establishing in a formal manner if a certain property of the flow is
maintained. Two such analysis are presented: the information flow analysis
of Cortesi and Focardi [29] and the firewall validation of Nielson et al. [82].
The same technique, but applied to the safe ambients, has been used by
Degano et al. [31] and is presented in the next section.

Information Flow Analysis

Cortesi and Focardi [29] focus on a particular case of Mandatory Access Con-
trol in the context of the classical ambient calculus. The policy in case, called
Multilevel Security, requires that every entity is bound to a security level.
Only two levels are considered, for simplicity (high and low), and informa-
tion may just flow from the low level to the high one. Two access rules are
imposed: No Read Up (a low level entity cannot access information of a high
level entity) and No Write Down (a high level entity cannot leak information
to a low level entity). The scenario considered by the authors involves mov-
ing agents that could potentially inadvertently leak confidential data. The
agents are modeled in the context of mobile ambients. The information flow
property is defined in terms of the possibility to move a confidential ambient
outside a security boundary through covert channels.



2.3 Security Policy Enforcement with Ambients and Related Calculi 64

The analysis is defined by the representation function βCF
l and the specifi-

cation (Î , Ĥ). Information about all nesting ambients yielded by a process
in its initial state is collected by the process representation function defined
in Table 2.9. Labels la ∈ Laba on ambients and lt ∈ Labt on transitions
indicate program points, and l is either a capability or an ambient inside la.

Table 2.9: Representation function for Control Flow Analysis

(res) βCF
l ((νn)P ) = βCF

l (P )

(zero) βCF
l (0) = (∅, ∅)

(par) βCF
l (P | Q) = βCF

l (P ) ⊔ βCF
l (Q)

(repl) βCF
l (!P ) = βCF

l (P )

(amb) βCF
l (nla [P ]) = βCF

la (P ) ⊔ ({(l, la)}, {(la, n)})

(in) βCF
l (inltn.P ) = βCF

l (P ) ⊔ ({(l, lt)}, ∅)

(out) βCF
l (outl

t

n.P ) = βCF
l (P ) ⊔ ({(l, lt)}, ∅)

(open) βCF
l (openltn.P ) = βCF

l (P ) ⊔ ({(l, lt)}, ∅)

The specification recursively checks subprocesses for the pair (Î , Ĥ), as de-
scribed in Table 2.10. Î determines which pairs ambient-subambient or
ambient-capability belong to the flow. Ĥ handles the label-name correspon-
dence: if a process contains an ambient labeled la with name n, then (la, n)
is expected to belong to Ĥ . Special labels are assigned to the in and out
capabilities of the ambients containing sensitive data, called border ambi-
ents. The verification process consist in proving that a very simple syntactic
property (i.e. a labeled capability) is sufficient to guarantee the absence of
unwanted information flows.



2.3 Security Policy Enforcement with Ambients and Related Calculi 65

The analysis becomes very complex and cumbersome in the case of more
security levels or a combination of security properties, which makes it im-
practical for the applications we considered.

Firewall Validation

In [82], Nielson et al. used ambient calculus to specify a firewall and agents
that attempt to cross it. The firewall model is taken from Cardelli and
Gordon’s original article on mobile ambients. The premise is that a properly
specified firewall should not permit entry to attackers lacking the required
passwords.

Four predicates are defined for the acceptability of the analysis:

(I,H) |=l
me P for checking a process P ∈ Proc

(I,H) Dme M : M̃ for translating a capability M ∈ Cap into a

set M̃ ∈ P(SCap) of stable capabilities;

(I,H) �me N : Ñ for decoding a capability N ∈ Nam into a

set Ñ ∈ P(SNam) of stable names;

(I,H) �l m̃ for checking a stable capability m̃ ∈ SCap

A polynomial time algorithm is used for rejecting the firewalls that fail to
provide adequate protection. The control flow analysis of firewall valida-
tion is presented in Table 2.11, which contains separate sections for the four
acceptability predicates. The algorithm is based on control flow analysis
of processes that are capable of crossing other ambients’ boundaries. The
verification process examines all possible reduction sequences in order to de-
termine that an agent holding the appropriate keys is allowed to enter a
site protected by a firewall. The operations permitted inside each site and
the actions allowed for each process are determined as part of the checking
technique.

There are, in our opinion, several inconveniences with this approach. The
original ambient firewall model of Cardelli and Gordon, which is used by



2.3 Security Policy Enforcement with Ambients and Related Calculi 66

Table 2.10: Specification of Control Flow Analysis

(res) (Î , Ĥ) |=CF (νn)P iff (Î, Ĥ) |=CF P

(zero) (Î , Ĥ) |=CF 0 always

(par) (Î , Ĥ) |=CF P | Q iff (Î, Ĥ) |=CF P ∧ (Î , Ĥ) |=CF Q

(repl) (Î , Ĥ) |=CF !P iff (Î, Ĥ) |=CF P

(amb) (Î , Ĥ) |=CF nla [P ] iff (Î, Ĥ) |=CF P

(in) (Î , Ĥ) |=CF inltn.P iff (Î, Ĥ) |=CF P ∧

∀ la, la
′
, la

′′
∈ Laba : ((la, lt) ∈ Î ∧ (la

′′
, la) ∈ Î ∧ (la

′′
, la

′
) ∈ Î

∧ (la
′
, n) ∈ Ĥ) =⇒ (la

′
, la) ∈ Î

(out) (Î , Ĥ) |=CF outl
t

n.P iff (Î, Ĥ) |=CF P ∧

∀ la, la
′
, la

′′
∈ Laba : ((la, lt) ∈ Î ∧ (la

′
, la) ∈ Î ∧ (la

′′
, la

′
) ∈ Î

∧ (la
′
, n) ∈ Ĥ) =⇒ (la

′′
, la) ∈ Î

(open) (Î , Ĥ) |=CF openltn.P iff (Î, Ĥ) |=CF P ∧

∀ la, la
′
∈ Laba : ((la, lt) ∈ Î ∧ (la, la

′
) ∈ Î ∧ (la

′
, n) ∈ Ĥ)

=⇒ {(la, l′) | (la
′
, l′) ∈ Î} ⊆ Î



2.3 Security Policy Enforcement with Ambients and Related Calculi 67

Table 2.11: Control flow analysis of firewall validation

(I,H) |=l
me (νn

µ)P iff (I,H) |=l
me[n 7→µ] P

(I,H) |=l
me 0 iff true

(I,H) |=l
me P | P

′ iff (I,H) |=l
me P ∧ (I,H) |=l

me P
′

(I,H) |=l
me!P iff (I,H) |=l

me P

(I,H) |=l
me N

la [P ] iff (I,H) |=l
me P ∧ la ∈ I(l) ∧

(I,H) |=l
me N : Ñ ∧ Ñ ⊆ H(la)

(I,H) |=l
me M.P iff (I,H) |=l

me P ∧ (I,H) |=l
me M : M̃

(I,H) Dme inl
t

N : M̃ iff (I,H) �me N : Ñ ∧ M̃ ⊇ {inlt µ | µ ∈ Ñ}

(I,H) Dme outl
t

N : M̃ iff (I,H) �me N : Ñ ∧ M̃ ⊇ {outlt µ | µ ∈ Ñ}

(I,H) Dme openl
t

N : M̃ iff (I,H) �me N : Ñ ∧ M̃ ⊇ {openlt µ | µ ∈ Ñ}

(I,H) �me n : Ñ iff Ñ ⊇ {me(n)}

(I,H) �l inl
t

µ iff inl
t

µ ∧ ∀la ∈ I−1(inl
t

µ) : ∀la
′
∈ I−1(la)

∀la
′′
∈ I−1(la) ∩H−1(µ) : la ∈ I(la

′′
)

(I,H) �l outl
t

µ iff outl
t

µ ∧ ∀la ∈ I−1(outl
t

µ) : ∀la
′
∈ I−1(la)

∀la
′′
∈ I−1(la) ∩H−1(µ) : la ∈ I(la

′′
)

(I,H) �l openl
t

µ iff openl
t

µ ∧ ∀la ∈ I−1(openl
t

µ) : ∀la
′
∈ I−1(la)

∀la
′′
∈ I−1(la) ∩H−1(µ) : la ∈ I(la

′′
)



2.3 Security Policy Enforcement with Ambients and Related Calculi 68

Nielson and his collaborators, does not accurately represent the way firewalls
behave. The presence of a guiding pilot and the three passwords required
to cross a firewall are unnecessary complications. Details of firewall rules,
such as the format recommended by NIST [59], are not even considered. The
complexity of the analysis makes it less than ideal for implementation in
real-time operating machines such as firewalls. Moreover, considerable de-
velopments have been witnessed in the field of firewall policies. In [12, 58],
Bellovin introduced the concept of distributed firewalls as a flexible policy
control mechanism. Guttman [47] explored issues related to automatically
generating local policies from a given network topology and a global policy.
Automatic management of network security policies through a policy enforce-
ment tool is addressed by Burns et al. in [19]. In [3], Al-Shaer et al. tackle
the problem of detecting filtering rules anomalies both within an individual
firewall and in basic forms of distributed firewalls, such as a three-level cas-
cading firewall. The problems to solve can however become far more complex
with different topologies such as stars and rings, where ambient nesting leads
to several potential paths to a destination and the order of local policies is
capital. We address these issues in Chapter 3, in the shape of a dedicated
firewall calculus that provides a more natural model and adds a distributed
aspect to the verification process.

2.3.2 Safe Ambients and Derived Approaches

The calculus of mobile ambients has inspired a number of other researchers
to develop it further. A different approach called safe ambients is addressed
in computer security related papers due to Degano, Levi, Bugliesi, Sangiorgi
et al. [69, 70, 18, 31].

Safe Ambients

A new calculus called safe ambients is introduced by Levi and Sangiorgi
[69, 70]. They examine process interference, which is defined as the possibility
for a process to encounter at least two processes willing to react to his request
or service. Process interference is one of the most complicated problems
associated with concurrency. The solution for interference presented in the
paper is the addition of three new primitives called cocapabilities in n, out n



2.3 Security Policy Enforcement with Ambients and Related Calculi 69

and open n. The idea is to provide agreement between the participating
parties by associating any action of a process with a corresponding permission
in the target ambient. The reduction semantics of Safe Ambients is displayed
in Table 2.12.

Table 2.12: Reduction semantics of Safe Ambients

(R − in) n[in m.P1 | P2] | m[in m.Q1 | Q2] −→ m[n[P1 | P2] | Q1 | Q2]

(R− out) m[n[out m.P1 | P2] | out m.Q1 | Q2] −→ n[P1 | P2] | m[Q1 | Q2]

(R − open) open n.P | n[open n.Q1 | Q2] −→ P | Q1 | Q2

(R−Msg) < M > | (x : W )P −→ P{M/x}

(R−Eps) ǫ.P −→ P

(R− Rec) rec X.P −→ P{rec X.P/X}

(R− Res)
P −→ P ′

(νn : Amb)P −→ (νn : Amb)P ′

(R− Par)
P −→ P ′

P | Q −→ P ′ | Q

(R− Amb)
P −→ P ′

n[P ] −→ n[P ′]

(R− Str)
P −→ P ′ P ′ ≡ P ′′ P ′′ −→ P ′′′

P −→ P ′′′

The addition of cocapabilities also facilitates proving behavioral properties
and writing more robust programs that behave as expected in all contexts.



2.3 Security Policy Enforcement with Ambients and Related Calculi 70

Safe ambients are further enhanced with a type system that provides mobility
controls and removes all dangerous interferences.

Secure Safe Ambients

The Secure Safe Ambients (SSA) defined by Bugliesi and Castagna in [18] are
a typed variant of Safe Ambients. The type system permits the expression
and verification of behavioral invariants of ambients. Moreover, the type
system is also capable to capture both explicit and implicit process and
ambient behavior.

The authors introduce the type system of SSA, define algorithms for type
checking and type reconstruction, define a language for expressing security
properties, and assess a distributed version of SSA and its type system. The
typing rules for SSA are presented in Table 2.13, where E is a type environ-
ment, Π is a domain environment, and Img(E) and Dom(Π) represent the
image of E and the domain of Π, respectively. The rules for a well-typed
process P are derived from judgements of the form: Π, E ⊢ P : P. The two
(Action) rules are interesting, as they stipulate that the effect of executing
actions can be observed either at the level of the enclosing ambient, or in the
continuation process.

Therefore, types apply for both the immediate behavior of processes and the
behavior of process residuals, covering every possible evolution of processes
in a given context. This particular characteristic allows the type system of
SSA to detect potential for security attacks such as Trojan Horses and other
combinations of malicious agents in ill-typed contexts.

Control Flow Analysis of Safe Ambients

Degano, Levi, and Bodei [31] obtained some noteworthy results on control
flow analysis in the context of safe ambients. They were able to predict the
parent ambient, for each ambient n, whenever a capability or ambient α are
contained at the top level. This allowed them to restrict significantly the
potential movements of an ambient and to use static techniques for proving
security properties of programs.



2.3 Security Policy Enforcement with Ambients and Related Calculi 71

Table 2.13: Typing rules for Secure Safe Ambients

(Type proc)
Π ⊢ ⋄ fn(P) ⊆ Dom(Π) Π ⊢ P closed

Π ⊢ P

(Env)
Π ⊢ ⋄ Img(E) ⊆ Dom(Π)

Π, E ⊢ ⋄

(Name)
Π ⊢ ⋄ a ∈ Dom(E)

Π, E ⊢ a : E(a)

(Dead)
Π, E ⊢ ⋄

Π, E ⊢ 0 : {⊘,⊘,⊘}

(Par)
Π, E ⊢ P : P Π, E ⊢ Q : P

Π, E ⊢ P | Q : P

(Repl)
Π, E ⊢ P : P

Π, E ⊢!P : P

(Action↑)
Π ⊢ P : P Π, E ⊢ a : D cap D ∈ P↑

Π, E ⊢ cap a.P : P
cap ∈ {in, in, out, open}

(Action=)
Π ⊢ P : P Π, E ⊢ a : D cap D ∈ P=

Π, E ⊢ cap a.P : P
cap ∈ {out, open}

(Restr)
Π, E, a : D ⊢ P : P a /∈ Dom(E)

Π, E ⊢ (νa : D)P : P

(Amb)
Π, E ⊢ P : P Π, E ⊢ a : D Π ⊢ D bounds P

Π, E ⊢ a[P ] : Π(D)

(Subsumption)
Π, E ⊢ P : P Π ⊢ Q P ⊆ Q

Π, E ⊢ P : Q



2.3 Security Policy Enforcement with Ambients and Related Calculi 72

The clauses of the Control Flow Analysis on SA are introduced in Table
2.14. They operate on the structure of a process P and update its current
ambient k, its label L, and its current element I. The study formally proves
that there exist a least solution valid according to the clauses, which remains
valid under process reduction.

Table 2.14: Control Flow Analysis of Safe Ambients

nil : φ |=k,L
I 0 iff true

amb : φ |=k,L
I n[P ] iff nL ∈ I ∧ ∃I ′, φ |=n,{k,k}

I′ P ∧ I ′ ⊑ φ(n)

pref : φ |=k,L
I µ.P ∧ µ 6= open n iff







µL ∈ I ∧ φ |=k,(l1∪t(µ,k),t(µ,k))
I P ∧

∀h ∈ t(µ, k) : k(f(h),f(h)) ∈ φ(h)

pref : φ |=k,L
I µ.P iff µL ∈ I ∧ φ |=k,L

I P

open φ |=k,L
I open n.P iff







































(open nL ∈ I) ∧ ∃I1 : φ |=k,L
I′ P ∧

I1 ⊗k (γ, (k, φ(n), n)⊕ L) ⊑ I ∧

∀h ∈ ENAB(open n, n), h ∈ N ,

αL ∈ φ(h) : n ∈ li ⇒ k ∈ li, ∀i = 1, 2

par φ |=k,L
I p | Q iff







∃I1, I2 : φ |=k,L
I1

P ∧ xφ |=k,L
I2

Q ∧

I1 ⊗k I2 ⊑ I

repl φ |=k,L
I !P iff ∃I ′, φ |=k,L

I′ P ∧ I ′ ⊗k I
′ ⊑ I



2.3 Security Policy Enforcement with Ambients and Related Calculi 73

Ambients are classified as either trustworthy or untrustworthy, depending on
how they preserve secrecy. Simply put, if an untrustworthy ambient cannot
open a trustworthy one, than the program dynamically preserves secrecy.
The tests are dependent on some contextual information and are not valid
in all circumstances, but ambients passing them can be easily identified with
the aid of a tester process E which simulates the most hostile environment
matching the requirements. The fact that the tests are not universally valid
is a serious limitation of the approach.

2.3.3 Guarded Boxed Ambients

Ferrari et al. [33] propose an extension of the ambient calculus by considering
the concept of ambient monitoring and coordination policy by attaching a
guardian to each ambient. Their formal model, called Guarded Boxed Am-
bients, separates computational mechanisms (communication and mobility
primitives) from policy enforcers. This allows them to support the specifi-
cation of multiple dynamic security policies. The segregation of primitives
and enforcers gives flexibility and finer granularity in expressing policies.
Guardians define a local security context and monitor the activity of pro-
cesses and sub-ambients as well as the interaction with the external environ-
ment. They implement the set of permissions that may be granted to the
agents entering, exiting, and communicating in the monitored environment.
Guardians also have coordination abilities and they can successfully coop-
erate for an effective propagation of a policy change across an environment.
The approach provides an alternative to our idea of automatic reconfigura-
tion of policies.

Lacasse et al. in [65] propose a similar idea of controlled processes forced
to respect a security policy. Their approach does not rely on ambients, but
on a CCS [76] process algebra extension with new syntactic constructs for
monitored processes. The potential of program monitors and their role in
implementing run-time security policies is examined by Schneider [94].



2.3 Security Policy Enforcement with Ambients and Related Calculi 74

Table 2.15: Categories in Guarded Boxed Ambients

W ∈ Gld : := . . .

g ∈ Perm : := new | spawn | box | in1 | in2 | in3 | out1 | out2 | out3 | comm

| rdup1 | rdup2 | wrup1 | wrup2 | rddn1 | rddn2 | wrdn1 | wrdn2

G ∈ Gard : := g(x) when b then | G | G1 ∨ G2 |W (v) |

G\g(x) when b | ⊥ | ⊤ | G1 ∧ G2

v, P ∈ Proc : := . . . | G

2.3.4 Controlled Ambients

In [102], Teller et al. present a formalism used to control resources in parallel
and distributed mobile systems. The authors developed an extension of the
mobile ambient calculus named controlled ambients and use this extension
to express safety and reliability issues. The language of Controlled Ambients
uses cocapabilities for expressing interaction, similar to those found in the
theory of Safe Ambients. However, the Controlled Ambients cocapabilities
are stronger in the sense that an ambient must have knowledge about the
name of all moving ambients. The syntax of Controlled Ambients is presented
in Table 2.17.

Resource control features required for the declared purpose of modeling De-
nial of Service attacks are embedded into ambients with the aid of two new
parameters called capacity and weight. These parameters determine how
many resources are available to subambients and how many resources are
required from the parent ambient. A typing system, shown in Table 2.18, in-
troduces judgements for types (ambients, processes, and messages) and rules



2.3 Security Policy Enforcement with Ambients and Related Calculi 75

Table 2.16: Transition rules in Guarded Boxed Ambients

new
P

new(n1,G1)
−→ P ′ G

new(n1,G1)
−→ G′

F, n(G)[M,P ] =⇒ F (n1 7→ G1), n(G′)[M,P ′]
n1 /∈ dom(F )

spawn
P

spawn(P1)
−→ P ′ G

spawn(P1)
−→ G′

F, n(G)[M,P ] =⇒ F (n1 7→ G1), n(G′)[M,P ′]

box
P

box(n1,G1)
−→ P ′ G

box(n1,G1)
−→ G′

F, n(G)[M,P ] =⇒ F (n1 7→ G1), n(G′)[M,P ′]

in
P

in(n1,G1)
−→ P ′ G

in1(n1,G1)
−→ G′ P

in2(n1,G1)
−→ P ′ G

in3(n1,G1)
−→ G′

F, n(G)[M,P ] =⇒ F (n1 7→ G1), n(G′)[M,P ′]

out
P

out(n1,G1)
−→ P ′ G

out1(n1,G1)
−→ G′ P

out2(n1,G1)
−→ P ′ G

out3(n1,G1)
−→ G′

F, n(G)[M,P ] =⇒ F (n1 7→ G1), n(G′)[M,P ′]

comm
P

vr(n1,G1)
−→ P ′ G

rd(n1,G1)
−→ G′ P

comm(n1,G1)
−→ P ′

F, n(G)[M,P ] =⇒ F (n1 7→ G1), n(G′)[M,P ′]

rdup
P

wr(n1,G1)
−→ P ′ G

rdup(n1,G1)
−→ G′ P

rdup1(n1,G1)
−→ P ′ G

rdup2(n1,G1)
−→ G′

F, n(G)[M,P ] =⇒ F (n1 7→ G1), n(G′)[M,P ′]

wrup
P

rd(n1,G1)
−→ P ′ G

wrup(n1,G1)
−→ G′ P

wrup1(n1,G1)
−→ P ′ G

wrup2(n1,G1)
−→ G′

F, n(G)[M,P ] =⇒ F (n1 7→ G1), n(G′)[M,P ′]

rddn
P

rddn(n1,G1)
−→ P ′ G

wr(n1,G1)
−→ G′ P

rddn1(n1,G1)
−→ P ′ G

rddn2(n1,G1)
−→ G′

F, n(G)[M,P ] =⇒ F (n1 7→ G1), n(G′)[M,P ′]

wrdn
P

wrdn(n1,G1)
−→ P ′ G

rd(n1,G1)
−→ G′ P

wrdn1(n1,G1)
−→ P ′ G

wrdn2(n1,G1)
−→ G′

F, n(G)[M,P ] =⇒ F (n1 7→ G1), n(G′)[M,P ′]



2.3 Security Policy Enforcement with Ambients and Related Calculi 76

Table 2.17: Controlled Ambients syntax

P ::= 0 null process

| M.P capability

| m[P ] ambient

| P1 | P2 parallel comp.

| (νn : A)P restriction

| rec X.P recursion

| X ambient variable

| (n : A)P abstraction

| < m > message emission

M ::= in m enter m

| out m leave m

| open m open m

| in↑ m m may climb in upwards

| in↓ m m may climb in downwards

| out↑ m m may climb out upwards

| out↓ m m may climb out downwards

| open{m, h} h may open m



2.4 Critical Remarks 77

for resource allocation and communication.

Resource policy compliance is defined in terms of capacity and weight with
the aid of types. The construction of the model is rather complex. The
authors claim that their formalism is "more reasonable" and "more real-
istic" than other approaches, such as safe ambients, because it can model
a listening action on behalf of the system. This main benefit is useful for
the authors’ application to Denial of Service attacks, but not necessary for
most practical purposes: the systems are ready and transparently listening
as soon as they are implemented, since by definition (syntax and semantics
of the specification language) they can react to some form of interaction
(e.g. in or out capabilities). The resource policies consist only in availability
statements, rather than access control (security) requirements. We find the
approach very limiting for real life implementations, where such controls are
a fundamental part of the system requirements.

2.4 Critical Remarks

The various security policy enforcement mechanisms contributed to solving
the specific purpose they were created for and may not apply to other con-
texts. For instance, while the Intel x86 architecture is still very popular, it is
not the only one used. On the contrary, with the overwhelming abundance
and diversity of mobile computing platforms, from smartphones to laptops
and tablets, Intel themselves are moving away from their well-established
roots. In this case, the results presented by Erlingson and Schneider [103]
are impractical and not universally applicable, as the authors themselves
admit.

The access control approaches that use some variant of ambient calculus
(control flow analysis, safe, controlled, and guarded ambients, etc.) involve
elaborated constructs for verifying relatively simple properties and therefore
have limited scalability. While the concepts are intuitive and clearly proven,
they lack in modularity and applicability to most real-world complex systems.

We do not support some of the statements in the reviewed work. Sable-
feld and Myers [90] claim that access control conventional mechanisms do



2.4 Critical Remarks 78

Table 2.18: Typing rules for Controlled Ambients

Γ(n) = A

Γ ⊢ n : A
T − name

Γ(X) = CAPR(t)[T ]

Γ ⊢ X : CAPR(t′)[T ]
T − var

Γ, X : CAPR(t)[T ] ⊢ P : CAPR(t)[T ]

Γ ⊢ rec X.P : CAPR(t′)[T ]
T − rec

Γ ⊢ P : CAPR(t)[T ]

Γ ⊢ in m.P : CAPR(t)[T ]
T − in

Γ ⊢ P : CAPR(t)[T ]

Γ ⊢ out m.P : CAPR(t)[T ]
T − out

Γ ⊢ P : CAPR(t)[T ] Γ ⊢ m : CAAM(s, e)[T ′]

Γ ⊢ inδ m.P : CAPR(t+ e)[T ]
T − coin

Γ ⊢ P : CAPR(t)[T ] Γ ⊢ m : CAAM(s, e)[T ′]

Γ ⊢ outδ m.P : CAPR(t− e)[T ]
T − coout

Γ ⊢ m : CAAM(s, e)[T ] Γ ⊢ P : CAPR(t)[T ]

Γ ⊢ open m.P : CAPR(t− e+ s)[T ]
T − open

Γ ⊢ m : CAAM(s, e)[T ] Γ ⊢ R : CAPR(t)[T ]

Γ ⊢ open{m, h}.R : CAPR(t)[T ]
T − coopen

Γ ⊢ 0 : U
T − nil

Γ ⊢ m : CAAM(s, e)[T ] Γ ⊢ P : CAPR(a)[T ]

Γ ⊢ m[P ] : CAPR(t)[T ′]
T − amb

Γ, n : A ⊢ P : U

Γ ⊢ (νn : A)P : U
T − res

Γ ⊢ P : CAPR(t)[T ] Γ ⊢ Q : CAPR(t′)[T ]

Γ ⊢ P |Q : CAPR(t+ t′)[T ]
T − par

Γ ⊢ m : A

Γ ⊢< m >: CAPR(t′)[t, A]
T − snd

Γ, x : A ⊢ P : CAPR(t)[t, A]

Γ ⊢ (x : A)P : CAPR(t′)[t, A]
T − rcv



2.4 Critical Remarks 79

not directly address the enforcement of information flow policies, which we
strongly disagree with. While the programming language-based technique
they propose adds another layer of protection, it does not dismiss the need
for the other layers (encryption, access control, etc.). In our opinion, the col-
laborative use of all means of policy enforcement only strengthens the target
system. Moreover, we feel that there is a need for additional verification, as
the error-prone programming process may require appropriate checking.

Martins [72] states that the type system he proposed eliminates policy vio-
lations. Still, the security policies manually specified by a network adminis-
trator are the potential weak link. There is no guarantee that the policies
correspond to the desired implementation unless formal verification or com-
prehensive testing are performed.

The runtime enforcement automata approach of Bauer, Ligatti and Walker
[8, 9, 10] only concerns dynamic enforcement at runtime, rather than pro-
viding persistent controls. Every subsequent execution of a non-compliant
program still requires the effort to modify the behavior, unless the source
code is adjusted following an initial run. Our methodology could be used in
conjunction with it, and not as a substitute.

The interface equation provides an interesting formulation for the security
enforcement problem. The ideas presented to date refer more to the extrac-
tion of specifications and converters, rather than offer a fitting answer to our
issue. We adopt a different approach that is detailed in Chapter 6 of the
thesis.

The translation of local security policies as defined by Orlovsky [83] is not
as straightforward as desired. By contrast, system and policy specification
with our calculus is simple and can be easily automated. An implementation
of our system specification technique has already been obtained with PEP,
an application developed under our supervision.

The work of Miksad [75] does tackle policy specification, but not the en-
forcement aspects. We are employing our own calculus and logic for the
system and policy specification and the interface equation for verification
and enforcement.



2.4 Critical Remarks 80

The merits of earlier papers on linking security policy specification and the
ambient calculus, such as the article of Braghin et al. [15], are obvious. How-
ever, our methodology is among the first instances we are aware of where
policy enforcement is also added to the mix in order to guarantee policy
compliance through enforcement. The unifying framework that we built pro-
vides a coherent platform for all stages of system design and maintenance,
from specification, to resource protection and security policies enforcement.
Such a framework elevates the level of confidence and trust associated with
the underlying system.





Applicability to Security

Behaviour Analysis

82





Chapter 3

A Calculus for Distributed

Firewall Specification and

Verification

Abstract

This chapter proposes a firewall specification calculus suited for expressing
security policies implemented in distributed firewalls. Our syntax and se-
mantics, inspired from the ambient calculus, allow the specification of filter-
ing rules for both single and distributed configurations. We show how the
calculus can be used to address the problem of conflict detection and how our
approach facilitates the analysis of the effect that network topologies have on
distributed firewall policies.

3.1 Introduction

Security has become a major component of network planning in recent years
and the infrastructure supporting it is more and more complex. Most cor-
porate networks are divided into several internal and external sub-networks
protected by firewalls collaborating to implement a global security policy.
The problem of enforcing a global security policy through distributed fire-
walls can be very challenging. Each firewall implements a local policy that
needs to be in harmony with the global one. Otherwise, conflicts will arise
and security can be breached.

84



3.2 Ambients and Firewall Policies 85

This chapter is structured as follows. Section 3.2 describes briefly the am-
bient calculus and firewall policies. Section 3.3 presents our calculus suited
for representing network packets, network topologies and firewall policies.
Section 3.4 provides the framework needed for verifying distributed firewall
policies compatibility. The case study provided in Section 3.5 illustrates how
our calculus can be applied to specify a network example and to detect a
conflict in a distributed firewall policy of the network. Section 3.6, concludes
this chapter and states some possible extensions for this work.

3.2 Ambients and Firewall Policies

The concept of ambient calculus was originally introduced in [21]. An am-
bient is a delimited space that has a name, an interior and an exterior and
can contain processes. The movement of the ambient processes is governed
by their capabilities to go in and out of an ambient or open them. More-
over, an ambient can move inside or outside another ambient, carrying the
enclosed processes with it. The syntax of ambient calculus is based on three
components: processes, capabilities and names. The mobility of an ambient
depends on the capabilities of the enclosed processes: in, out and open. The
in capability gives an ambient the capacity to enter a co-located ambient and
the out capability allows an ambient to leave its parent. The open capability
dissolves the borders around an ambient. The operational semantics of the
ambient calculus is based on a structural congruence between processes and
reduction relations.

Firewalls implement security policies in order to provide protection from
unwanted and potentially harmful packets. Firewall policies are sets of rules
that filter network packets and control access of inbound traffic to various
parts of the network, specifying through an accept or deny action what goes
through behind the firewall. Besides their actions, rules have several filtering
fields. The most commonly used fields are the source and destination IP
address, the name of the protocol used for communication and the source
and destination ports used by the protocol. When a new packet arrives at
the firewall, those fields are read and checked against the rules of the firewall.
The NIST recommendation for firewall policies [59] proposes the following



3.3 Distributed Firewall Specification 86

common format for packet filtering rules:

order prot src_ip src_port dest_ip dest_port act

Rules are organized hierarchically, the most important ones being at the top
of the set. They are applied in that order to all the packets. The order
is highly important, as it can dramatically change the effect of the policy.
The right collection of rules applied in the wrong order can simply cancel
the advantages of using a firewall for filtering. Policy design is not an easy
task, especially if the rule-set is fairly large. It is not uncommon to have
more than 20 rules and that can generate internal conflicts. The types of
anomalies inherent to local filtering packet firewalls, as described in [3], are:
shadowing, correlation, generalization, redundancy and irrelevance.

Local security policies are implemented in single firewalls. A global secu-
rity policy employs several firewalls in a distributed configuration and takes
into account the interaction between them. Hence, a firewall policy can be
distributed across several sub-networks, depending on the trust relationship
between sub-networks and the topology used. For instance, in a simple bus
topology with three sub-networks A, B and C, the security administrators
of A may have the option to choose between employing single or distributed
firewalls. Implementing a single firewall at the border between A and B re-
sults in filtering all traffic from both B and C. If, however, A trusts B, the
administrators can rely on B to protect A from all the unwanted traffic com-
ing from C. Then they only need to specify the rules filtering traffic from B
in the local firewall separating A and B. Such a configuration that requires
cooperation of local firewalls to achieve a common security goal identifies a
distributed firewall.

3.3 Distributed Firewall Specification

In this section we define the syntax and semantics of a calculus suited for
distributed firewall specification. Following [21], we use the concept of ambi-
ent that provides a flexible way for modeling mobility aspects in hierarchical
structures, such as networks. We consider as ambient a delimited space pro-
tected by a filtering rule. The basic idea is to treat networks as processes
protected by firewalls, which are also seen as processes. This uniform ap-



3.3 Distributed Firewall Specification 87

proach allows an intuitive examination of the filtering capabilities of single
and distributed firewall policies.

3.3.1 Syntax

We present in Table 3.1 the syntax of our calculus called Firewall Policy
Calculus (FPC ).

The following can be processes:

• inactivity: 0 is a process that does nothing;

• parallel composition: P | Q refers to parallel execution of processes
P and Q; it is a commutative and associative operator;

• capability: the in cond.P allows a process P to enter in some cases an
ambient protected by the condition cond.

• ambient: act
cond[P] denotes a network P protected by a filtering rule for

the inbound traffic; in this syntactic construct act denotes the action
of the filtering rule deny or accept and cond denotes the condition of
the filtering rule: a conjunction of predicates; each predicate is used to
specify packet header information (IPs and ports expressed as src_ip,
src_port, dest_ip, dest_port, protocols expressed as prot);

• conditional choice: ⊗ is a binary operator used to build ordered
composed filtering rules.

We denote by P the set of all processes described by our semantics and
by C the set of all conditions described by our semantics. Conditions are
made of a single predicate or conjunctions of predicates and they deter-
mine if rules apply or not to packets. The decimal value num is in the
range 0-255 for addresses and in the range 1-10000 for port numbers. For
instance, the following is a predicate: src_ip = 132.213.10.12, dest_ip =
132.210.1.12 . . . 132.210.1.254, prot = tcp and dest_port = 80.

Intuitively, the process act
cond[P] describes a piece of a network P protected by

a filtering rule cond → act. Any network packet can enter P if the packet



3.3 Distributed Firewall Specification 88

Table 3.1: Syntax of FPC

P,Q ::= processes

| 0 inactivity

| P | Q parallel composition

| !P replication

| in cond.P capability

| act
cond[P] ambient

| P⊗ Q conditional choice

act ::= accept | deny rule actions

cond ::= predicate | cond ∧ cond condition

predicate ::= predicate

| address = adr_val [. . . adr_val]

| port = val_port

| prot = name_prot

address ::= src_ip | dest_ip addresses

port ::= src_port | dest_port ports

val_port ::= val [. . . val] | ∗ port numbers

name_prot ::= tcp | udp | icmp | ∗ protocol names

adr_val ::= val.val.val.val address value

val ::= num | ∗ value



3.3 Distributed Firewall Specification 89

header satisfies cond and act is an accept. This guarantees that all legitimate
traffic will be allowed in and all unwanted traffic will be filtered out.

While a rule alone can be a firewall policy, it is not often the case in practice.
Policies are ordered sets of rules and they can be combined for modeling
networks that implement more than one policy. With our syntax, we use the
⊗ operator to build firewall policies from rules. For instance, P ⊗ Q could
describe a process where P has the form act

cond[P
′] and Q symbolises an ambient

firewall process.

3.3.2 Semantics

We now give the operational semantics of the firewall policy calculus. It
consists of two main sections: structural congruence, denoted by ≡, and re-
duction relation, denoted by →. The structural congruence ≡ is defined in
Table 3.2 and illustrates process equivalence in the context of our calculus.
Properties such as reflexivity, symmetry, transitivity, parallelism, commuta-
tivity and associativity are quite obvious. Replication and replication paral-
lelism are used for expressing iterations and recursion. This is important for
describing, for instance, that a certain process attempts repeatedly to access
a protected domain. Note that, since rule composition order is relevant, the
composition operator ⊗ is not commutative.

The reduction relation defined in Table 3.3 is based on the ambient capabil-
ities of the processes embedded in the matched packets. We denote by →∗ a
sequence of reduction relations. If there is no further reduction possible for
a process P, we say that the process is in its normal form with respect to the
reduction relation and denote it by P⇓. For instance, let P = in c.Q | acceptc′ [R].
Its normal form P⇓, obtained by applying the reduction relation in Table 3.3,
is accept

c′ [Q | R]. A normal form exists for any process and it is unique.

The semantics of a condition c, denoted [[ c ]], is the set of all packets satisfying
c. More formally:

{

[[ p ]] = {t ∈ T : p(t) = true}
[[ c1 ∧ c2 ]] = [[ c1 ]] ∩ [[ c2 ]]

where p is a predicate and T is the set of all possible packets. The "_"



3.3 Distributed Firewall Specification 90

Table 3.2: Structural Congruence

P ≡ P (Reflexivity)

P ≡ Q⇒ Q ≡ P (Symmetry)

P ≡ Q ∧ Q ≡ R⇒ P ≡ R (Transitivity)

P ≡ Q⇒ P | R ≡ Q | R (Parallelism)

P ≡ Q⇒ !P ≡ !Q (Replication)

P ≡ Q⇒ in cond.P ≡ in cond.Q (Capability)

P | 0 ≡ P (Zero Parallelism)

P | Q ≡ Q | P (Commutativity)

(P | Q) | R ≡ P | (Q | R) (Associativity)

!P ≡ P | !P (Replication Parallelism)

P⊗ P ≡ P (Idempotent)

P ≡ Q⇒ P⊗ R ≡ Q⊗ R (Comp Distributivity)



3.3 Distributed Firewall Specification 91

Table 3.3: Reduction Relation

(1) P′ → Q′ if P′ ≡ P , P → Q,

Q ≡ Q′

(2) P | R → Q | R if P → Q

(3) in c.P | acceptc′ [Q] → accept
c′ [P | Q] if [[ c ]] ⊆ [[ c′ ]]

(4) in c.P | denyc′ [Q] → deny

c′ [Q] if [[ c ]] ⊆ [[ c′ ]]

(5) in c.P |
_
c′ [Q] →

_
c′ [Q] if [[ c ]] ∩ [[ c′ ]] = ∅

(6) in c.P | acceptc′ [Q]⊗ R → accept
c′ [P | Q]⊗ R if [[ c ]] ⊆ [[ c′ ]]

(7) in c.P | denyc′ [Q]⊗ R → deny

c′ [Q]⊗ R if [[ c ]] ⊆ [[ c′ ]]

(8) in c.P |
_
c′ [Q]⊗ R →

_
c′ [Q]⊗ (in c.P | R) if [[ c ]] ⊆ [[ c′ ]]



3.4 Distributed Firewall Verification 92

operator is used to symbolize either an accept or a deny action in rules (4)
and (7) from Table 3.3, where both actions would have the same effect.

In our calculus, we code a network packet by a process in c.P where c rep-
resents the information header (source and destination addresses, ports, and
protocol) and P stands for the packet’s body. The in capability allows the
packet to travel without restriction within the network it originated in. How-
ever, in order to enter another network protected by a firewall, it needs to
satisfy the conditions imposed by the firewall policy rules. Note that the
packet body P forms a process by itself and contains the data that will be
interpreted by the destination host.

Intuitively, the process in c.P | acceptc [Q] can be reduced to accept
c [P | Q] since

the packet header c satisfies condition c. In this case, the processes contained
within the packet can execute inside the protected ambient.

3.4 Distributed Firewall Verification

In this section we introduce the notion of policy compatibility and describe
our technique for distributed firewall verification. We employ our formalism
for specifying network topologies and provide the framework for assessing if
local policies comply or not with the global firewall policy.

Security policies needed for protecting a certain network can be implemented
in a single firewall or in several distributed firewalls. Policy specification is
not a simple task and it is error-prone. Even simple firewalls can contain
intra-policy anomalies. Switching the order of two rules can lead to shadow-
ing, correlation, generalization and coordination, as detailed in [3]. Firewalls
in distributed environments face even greater challenges. Besides the afore-
mentioned anomalies, there could be conflicts between the policy of a single
firewall and the global policy of the rest of the environment. For the scope of
this chapter we take into account inter-firewall incompatibilities. The intra-
firewall anomalies will affect individual local firewall policies at a lower level
and their effect does not impact directly the distributed policy.

The notion of security policy compatibility is now introduced in order to
assess if a policy transgresses or not another policy. Let φ1 and φ2 be two



3.4 Distributed Firewall Verification 93

c).  ring topologyb).  star topology

a).  bus topology

C

FWBC

FWAB

BC

FWAC

A

D

B

FWBD

FWBC

FWAB

A

CφBC
[B]

BφBC
[C]

CφAC
[A]

DφBD
[B]

CφBC
[B]

CφBC
[B]

BφAB
[A]

BφAB
[A]

BφAB
[A]

FWBCFWAB

CBA

Figure 3.1: Network topologies and distributed firewalls

FPC security policies. The notation ⇓ is used to show that the policy is in
its normal form. We say that φ1 is compatible with φ2, noted φ1 ≥ φ2, if
φ1 is equally or more permissive than φ2. In other words, if a packet is not
allowed to pass by φ1, then it is certainly not allowed by φ2. Formally:

φ1 ≥ φ2 ⇒ ∀ c ∈ C, P ∈ P | in c.P | (φ1)⇓ →
∗ (φ1)⇓ ⇒ in c.P | (φ2)⇓ →

∗ (φ2)⇓

Solving any compatibility issue is vital in the context of distributed firewalls.
A badly implemented local filtering policy can endanger the whole network.
We address this problem by proposing a technique for distributed firewalls
verification. We evaluate the effect of each individual local policy and com-



3.4 Distributed Firewall Verification 94

pare it with the combined policies of the other firewall policies. If the local
policy is more permissive than the global one, then they are compatible. If,
on the contrary, the local policy is less permissive (i.e. blocks packets that are
otherwise allowed by the global policy), then the global policy transgresses
(or violates) the local policy and one of them needs to be corrected.

Let FWAB be a local firewall in a distributed firewall configuration imple-
menting the global policy Gnet. In the following, BφAB

[A] denotes that network
A is protected from traffic from network B by the filtering policy φAB imple-
mented in firewall FWAB. We denote by GAB the global policy for the rest of
the network. Unlike the case of the local firewall FWAB, we cannot specify
GAB as it depends on network topology.

The three basic network topologies (bus, star and ring) are presented in
Figure 3.1. All relations are expressed from network A’s perspective. As
expected and confirmed by the topology specification presented in Table 3.4,
more connections between networks translate into more paths for a packet
to reach its destination. Any network, irrespective of its complexity, can be
represented starting from those three basic topologies. An efficient graph al-
gorithm can be implemented in order to automate the topology specification,
as the intricacy of a large, well-connected network would make the manual
enumeration of all the components very difficult. However, distributing a
global policy over a large number of local firewalls is not very practical and
a combination of distributed policies may be desirable.

Table 3.4: Distributed firewall topology specification

bus: A | BφAB
[A] | CφBC

[BφAB
[A]]

star: A | BφAB
[A] | CφBC

[BφAB
[A]] | DφBD

[BφAB
[A]]

ring: A | BφAB
[A] | CφBC

[BφAB
[A]] | AφAC

[CφBC
[BφAB

[A]]] | CφAC
[A] |

BφBC
[CφAC

[A]] | AφAB
[BφBC

[CφAC
[A]]]



3.5 Case Study 95

The policy GAB is extracted from the network topology specification by elim-
inating all policies that contain BφAB

[A] and the process A, which contains no
policy and has no effect on traffic filtering. For instance, for the simple ring
topology presented in Figure 3.1, we have:

GAB : CφAC
[A] | BφBC

[CφAC
[A]] | AφAB

[BφBC
[CφAC

[A]]]

The verification process consists then in checking if a packet in c.P has at least
the same capability to cross FWAB as it has to cross the rest of the network,
protected by the policy GAB. Otherwise, there is a conflict between the two
policies. In case the global distributed policy is not compatible with the local
policy(written Gnet � φAB), we have the following verification relation:

∃ c ∈ C,P ∈ P | in c.P | GAB →
∗ (G′

AB
)⇓, (GAB)⇓ 6= (G′

AB
)⇓

∧ in c.P | (BφAB
[A])⇓ →∗ (BφAB

[A])⇓ ⇒ GAB � BφAB
[A]

The bus topology is a special case. Since local policies are cascaded, adding a
new layer of protection on top of the previous ones, compatibility is inherent
to this topology. Therefore, compatibility propagates from the innermost
firewall policy towards the peripheral ones, as stated in Proposition 3.4.1
below.

Proposition 3.4.1 In a bus network topology, there are no incompatibilities
between any local policy and the global firewall policy.

Proof

The proof is done by induction on the number n of networks composing the bus,
with n ≥ 3. For n = 3, it is easy to see that the global policy of the rest of the
network, GAB = CφBC

[BφAB
[A]], contains the local policy BφAB

[A]. Hence, the global
policy GAB cannot allow a traffic prohibited by the local policy implemented by
FWAB. Therefore, Gnet ≥ φAB .

3.5 Case Study

In this section we present in detail how our calculus is used to specify and
verify the example network illustrated in Figure 3.2. The network is com-
posed of three subnetworks A, B and C, connected through the distributed



3.5 Case Study 96

firewalls FWAB, FWAC and FWBC respectively. An unfitting local security
policy is implemented in one firewall (FWAC in our case). We detect the
filtering policy incompatibility by using our firewall policy calculus.

b

φbc

net

a φac

c

c

B

FWAB

A

FWAC

C

φab

b

φbc

FWBC

Figure 3.2: Example network with distributed firewalls

The ambient representation of the network from network A’s perspective is
also depicted in Figure 3.2. We denote by net the whole network and by a, b
and c the subnetworks corresponding to A,B and C. The presence of sub-
ambients c and b inside ambients b and c, respectively, indicates the alternate
paths that processes can take in order to reach a.

The IP addresses range for nodes of network A is 132.156.0.1 - 132.156.255.255.
For network B, the range is 132.155.21.1 - 132.155.60.255, and for C it is
132.155.0.1 - 132.155.20.255. An ftp server with the IP address 132.156.40.100
exists in A along with a www server with the IP address 132.155.10.100 in C.
The local security policies for the three distributed firewalls are as follows.
Firewall FWAC allows traffic from port 80 of all hosts in A to the www server
in C and blocks any traffic from C to A. Firewall FWAB allows traffic from
port 21 of hosts with src_ip = 132.155.*.* to port 21 of the ftp server in A
and denies all traffic from A to B. Firewall FWBC allows traffic from port
80 all hosts in B to the www server in C and also allows traffic from port
21 of hosts in C with src_ip = 132.155.*.* to port 21 of the host with src_ip

= 132.156.40.100. Using the format recommended in [59] for firewall rules
specification, we obtain the local firewall policies shown in Tables 3.5, 3.6
and 3.7.



3
.5

C
a
se

S
tu

d
y

97

Table 3.5: Local policy of firewall FWAC

order prot src_ip src_port dest_ip dest_port act

1 : tcp 132.156.0.1− 132.156.255.255 80 132.155.10.100 80 accept

2 : tcp 132.155.0.1− 132.155.20.255 ∗ 132.156.0.1− 132.156.255.255 ∗ deny

Table 3.6: Local policy of firewall FWAB

order prot src_ip src_port dest_ip dest_port act

1 : tcp 132.155. ∗ .∗ 21 132.156.40.100 21 accept

2 : tcp 132.156.0.1− 132.156.255.255 ∗ 132.155.21.1− 132.155.60.255 ∗ deny

Table 3.7: Local policy of firewall FWBC

order prot src_ip src_port dest_ip dest_port act

1 : tcp 132.155.21.1− 132.155.60.255 80 132.155.10.100 80 accept

2 : tcp 132.155. ∗ .∗ 21 132.156.40.100 21 accept



3.5 Case Study 98

The example network is a basic ring topology as in Figure 3.1 and therefore
the topology specification is:

A | BφAB
[A] | BφBC

[CφAC
[A] | CφAC

[A] | CφBC
[BφAB

[A]| AφAC
[CφBC

[BφAB
[A]]

| AφAB
[BφBC

[CφAC
[A]]]

We use the notations akij and ckij to denote the action and condition of rule
number k of the local policies φij, with i 6= j and i, j ∈ {A,B,C}. This allows
us to specify the local firewall policies using our calculus. For instance, the
policy for the firewall FWAB protecting network A from inbound traffic from
network B has the is specified as:

BφAB
[A] =

a1
AB

c1
AB

[A] ⊗
a2
AB

c2
AB

[A]

where c1AB, a
1
AB, c

2
AB and a2AB are obtained from Table 3.6:

c1AB : src_ip = 132.155. ∗ . ∗ ∧ src_port = 21

∧ dest_ip = 132.156.40.100
∧ dest_port = 21 ∧ prot = tcp

c2AB : src_ip = 132.156.0.1− 132.156.255.255 ∧ src_port = ∗
∧ dest_ip = 132.155.21.1− 132.155.60.255
∧ dest_port = ∗ ∧ prot = tcp

a1AB = accept; a2AB = deny

The other two local policies can be specified in a similar manner using
our calculus and the corresponding NIST format from Tables 3.5 and 3.7.

Proposition 3.5.1 The local firewall policy φAC is not compatible with the
global firewall policy Gnet of the whole network.

Proof:

The formalism we developed in this chapter is used to verify that
the network contains a security policy incompatibility. We prove this
statement by choosing a particular packet that is denied direct access



3.5 Case Study 99

to network A through firewall FWAC , but can reach A by crossing
FWBC and FWAB , as allowed by the global policy. Therefore, the
global policy of the rest of the network is more permissive than the local
policy implemented by FWAC and transgresses it: GAC � CφAC

[A].

We examine the local policy of firewall FWAC and compare it with the
global policy of the rest of the network. The point is to demonstrate
that even though direct access for packets from C to A is denied, the
transgressing global policy GAC allows the process P from a particular
packet in c.P to enter network A and be executed in parallel with the
process A.

Let in c.P be the packet originating in network C, with c being a con-
junction of the following predicates: src_ip = 132.155.5.25, src_port

= 21, dest_ip = 132.156.40.100, dest_port = 21, and prot = tcp.

The expressions for c1AC, a
1
AC, c

2
AC and a2AB are obtained from Table 3.5:

c1AC : src_ip = 132.156.0.1 − 132.156.255.255 ∧ src_port = 80

∧ dest_ip = 132.155.10.100 ∧ dest_port = 80 ∧ prot = tcp

c2AC : src_ip = 132.155.0.1 − 132.155.20.255 ∧ src_port = ∗
∧ dest_ip = 132.156.0.1 − 132.156.255.255
∧ dest_port = ∗ ∧ prot = tcp

a1AC = accept; a2AC = deny

We compare the attributes of the conditions c, c1AC and c2AC and observe
that [[ c ]] ∩ [[ c1AC ]] = ∅ and [[ c ]] ⊆ [[ c2AC ]] . Then, the first rule does
not apply. However, the action of the second rule is deny, so there is
no reduction and no packet from C can enter A through FWAC . In
this case:

in c.P |
a1
AC

c1
AC

[A] → in c.P |
a1
AC

c1
AC

[A]

Then, the process CφAC
[A] is already in its normal form with respect

to the reduction relation:

in c.P | (CφAC
[A])⇓ →

∗ (CφAC
[A])⇓ (8)



3.5 Case Study 100

We now examine the network without the local firewall FWAC . The
global policy GAC is obtained by removing all instances containing φAC

from the topology specification:

GAC = BφAB
[A] | CφBC

[BφAB
[A]] (9)

First, we need to check if the packet can at least reach inside network
B. To do so, we execute it in parallel with the local policy protecting
network B from traffic coming from C, CφBC

[B]:

in c.P | CφBC
[B] = in c.P |

a1
BC

c1
BC

[B] ⊗
a2
BC

c2
BC

[B]

For our packet, we have already specified c as:

c : src_ip = 132.155.5.25 ∧ src_port = 21 ∧ dest_ip = 132.156.40.100
∧ dest_port = 21 ∧ prot = tcp

We compare one by one the predicates of conditions c and c1
BC

and
conclude that [[ c ]] ⊆ [[ c1

BC
]]. In this case, the reduction rule (5) from

Table 3.3 applies and we obtain:

in c.P |
a1
BC

c1
BC

[B] →
a1
BC

c1
BC

[P | B]

Since rule 1 matches our packet, rule 2 can be ignored as it will have
no effect on the packet. This means that the process P is able to enter
network B, which is what we intended to verify as a first step. The
reduction relation for the local policy becomes:

in c.P | CφBC
[B] →

a1
BC

c1
BC

[P | B] ⊗
a2
BC

c2
BC

[B]

Next, we need to find out if our special packet can reach inside net-
work A. In order to evaluate the capabilities our chosen packet with
respect to the process A, we execute it in parallel with the local policy
protecting network A, BφAB

[A]:

in c.P | BφAB
[A] = in c.P |

a1
AB

c1
AB

[A] ⊗
a2
AB

c2
AB

[A]

The comparison of the conditions c and c1
AB

reveals that [[ c ]] ⊆ [[ c1
AB

]].
Again, the reduction rule (5) from Table 3.3 applies and we obtain:

in c.P |
a1
AB

c1
AB

[A] →
a1
AB

c1
AB

[P | A]



3.6 Conclusion 101

This means that the process P is able to enter network A and execute
inside in parallel with process A. Since rule 1 matches our packet, rule
2 can be ignored as it will have no effect on the packet. The reduction
relation for the local policy becomes:

in c.P | BφAB
[A] →

a1
AB

c1
AB

[P | A] ⊗
a2
AB

c2
AB

[A] (10)

From (9) and (10) we obtain:

in c.P | GAC → (
a1
AB

c1
AB

[P | A] ⊗
a2
AB

c2
AB

[A] ) | CφBC
[BφAB

[A]] (11)

Then, the global firewall policy GAC allows P to enter A and it trans-
gresses the local policy FWAC . At this point, taking into account
expressions (8) and (11) and our verification relation from Section 3.4,
we state that the local firewall FWAC is not compatible with the global
policy of the distributed firewall configuration:

GAC � CφAC
[A]

The problem can be solved either by opening FWAC to accept some
traffic from C to A (local policy change) or by blocking packets from
C in the other firewalls (global policy change). ✷

3.6 Conclusion

In this chapter we have presented a new approach for specifying and veri-
fying distributed security policies implemented in distributed firewalls. Our
contributions include the formal syntactic and semantic definitions of a new
description formalism inspired from the ambient calculus and a formal rea-
soning framework for distributed firewall verification. We demonstrate by a
case study how our new calculus can be used to address the problem of con-
flict detection in distributed firewalls and how it facilitates the analysis of the
effect that network topologies have on distributed firewall policies. The point
of our research is to identify, where applicable, how legitimate packets can
be stopped from reaching their destination and potentially harmful packets
are able to get through. The new concepts of order and compatibility allow
us to compare policies. For instance, using these concepts, we proved that
no conflicts can arise between local policies in a bus topology network.



3.6 Conclusion 102

Further development of the work presented here can be considered. Refine-
ments in firewall policy specification could allow the elimination of intra-
firewall anomalies. Also, the extraction of the appropriate local policies from
a given global policy seems to be a complementary extension of this work.
In addition, dynamic reconfiguration of firewall policies based on topology
changes would be an exciting prospect.





Chapter 4

Intruder Oriented Security

Behavior Analysis of Computer

Systems

Abstract

This chapter proposes a formal approach for specifying and verifying com-
puter systems security behavior. Using our methodology, systems and their
interactions are modeled through processes with a new dedicated calculus in-
spired from the ambient calculus. We demonstrate how, given a network
security policy implementation, our dedicated calculus allows to verify that
the specification offers or not sufficient protection from a malicious intruder.

4.1 Introduction

Proper implementation of a security policy has always been a crucial step in
providing the level of protection required for a certain computer system or
network. There is no shortage of effective implementations of such specifi-
cations. However, due to the abstractions inherent to the very high level of
those specifications, there is often a significant mismatch between what was
intended and the actual result of the applied policy. Several factors come
into play when defining constraints, including the depth of the knowledge of
the systems, their complexity, architectural changes etc. In many cases the
compound effect of permissions and restrictions amounts to unforeseen sce-

104



4.2 Computer Systems Security Specification 105

narios that can jeopardize the overall security of the system. We propose a
formal technique for computer systems specification and verification. A new
dedicated calculus is defined for the purpose of system specification. Our cal-
culus builds on the basic concepts of the ambient calculus. Our work focuses
on the issues of modeling the system’s behavior and checking if the system
satisfies a given security policy. This is only the first phase of a compre-
hensive approach towards guaranteed policy compliance. It consists in the
development of a specification language that is powerful enough to express
the dynamic behavior of system security at both system and network levels.

The remainder of this chapter is organized as follows. Section 4.2 presents
our new calculus suited for system and network specification. The case study,
depicted in section 4.3, illustrates how our calculus can be applied both to
specify a network and to correct an inadequate implementation of a secu-
rity policy. Section 4.4 concludes this chapter and discusses an envisioned
extension of this work.

4.2 Computer Systems Security Specification

In this section we define the syntax and semantics of a calculus suited to
specify, at an abstract level, a given network with the behaviors of network
components, including network protection through security policies and the
behavior of a malicious intruder.

4.2.1 Syntax

We present in Table 4.1 the syntax of our calculus, which we call Security
Specification Calculus (or SSC, in short). Contrary to the one of Gordon[21],
our syntax allows the specification of resources, protection, rights, and control
policies. Moreover, it is capable to describe the interaction with a potential
intruder. We model these components in terms of processes and process
interaction.

Let N be a set of names, K be a set of keys and X be a set of variables. The
following sub-categories can be processes:

• inactivity: 0 is a process that does nothing;



4.2 Computer Systems Security Specification 106

• parallel composition: P | Q refers to parallel execution of processes
P and Q; it is a commutative and associative operator;

• replication: The process !P denotes the unbounded replication of the
process P;

• ambient: ke,ks
n [P] denotes an ambient called n containing a resource

(specified by the process P) protected by the keys necessary for entering
or exiting from the protected ambient in order to interact with the
resource.

• action: a.P depicts the sequential behavior of a process as a sequence:
it first uses its a capability and than behaves like P.

The following sub-categories refer to process capabilities:

• movement: movkn refers to the capability of a process to move using
the appropriate ambient key. Depending on the value of the key k,
there are two types of movements: an access movement and an exit
movement. The access movement allows process to enter an ambient n
protected by the access key ke. The exit movement allows a process to
exit from an ambient n protected by the exit key ks;

• key request : reqxn,t allows a process to make a request for an access
key ke or an exit key ks dépending on the value of the parameter t;

• exploration: exp allows representation of dynamic processes that can
non-deterministically choose what their next action is;

• key publication: pubkn,t refers to the publication of the access or exit
key of an ambient depending on the value of the parameter t;

• compositional choice: a⊕b refers to the choice operator that allows
the future evolution of a process to be defined as a choice involving all
possible combination of capabilities a and b of a process (a⊕ b).P;

• nondeterministic choice: a⊓b refers to a choice operator that allows
the future evolution of a process to be defined as a choice involving two
component capabilities of a process (a ⊓ b).P, but does not allow the
environment any control over which capability will be selected.



4.2 Computer Systems Security Specification 107

Table 4.1: Syntax of SSC

n ∈ N name

x ∈ X variable

k ∈ K key

t ∈ {e, s} type of key

P,Q ::= processes

0 inactivity

| P | Q parallel composition

| !P replication

| ke,ks
n [P] ambient

| a.P sequence action

a, b ::= process capabilities

| movkn movement

| pubkn,t key publication

| reqxn,t request key

| exp exploration

| a⊕ b compositional choice

| a ⊓ b nondeterministic choice



4.2 Computer Systems Security Specification 108

In our approach an ambient has a name and it is protected by access and
exit keys (ke and ks) that denote controlled access to resources. Therefore,
processes must know the appropriate key in order to be allowed to enter an
ambient that contains the resource it seeks. The permissions assigned to a
processes reside in its movement capabilities (namely mov). A process will
take the action invoked by such capabilities in order to continue its execu-
tion. The exp operator is a dedicated construct that mimics an intruder’s
behavior. The behavior of the intruder is modelled by the set of capabili-
ties that it can acquire through exploration and use whenever it pleases (i.e.
nondeterministic). This is what differentiates legitimate, regular processes
from the one representing the intruder. However, the fact that a process
is able to access a protected ambient does not automatically translate into
an exit capability. In many cases, a process will cease to move around once
it reaches its final destination. This possible process behavior is reflected
by the requirement for defining distinctive access and exit keys. Security
(or control) policies are responsible for granting the rights to use resources
through key publication.

Our formal calculus can be used to specify an abstraction of both the in-
ternal (inter-process) and the external (inter-system) physical connections.
For instance, direct links between computers are simply assimilated to a sup-
plemental level of protection for the target computer. This corresponds in
practice to permissions from both ends to use the link. A process running
inside computer A attempting to reach another process inside computer B
will need to exit its home ambient and be allowed by B’s ambient to enter.
Our calculus is also suitable for representing complex network devices such
as routers and switches, that can have their own intricate access policies.

The fact that processes are represented sequentially in our model means that
the very first action has to be taken before the next one is executed. If, for
any reason, the action cannot be completed, the process is blocked until the
right conditions exist to allow it to continue. Some processes have a pre-
dictable behavior in the sense that their sequence of actions is predefined.
For instance, the process movken .0 will attempt to enter the ambient n pro-
tected by the key ke and then stops. Moreover, the exp operator has been
introduced in order to capture the behavior of dynamic processes like the
intruder, for instance, which is not forced to execute a specific action, and



4.2 Computer Systems Security Specification 109

can instead carefully plan his next move for maximum gain as he attempts to
build a complex attacks. Such processes have a different behavior depending
on their interaction with the rest of the system. We detail this aspect in
section 4.2.2, dedicated to the semantics of our calculus.

4.2.2 Semantics

In this section we present the operational semantics of our calculus. It con-
sists of the definition of a structural congruence between processes, denoted
by ≡, and a reduction relation, denoted by →. The structural congruence is
defined in Table 4.2 and illustrates process equivalence in the context of our
calculus. Properties such as reflexivity, symmetry, transitivity, parallelism,
commutativity and associativity are quite obvious. The capabilities are also
straightforward. Replication is used for expressing iterations and recursion.
The latter is important for describing, for instance, that a certain process
attempts repeatedly to access a protected domain.

The reduction relations defined in Table 4.3 captures the process behavior
depending on the process capabilities and the configuration in term of pro-
tections of its environment. Rules (1) and (2) are trivial. Rule (3) depicts
the fact that, given the right capability, a processes can enter a protected
ambient. Ability to exit a protected ambient is presented by rule (4). A
request for the proper key from the appropriate publication service resulting
in the communication of the key is captured by rule (5). The key is not
automatically used by a mov form in the process. Processes can know a key
and never use it. If, at some points in its execution thread, an action calls
for that particular key, it is available to the processes and it will be used.
Rule (6) describes the behavior of the intruder. It captures the way that the
intruder process can, at will, use an access or exit movement if it leads to any
further advantage. This relation adds to the intruder’s knowledge and gives
him new movement capabilities. The expression (movktn ⊕ exp) from rule(6)
can take one of four values, as described by the (Compositional Choice)
expression from the structural congruence relation presented in Table 4.2.
Further combined with the (Execution Choice) expression from the same
table, we have:

(movktn ⊕ exp).P ≡ (movktn .P) ⊓ (exp.P) ⊓ (movktn .exp.P) ⊓ (exp.movktn .P)



4.2 Computer Systems Security Specification 110

Table 4.2: Structural Congruence

P ≡ P (Reflexivity)

P ≡ Q⇒ Q ≡ P (Symmetry)

P ≡ Q ∧ Q ≡ R⇒ P ≡ R (Transitivity)

P ≡ Q⇒ P | R ≡ Q | R (Parallelism)

P ≡ Q⇒ ke,ks
n [P] ≡ ke,ks

n [Q] (Ambient)

P ≡ Q⇒ a.P ≡ a.Q (New Capability)

P | 0 ≡ P (Zero Parallelism)

(P | Q) | R ≡ P | (Q | R) (Associativity)

P ≡ Q⇒ !P ≡ !Q (Replication)

!0 ≡ 0 (Zero Replication)

(a⊕ b).P ≡ a.P ⊓ b.P ⊓ a.b.P ⊓ b.a.P (Compositional Choice)

(a⊕ a).P ≡ a.P (Idempotence)

(a⊕ b).P ≡ (b⊕ a).P (Commutativity Comp Choice)

((a⊕ b)⊕ c).P ≡ (a⊕ (b⊕ c)).P (Associativity Comp Choice)

a.P ⊓ b.Q ≡ b.Q ⊓ a.P (Commutativity Nondst Choice)

(a.P ⊓ b.Q) ⊓ c.R ≡ a.P ⊓ (b.Q ⊓ c.R) (Associativity Nondst Choice)

(a ⊓ b).P ≡ a.P ⊓ b.P (Execution Choice)



4.3 Case Study 111

Therefore, the intruder has a choice to do one of the following:

• stop exploring and use the newly acquired key as its next move

• ignore the key acquired and continue exploring

• use the newly acquired key as its next move and then continue exploring

• continue to explore and use the key at a future moment.

If the intruder chooses, for instance, the third option (movktn .exp.P), then
the result is a movement either inside or outside of an ambient n, depending
wether t takes the value e or s. This is illustrated in Fig.4.1.

If there is no publication service running in parallel with the intruder or if he
already gained all keys from the services available, he will further look into
accessing protected ambients for which he has the key.

4.3 Case Study

The subject of our case study is a simple system consisting of three com-
puters connected through a router: one workstation (A) and two servers (B
and C), all with their own security policies implemented. An SSH client is
running on A. An SSH server is running on B, along with an FTP client.
An FTP server and a database reside on C. The implemented security poli-
cies provide protection with a pair of keys for each machine. Access to A,
protected by the access key k1, is governed by the authentication mechanism
built in the operating system running on the workstation. The exit key k2
represents the only allowed way to exit from A by using the SSH client. The
access key k3 summarizes the conditions needed for being allowed to enter B:
knowledge of the address of the SSH server on B and the proper credentials
to login (a valid username/password combination). The exit key of A and
the access key for B are known to all processes originating in A. In order
to exit from B, processes have to have permissions to use the FTP client,
represented through the exit key k4. Access to C is granted to processes
aware of the key k5, which gathers the knowledge needed to access the FTP
server it hosts: server address, user name and password. Only some of the



4.3 Case Study 112

k, δk, δ

δ, k′δ, k′

n

R

k, k′

a). exp.P | (pubkn,e.Q) |

n

k, k′

(pubkn,e.Q) | R | exp.P

(pubk
′

n,s.Q) | R

k, k′

n

exp.P |
b).

d).

c).

exp.P | R

n

n

R | exp.Pexp.P | R

n

exp.P | (pubk
′

n,s.Q) | R

k, k′

n

Rexp.P |

n

Figure 4.1: Intruder Network Exploration Capabilities



4.3 Case Study 113

Table 4.3: Reduction Relations

P
′
→ Q

′
if P′ ≡ P,P→ Q,Q ≡ Q′ (1)

P | R→ Q | R if P→ Q (2)

movken .P | ke,ks
n [Q]→ ke,ks

n [P | Q] (3)

ke,ks
n [movksn .P | Q]→ P | ke,ks

n [Q] (4)

reqxn,t.P | (pub
kt
n,t.Q)→ P[x← kt] | (pub

kt
n,t.Q) (5)

exp.P | (pubktn,t.Q)→ (movktn ⊕ exp).P | (pubktn,t.Q) (6)



4.3 Case Study 114

processes from B, including those started with root privileges, have such per-
missions. The access to database DB does not require any special privilege
and is available to all users authenticated by server C. Finally, the exit key
k6 is granted automatically to all processes that attempt to exit from C.
However, some processes bear no significance for our example. In order to
simplify our presentation, we will represent all those uninteresting processes
by one abstract process per machine. We will now focus on those that are
essential for our purpose. There are two key servers running on B, depicted
as key publication services inside the protected ambient b. No direct access
to the ambient c is given to processes from the ambient a, meaning there is
no publication of the access key k5 of c in a.
Several processes are running inside each machine at any given moment and
they are denoted by a global process for each machine: A, B and C respec-
tively for A, B and C. This is illustrated by the following expression:

k1,k2
a [A] | k3,k4

b [B] | k5,k6
c [C]

The process A is viewed as the composition of two sub process M and A’,
i.e.: A ≡ M | A’. The process M denotes a regular process running on
machine A whereas A’ represent an abstraction of the rest of the processes
running on A. The process C in C is the composition of two processes T
and C’, where T represents a database of sensitive information that should
only be available for some processes from B. This process is selected for
evaluating if the regular and intruder processes can access the database or if
they comply with the security policy that intends to deny access to that data
to all users from A. The same observation also applies to B and its two key
publication servers: B ≡ !(pubk4b,s.0) | !(pub

k5
c,e.0) | B’. The publication of

the key k5 captures the documented SSH vulnerability that gives root access
to authenticated SSH users.

For this case study, we show how the intruder can enter c and execute some
actions in parallel with T. This clearly corresponds to a violation of the
implemented security policy.

The system specification is described by the following process:

k1,k2
a [M | A’] | k3,k4

b [!(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [T | C’]



4.3 Case Study 115

4.3.1 Regular Process Behavior

Regular processes are executed by a normal (or regular) user. Since their
purpose is always unambiguous, they have a predefined structure that states
the order in which different actions will take place. Let M be a regular pro-
cess executed on computer A, with the following predefined structure:

M = movk2a .movk3b .reqxb,s.req
y
c,e.mov

x
b .mov

y
c .M

′

This structure will allow the process, as demonstrated here, to exit from a,
enter b, acquire two keys that it will further use for exiting b and entering c
and then behave like M′. The process M′ abstracts the rest of the behavior
of M after reaching the server C. The example specification that takes into
account this particular format of M is:

k1,k2
a [movk2a .movk3b .reqxb,s.req

y
c,e.mov

x
b .mov

y
c .M’ | A’] | k3,k4

b [!(pubk4b,s.0) |

!(pubk5c,e.0) | B’] | k5,k6
c [T | C’]

The application of reduction rules from Table 4.3 allows the process to exe-
cute the actions shown in Table 4.4 and lead to the parallel execution of M’
and T.

4.3.2 Intruder

We apply the same technique for a process I representing the intruder. The
exp operator will help the intruder to explore the system and gain capa-
bilities in term of mov actions. The exp operator is a dedicated syntactic
construct that mimics a non deterministic intruder’s behavior. As stated in
the introduction to this example, all processes originating in A, including the
intruder’s process, know the keys k2 of the ambient a and k3 of the ambient b.
The intruder has an option to use those keys at will and start his exploration.
He will gain further movement capacities from the two key publication servers
(without making requests, contrary to the regular process).



4
.3

C
a
se

S
tu

d
y

116

Table 4.4: Reduction Relations for the Regular Process

k1,k2
a [movk2a .movk3b .reqxb,s.req

y
c,e.mov

x
b .mov

y
c .M’ | A’] | k3,k4

b [!(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [T | C’]

→ k1,k2
a [A’] | movk3b .reqxb,s.req

y
c,e.mov

x
b .mov

y
c .M’ | k3,k4

b [!(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [T | C’]

→ k1,k2
a [A’] | k3,k4

b [reqxb,s.req
y
c,e.mov

x
b .mov

y
c .M’ | !(pubk4b,s.0) | !(pub

k5
c,e.0) | B’] | k5,k6

c [T | C’]

→ k1,k2
a [A’] | k3,k4

b [reqyc,e.mov
k4
b .movyc .M’ | !(pubk4b,s.0) | !(pub

k5
c,e.0) | B’] | k5,k6

c [T | C’]

→ k1,k2
a [A’] | k3,k4

b [movk4b .movk5c .M’ | !(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [T | C’]

→ k1,k2
a [A’] | k3,k4

b [!(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | movk5c .M’ | k5,k6

c [T | C’]

→ k1,k2
a [A’] | k3,k4

b [!(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [M’ | T | C’]



4.3 Case Study 117

The initial knowledge of the two keys is equivalent to keys publication and
is illustrated by the following expression:

I = (movk2a ⊕ mov
k3
b ⊕ exp).I’

There are four possible behaviors of the intruder introduced by the ⊕ opera-
tor, but only one that is useful in his attack, namely movk2a .movk3b .exp.I’. The
other three are ignored for the following reasons: two of them paralyses the
attack (those prefixed by mov

k3
b , the process has to exit a before it can enter

b). The third (movk2a .I’) is already implied by the choice made. Similarly to
the case of the regular process M, we say that there is a process A"so that
A ≡ I | A". The network specification becomes:

k1,k2
a [movk2a .movk3b .exp.I’ | A"] | k3,k4

b [!(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [T | C’]

The application of intruder reduction rules from section 6.3.2 allows the in-
truder to exit a and enter b, as illustrated in Table 4.5.

Table 4.5: Reduction Relations for the Intruder - From A to B

k1,k2
a [movk2a .movk3b .exp.I’ | A"] | k3,k4

b [!(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [T | C’]

→ k1,k2
a [A"] | movk3b .exp.I’ | k3,k4

b [!(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [T | C’]

→ k1,k2
a [A"] | k3,k4

b [exp.I’ | !(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [T | C’]

The intruder finds itself in front of two vulnerable services that provide two
more keys. The intruder reduction relations table presents two possible alter-
natives for the exploration paths and the reduced expressions are presented
in Table 4.6.



4.3 Case Study 118

Table 4.6: Intruder Alternatives Inside B

Case 1:

→ k1,k2
a [A"] | k3,k4

b [(movk4b ⊕ exp).I’ | !(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [T | C’]

where (movk4b ⊕ exp).I’ ≡ mov
k4
b .I’ ⊓ exp.I’ ⊓ mov

k4
b .exp.I’ ⊓ exp.movk4b .I’

Case 2:

→ k1,k2
a [A"] | k3,k4

b [(movk5c ⊕ exp).I’ | !(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [T | C’]

where (movk5c ⊕ exp).I’ ≡ movk5c .I’ ⊓ exp.I’ ⊓ movk5c .exp.I’ ⊓ exp.movk5c .I’

Table 4.7: Intruder’s Choice

→ k1,k2
a [A"] | k3,k4

b [movk4b .movk5c .I’ | !(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [T | C’]

→ k1,k2
a [A"] | k3,k4

b [!(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | movk5c .I’ | k5,k6

c [T | C’]

→ k1,k2
a [A"] | k3,k4

b [!(pubk4b,s.0) | !(pub
k5
c,e.0) | B’] | k5,k6

c [I’ | T | C’]



4.3 Case Study 119

However, both cases lead to the same end result, since the next exploration
step will bring the other move capability for the intruder and the next re-
duction is:

→ k1,k2
a [A"] | k3,k4

b [(movk4b ⊕ mov
k5
c ⊕ exp).I’ | !(pubk4b,s.0) |

!(pubk5c,e.0) | B’] | k5,k6
c [T | C’]

Within the ten possibilities arising from the new computational choice (movk4b ⊕
movk5c ⊕ exp)).I’, the intruder can choose to execute the sequence movk4b .movk5c .I’
as it allows him to exit b, enter c and execute I’ in parallel with T and to
achieve its purpose. The relation denoting the consequences of the intruder’s
choice is displayed in Table 4.7.

4.3.3 Security Correction

Our study of the example network revealed that the implemented security
policy is not sufficient for the intended purpose of protecting the process T.
There are several solutions for rendering it secure, corresponding to the po-
tential enforcement places. They all involve access and exit keys availability.
On one hand, there is the option to refrain from publishing the keys that
were available in the original setup. On the other hand, more restriction
can be implemented by adding new pairs of keys. The simplest method is
to suppress the key publication server denoted by !(pubk5c,e.0) within b. This
may be feasible if the server is not absolutely needed for the usual system
and network operations. However, given the fact that the server is active and
defined by the initial security policy, there may be an actual requirement for
it. The removal of the access key to b from the initial knowledge of processes
in a can also be considered. This alternative is easy to implement, but also
prevents the access to b for any process, which is not specifically denied in
the original security policy. A similar effect would be obtained by enforcing a
second overall level of protection for b. Another solution would be to protect
the process T itself. The access key can be published in a sub-ambient of b
to which no process from a can get access. Alternately, the server !(pubk5c,e.0)
could be protected by creating a new Sub-ambient d of b for which the key
pair is not published within a. We chose this last solution as it only requires



4.4 Conclusion 120

one change in b’s policy and does not imply modifications of the policies for
ambients a and c. The network specification for the newly enforced security
policy is:

k1,k2
a [A] | k3,k4

b [!(pubk4b,s.0) |
kde ,k

d
s

d [!(pubk5c,e.0)] | B’] | k5,k6
c [T | C’]

4.4 Conclusion

In this chapter, we have presented a new approach for specifying computer
systems that capture in an effective and elegant way security system be-
havior. Hence, we defined a new calculus that draws from the power and
versatility of the ambient calculus and adds several new concepts such as
protection keys and the ability to explore and find system vulnerabilities.
The benefit of using our methodology for system modeling is twofold. It
allows both the study of the security system behavior and the evaluation of
an implementation of a given security policy. Moreover, it identifies changes
required to ensure such correctness in order to guarantee policy compliance.

The scalability of our solution is also a strong point in its favor: it can be
used to specify a single computer systems as well as very complex systems.
However, our approach is different from previous works on the issue in many
fashions. For instance, the introduction of the specific intruder semantics
allows policy compliance verification and identification of flaws: both their
nature and corrective actions. Nevertheless, the approach could benefit from
the additional definition of a logic for specifying policies. Such a logic would
contain all ingredients needed for both verifying and enforcing policies. Fur-
thermore, it would help pointing out changes needed to correct a specification
and the exact location of the changes needed for policy compliance.





Security Policy Verification

122





Chapter 5

Tableau Based Verification

Algorithm for Security Policies

Abstract

This chapter introduces another original contribution: a framework for mod-
eling computer systems, defining security policies, and verifying policy com-
pliance. The CS2 process algebra captures the mobility aspects of systems
and the SPL logic allows expressing access control in terms of formulas. The
tableau-based proof system enables validation of the security policy implemen-
tation through formal model checking.

5.1 Introduction

Computer systems security requirements are implemented at the network,
system, user, or application level. The most common ones are easily inte-
grated based on guidelines, standards, and best practices. Still, they are
rarely a perfect match of the actual computer system’s protection. The rule-
sets are assumed to be correct because they are derived from a valid policy.
Oftentimes this is not true and the network is left vulnerable to attacks from
malicious intruders. Formal verification of the policy implementation’s ef-
fectiveness would solve the problem. However, this requires a precise formal
description of computer systems and policies, and a methodology for validat-
ing compliance. In this chapter we address the problems of computer system

124



5.1 Introduction 125

specification and security policies verification.

Access control security policies imply regulated movement in and out of pro-
tected boundaries with the purpose of using various resources. Within com-
puter systems, this can be represented in terms of process interactions. A
formal specification of such interactions can be accomplished with a process
algebra (calculus). While several calculi have been used for this purpose, we
found that the mobile ambients of Cardelli and Gordon [21, 24] represent a
good basis for our objective. Ambients are named locations containing pro-
cesses and they capture the concepts of administrative scope and mobility in
a simple and effective manner. Their hierarchical structures mirror the ad-
ministrative domains of the system they model, which makes them suitable
for representing computers and networks. Properties of processes described
with the ambient calculus can be specified using the ambient logic [25].

Furthermore, the mandated behaviour of a system can be prescribed through
sets of requirements bundled as security policies. A security policy can be a
simple security constraint, such as the ability to execute a particular action,
or a collection of conditions for the various components and the whole sys-
tem. The logic makes use of temporal and spacial modalities to capture the
static structure of a system as well as its dynamic evolution [54]. The idea
of employing calculi and logics for policy compliance monitoring has been
revisited in [7].

The various extensions of the original calculus, such as safe ambients [31, 70],
security boundary analysis [16], or the ambient guardians [33] show limita-
tions that make them less than ideal for the purpose of security policy ver-
ification. The original ambient calculus, for instance, is not refined enough
for modeling firewalls and resorts to artificial concepts to simulate a simple
accept/deny rule. The derived calculi involve elaborated constructs for veri-
fying relatively simple properties and therefore have limited scalability. The
original calculus and logic we propose here are better equipped for expressing
access controlled mobility and the associated security policies.

As processes execute actions and systems evolve, they reach states that may
or may not comply with a security policy. In order to determine which case
stands, static or dynamic policy enforcement needs to be applied. Static
enforcement is fairly common and entails verification of system properties



5.2 System Specification Calculus 126

applied to a system description (or model). The properties are expressed
with logic formulas. The model can be formally analyzed for proof of formula
satisfaction with the method of semantic tableaux used by Fitting [37, 38]
and Cleaveland [28]. Manual proofs can be produced through application of
the tableau rules. Universal theorem provers such as Isabel [88], or tableau-
specific ones such as Tableau Work Bench [1] and LoTREC [27, 41], can
be further employed to completely automate the verification process. This
is the area addressed by the algorithm proposed in this paper. We define
the tableau inference rules for our logic and formally prove the tableau’s
finiteness, soundness and completeness. A LoTREC implementation of the
tableau proof system for our logic is also produced.

Runtime enforcements are preferable for certain policies, as demonstrated by
Schneider et al.[94, 49], Bauer [10], and Basin et al. [6]. Moreover, non-
compliant systems can be modified to accommodate the required policies
through program-rewriting, as shown by Hamlen [48], Langar et al. [67],
Khoury et al. [61], and by Sui et al. [101]. Our verification technique can
be applied independently or corroborated with dynamic enforcement, either
at runtime or by program rewriting. The main benefit is that it can lower
the number of policies to be enforced dynamically, improving the efficiency
of the system.

The remainder of the chapter is organized as follows. The new calculus and
logic are introduced in Sections 5.2 and 5.3 respectively. The tableau-based
proof system for policy satisfaction is presented in Section 5.4. The case study
depicted in Section 5.5 illustrates how the tableau-based proof system works.
The implementation of the tableau proof system is presented in Section 5.6.
Finally, Section 5.7 summarizes our conclusions and hints at directions for
future work.

5.2 System Specification Calculus

In this section we define the syntax and the semantics of the Calculus for

Specification of Computer Systems (abbreviated as CS2 ). The calculus
allows the description of the relevant components of a computer system’s
structure in terms of hierarchical domains, communication capabilities and
protection mechanisms.



5.2 System Specification Calculus 127

Table 5.1: Syntax of CS2

n ∈ N domain name

k ∈ K security key

a ∈ A process action

P,Q ::= processes

0 deadlock

| 1 successful termination

| A action

| P.Q sequence

| P | Q parallel composition

| P + Q choice

| k
n[P] ambient

A ::= process capabilities

movkn movement

| a other actions



5.2 System Specification Calculus 128

5.2.1 Specification Syntax

The syntax of CS2 is presented in Table 5.1. Let N be a set of names, A be
a set of all possible process actions, and K be a set of keys used for protect-
ing domains. In the proposed syntax, process constants 0 and 1 represent
deadlock (or blocking) and successful process termination, respectively. A
number of operators are defined as well: “." for sequence, “ |" for parallel
composition, and “+" for nondeterministic choice. Ambients are used for de-
limiting administrative domains. They are identified by names and protected
by access keys. For instance, the expression k

n[P] depicts an ambient named
n, protected by the key k, and containing a process P.

Permission to access resources in actual computer systems can be easily mod-
elled with key possession. For instance, a process is allowed to enter a domain
protected by a key k if it has a movement capability with the key k. Let
(K,≥) be a partial ordered set, and let k, k′ in K. The expression k ≥ k′

means that k is comparable to k′, but more powerful, as it can open at least
any ambient k′ can open. For default ambient protection we use the public
key δ, which is the glb(K). The ability of processes to move is implemented
by the movkn action, where n is the name of a domain for which the access is
requested and k is the access key. Note that the same action is used to exit
from a domain.

General process interactions are expressed through a communication func-
tion, γ, which is a partial function of A × A → A that satisfies the two
following conditions:

1. ∀a, b ∈ A : γ(a, b) = γ(b, a) (commutativity)

2. ∀a, b, c ∈ A : γ(γ(a, b), c) = γ(a, γ(b, c)) (associativity)

5.2.2 Specification Semantics

In the remainder of this chapter, we note P the set of processes that can be
built using CS2 . The operational semantics of the calculus is presented in
terms of a structural congruence “≡" and a reduction relation “→". Table
5.2 displays a structural congruence on processes and includes, among others,
reflexivity, symmetry, transitivity, associativity, and distributivity properties
of the +, | and . operators, which are common to most process algebras. The



5.2 System Specification Calculus 129

Table 5.2: Structural Congruence for CS2

P ≡ P (5.2.1)

P ≡ Q⇒ Q ≡ P (5.2.2)

P ≡ Q,Q ≡ R⇒ P ≡ R (5.2.3)

P ≡ Q⇒ R.P ≡ R.Q (5.2.4)

P ≡ Q⇒ P.R ≡ Q.R (5.2.5)

P ≡ Q⇒ P | R ≡ Q | R (5.2.6)

(P | Q) | R ≡ P | (Q | R) (5.2.7)

P ≡ Q⇒ P + R ≡ Q + R (5.2.8)

P ≡ Q⇒ k
n[P] ≡

k
n[Q] (5.2.9)

0.P ≡ 0 (5.2.10)

P + 0 ≡ P (5.2.11)

1.P ≡ P ≡ P.1 (5.2.12)

P | 1 ≡ P (5.2.13)

P + 1 ≡ P (5.2.14)

P.(Q + R) ≡ P.Q + P.R (5.2.15)

(P + Q).R ≡ P.R + Q.R (5.2.16)

P | Q ≡ Q | P (5.2.17)

P | (Q + R) ≡ (P | Q) + (P | R) (5.2.18)

P + P ≡ P (5.2.19)

P + Q ≡ Q + P (5.2.20)



5.3 Security Policy Logic 130

effect of deadlock is expressed by (5.2.10) and (5.2.11). A process will stop
any further execution once it encounters a deadlock, and the rest of its ac-
tions can be ignored. In case of a choice between a non-blocking process and
a deadlock, the non-blocking process will execute. Successful termination,
on the other hand, acts as a neutral element and does not change the se-
quential, parallel, or choice execution of a process. Its properties are shown
in congruences (5.2.12) - (5.2.14).

Process evolutions are captured by the reduction relation defined in Table
5.3. Most rules are standard and need no explanation. Movement inside and
outside ambients is captured by rules (5.3.8) and (5.3.9). For instance, rule
(5.3.8) shows that a process can enter an ambient n protected by a key k
provided it executes a movement directed into n with a key k′ that is equal
or superior to k.

System specifications are easy to build and read with our calculus. For
instance, the expression δ

n[mov
δ
n.A] models an administrative domain n (a

computer, a service, a network, etc.) that is publicly open (uses the public
key δ), and contains a process which can exit the domain n and then continue
to run as A.

5.3 Security Policy Logic

This section introduces a logic tailored for specifying security policies for com-
puter systems described with CS2 . The logic, named Security Policy Logic

(or SPL in short), needs to be expressive enough to formulate any safety
property.

5.3.1 Logic Syntax and Sematics

The syntax of SPL is summarized in Table 5.4. We define a modal logic
with standard propositional connectives (¬,∨), a temporal operator (.), and
a capability operator (〈 _ 〉). Spatial connectives (| and _

_[ _ ]) are also part
of the syntax.

The following standard macros are used in the remainder of the chapter:

Φ ∧Ψ ≡ ¬(¬Φ ∨ ¬Ψ) ff ≡ ¬tt



5.3 Security Policy Logic 131

Table 5.3: Reduction Relation for CS2

P′ ≡ P, P
a
−→ Q, Q ≡ Q′

P
′ a
−→ Q

′ (5.3.1)

P
a
−→ P′

P+Q
a
−→ P′

(5.3.2)

P
a
−→ P′

P.Q
a
−→ P′.Q

(5.3.3)

P
a
−→ P′

P | Q
a
−→ P′ | Q

(5.3.4)

P
a
−→ P′, Q

b
−→ Q′

P | Q
γ(a,b)
−−−→ P′ | Q′

(5.3.5)

P
a
−→ P′

k
n[P]

a
−→ k

n[P
′]

(5.3.6)

a 6= mov_
_

a
a
−→ 1

(5.3.7)

k′ ≥ k

k
n[P] | mov

k′
n .Q

movk
′

n−−−→ k
n[P | Q]

(5.3.8)

k′ ≥ k

k
n[mov

k′
n .Q | R]

movk
′

n−−−→ Q | k
n[R]

(5.3.9)



5.3 Security Policy Logic 132

We define the semantics of SPL in Table 5.5, where a ∈ A, n ∈ N , and
k ∈ K. The set of logical formulas specified in SPL is denoted by F . The
semantics of SPL is given by the meaning function [[ _ ]] : F → 2P defined
inductively on the structure of formulas. We say that a process P satisfies
the formula Φ and we note P |= Φ if P ∈ [[ Φ ]].

All processes except for the blocking process satisfy the formula tt. Processes
that are not part of the semantics of a certain formula Φ satisfy the negation
of the formula. A process satisfies the formula Φ ∨Ψ if it satisfies either the
formula Φ or the formula Ψ. The formula 〈a〉Φ is satisfied by any process of
the form a.P, provided that P satisfies Φ. Processes that satisfy the sequence
logical formula involve the consecutive execution of two subprocesses, with
each one satisfying the respective components of the formula. A process
P′ satisfies Φ | Ψ if there exists a process P satisfying Φ and a process Q

satisfying Ψ such that P′ = P | Q. The protected location logical formula
reflects the case when a specific behavior is required inside an ambient. A
compliant process must match both the environment’s external parameters
(name and key) and the internal formula’s semantics.

The syntax and semantics of our logic enable the construction of complex
security policies. The logic can be used for expressing safety properties. For
instance, to specifically deny access to resources inside a domain n protected
by a key k′, the following simple formula can be used:

¬〈movkn〉tt |
k′

n [tt]

Let’s take another example by considering a system composed of an anti-virus
server and a client:

kc
c [tt | kv

v [tt]] | ks
s [〈movkss 〉〈mov

kc
c 〉〈mov

kc
c 〉tt | tt]



5.3 Security Policy Logic 133

Table 5.4: Syntax of SPL

Φ,Ψ ::=

tt True

| ¬Φ Negation

| 〈a〉Φ Capability

| Φ.Ψ Sequence

| Φ | Ψ Parallel Composition

| Φ ∨Ψ Disjunction

| k
n[Φ] Protected location

Table 5.5: Semantics of SPL

[[ tt ]] = P \ {0}

[[ ¬Φ ]] = P \ [[ Φ ]]

[[ 〈a〉Φ ]] = {a.P ∈ P : P ∈ [[ Φ ]]}

[[ Φ.Ψ ]] = {P.Q ∈ P : P ∈ [[ Φ ]] ∧ Q ∈ [[ Ψ ]]}

[[ Φ | Ψ ]] = {P | Q ∈ P : P ∈ [[ Φ ]] ∧ Q ∈ [[ Ψ ]]}

[[ Φ ∨Ψ ]] = [[ Φ ]] ∪ [[ Ψ ]]

[[ k
n[Φ] ]] = {k

′

n [P] ∈ P : P ∈ [[ Φ ]], k′ ≥ k}



5.3 Security Policy Logic 134

The security policy needs to account for the client and server administra-
tive domains c and s and the anti-virus subsystem v within the client. This
translates into three locations protected with the keys kc, kv, and ks, of which
two are nested. Another requirement is the the server’s ability to push virus
signature updates. That requirement is represented through a series of move-
ment capabilities. Finally, the rest of the client and server’s subsystems have
to be represented. As we are not interested in the details of those compo-
nents, they can be abstracted as True.

Now that the syntax and semantics of the algebraic calculus and the logic are
presented, we are able to specify a computer system’s structure and behavior
and a desired security policy.

5.3.2 Formula Closure

In order to perform logical formula manipulations, we introduce some new
definitions. They are useful for reasoning about the finite nature of formulas,
which plays an important role in model checking. The following definitions
are inspired by [28, 2] and are given in support of the proofs in the next
section.

The evaluation of a system specification with respect to formula satisfaction
will be made in Section 5.4 by breaking down complex formulas up to atomic
formulas.

Definition 5.3.1 Let Φ and Ψ be two formulas. Ψ is an immediate subterm
of Φ, denoted by Ψ ≺ Φ, if exactly one of the following hold:

Φ = ¬Ψ

Φ = 〈a〉Ψ

Φ = Ψ.Φ′ for some Φ′

Φ = Ψ | Φ′ for some Φ′

Φ = Ψ ∨ Φ′ for some Φ′

Φ = k
n[Ψ]

The following definition allows us to determine the length of a formula.



5.3 Security Policy Logic 135

Definition 5.3.2 The size of a formula Φ, denoted by |Φ|, is equal to the
number of subterms and operations, i.e.:

|tt| = 1

|¬Φ| = 1 + |Φ|

|〈a〉Φ| = 1 + |Φ|

|Φ.Ψ| = 1 + |Φ| + |Ψ|

|Φ | Ψ| = 1 + |Φ| + |Ψ|

|Φ ∨Ψ| = 1 + |Φ| + |Ψ|

|kn[Φ]| = 1 + |Φ|

The closure of a formula is defined as the set of all its subterms and their
subterms, up to atomic formulas.

Definition 5.3.3 The closure CL(Φ) of a formula Φ is defined as follows:

Φ ∈ CL(Φ)

CL(¬Φ) = {¬Φ} ∪ CL(Φ)

CL(〈a〉Φ) = {〈a〉Φ} ∪ CL(Φ)

CL(Φ.Ψ) = {Φ.Ψ} ∪ CL(Φ) ∪ CL(Ψ)

CL(Φ | Ψ) = {Φ | Ψ} ∪ CL(Φ) ∪ CL(Ψ)

CL(Φ ∨Ψ)| = {Φ ∨Ψ} ∪ CL(Φ) ∪ CL(Ψ)

CL(kn[Φ]) = {kn[Φ]} ∪ CL(Φ)

The previous definitions are useful for proving the finiteness of the tableau
methodology. Closure can be interpreted as the set of all SPL formulas that
can be obtained using all the subterms of a formula. Therefore, the cardinal
of CL(Φ) is bounded by the size of the formula, as shown in the following
proposition.



5.3 Security Policy Logic 136

Proposition 5.3.4 Let Φ be a formula. Then,

|CL(Φ)| ≤ |Φ|

Proof:

The proof is by structural induction on Φ. We demonstrate it below
for Capability and Disjunction.

• 〈a〉Φ

Since CL(〈a〉Φ) = {〈a〉Φ} ∪ CL(Φ), then

|CL(〈a〉Φ)| = 1 + |CL(Φ)|

⇒ {[ Induction on the hypothesis |CL(Φ)| ≤ |Φ| ]}

|CL(〈a〉Φ)| ≤ 1 + |Φ|

⇒ {[ Definition of |〈a〉Φ| ]}

|CL(〈a〉Φ)| ≤ |〈a〉Φ|

• Φ ∨Ψ

Since CL(Φ ∨Ψ) = {Φ ∨Ψ} ∪ CL(Φ) ∪CL(Ψ), then

|CL(Φ ∨Ψ))| = 1 + |CL(Φ)| + |CL(Ψ)|

⇒ {[ Induction on the hypothesis |CL(Φ)| ≤ |Φ|, |CL(Ψ)| ≤ |Ψ|]}

|CL(Φ ∨Ψ)| ≤ 1 + |Φ| + |Ψ|

⇒ {[ Definition of |Φ ∨Ψ| ]}

|CL(Φ ∨Ψ)| ≤ |(Φ ∨Ψ)|

The cases for Negation and Protected location follow the same steps
as for the Capability proof. The cases for Sequence and Parallel Com-
position follow the steps for the Conjunction proof. ✷



5.4 Tableau-based Proof System for SPL 137

5.4 Tableau-based Proof System for SPL

In this section we define a tableau-based proof system for SPL. The tableau
system is a model-checking technique that relies on a set of inference rules
used for determining automatically whether properties specified as logic for-
mulas are satisfied. Tableaux (or semantic tableaux, as they are also called)
have been used successfully in conjunction with modal logics [37, 28, 2] and
are therefore suitable for SPL.

5.4.1 Building the Tableau

Using the logic semantics as defined in Section 5.3 is not very practical. Given
a formula Φ, we have to calculate the (possibly infinite) set of processes that
satisfy Φ and demonstrate that the model considered is included into that
set of processes. However, the tableau-based technique considers local model
checking. A deductive tableau system needs to provide formal assurance for
all scenarios, therefore the reasoning about satisfaction must be made on
a tautology. It is often easier to prove a contradiction, so it is a common
practice to demonstrate the opposite, namely that the formula negation is
unsatisfiable.

Model checking for a given model M is performed on sequents of the form
b ⊢M s ∈ [[ Φ ]], where s ∈ S is a specification and Φ ∈ F is a finite formula.
The variable b is ranging over {⊤,⊥}. We introduce the operations bb′, b×b′,
and bΦ as follows:

bb′ b× b′ bΦ

⊤⊤ = ⊤ ⊤×⊤ = ⊤ ⊤Φ = Φ

⊤⊥ = ⊥ ⊤×⊥ = ⊥ ⊥Φ = ¬Φ

⊥⊤ = ⊥ ⊥×⊤ = ⊥ ⊤¬Φ = ¬Φ

⊥⊥ = ⊤ ⊥×⊥ = ⊥ ⊥¬Φ = Φ

The inclusion of the variable b is crucial for reasoning on negative forms of
the terms and reduces the number of inference rules needed for the tableau
proof system introduced in Table 5.6. Note that our inference rules have
the premise at the bottom and the conclusion on top, which permits a more



5.4 Tableau-based Proof System for SPL 138

natural way of building the proof tree from the root up, rather then upside
down.

The proof is actually based on a refutation tableau that starts with the
negation of the formula: ¬Φ. The backward-chaining proof is a tree labeled
with formulas at every node and rooted in the original assumption. Branches
are built through application of the inference rules and extend until no further
inference can be made. The last formula on a branch is called a leaf.

A leaf b ⊢ s ∈ [[ Φ ]] is successful if :

• b = ⊤ ∧ Φ = tt

• b = ⊥ ∧ Φ = ff

Leaves for which no rule can be applied are also successful leaves. A sequent
is an unsuccessful leaf, if one of the following conditions holds:

• b = ⊤ ∧ Φ = ff

• b = ⊥ ∧ Φ = tt

• s = a.s′ ∧ Φ = 〈a′〉Φ′ ∧ a 6= a′

A tableau is successful when all its leaves are successful. A tableau is un-
successful if it contains at least one unsuccessful leaf. This means that the
original assumption about ¬Φ is not satisfied, hence the formula Φ holds for
the assessed model.

The rule R¬ makes verification of negative formulas straightforward. Instead
of verifying whether ¬Φ is satisfied by a specification, we verify Φ and con-
clude the contrary for ¬Φ. This is where variable b comes in handy. The other
rules of Table 5.6 are intuitive enough to require no particular explanations.
For instance the rule R〈a〉 means that if s ∈ [[ Φ ]] then a.s ∈ [[ 〈a〉Φ ]].



5.4 Tableau-based Proof System for SPL 139

Table 5.6: Tableau rules for SPL

R¬
⊥b ⊢ s ∈ [[ Φ ]]

b ⊢ s ∈ [[ ¬Φ ]]

R〈a〉
b ⊢ s ∈ [[ Φ ]]

b ⊢ a.s ∈ [[ 〈a〉Φ ]]

R.

b ⊢ s ∈ [[ Φ ]] b ⊢ s′ ∈ [[ Ψ ]]

b ⊢ s.s′ ∈ [[ Φ.Ψ ]]

R|
b′ ⊢ s ∈ [[ Φ ]] b′′ ⊢ s′ ∈ [[ Ψ ]]

b′ × b′′ ⊢ s | s′ ∈ [[ Φ | Ψ ]]

R1∨
b ⊢ s ∈ [[ Φ ]]

b ⊢ s ∈ [[ Φ ∨Ψ ]]

R2∨
b ⊢ s ∈ [[ Ψ ]]

b ⊢ s ∈ [[ Φ ∨Ψ ]]

R[]
b ⊢ s ∈ [[ Φ ]]

b ⊢ k
n[s] ∈ [[ k

n[Φ] ]]



5.4 Tableau-based Proof System for SPL 140

5.4.2 Tableau Finiteness, Soundness, and Completeness

In this section we demonstrate the tableau system’s finiteness, soundness,
and completeness. The results are formulated as theorems.

In order to prove the finiteness of the tableau, we have to demonstrate that
there is no infinite ascending chain for any sequent that is part of the tableau.
The ordering relation for formulas ≺ is extended to sequents as follows:

Φ ≺ Φ′ ⇒ b ⊢ s ∈ [[ Φ ]] ≺ b′ ⊢ s′ ∈ [[ Φ′ ]]

Let R ∈ {R¬, R〈a〉, R., R|, R1∨, R2∨, R[]} be one of the inference rules from
Table 5.6. The notation θ1 →R θ2 is used for showing that a parent sequent
θ1 reduces to a child sequent θ2. The following proposition demonstrates that
the number of possible children of a sequent is finite.

Proposition 5.4.1 Let θ1 = b ⊢ s1 ∈ [[ Φ1 ]] and θ2 = b ⊢ s2 ∈ [[ Φ2 ]].
Then,

θ1 →R θ2 ⇒ CL(Φ1) ⊇ CL(Φ2)

Proof:

The proof is by induction on formulas and their immediate subterms.

• R¬ : θ1 →R¬ θ2

⇒ {[ Rule R¬ ]} Φ1 = ¬Φ2

⇒ {[ Definition of CL(¬Φ2) ]}

CL(Φ1) = CL(¬Φ2) ⊇ CL(Φ2)

• R〈a〉Φ : θ1 →R〈a〉Φ
θ2

⇒ {[ Rule R〈a〉Φ ]} Φ1 = 〈a〉Φ and Φ2 = Φ

⇒ {[ Definition of CL(〈a〉Φ) ]}

CL(Φ1) = CL(〈a〉Φ) ⊇ CL(Φ2)



5.4 Tableau-based Proof System for SPL 141

• R. : θ1 →R. θ2

⇒ {[ Rule R. ]} Φ1 = Φ.Ψ and Φ2 ∈ {Φ,Ψ}

⇒ {[ Definition of CL(Φ.Ψ) ]}

CL(Φ1) = CL(Φ.Ψ) ⊇ CL(Φ) ∪ CL(Ψ) ⊇ CL(Φ2)

• R| : θ1 →R|
θ2

⇒ {[ Rule R| ]} Φ1 = Φ | Ψ and Φ2 ∈ {Φ,Ψ}

⇒ {[ Definition of CL(Φ | Ψ) ]}

CL(Φ1) = CL(Φ | Ψ) ⊇ CL(Φ) ∪CL(Ψ) ⊇ CL(Φ2)

• R1∨ : θ1 →R1∨ θ2

⇒ {[ Rule R1∨ ]} Φ1 = Φ ∨Ψ and Φ2 = Φ

⇒ {[ Definition of CL(Φ | Ψ) ]}

CL(Φ1) = CL(Φ ∨Ψ) ⊇ CL(Φ) ∪ CL(Ψ) ⊇ CL(Φ2)

• R2∨ - same as for R1∨, but Φ2 = Ψ

• R[] : θ1 →R[]
θ2

⇒ {[ Rule R[] ]} Φ1 =
k
n [Φ] and Φ2 = Φ

⇒ {[ Definition of CL(kn[Φ]) ]}

CL(Φ1) = CL(kn[Φ]) ⊇ CL(Φ2) ✷

We conclude that for a tableau with sequent θ as root, formulas in all sequents
derived directly by inference rules belong in CL(Φ). Informally, since Φ is
finite, then CL(Φ) is finite, which means that there is a bounded number of
first-level branches of the tree. Moreover, there will be a bounded number



5.4 Tableau-based Proof System for SPL 142

of branches at every level. Therefore, the proposition demonstrates that a
tableau built to prove formula Φ from the premise sequent θ has a maximum
width. It remains to show that each branch has a finite height.

Proposition 5.4.2 Let θ1 = b ⊢ s ∈ [[ Φ1 ]] be a sequent and let Θ be the
ordered set {θi : θi ≺ θi+1, i ≥ 1} of terms of the θ1’s chain in a tableau proof,
then,

|Θ| ≤ |CL(Φ1)|

Proof:

The proof is done on sequent chains. Let Ri be inference rules Ri ∈
{R¬, R〈a〉, R., R|, R1∨, R2∨, R[]}. The elements of set Θ = {θ1, θ2, θ3, . . .}
come from the following chain of ordered sequents:

θ1 →R1 θ2 →R2 θ3 . . .

⇒ {[ Definition of ordered sequents ]}

Φ1 ≺ Φ2 ≺ Φ3 ≺ . . .

⇒ {[ Definitions of immediate subterms and size of formulas ]}

|Φ1| > |Φ2| > |Φ3| > . . .

⇒ {[ Definition of equivalent sets ]}

{θ1, θ2, θ3 . . .} ∼ {Φ1,Φ2,Φ3, . . .}

⇒ {[ Definition of set cardinal ]}

|{θ1, θ2, θ3 . . .}| = |{Φ1,Φ2,Φ3, . . .}|

⇒ {[ Definitions of immediate subterm, formula closure, Proposi-
tion 5.4.1 ]}

{Φ1,Φ2,Φ3, . . .} ⊆ CL(Φ1)⇒ |{Φ1,Φ2,Φ3, . . .}| ≤ |CL(Φ1)| (1)



5.4 Tableau-based Proof System for SPL 143

⇒ {[ Proposition 5.3.4 ]} |CL(Φ1)| < |Φ1| <∞ (2)

⇒ {[ (1) and (2) ]}

|Θ| ≤ |CL(Φ1)| <∞ ✷

The two propositions in this section lead to the conclusion that a finite
tableau can be built for a given sequent, therefore an assessment of the valid-
ity of the formula can be made. In practical terms, this means that we can
verify formally whether a set of restrictions (i.e.: security policy) is satisfied
by a given model (i.e.: system specification).

Theorem 5.4.3 (Finiteness) For any sequent θ = b ⊢ s ∈ [[ Φ ]], there is
a tableau rooted in θ with finite maximum height and width.

Proof:

The proof stems directly from Propositions 5.4.1 and 5.4.2. The tableau
for a sequent with a finite formula Φ has a maximum width and a max-
imum height bounded by |CL(Φ)|. ✷

Theorem 5.4.4 (Soundness) If θ = b ⊢ s ∈ [[ Φ ]] has a successful tableau,
then s ∈ [[ bΦ ]] .

Proof:

We need to prove that all successful leaves are semantically valid and
all inference rules preserve soundness.

Leaves:

• b = ⊤ ∧ Φ = tt

b = ⊤ → bΦ = tt

By hypothesis, ⊤ ⊢ s ∈ [[ tt ]], so s ∈ [[ bΦ ]].

• b = ⊥ ∧ Φ = ff

b = ⊥ → ⊥b = ⊤∧ bΦ = ¬ff = tt

By hypothesis and R¬, ⊤ ⊢ s ∈ [[ ¬ff ]], so s ∈ [[ bΦ ]].



5.4 Tableau-based Proof System for SPL 144

Inference rules:

We interpret soundness for the inference rules as follows. By hypoth-
esis, the sequent of the denominator is sound and the sequent of the
numerator has a successful tableau. It remains to prove that the nu-
merator is also sound.

• R¬

b = ⊤ ⇒ R¬ has the form
⊥ ⊢ s ∈ [[ Φ ]]

⊤ ⊢ s ∈ [[ ¬Φ ]]

By hypothesis,






⊤ ⊢ s ∈ [[ ¬Φ ]]⇒ s ∈ [[ ¬Φ ]]

⊥ ⊢ s ∈ [[ Φ ]]⇒ s /∈ [[ Φ ]]

Since s /∈ [[ Φ ]] ≡ s ∈ [[ ¬Φ ]] ≡ s ∈ [[ ⊤¬Φ ]], soundness is
preserved.

b = ⊥ ⇒ R¬ has the form
⊤ ⊢ s ∈ [[ ¬Φ ]]

⊥ ⊢ s ∈ [[ Φ ]]

By hypothesis,







⊥ ⊢ s ∈ [[ Φ ]]⇒ s ∈ [[ ¬Φ ]]

⊤ ⊢ s ∈ [[ ¬Φ ]]⇒ s /∈ [[ Φ ]]

Since s /∈ [[ Φ ]] ≡ s ∈ [[ ¬Φ ]] ≡ s ∈ [[ ⊥Φ ]], soundness is
preserved.

• R〈a〉

b = ⊤ ⇒ R〈a〉 has the form
⊤ ⊢ s ∈ [[ Φ ]]

⊤ ⊢ a.s ∈ [[ 〈a〉Φ ]]

By hypothesis,







⊤ ⊢ a.s ∈ [[ 〈a〉Φ ]]⇒ a.s ∈ [[ 〈a〉Φ ]]

⊤ ⊢ s ∈ [[ Φ ]]⇒ s ∈ [[ Φ ]]



5.4 Tableau-based Proof System for SPL 145

Since s ∈ [[ Φ ]] ≡ s ∈ [[ ⊤Φ ]], soundness is preserved.

b = ⊥ ⇒ R〈a〉 has the form
⊥ ⊢ s ∈ [[ Φ ]]

⊥ ⊢ a.s ∈ [[ 〈a〉Φ ]]

By hypothesis,







⊥ ⊢ a.s ∈ [[ 〈a〉Φ ]]⇒ a.s ∈ [[ ¬〈a〉Φ ]]

⊥ ⊢ s ∈ [[ Φ ]]

The case for ⊥ ⊢ s ∈ [[ Φ ]] has already been proven for R¬ when
b = ⊤. Since s /∈ [[ Φ ]] ≡ s ∈ [[ ⊥Φ ]], soundness is preserved.

• R.

b = ⊤ ⇒ R. has the form
⊤ ⊢ s ∈ [[ Φ ]] ⊤ ⊢ s′ ∈ [[ Ψ ]]

⊤ ⊢ s.s′ ∈ [[ Φ.Ψ ]]

By hypothesis,























⊤ ⊢ s.s′ ∈ [[ Φ.Ψ ]]⇒ s.s′ ∈ [[ Φ.Ψ ]]

⊤ ⊢ s ∈ [[ Φ ]]

⊤ ⊢ s′ ∈ [[ Ψ ]]

The case for ⊤ ⊢ s ∈ [[ Φ ]] has already been proven for R〈a〉

when b = ⊤. It also applies for ⊤ ⊢ s′ ∈ [[ Ψ ]]. Since s ∈ [[ Φ ]] ≡
s ∈ [[ ⊤Φ ]] and s′ ∈ [[ Ψ ]] ≡ s′ ∈ [[ ⊤Ψ ]], soundness is preserved.

• R|, R1∨, R2∨, R[]

For the remaining tableau rules, proofs are similar to those for
R¬, R〈a〉 and R.. The sequents to be proven sound can have one
of the following four forms:

1. ⊤ ⊢ s ∈ [[ Φ ]]

2. ⊤ ⊢ s ∈ [[ ¬Φ ]]

3. ⊥ ⊢ s ∈ [[ Φ ]]

4. ⊥ ⊢ s ∈ [[ ¬Φ ]]



5.4 Tableau-based Proof System for SPL 146

The first three forms have been addressed already in the proofs
for R¬, R〈a〉 and R.. For the fourth:

⊥ ⊢ s ∈ [[ ¬Φ ]]⇒ s /∈ [[ ¬Φ ]], but s /∈ [[ ¬Φ ]] ≡ s ∈ [[ Φ ]], so the
sequent is equivalent to ⊥ ⊢ s ∈ [[ Φ ]].

✷

Proposition 5.4.5 Let s be a system specification and Φ be a formula.
Then, b ⊢ s ∈ [[ Φ ]] has a successful tableau ⇔ b ⊢ s ∈ [[ ¬Φ ]] has no
successful tableau.

Proof:

• ⇒
By hypothesis, b ⊢ s ∈ [[ Φ ]] has a successful tableau and, by
Theorem 5.4.4, s ∈ [[ bΦ ]].

Suppose that b ⊢ s ∈ [[ ¬Φ ]] also has a successful tableau. In
this case, Theorem 5.4.4 states that s ∈ [[ b¬Φ ]].

Since b¬ = ¬b, then [[ b¬Φ ]] = [[ ¬bΦ ]] and, by definition of
[[ ¬bΦ ]], we deduce that s /∈ [[ bΦ ]].

This contradicts the hypothesis that s ∈ [[ bΦ ]], and therefore
the supposition that b ⊢ s ∈ [[ ¬Φ ]] also has a successful tableau
is false.

• ⇐
We need to prove that if b ⊢ s ∈ [[ ¬Φ ]] has no successful tableau,
then b ⊢ s ∈ [[ Φ ]] must have one.

By hypothesis, b ⊢ s ∈ [[ ¬Φ ]] has no successful tableau. This
means, by Theorem 5.4.4, that s /∈ [[ b¬Φ ]]. Since [[ b¬Φ ]] =
[[ ¬bΦ ]], we deduce that which is equivalent s /∈ [[ ¬bΦ ]].

From the definition of semantics, s ∈ [[ ¬¬bΦ ]] = s ∈ [[ bΦ ]].
Therefore, b ⊢ s ∈ [[ Φ ]] has a successful tableau.

✷



5.5 Case Study 147

Theorem 5.4.6 (Completeness) Let s be a system specification and Φ be
a formula. Then,

s ∈ [[ bΦ ]]⇒ b ⊢ s ∈ [[ Φ ]] has a successful tableau.

Proof:

Suppose that s ∈ [[ bΦ ]], but b ⊢ s ∈ [[ Φ ]] does not have a successful
tableau.

By Proposition 5.4.5, this means that b ⊢ s ∈ [[ ¬Φ ]] has a successful
tableau.

By Theorem 5.4.4, we deduce that s ∈ [[ ¬bΦ ]] which is equivalent to
s /∈ [[ bΦ ]], but this contradicts the hypothesis that s ∈ [[ bΦ ]]. ✷

5.5 Case Study

In this section, we illustrate our technique with an example of a medical
computer system that allows nurses and doctors to read, create and change
prescriptions for their patients. The example demonstrates the use of the
CS2 algebra, the SPL logic, and the tableau-based proof method. We show
that the system satisfies the security policy.

5.5.1 System Specification

The emphasis of the case study is the application of the tableau rules and
therefore the computer system is kept simple. It includes a desktop computer
for the nurse, a tablet for the doctor and a file server for the patient’s current
prescription, medical test results, allergies, and their medical history.

The hospital system’s specification, expressed in CS2 terms, is as follows:

H = kn
n [movknn .mov

kp
p .N] | kd

d [movkdd .mov
kp
p .(D1 | mov

kf
f .D2)] |

kp
p [P |

kf
f [F]]

where N,D1,D2,P, F 6= 0, kn, kd, kp, kf 6= δ

The three devices, depicted hrough ambients n, d, and p respectively, are
properly safeguarded according to the best industry standards, as symbolized



5.5 Case Study 148

by their access keys kn, kd, and kp. The file server has a general folder for
current prescriptions and a restricted one for the patient’s more sensitive
information. The restricted folder is protected by the key kf . The nurse can
only view current prescriptions (process N), while the doctor can do the same
(process D1) and additionally access the patient’s medical history and write
new prescriptions or enter new test results (process D2).Finally, processes P

and F represent the prescription and the sensitive information.

The security policy for the system reflects the system’s purpose: we require
that the nurse and the doctor have their appropriate access levels and that
the file server has a restricted area for sensitive data. The SPL formula for
the system’s security policy is:

Φ = kn
n [〈movknn 〉〈mov

kp
p 〉tt] |

kd
d [〈movkdd 〉〈mov

kp
p 〉(tt | 〈mov

kf
f 〉tt)] |

kp
p [tt |

kf
f [tt]]

The policy allows us demonstrate the application of 4 different tableau rules
and verification of the conditions for both successful and unsuccessful leaves.
The case study has a reasonable degree of complexity for a manual proof. At
the same time, it is kept legible to prevent from splitting the proof tree on
several pages. The same scenario is treated in Sect. 5.6, where the advantages
of automation over manual proofs are highlighted.

5.5.2 Proof Tree

The hypothesis in this case study have already been presented with the sys-
tem specification. The initial value of the variable b is ⊤. The sequent to use
for producing an unsuccessful tableau is ⊤ ⊢ H ∈ [[ ¬Φ ]]. The inference rules
in Table 5.6 are applied to the premise and produce the proof tree shown in
Table 5.7.

The premise of the tableau involves the negation of a formula, so the rule R¬

is invoked first. This implies changes both to the formula and to the variable
b. The value of variable b of the sequent is modified from ⊤ to ⊥⊤ = ⊥. The
resulting formula Φ involves parallel composition and the rule R| is applied.
Note the change of the sequent variables corresponding to b′ and b′′ in the R|

inference rule. They take the values ⊥ and ⊤, respectively, to comply with
the operation ⊥×⊤ = ⊥.



5
.5

C
a
se

S
tu

d
y

149

Table 5.7: Tableau system proof for case study

successful

i⊤ ⊢ D2 ∈ [[ tt ]]i
successful

i⊤ ⊢ D1 ∈ [[ tt ]]i
R〈a〉

i⊥ ⊢ mov
kf

f
.D2 ∈ [[ 〈mov

kf

f
〉tt ]]

R|

i⊥ ⊢ D1 | mov
kf

f
.D2 ∈ [[ tt | 〈mov

kf

f
〉tt ]]

isuccessfuli

i⊤ ⊢ F ∈ [[ tt ]]i
unsuccessful

i⊥ ⊢ N ∈ [[ tt ]]

R〈a〉

i⊤ ⊢ mov
kp
p .D ∈ [[ 〈mov

kp
p 〉(tt | 〈mov

kf

f
〉tt) ]]

successful

i⊤ ⊢ P ∈ [[ tt ]]

R[]

i⊤ ⊢
kf

f
[F] ∈ [[

kf

f
[tt] ]]

R〈a〉

i⊥ ⊢ mov
kp
p .N ∈ [[ 〈mov

kp
p 〉tt ]]

R〈a〉

i⊤ ⊢ mov
kd
d

.mov
kp
p .D ∈ [[ 〈mov

kd
d

〉〈mov
kp
p 〉(tt | 〈mov

kf

f
〉tt) ]]

R|

i⊤ ⊢ P |
kf

f
[F] ∈ [[ tt |

kf

f
[tt] ]]

R〈a〉

i⊥ ⊢ mov
kn
n .mov

kp
p .N ∈ [[ 〈movkn

n 〉〈mov
kp
p 〉tt ]]

R[]

i⊤ ⊢
kd
d

[mov
kd
d

.mov
kp
p .D] ∈ [[

kd
d

[〈mov
kd
d

〉〈mov
kp
p 〉(tt | 〈mov

kf

f
〉tt)] ]]

R[]

i⊤ ⊢
kp
p [P |

kf

f
[F]] ∈ [[ tt |

kf

f
[tt] ]]

R[]

i⊥ ⊢ kn
n [movkn

n .mov
kp
p .N] ∈ [[ kn

n [〈movkn
n 〉〈mov

kp
p 〉tt] ]]

R|

i⊤ ⊢
kd
d

[mov
kd
d

.mov
kp
p .D] |

kp
p [P |

kf

f
[F]] ∈ [[

kd
d

[〈mov
kd
d

〉〈mov
kp
p 〉(tt | 〈mov

kf

f
〉tt)] |

kp
p [tt |

kf

f
[tt]] ]]

R|

i⊥ ⊢ kn
n [movkn

n .mov
kp
p .N] |

kd
d

[mov
kd
d

.mov
kp
p .D] |

kp
p [P |

kf

f
[F]] ∈ [[ kn

n [〈movkn
n 〉〈mov

kp
p 〉tt] |

kd
d

[〈mov
kd
d

〉〈mov
kp
p 〉(tt | 〈mov

kf

f
〉tt)] |

kp
p [tt |

kf

f
[tt]] ]]i

R¬

i⊤ ⊢ kn
n [movkn

n .mov
kp
p .N] |

kd
d

[mov
kd
d

.mov
kp
p .D] |

kp
p [P |

kf

f
[F]] ∈ [[ ¬(kn

n [〈movkn
n 〉〈mov

kp
p 〉tt] |

kd
d

[〈mov
kd
d

〉〈mov
kp
p 〉(tt | 〈mov

kf

f
〉tt)] |

kp
p [tt |

kf

f
[tt]]) ]]i



5.6 LoTREC Implementation of the Tableau Proof System for SPL 150

The successive application of the R〈a〉, R|, and R[] tableau rules results in
five branches. Finally, at the top of the branches, the proof leads to leafs
where processes are evaluated for satisfaction of formula tt. Four of the
leaves are successful, since any process belongs to [[ tt ]]. The only exception
is ⊥ ⊢ N ∈ [[ tt ]], which is unsuccessful. The tableau is then unsuccessful,
the original sequent does not hold, and the proof by refutation tableau is
complete. Therefore, the system depicted by the case study satisfies the
security policy.

5.6 LoTREC Implementation of the Tableau

Proof System for SPL

The generic tableau theorem prover LoTREC [41] has been introduced in
chapter 2. In this section we show our LoTREC implementation of the
tableau proof system for SPL and apply it to the case study from the previous
section. The application allows model checking on predefined or user-defined
logics. The resulting system can be applied to formulas to verify whether
they have successful tableaux or not. The formal semantics of LoTREC
ensures that correctly specified rules always produce "correct" results. The
tableau successfulness is evaluated as in the previous sections, and the truth
assessment can be marked in the associated graph by the TRUE or FALSE
labels.

A tableau system implementation requires the definition of the logic and
the tableau inference rules. The syntax uses operators for defining formulas,
sequents, and rules. In our case, we needed to express both logical formulas
and system specifications. Therefore, elements of both CS2 and SPL were
accommodated. The syntax and semantics of the logic, along with tableau
rules and a strategy, are saved as an XML file. The resulting system can
be applied to formulas to verify whether they have successful tableaux or
not. The underlying components that make LoTREC a formal prover are
transparent to the user. A graphic interface, depicted in Fig. 5.1, enables
definition of new logics, tableau systems, or custom formulas to be verified.
The truth result is shown in the shape of an upside-down proof tree rooted
in the original formula.



5
.6

L
o
T

R
E

C
Im

p
lem

en
ta

tio
n

o
f
th

e
T
a
b
lea

u
P

ro
o
f
S
y
stem

fo
r

SP
L

151

Figure 5.1: LoTREC implementation of the tableau proof system for SPL



5.6 LoTREC Implementation of the Tableau Proof System for SPL 152

5.6.1 SPL Connectors

The LoTREC implementation starts with the definition of the logic. The
syntax implies operators for defining formulas, sequents, and rules. In our
case, we need to express both logical formulas and system specifications.
Therefore, elements of both CS2 and SPL have to be accommodated. A
combination of variable, constants, and custom operators is used for the
implementation.

The system specification implies the definition of processes, process capabil-
ities and operations, and the ambient structure. Termination and deadlock
are simply represented through the constants 0 and 1. The implementation
of connectors includes definitions for sequence, parallel composition, choice,
movement, and ambient.

Each connector requires a name, a display symbol, an arity and a priority.
The arity is determined by the number of terms linked by a connector. The
terms can be a constant, a variable, or another connector. A priority is set
for each connector. The priorities chosen for the SPL tableau implemen-
tation reflect the order of precedence in classic process algebras and logics.
LoTREC allows specifying whether a connector is associative. The connec-
tors corresponding to parallelism, choice, and conjunction, for instance, are
associative.

System specification connectors reflect the elements of the CS2 syntax. A
sequence, for instance, is represented by the connector with the name seq,
has an arity of 2 (since it connects two terms), a priority of 2, and is dis-
played as ”_._”, with each ”_” being replaced by the actual term. The
ambient connector is called amb, has an arity of 3 and a priority of 5, and
is displayed as ”_,_[_]”. The other CS2-related connectors are as follows:
par, choice, repl,mov and amb.

The connectors for the SPL logic follow the same structure. Capability
is represented by cap, a connector with arity and priority 2, displayed as
"< _ > _". The connector for negation is named not, has arity 1, priority
5, and is displayed as ” ∼ _”. Disjunction is modelled as or, has arity 2,
priority 3, and is displayed as ”_v_”. Conjunction is often used in proofs
and it earns a dedicated connector that is much easier to handle than as a



5.6 LoTREC Implementation of the Tableau Proof System for SPL 153

double negation involving a disjunctive formula. The associated connector,
called and, has arity 2, priority 4, and is displayed as ”_&_”. Due to the
structural similarity with the algebra connectors, Sequence, Parallel Compo-
sition, and Protected Location can be represented through the seq, par and
amb connectors previously mentioned. True is represented through constant
sf TT. Note that in LoTREC lower case names are reserved for variables,
therefore the more adequate symbol tt could not be used.

Two additional connectors are added for defining sequents: sbp and sbn,
standing for "sequent - b positive" and "sequent - b negative", respectively. A
single LoTREC rule accommodating both values of the variable b would have
become very complex for some tableau rules and would have been impossible
to express for others. Therefore we chose to include two LoTREC rules for
each inference rule.

The sbp and sbn connectors solve the issue by abstracting the variable b
completely. A sequent is simply presented as a formula satisfaction evaluation
prefixed by a true or false unary operator. Both connectors have arity 2 and
priority 0 and are not associative. They are displayed as ”TR(_sat_)” and
”FL(_sat_)”, respectively. For instance, the sequent ⊤ ⊢ P.Q ∈ [[ Φ.Ψ ]]
would be displayed as TR(P.Q sat Φ.Ψ).

5.6.2 SPL Rules and Strategies

LoTREC rules consist of conditions and actions. As mentioned in the pre-
vious section, each inference rule is represented by a pair of rules in the
LoTREC implementation. We used intuitive names for the rules: R_Not
and R_NotN correspond to R¬, R_Par and R_ParN correspond to R|, etc.

The SPL tableau system rules use the premise sequent at the denominator
as their conditions. There are 20 condition names, which are actually pre-
defined conditions on elements, links, nodes, parents, successors, etc. Rules
are applied to formulas that label the nodes. The condition name, node, and
formula have to be defined when creating a new rule. The default node name
node is used in most circumstances, with node’ being defined when new nodes
have to be created. Rule actions have a structure similar to conditions, re-
quiring a name, node, and formula. Among the 15 predefined action names,
the most useful for our implementation are add, link and createNewNode.



5.6 LoTREC Implementation of the Tableau Proof System for SPL 154

They allow adding a new label to the node, creating a successor (or child)
node, or linking two nodes.

The rule corresponding to R[] for b = ⊤, for example, has the following
components:

• Rule name: R_Amb

• Condition name: hasElement

• Condition node: node

• Condition formula: bps amb variable N variable K variable A amb variable
N variable K variable B

• Action name: hasElement

• Action node: node

• Action formula: bps variable A variable B

Two more implementation rules are depicted in Fig. 5.2 and Fig. 5.3. The
complete ruleset is compiled into an XML file. The formal semantics of
LoTREC ensures that correctly specified rules always produce "correct" re-
sults. Rules are consolidated in strategies, which define what rules are ap-
plied, in which order, and when does the strategy stop. The default strategy
we built for the SPL tableau proof system, pictured in Fig. Fig. 5.4 includes
all the rules we defined.

The tableau successfulness is evaluated as in the previous sections, and the
truth assessment can be marked in the associated graph by the TRUE or
FALSE labels. Verification can be performed on formulas composed directly
in the dedicated interface window or on predefined formulas, as shown in Fig.
5.5. The resulting proof tree displays both the applicable inference rules and
the labels.

The proof tree for the case study in the previous section is shown in Fig.
5.6. Each tableau rule application corresponds to a label. Branching caused
by the parallelism in the security policy is clearly marked in the graph. A



5.6 LoTREC Implementation of the Tableau Proof System for SPL 155

Figure 5.2: LoTREC SPL tableau rule for R¬

Figure 5.3: LoTREC SPL tableau rule for R|



5.6 LoTREC Implementation of the Tableau Proof System for SPL 156

Figure 5.4: LoTREC SPL tableau strategy

Figure 5.5: LoTREC SPL tableau predefined formula



5.7 Conclusion 157

step-by-step run of the proof will reveal that the same rules as in the manual
proof in Table 5.7 are applied, exactly in the same order. The tree con-
tains one successful and one unsuccessful leaf, as expected. Therefore, the
tree is unsuccessful and the refutation tableau proof is complete. Note that
proof generation was significantly faster than building the proof by hand,
underlining once more the benefit of automation.

5.7 Conclusion

Formal verification of security policies can ensure that access is provided
as intended, with no accidental backdoors or latent vulnerabilities. We are
proposing in this chapter an automated algorithm for assessing policy imple-
mentation. The algorithm employs inference rules applied to logic formulas
and systems specifications that we define with the CS2 process algebra and
the SPL modal logic, respectively. The statement to be evaluated is pre-
sented in the form of a sequent, which takes into account a model of the
analyzed system and a formula representing the policy. A tableau is then
built on back-chaining premises and conclusions to determine whether the
original statement holds. Formal proofs are given for the finiteness, sound-
ness, and completeness of our tableau methodology. If the tableau is closed,
then a conclusion can be reached about the initial sequent, meaning that the
verified formula is satisfied (or not) by the model.

The implementation of our tableau-proof system in LoTREC, a tableau the-
orem prover, is also presented. It allows automatic verification of policy
compliance, eliminating the need for manual application of the inference
rules. The four components - the algebra, the logic, the proof algorithm,
and the implementation - integrate optimally as they are built specifically
for the purpose. A set of access permissions and restrictions built as security
policies can be checked individually or together. Moreover, the methodology
allows verification of any reasoning about the model that can be expressed
with SPL formulas.



5
.7

C
o
n
clu

sio
n

158Figure 5.6: LoTREC SPL tableau proof for the case study



5.7 Conclusion 159

One of the merits of our approach is that it unifies all components in a
formal, homogeneous framework. The solutions we have come across so far
and referenced herein fall short of our intended objective. In some cases,
the system specification and policy logic may be well developed, but there is
no formal verification. Conversely, formal verification methods are available
for several calculi and logics, but none cover mobility. The framework we
propose addresses these shortcomings and advances the solution yet another
step through automation. Moreover, tableau finiteness is a guarantee that
the algorithm terminates, no matter how complex the initial sequent is. The
effectiveness of the implementation has been demonstrated in Sect.5.6.

Among the potential directions for extending this work, the natural candidate
is the dynamic enforcement of security policies, which is the subject of the
following chapter.





Security Policy Enforcement

161





Chapter 6

Formal Framework for Security

Policy Enforcement

Abstract

This chapter presents additional contributions that complete our formal frame-
work. The CS2+ process algebra is a more expressive version of CS2 enriched
with an enforcement operator, protection capabilities and communication in-
terfaces. The SPL logic gains a manner of eliminating negative formulas.
A quotient operator calculates the required enforcements for non-compliant
computer systems. A software prototype has been implemented to show the
practical feasibility and the effectiveness of our security policy enforcement
framework.

6.1 Introduction

This chapter carries on the system and logic specifications from the previous
one and proposes a technique for automatic security policy enforcement in
computer systems. New syntactic constructs are added in order to enforce
compliance. We demonstrate how, for a given security policy expressed by a
logical formula, our calculus allows to asses whether the specification meets
the security policy requirements. If it does not, the optimal enforcement for
the system is automatically generated using our enforcement operator. A
software prototype has been implemented to show the practical feasibility

163



6.2 Our Approach 164

and the effectiveness of our security policy enforcement framework.

The remainder of this chapter is organized as follows. Section 6.2 summa-
rizes our approach. The new calculus we introduce in Section 6.3 is suitable
for specifying systems and policy enforcements. Section 6.4 details our ded-
icated logic for security policy specification. The quotient operator, defined
in Section 6.5, describes our technique for deriving an enforcement from a
given security policy and system’s specification. The case study depicted
in Section 6.6 illustrates how a system can be evaluated for security policy
compliance. The case study is expanded to demonstrate how to obtain the
enforcement and prove that it does indeed implement the policy. Section 6.7
presents a software prototype implementing the proposed approach. Finally,
Section 6.8 expresses our conclusions and some directions for future work.

6.2 Our Approach

The related literature and concepts have already been covered in Chapters 2
and 3. A common observation is that many existing approaches have limited
applicability. The informal manner for specifying input information of both
system and policy representation impacts the accuracy of the specification. In
practical terms, we need to make sure that none of the network components
or system’s interactions are missing. Access to network shares, for instance,
implies the definition of components (users, shared volumes, communication
channels, access control lists, etc.), and interactions (allowed operations such
as file retrieval and submission, system response in case of insufficient access
permissions, etc).

The absence of the aforementioned components or insufficient granularity in
describing interactions would make the specification incomplete. It is there-
fore important to develop formal methods that allow appropriate representa-
tions of computer systems and their behavior with respect to a given security
policy. The original technique we propose in this chapter addresses the is-
sue of policy compliance for computer networks through formal specification
and assessment of the system’s security configuration. The approach allows
the automatic generation of enforcement processes that have the ability to
rewrite a system specification to make it satisfy a security policy.



6.2 Our Approach 165

Figure 6.1: Our approach



6.3 Security Enforcement Calculus 166

The computer network analyzed is specified with our dedicated calculus,
which is designed to easily capture the behaviors of the various network
components. The security policy is specified using a dedicated logic. Policy
compliance can be verified in terms of system and policy specifications. If
a policy change is required, our quotient operator allows us to compute the
enforcements for the non-compliant components of the system.

Figure 6.1 provides an outline of our approach. The major steps involved are
the following:

• the system is specified using the calculus defined in section 6.3; the
result is a process P which models, at an abstract level, the system;

• the security policy is specified as a formula Φ with the aid of the SPL
logic;

• the system’s specification P is evaluated for compliance with the for-
mula Φ; if P does not satisfy Φ, an enforcement process X has to be
calculated so that the resulting enforced system P ↿ X satisfies Φ.

6.3 Security Enforcement Calculus

In this section we define the syntax and the semantics of a calculus suited
for specifying, at an abstract level, a given network with the behaviors of
network components, including policy enforcement and network protections.
We named the calculus CS2+ as it inherits all the elements of CS2’s syntax
and their associated semantics.

6.3.1 Syntax

The syntax of our specification calculus is presented in Table 6.1. All sets of
CS2 have been preserved. The set of communication channels is denoted by
C. The new syntactical components are as follows. The expression P ↿ Q de-
scribes a process P enforced by a process Q. Two ambients can communicate
only if their interfaces share at least a common channel.



6.3 Security Enforcement Calculus 167

Table 6.1: Syntax of CS2+

n ∈ N domain name

k ∈ K security key

a ∈ A process action

i ⊆ C communication interface

P,Q ::= processes

0 deadlock

| 1 successful termination

| M Act action

| P.Q sequence

| P |γ Q parallel composition

| P ↿ Q enforcement

| P + Q choice

| k
n[P]

i ambient

M ::= action modalities

• preserve

| N remove

| H insert

Act ::= process capabilities

movkn movement

| protkn protection

| a other actions



6.3 Security Enforcement Calculus 168

There are two types of actions: regular and enforcing. The regular actions
enable the execution of process capabilities. The enforcing actions are used
for modifying process behaviour. We consider the following particular regular
actions in order to define process capabilities: movkn (movement) and protkn
(protection). Movement represents the ability of a process to circulate in and
out of ambients, provided it uses the appropriate key. It has been introduced
in the previous chapter within the syntax of CS2. Protection refers to an
access key change, and is always applied from within an ambient. The process
protkn.P within an ambient n protected by k′ will modify its parent ambient’s
key to k and then continue executing as P.

We use the modalities “•a”, “Na”, and “Ha” to depict enforcing actions. They
preserve, prevent or to enforce the execution of some action a, respectively.
The •a modality used within an enforcement process ensures that the first
action a of a process a.P is preserved and executes as scheduled. The opposite
effect is achieved through Na, which triggers the removal of the action a from
the same process. The Ha modality allows us to insert the action a as the first
executable action of a process P, effectively transforming it into a.P. Move-
ment actions can be used to describe a system behaviour, so they can be part
of a system specification. They are also used for transporting enforcements
to the desired location, so movements can also be part of enforcement pro-
cesses. The action modalities can only exist during the enforcement phase,
so they cannot be part of a system specification. Moreover, in order to keep
the specification legible, we will denote movδn by movn.

6.3.2 Semantics

The operational semantics of CS2+ preserves all structural congruences “≡"
and reduction relations “→" corresponding to elements common with CS2.
Table 6.2 presents a structural congruence on processes, which includes ad-
ditional relations for enforcement. Note that unlike parallelism, enforcement
is not symmetrical. Moreover, when an enforcement is applied to a process,
the right hand term has to terminate before the left hand term starts execut-
ing. Table 6.3 defines the predicate “_ ↓", which is used in the definition the
reduction relation. P ↓means that P has the option to terminate successfully.

The reduction relation in Table6.4 captures all possible process evolutions.



6.3 Security Enforcement Calculus 169

Table 6.2: Structural Congruence for CS2+

P ≡ P (6.2.1)

P ≡ Q⇒ Q ≡ P (6.2.2)

P ≡ Q,Q ≡ R⇒ P ≡ R (6.2.3)

P ≡ Q⇒ R.P ≡ R.Q (6.2.4)

P ≡ Q⇒ P.R ≡ Q.R (6.2.5)

P ≡ Q⇒ P |γ R ≡ Q |γ R (6.2.6)

(P |γ Q) |γ R ≡ P |γ (Q |γ R) (6.2.7)

P ≡ Q⇒ P + R ≡ Q + R (6.2.8)

P ≡ Q⇒ R ↿ P ≡ R ↿ Q (6.2.9)

P ≡ Q⇒ P ↿ R ≡ Q ↿ R (6.2.10)

P ≡ Q⇒ k
n[P]

i ≡ k
n[Q]i (6.2.11)

0.P ≡ 0 (6.2.12)

P ↿ 0 ≡ 0 (6.2.13)

P + 0 ≡ P (6.2.14)

1.P ≡ P ≡ P.1 (6.2.15)

P |γ 1 ≡ P (6.2.16)

P ↿ 1 ≡ P ≡ 1 ↿ P (6.2.17)

P + 1 ≡ P (6.2.18)

P.(Q + R) ≡ P.Q + P.R (6.2.19)

(P + Q).R ≡ P.R + Q.R (6.2.20)

P ↿ Q.R ≡ (P ↿ Q) ↿ R (6.2.21)

P |γ Q ≡ Q |γ P (6.2.22)

P |γ (Q + R) ≡ (P |γ Q) + (P |γ R) (6.2.23)

P + P ≡ P (6.2.24)

P + Q ≡ Q + P (6.2.25)

P ↿ (Q |γ R) ≡ (P ↿ Q) ↿ R ≡ (P ↿ R) ↿ Q (6.2.26)

P ↿ (Q + R) ≡ (P ↿ Q) + (P ↿ R) (6.2.27)

(P + Q) ↿ R ≡ (P ↿ R) + (Q ↿ R) (6.2.38)

(P |γ Q) ↿ R ≡ (P ↿ R) |γ (Q ↿ R) (6.2.29)



6.4 Security Enforcement Logic 170

We use “→∗" as a transitive closure of “→". Our syntax allows a complete
control over process behaviour with the aid of enforcement processes. Given
a process a.P, an enforcement can allow a to run as scheduled (6.4.10) or
remove it (6.4.11). The use of the remove modality is shown in the following
example:

movkn.(P + Q) ↿ Nmovkn.R
Nmovkn−−−→ (P + Q) ↿ R

Alternately, an enforcement process can insert a completely new action to be
executed as the first action of a process (6.4.12). A combination of removal
and insertion is useful, for example, when the network topology changes due
to a link being added or failing. In such a case, security policies need to
be updated to reflect the affected communication interfaces and alternate
paths. They will in turn be implemented through enforcement processes
that prescribe the corresponding movement capabilities.

The actual mechanisms for movement inside, out, and across ambients are
captured by rules (6.4.13) to (6.4.15). The example below illustrates both
(6.4.13) and (6.4.14).

movkn.P |γ
k
n[Q |γ R]i |γ

k′

m[mov
k′

m.S |γ T]j
movkn, mov

k′
m−−−−−−→ k

n[P |γ Q |γ R]i |γ S |γ
k′

m[T]
j

Ambient access keys can be modified as well, whenever required by a policy
change, in order to lower or elevate the ambient’s protection level (6.4.16).

Definition 6.3.1 (Normal form) A process P is in its normal form, de-
noted by P⇓, iff there is no action a ∈ A so that P a

−→ P′.

We extend the structural congruence relation as follows:

(P ↿ Q)⇓ ⇒ P ↿ Q ≡ P (6.2.30)

6.4 Security Enforcement Logic

In this section, we define a dedicated logic suited to specify enforceable se-
curity policies for computer systems described with our CS2+ calculus. The



6.4 Security Enforcement Logic 171

Table 6.3: Process Termination for CS2+

1 ↓ (6.3.1)

P ↓

(P + Q) ↓
(6.3.2)

Q ↓

(P + Q) ↓
(6.3.3)

P ↓ , Q ↓

(P.Q) ↓
(6.3.4)

P ↓ , Q ↓

(P |γ Q) ↓
(6.3.5)

P ↓
k
n[P]

i ↓
(6.3.6)



6.4 Security Enforcement Logic 172

Table 6.4: Reduction Relation for CS2+

P′ ≡ P, P
a
−→ Q, Q ≡ Q′

P
′ a
−→ Q

′ (6.4.1)
�

a
a
−→ 1

(6.4.9)

P
a
−→ P′

P+Q
a
−→ P′

(6.4.2)
�

a.P ↿ •a.Q
•a
−→ a.(P ↿ Q)

(6.4.10)

P
a
−→ P′

P.Q
a
−→ P′.Q

(6.4.3)
�

a.P ↿ Na.Q
Na
−→ P ↿ Q

(6.4.11)

P
a
−→ P′

P |γ Q
a
−→ P′ |γ Q

(6.4.4)
�

P ↿ Ha.Q
Ha
−→ a.(P ↿ Q)

(6.4.12)

Q
a
−→ Q′

P ↿ Q
a
−→ P ↿ Q′

(6.4.5)
k′ ≥ k

k
n[P]

i ‡ movk′n .Q
movk

′
n−−−→ k

n[P ‡ Q]i
(6.4.13)

P
a
−→ P′, Q ↓

P ↿ Q
a
−→ P′

(6.4.6)
k′ ≥ k

P ‡ k
n[mov

k′
n .Q |γ R]i

movk
′

n−−−→ P ‡ Q | k
n[R]i

(6.4.14)

P
a
−→ P′, Q

b
−→ Q′

P |γ Q
γ(a,b)
−−−→ P′ |γ Q′

(6.4.7)
k′′ ≥ k, k′′ ≥ k′, i ∩ j 6= ∅

k
n[P]

i ‡ k′
m[movk′′n .Q |γ R]j

movk
′′

n−−−→ k
n[P ‡ Q]i ‡ k′

m[R]j
(6.4.15)

P
a
−→ P′

k
n[P]

i a
−→ k

n[P
′]i

(6.4.8)
�

k
n[P ↿ protk

′

n .Q]i
protk

′
n−−−→ k′

n [P ↿ Q]i
(6.4.16)

where ‡ ∈ {|γ, ↿}



6.4 Security Enforcement Logic 173

logic is very similar to the SPL logic defined in the previous chapter. How-
ever, due to the removal of sequence and the presence channels in the syntax
and semantics, we had to give it a different name. The obvious choice was
SPL+, which we are using for consistency with the calculus naming. The
syntax of SPL+ is summarized in Table 6.5 and its semantics are shown in
Table 6.6.

Table 6.5: Syntax of SPL+

Φ,Ψ ::=

tt True

| ¬Φ Negation

| 〈a〉Φ, a ∈ A Capability

| Φ | Ψ Parallel Composition

| Φ ∨Ψ Disjunction

| k
n[Φ]

i Protected location

Lemma 6.4.1 Let Φ and Ψ be two logical formulas and let P be a process.
Then:

P ∈ [[ Φ ]] ∧ [[ Φ ]] ⊆ [[ Ψ ]] ⇒ P |= Ψ

Proof:

The proof is trivial. ✷

One problem that may arise during enforcements is the interpretation of the
negation operator when used with complex formulas. We need to propagate
the negation operator inside the formulas in order to limit its scope to atomic
actions. This transformation will be of great help to simplify the definition
of the quotient operator given in Table 6.8 in the next section. Table 6.7
presents a rewriting system that allows the calculation of such transforma-
tions. It is easy to verify that all applied transformations lead to equivalent
logical formulas.



6.4 Security Enforcement Logic 174

Table 6.6: Semantics of SPL+

[[ tt ]] = P \ {0} (6.6.1)

[[ ff ]] = {0} (6.6.2)

[[ ¬Φ ]] = P \ [[ Φ ]] (6.6.3)

[[ 〈a〉Φ ]] = {a.P ∈ P : P ∈ [[ Φ ]]} (6.6.4)

[[ Φ | Ψ ]] = {P | Q ∈ P : P ∈ [[ Φ ]] ∧ Q ∈ [[ Ψ ]]} (6.6.5)

[[ Φ ∨Ψ ]] = [[ Φ ]] ∪ [[ Ψ ]] (6.6.6)

[[ k
n[Φ]

i ]] = {kn[P]
i ∈ P : P ∈ [[ Φ ]]} (6.6.7)

Table 6.7: The elimination of the ¬Φ form

¬tt → ff (6.7.1)

¬ff → tt (6.7.2)

¬¬Φ → Φ (6.7.3)

¬(〈a〉Φ) → (¬〈a〉)tt ∨ 〈a〉¬Φ (6.7.4)

¬(Φ | Ψ) → tt | ¬Ψ ∨ ¬Φ | tt ∨ ¬Φ | ¬Ψ (6.7.5)

¬(Φ ∨Ψ) → ¬Φ ∧ ¬Ψ (6.7.6)

¬(kn[Φ]
i) → k

n[¬Φ]
i (6.7.7)



6.5 Security Policy Enforcement 175

The following example demonstrates how the rewriting system can be applied
to push the negation operator down to atomic actions.

¬(〈movkn〉〈mov
k′

m〉tt)
(7.4)
−−→ (¬〈movkn〉)tt ∨ 〈mov

k
n〉¬(〈mov

k′

m〉tt)
(7.4)
−−→ (¬〈movkn〉)tt ∨ 〈mov

k
n〉((¬〈mov

k′

m〉)tt) ∨ 〈mov
k′

m〉¬tt)
(7.1)
−−→ (¬〈movkn〉)tt ∨ 〈mov

k
n〉(¬〈mov

k′

m〉)tt ∨ 〈mov
k
n〉〈mov

k′

m〉ff

6.5 Security Policy Enforcement

Once the system and the security policy have been specified with our alge-
braic calculus and logic, the next important step is to extract automatically
an enforcement process that imposes the behavior of the system’s model as
stated by the policy. The main intent of this approach is to automatically
identify the enforcement components that allow to impose a given policy on
a system.

This can be viewed as an alternative representation of the interface equation
problem [97, 62, 85, 79]. The idea is to derive a quotient process from two
given processes. The derived quotient process represents, then, the missing
part for the two processes to be equivalent. The quotient is defined in terms
of a process and a logical formula. Therefore, the equation we need to solve
has the form:

P ↿ X |= Φ

where P is the formal description of a system and Φ is the security policy to
be enforced.
In the equation shown above, X can be expressed as a quotient. The solution
X of this equation is the enforcement we look for:

X =
Φ

P

We have shown in Table 6.2 that enforcements don’t have any effect on a
deadlock process. Also, it is obvious that there is no need for an enforcement
if a process already satisfies the policy. For all other situations, the quotient
operator −

−
is formally defined in Table 6.8. Several examples of process

enforcements are also provided in this section.



6.5 Security Policy Enforcement 176

Table 6.8: Quotient Operator
−

−
: F × (P \ {0})→ P

tt

P
= 1 (6.8.1)

ff

P
= 0 (6.8.2)

〈a〉Φ

a.P
= •a.

Φ

P
(6.8.3)

〈a〉Φ

b.P
= Nb.

Φ

P
.Ha a 6= b (6.8.4)

¬〈a〉Φ

a.P
= Na.

Φ

P
(6.8.5)

¬〈a〉Φ

b.P
= •b.

Φ

P
a 6= b (6.8.6)

〈a〉Φ

1
=

Φ

1
.Ha (6.8.7)

Φ ∨ Ψ

P
=

Φ

P
+

Ψ

P
(6.8.8)

Φ

P + Q
=

Φ

P
+

Φ

Q
(6.8.9)

k
n[Φ]

i

k
n[P]

i
= movkn.

Φ

P
(6.8.10)

k′

n [Φ]
i

k
n[P]

i
= movkn.prot

k′

n .
Φ

P
k 6= k′ (6.8.11)

k′

n [Φ]
i | Ψ

k
n[P]

i |γ Q
=

k′

n [Φ]
i

k
n[P]

i
|γ

Ψ

Q
(6.8.12)



6.5 Security Policy Enforcement 177

All processes, except the blocking process, satisfy the formula tt (6.8.1), so
there is nothing to enforce (i.e. the value of the quotient is 1). Since no valid
process can satisfy ff , the generated enforcement at (6.8.2) is 0, which has
the effect of blocking the system. The rules (6.8.3)-(6.8.7) are related to the
enforcement of process actions. The rule (6.8.3) applies when the process
starts by the action specified in the formula. The enforcement process must
then keep the action in place, therefore the action •a is generated for the
enforcement process.

The rule (6.8.6) is quite similar, with •b preserving in this case an action
which is different from the action a prohibited by the policy. If the desired
action is different, as in (6.8.4), that particular action needs to be enforced.
This means that the non-compliant action b needs to be neutralized first,
followed by the insertion of the new action a. An fitting example would
be the use of a new access key k′′ for a movement action instead of the
obsolete key k. Let P = movkn.mov

k′

m.1 and let Φ = 〈movk
′′

n 〉tt. Notice that the
formula specifies that the movement action needs to use the new key. The
enforcement in this case is given by the expression:

Φ

P
= X = Nmovkn.

tt

movk
′

m.1
.Hmovk

′′

n = Nmovkn.1.Hmov
k′′

n ≡ Nmovkn.Hmov
k′′

n

Therefore, P ↿ X = movk
′′

n .movk
′

m.

The rule (6.8.5) follows the same reasoning, but in this case we seek satisfac-
tion of the complementary action. The rule (6.8.7) applies to the enforcement
of a policy on the process 1. The rule (6.8.8) concerns the enforcement of a

disjunction of two formulas forming the policy. Either
Φ

P
or

Ψ

P
will produce

a compliant process, when enforced on P. In the case of the indeterminate
choice (6.8.9), the formula can be applied to either P or Q. Let P = movkn.P

′,
Q = movk

′

m.Q
′ and let Φ = 〈movkn〉tt. The enforcement for P+ Q is:

Φ

P+ Q
= •movkn.

tt

P′
+ Nmovk

′

m.
tt

Q′
.Hmovkn = •movkn.1 + Nmovk

′

m.Hmov
k
n

Ambient enforcement, with and without access key changes, is defined in



6.5 Security Policy Enforcement 178

rules (6.8.10) and (6.8.11). The rule (6.8.10) allows the enforcement process
to go inside an ambient and apply the enforcement. The modification of the
ambient protection key is given through rule (6.8.11). Targeted enforcement
is also supported by our enforcement operator, as shown by (6.8.12). The
ambient name permits the delivery of dedicated enforcements on different
locations within the process. Let Φ = tt, Ψ = 〈movk

′

m〉tt, P = movk
′′

m .P′, and
Q = movkn.Q

′. The enforcement X for the formula k
n[Φ]

i | k′′

m [Ψ]j on the
process k′′

m [P]j |γ
k′′′

n [Q]i is calculated as follows:

k
n[Φ]

i | k′′

m [Ψ]j

k′′
m [P]j |γ k′′′

n [Q]i
=

k
n[tt]

i

k′′′
n [movkn.Q

′]i
|γ

k′′

m [〈movk
′

m〉tt]
j

k′′
m [movk′′m .P′]j

The results of the two new quotients obtained are:

k
n[tt]

i

k′′′
n [movkn.Q

′]i
= movk

′′′

n .protkn.
tt

movkn.Q
′
= movk

′′′

n .protkn.1

k′′

m [〈movk
′

m〉tt]
j

k′′
m [movk′′m .P′]j

= movk
′′

m .Nmovk
′′

m .
tt

P′
.Hmovk

′

m = movk
′′

m .Nmovk
′′

m .Hmovk
′

m.

Therefore value of the enforcement is:

X = movk
′′′

n .protkn.1 |γ movk
′′

m .Nmovk
′′

m .Hmovk
′

m

Theorem 6.5.1 (Enforcement Correctness) Let Φ ∈ F ,P ∈ P \ {0},

and let X =
Φ

P
. Then:

P ↿ X |= Φ

Proof:

The proof is done by structural induction on Φ.

X� Φ = tt:

X =
tt

P
= 1 (by 6.8.1)

P ↿ 1 ≡ P (by 6.2.17)

P |= tt (by 6.6.1)



6.5 Security Policy Enforcement 179

X� Φ = ff :

X =
ff

P
= 0 (by 6.8.2)

P ↿ 0 ≡ 0 (by 6.2.13)

0 |= ff (by 6.6.2)

X� Φ = 〈a〉Ψ:

X P = a.Q

X =
〈a〉Ψ

a.Q
= •a.

Ψ

Q
(by 6.8.3)

a.Q ↿ •a.
Ψ

Q

•a
−→ a.(Q ↿

Ψ

Q
) (by 6.4.10)

Q ↿
Ψ

Q
|= Ψ (by hypothesis)

a.(Q ↿
Ψ

Q
) |= 〈a〉Ψ (by 6.6.4)

X P = b.Q, b 6= a

X =
〈a〉Ψ

b.Q
= Nb.

Ψ

Q
.Ha (by 6.8.4)

b.Q ↿ Nb.
Ψ

Q
.Ha

Nb
−→ Q ↿

Ψ

Q
.Ha (by 6.4.11)

Q ↿
Ψ

Q
.Ha ≡ (Q ↿

Ψ

Q
) ↿ Ha (by 6.2.21)

(Q ↿
Ψ

Q
) ↿ Ha

Ha
−→ a.(Q ↿

Ψ

Q
) (by 6.4.12)

a.(Q ↿
Ψ

Q
) |= 〈a〉Ψ (by 6.6.4)



6.5 Security Policy Enforcement 180

X� Φ = ¬〈a〉Ψ:

X P = a.Q

X =
¬〈a〉Ψ

a.Q
= Na.

Ψ

Q
(by 6.8.5)

a.Q ↿ Na.
Ψ

Q

Na
−→ Q ↿

Ψ

Q
(by 6.4.11)

Q ↿
Ψ

Q
|= Ψ (by hypothesis)

Q ↿
Ψ

Q
2 〈a〉Ψ (by 6.6.4)

Q ↿
Ψ

Q
|= ¬〈a〉Ψ (by 6.6.3)

X P = b.Q, b 6= a

X =
¬〈a〉Ψ

b.Q
= •b.

Ψ

Q
(by 6.8.5)

b.Q ↿ •b.
Ψ

Q

•b
−→ b.(Q ↿

Ψ

Q
) (by 6.4.10)

Q ↿
Ψ

Q
|= Ψ (by hypothesis)

b.(Q ↿
Ψ

Q
) |= 〈b〉Ψ (by 6.6.4)

b 6= a ⇒ b.(Q ↿
Ψ

Q
) 2 〈a〉Ψ (by 6.6.4)

b.(Q ↿
Ψ

Q
) |= ¬〈a〉Ψ (by 6.6.3)



6.5 Security Policy Enforcement 181

X� Φ = k′

n [Φ
′]i | Ψ and P = k

n[P
′]i |γ Q:

X =
k′

n [Φ
′]i | Ψ

k
n[P

′]i |γ Q
=

k′

n [Φ
′]i

k
n[P

′]i
|γ

Ψ

Q
(by 6.8.12)

P ↿ X ≡ ( k
n[P

′]i ↿ (
k′

n [Φ
′]i

k
n[P

′]i
|γ

Ψ

Q
)) |γ ( Q ↿ (

k′

n [Φ
′]i

k
n[P

′]i
|γ

Ψ

Q
))

(by 6.2.29)

≡ (((kn[P
′]i ↿

k′

n [Φ
′]i

k
n[P

′]i
) ↿

Ψ

Q
) + (( k

n[P
′]i ↿

Ψ

Q
) ↿

k′

n [Φ
′]i

k
n[P

′]i
)) |γ

(((Q ↿
Ψ

Q
) ↿

k′

n [Φ
′]i

k
n[P

′]i
) + (( Q ↿

k′

n [Φ
′]i

k
n[P

′]i
) ↿

Ψ

Q
))

(by 6.2.26)

k
n[P

′]i ↿
k′

n [Φ
′]i

k
n[P

′]i
|= k′

n [Φ
′]i (by induction)

By the quotient operator and the reduction relation, we have:

k′

n [Φ
′]i

k
n[P

′]i
= movkn.R and k

n[P
′]i ↿

k′

n [Φ
′]i

k
n[P

′]i
→∗ k′

n [S]
i R,S ∈ P (6.9.1)

Since domains are uniquely identified, we have:

Ψ

Q
6= mov−n .T T ∈ P (6.9.2)

(kn[P
′]i ↿

k′

n [Φ]i

k
n[P

′]i
) ↿

Ψ

Q
= k′

n [S]
i ↿

Ψ

Q
(6.9.2.1)

By (6.9.2), there is no possible reduction for (6.9.2.1). We then
have:

(k
′

n [S]i ↿
Ψ

Q
)⇓ (6.9.2.2)



6.5 Security Policy Enforcement 182

By (6.9.2.1) and(6.9.2.2) we have:

(kn[P
′]i ↿

k′

n [Φ
′]i

k
n[P

′]i
) ↿

Ψ

Q
≡ k

n[P
′]i ↿

k′

n [Φ
′]i

k
n[P

′]i
(6.9.3)

( k
n[P

′]i ↿
Ψ

Q
)⇓ (by 6.9.2)

k
n[P

′]i ↿
Ψ

Q
≡ k

n[P
′]i (by 6.2.30)

( k
n[P

′]i ↿
Ψ

Q
) ↿

k′

n [Φ
′]i

k
n[P

′]i
≡ k

n[P
′]i ↿

k′

n [Φ
′]i

k
n[P

′]i
(6.9.4)

Since domains are uniquely identified, we have:

Q 6= k
n[U]

i U ∈ P

By the quotient operator and (6.9.1), we have:

( Q ↿
k′

n [Φ
′]i

k
n[P

′]i
)⇓ (by 6.2.30)

( Q ↿
k′

n [Φ
′]i

k
n[P

′]i
) ↿

Ψ

Q
≡ Q ↿

Ψ

Q
(6.9.5)

Since domains are uniquely identified, we have:

Q ↿
Ψ

Q
6= k

n[V]
i V ∈ P

((Q ↿
Ψ

Q
) ↿

k′

n [Φ
′]i

k
n[P

′]i
)⇓ (by 6.9.1, 6.2.30)

(Q ↿
Ψ

Q
) ↿

k′

n [Φ
′]i

k
n[P

′]i
≡ Q ↿

Ψ

Q
(6.9.6)

P ↿ X → ( k
n[P

′]i ↿
k′

n [Φ
′]i

k
n[P

′]i
) |γ ( Q ↿

Ψ

Q
) |= k′

n [Φ
′]i | Ψ

(by 6.9.3 − 6.9.6, 6.6.5, 6.6.7)



6.5 Security Policy Enforcement 183

X� Φ = Φ′ ∨Ψ:

X =
Φ′ ∨Ψ

P
=

Φ′

P
+

Ψ

P
(by 6.8.8)

P ↿ (
Φ′

P
+

Ψ

P
) ≡ (P ↿

Φ′

P
) + (P ↿

Ψ

P
) (by 6.2.27)

P ↿
Φ′

P
|= Φ′ and P ↿

Ψ

P
|= Ψ (by hypothesis)

P ↿
Φ′

P
|= Φ′ ∨Ψ and P ↿

Ψ

P
|= Φ′ ∨Ψ (by 6.6.6)

(P ↿
Φ′

P
) + (P ↿

Ψ

P
) |= Φ′ ∨Ψ (by 6.6.6)

X� Φ =k
n [Ψ]i:

X P =k
n [Q]i

X =
k
n[Ψ]i

k
n[Q]

i
= movkn.

Ψ

Q
(by 6.8.10)

k
n[Q]i ↿ movkn.

Ψ

Q

movkn−−−→ k
n[Q ↿

Ψ

Q
]i (by 6.4.13)

Q ↿
Ψ

Q
|= Ψ (by hypothesis)

k
n[Q ↿

Ψ

Q
]i |= k

n[Ψ]i (by 6.6.7)

X P =k′

n [Q]i, k′ 6= k

X =
k
n[Ψ]i

k′
n [Q]

i
= movk

′

n .protkn.
Ψ

Q
(by 6.8.11)

k′

n [Q]i ↿ movk
′

n .prot
k
n.
Ψ

Q

movk
′

n−−−→ k′

n [Q ↿ protkn.
Ψ

Q
]i (by 6.4.13)



6.6 Case Study 184

k′

n [Q ↿ protkn.
Ψ

Q
]i

protkn−−−→ k
n[Q ↿

Ψ

Q
]i (by 6.4.16)

Q ↿
Ψ

Q
|= Ψ (by hypothesis)

k′

n [Q ↿
Ψ

Q
]i |= k

n[Ψ]i (by 6.6.7)

✷

6.6 Case Study

In this section, we illustrate our technique with the example of the network
depicted in Fig.6.2. The example demonstrates the use of the new calculus
for specifying the system, policy changes, enforcement and verification. We
show that the generated enforcement policy produces the expected changes.

6.6.1 System Specification

The subject of the case study is a simplified version of a library system as
depicted in Fig. 6.2. In order to make the example easy to comprehend,
the number of computer systems has been kept to a minimum: one for a
library guest and four for the library. We identified two logical zones: the
Internet logical zone containing the Guest system and the Library logical zone
containing the library’s own computer systems. The Library zone initially
contains one computer system for the library’s portal server (Portal), two for
the reservation and fine payments (Borrowing and Fines) and one for online
resources (Resources).

Each computer system is represented by a non-blocking process running in
a protected ambient. Specific keys are only defined for ambients requiring
safeguards: kl and kf corresponding to portal and borrowing systems, re-
spectively. All other keys are set to the default value δ, which states that
there are no access restrictions. For ease of reading, we have chosen to omit
δ from the specification. This means that processes movδn.P and δ

n[P]
in will

be represented as movn.P and n[P]
in , respectively. For the same reason, by

abuse of notation, we will denote "|γ" by "|", since all communications are



6.6 Case Study 185

well defined. Access to the library portal (provided that kl is known) does
not grant access to Borrowing, but is required as a preliminary step.

Figure 6.2: Case study - Library network

Currently, guests can browse online resources, reserve items from the library
and pay fines for late returns. Fine payments are dependant on the bor-
rowing system, as they are linked to the library catalogue. The workflow
is straightforward. Guests initiate a session by authenticating to the portal
with credentials provided by the library. Once authenticated, they are pre-
sented with the choices (browse or borrow) and carry on their intended tasks
until they decide to close the session.

Browsing online resources does not require special permissions. Consulting
the library catalogue and borrowing items, however, involve an additional
password. Paying fines does not require special permissions, but can only be
done after accessing the borrowing section. The specification for the guest
system is as follows:

G = g[mov
kl
l .(movr.G1 + mov

kb
b .(G2 + movf .G3))]

ig

where G1,G2,G3 6= 0



6.6 Case Study 186

The library allows access to its online resources on the Resources web server
through the Portal. The web server handles reservation requests for items
from its Borrowing catalogue. Late return fines for borrowed items are pro-
cessed through Fines. The specification for the library system’s ambient is:

L = kl
l [L1 |

kb
b [B | f [F]

if ]ib | r[R]
ir ]il

where L1,B, F,R 6= 0

The whole system is composed of the library and guest systems L and G. It
is therefore specified by the process S below:

S = L | G

= kl
l [L1 |

kb
b [B | f [F]

if ]ib | r[R]
ir ]il | g[mov

kl
l .(movr.G1 + mov

kb
b .(G2 + movf .G3))]

ig

To summarize, the signification of processes is as follows:

• G: represents the Guest process;

• G1: symbolizes the process used by the Guest to access online resources;

• G2: denotes the activities required by the Guest for browsing the cat-
alogue and borrowing items;

• G3: stands for the activities required by the Guest for paying fines for
late returns;

• L: represents the Library process;

• L1: corresponds to the Library portal authentication and choice of ser-
vice;

• B: represents the Library’s catalogue browsing and borrowing services;

• F: expresses to the process associated with fine payments;

• R: stands for the online resources web server.



6.6 Case Study 187

The interfaces share different channels to accommodate communication be-
tween ambients: ig = {gl}, il = {gl, lb, lr}, ib = {lb, bf}, if = {bf} and
ir = {lr}.

This enables the following:

• guest can communicate with the portal;

• the portal can communicate with the borrowing and resources systems;

• the borrowing and fines systems can communicate;

• no other communication is defined.

The library decides to finally upgrade their ageing catalogue system. The
library managers decide to reduce guest access temporarily to online resources
only. For a certain period, guests will no longer be allowed to consult the
catalogue and borrow items. In order to do that, the Borrowing system’s key
kb needs to be changed to a new value kb

′. The new policy for the library
system is:

Φl = kl
l [tt |

kb
′

b [tt]ib ]il, where kb
′ 6= kb

The formula Φl would be satisfied if the Library process meets several con-
ditions. First, the process must be an ambient named l, protected by the
key kl and communicating across an interface il. Second, the ambient must
contain a parallelism that involves a non-blocking process and an ambient b.
Finally, ambient b must have an interface ib and must be protected by a new
key k′

b.

6.6.2 Security Policy Enforcement

The enforcement required to make the library system compliant with the new
policy is given by:

Xl =
Φl

L

The enforcement process for the library system is calculated as follows:



6.6 Case Study 188

Xl =
Φl

L
=

kl
l [tt |

kb′
b [tt]ib ]il

kl
l [L1 |

kb
b [B | f [F]if ]ib | r[R]ir ]il

= mov
kl
l .(

tt | kb′
b [tt]ib

L1 |
kb
b [B | f [F]if ]ib | r[R]ir

) (by 6.8.11)

= mov
kl
l .(

tt

L1 | r[R]ir
|

kb′
b [tt]ib

kb
b [B | f [F]if ]ib

) (by 6.8.8)

= mov
kl
l .(1 | mov

kb
b .protkb′

b
.

tt

B | f [F]if
) (by 6.8.1, 6.8.12)

= mov
kl
l .mov

kb
b .protkb′

b
.1 (by 6.2.16, 6.8.1)

We have computed the necessary enforcement corresponding to the new poli-
cies based on the quotient operator table defined in the previous section. It is
now time to verify that the enforcements work as expected and the modified
systems satisfies the new policy: L ↿ Xl |= Φl. We proceed by calculating the
system specification for the enforced Library system by using the reduction
relation defined in Table 4.3:

L ↿ Xl = kl
l [L1 | b[B | f [F]

if ]ib | r[R]
ir ]il ↿ mov

kl
l .mov

kb
b .protkb′

b
.1

mov
kl
l−−−→ kl

l [L1 | b[B | f [F]
if ]ib | r[R]

ir ↿ mov
kb
b .protkb′

b
.1]il(by 6.4.13)

mov
kb
b−−−→ kl

l [L1 | b[B | f [F]
if ↿ protkb′

b
.1]ib | r[R]

ir ]il (by 6.4.13)

prot
kb′

b−−−−→ kl
l [L1 |

kb′
b [B | f [F]

if ]ib | r[R]
ir ]il (by 6.4.16)

The policy satisfaction relation for Φl can then be written as:

L ↿ Xl |= Φl ⇔
kl
l [L1 |

kb
′

b [B | f [F]
if ]ib | r[R]

ir ]il |= kl
l [tt |

kb
′

b [tt]ib ]il

⇔ L1 |
kb

′

b [B |
kf
f [F]if ]ib | r[R]

ir |= tt | kb
′

b [tt]ib (by 6.6.7)



6.7 Software Implementation 189

We can verify that indeed L ↿ Xl |= Φl, since L1 | r[R]
ir |= tt (by 6.6.1)

and kb
′

b [B | f [F]
if ]ib |= kb

′

b [tt]ib (by 6.6.7 and 6.6.1). Therefore, the library
system has been successfully enforced to satisfy the new policy.

6.7 Software Implementation

The main purpose of developing PEA (short for "Policy Enforcement Ap-
plication") was to mechanize the method developed in this chapter and to
demonstrate its applicability. Given a computer network system, no mat-
ter how complex, the application allows us to build the network topology,
generate the network specification using the calculus, specify policies with
the logic and calculate required enforcements based on the quotient operator
formulas.

The application was developed in Java [46] using Eclipse [98], with Swing
libraries [40] being used for the GUI development. The architecture of our
application contains different roles, a GUI and three modules that implement
the elements of our framework. One module translates topology information
into an interprocess algebra-based specification. The second module is used
for defining system security policies with logical formulas. Enforcement cal-
culations are performed by the third module. Since we used Eclipse, it is easy
to extend the application by adding new modules. The addition of libraries
of other elements (services, other network hardware, etc.) is also straightfor-
ward. The internationalization feature of Java allows interface components
(menu items, labels, etc.) to be defined in your language of choice. Currently,
there are English and French versions of the application. The software and
the complete code will be made available under GPL license.

The interface is intuitive and easy to use. Fig. 6.3 displays the network
topology described in our case study, along with the associated network
specification. The system’s topology is built by simply dragging predefined
elements (computers, routers, firewalls, etc.) into the main window of the
GUI. Associated details such as ambient names and keys, or processes, can
be added as properties of the elements via a context-aware box. Once the
components have been inserted, a dedicated button can be used to connect
them by pointing to the ends of the link.



6
.7

S
o
ftw

a
re

Im
p
lem

en
ta

tio
n

190

Figure 6.3: PEA: network specification



6.7 Software Implementation 191

Figure 6.4: PEA: ambient modification

Figure 6.5: PEA: process modification



6.7 Software Implementation 192

Figure 6.6: PEA: library security policy

The network specification for the system built is displayed at the bottom of
the main window. Any change to the topology or process details is automat-
ically applied to the specification. All applicable process reductions are also
taken into account and are transparently performed in the background.

Systems built with the aid of the application can be modified, copied, ex-
ported to XML files and imported for re-utilization. Links between compo-
nents can be added and removed through a simple right-click. Parent-child
ambient relations can be changed via drag-and-drop. Ambient names, keys,
interfaces, and process details are easily defined, as illustrated in Fig. 6.4
and Fig. 6.5.

PEA also allows specifying security policies by using a GUI-style method.
The policy is displayed both in logic formulas format and as an XML style
structure showing the components, as in Fig. 6.6.



6.8 Conclusion 193

The main window displays the topology and system specification. If the pol-
icy window, showing the logic formulas, is also open, one can calculate the
necessary enforcement to be applied to the system. The quotient button per-
mits the automated generation of an adequate enforcement, as demonstrated
in Fig. 6.7.

The application is the first step in our effort to obtain automatic enforce-
ments for the implementation of desired security policies. It can be employed
for various network simulations: system design, policy verification, disaster
recovery scenarios, etc.

6.8 Conclusion

In this chapter, we have developed a new formal framework for computer sys-
tem specification and security policy enforcement. This framework consists
of three main components. The first is a formalism for specifying computer
systems that captures in an effective and elegant way the system’s behaviour
and topology. We improve our CS2 calculus with constructs for communi-
cation interfaces, protection capabilities, and an enforcement operator. The
new calculus facilitates the specification of a computer system’s current state
and its evolution. The second component of the framework is a dedicated
logic for defining security policies. The logic formulas allow expressing cur-
rent and desired security policies. The semantics of the logic links policy
satisfaction to compliant processes. Again, the system’s evolution can be fol-
lowed, in this case from the point of view of applicable constraints. The third
component is the quotient operator that allows an automatic calculation of
required enforcements. Given a process P and a security policy Φ, we calcu-

late X =
Φ

P
as a first step. If X = 1, then the process P satisfies the policy Φ.

Otherwise, the enforcement can be applied to update the process and make
it policy compliant. The formal foundation of all components ensures that
the enforcement produces a secured system, free of incomplete specifications,
arbitrary interpretations or faulty implementation of policies.

Note that our approach is different from previous works as it allows both the
verification of policy compliance and the application of corrective actions.
The automated aspect of the methodology further enhances its value. A



6.8 Conclusion 194

Figure 6.7: PEA: library enforcement process

software implementation demonstrates its effectiveness and proves its appli-
cability to practical problems. The versatility of the framework is supported
by the numerous potential uses. It could be a free and lightweight tool em-
ployed by educators to simulate basic or complex network topologies, or to
build and test security policies. A detailed specification that includes all
potentially vulnerable systems is a worthwhile effort. Intrusion prevention
systems of firewalls could take advantage of it by blocking exploits of known



6.8 Conclusion 195

vulnerabilities through access key changes for the affected components. This
should be done in conjunction with patch management systems, which could
signal when access can be re-enabled. Cyber attacks could be modelled to de-
termine whether critical systems can be reached, and under which conditions.
They can be further analyzed to decide the best detection and prevention
strategy. The approach can also be beneficial for business continuity planning
while designing alternate configurations or disaster recovery scenarios. Such
cases imply system specifications adapted to the potential crisis (natural or
human-triggered disasters, hardware failure, wars, etc.). Our methodology
could be used to validate whether the expectations (i.e. security policy) can
be satisfied by the available computer systems (i.e. part of the new system
specification).

Further extensions of the calculus syntax, in particular, would increase the
range of applications. In its current state, the access key incorporates all
conditions necessary to enter an ambient. In practice, they correspond to
more than just system credentials or access control lists. A finer granularity
would allow a more precise control over process movement. A new action
could model direct communications between a sender and a receiver that are
not neighbours (encrypted channels, remote connections, etc). Other actions
that do not relate specifically to mobility would enrich specifications to better
reflect the complex set of computer system behaviours.





Chapter 7

Conclusion and Future Work

Abstract

This chapter positions the research within the current security context, sum-
marizes the results included in this thesis, and examines potential further
extensions of the results obtained so far.

The "always on, anywhere" paradigm has inadvertently benefited the mali-
cious intruders, from script kiddies to hacktivists and state-sponsored agents.
Hacking as a Service is a commodity available at the end of a mouse click.
More than ever before, being connected has become synonymous with being
vulnerable. For the consumers of network services, whether they use servers,
laptops, tablets, or smartphones, the whole concept of secure computing is
overwhelming. They have two alternatives: becoming an expert in all aspects
of security, or ignoring them blissfully. The first option is unrealistic, while
the second one leaves everybody open to attacks.

How do we solve this problem? We do it by providing built-in security
mechanisms out of the box, along with tools to enforce new safeguards as the
system evolves. Yet, this may not be sufficient to ensure proper protection.
Although the implementation of some mechanisms is straightforward, this
generally does not apply to the complex and distributed systems of large
organizations. Then, there is also the subjective human factor that intervenes
in policy definition, implementation and evaluation.

Formal methods are well positioned to address such concerns, as demon-

197



198

strated throughout this thesis. The framework we built enables us to specify
systems and security policies, assess policy compliance and automatically
calculate necessary enforcements for non-compliant systems. The research
goals were achieved through incremental advances, as shown by the gradual
refinement of the calculi. The first calculus we propose, FPC , employs a
large number of firewall-specific constructs. SSC , the second process algebra
presented, includes multiple capabilities for specifying the intruder’s behav-
ior. While they contribute to an exact representation of the environment,
these syntactic elements were not carried on in the general-purpose CS2 and
CS2+.

As a result, the individual components of the final framework - the process
algebra and the associated modal logic - are as lean as possible. This renders
the whole solution concise, but accurate and elegant. Nonetheless, it manages
to capture all the subtleties of system specification and policy assessment. It
is worth reiterating that the formal foundation of our approach produces an
outcome that is proven to be correct for both verification and enforcement.
Furthermore, both forms of policy assessment are automated. The LoTREC
implementation of the verification algorithm eliminates the need for a manual
application of inference rules. PEA, the software implementation of the policy
enforcement methodology, goes even further. Through its graphic interface,
it facilitates the specification of the computer system and security policies,
draws the associated topology, and calculates the enforcement needed to
satisfy a given policy.

The afore-mentioned results can be the basis for new research. We are con-
templating the following directions for extending the work presented in this
thesis:

• Modelling vulnerabilities: whenever an exploit exists for an information
system or one of its components, this can be expressed as a protection
change where the new key is public (δ).

• Access control models: modelling roles and/or security levels with our
calculus would make it possible to analyze their behaviour with respect
to security policies. Configuration of roles and access levels could be
easily implemented based on our algebra.

• Additional functionality in PEA: the provision of a library of prebuilt



199

templates for computer systems and subsystems would greatly improve
its usability.

Modelling vulnerabilities. Information systems are secure as long as none
of their components are vulnerable. The workflow is rather simple. Once a
vulnerability has been discovered for a subsystem and an exploit was made
available, a malicious adversary can attempt to attack it. A successful at-
tack gives access to the subsystem concerned. Once compromised, privilege
escalation can be the next step. The exploit may expose other subsystems
and allow an intruder to elevate their privileges to a higher level. In order to
fix the vulnerability, a patch needs to be installed.

The "Shellshock" vulnerability of the very popular GNU Bash shell, for in-
stance, allowed remote attackers to run arbitrary code. Computers, servers,
firewalls and security appliances using Bash were potential victims of cleverly
crafted messages. In successful attacks, the intruders were able to execute
any command and take full control over the target system.

Modelling would have helped understanding the overall impact (direct and
through related subsystems). The emergence of an exploit can be expressed
in terms of our CS2 process algebra as the enforcement for the ambient repre-
senting the subsystem. The enforcement would impose a change of the access
key from k (private) to δ (public). Patches for correcting vulnerabilities can
be seen as subsequent enforcements of a fresh private key.

Potential research avenues: determine which policy implementations are af-
fected by a vulnerability, evaluate mitigation solutions (e.g. temporarily dis-
abling the subsystem), run simulations of a potential compromise for impact
assessment.

Access control models. Our representation of ambient protection stands in
for a whole class of access control concepts such as authentication credentials,
privileges, access control lists. This is by design, as the level of abstraction
allows a security practitioner to focus on the mobility aspects. There is an
opportunity, however, to fragment the protection keys into more granular
components.



200

The partial order on keys may be useful for expressing different levels of
privileges, possibly associated with different roles or user profiles. A role
would set consistent permissions across processes representing a category of
users. Processes P and Q denoting two regular users, for instance, would
employ movements with the same key kr for accessing a certain ambient.

Identification information (e.g. account name, user ID, IP address etc.) can
be used for compiling access control lists (ACLs) associated with ambient
protection keys. Movements executed by all processes corresponding to ACL
items would employ a key that is equal to or superior to the protection key
of the ambient. Alternately, roles could be involved in defining an acceptable
partial order for an access key. Let’s consider the case of a system with three
roles: regular user, power user, and administrator. Let the keys kr, kp and ka
be the keys associated with the roles, with kr < kp < ka. Configuring the
level of privilege required to access an ambient would be as simple as setting
the value of the protection key to one of the three values: kr for everyone,
kp to exclude regular users, and ka to allow administrators only. This could
significantly simplify the system and policy specification, as only three keys
would be used.

The separation of duties can also be addressed by using the minimum level
of privileges required to access a resource. This applies to situations when a
process is executed by a user with multiple roles. Someone with both regular
user and administrator roles could switch to either one for running certain
tasks. Their processes can therefore use either kr or ka. During the system
specification phase, the processes could be defined considering the ambient
protection key (i.e. the least privilege) rather than the most powerful role.

Additional functionality in PEA. The graphical interface of the applica-
tion works well for drawing network topology maps thanks to its icons library.
Routers, servers, computers and links can be selected and added with one
click. This does not translate, however, into a rich system specification. All
network components are simply represented as bare ambients. This may be
discouraging for a security practitioner who tries to model a large system. A
library of pre-built specialized components would be beneficial. For instance,
there could be templates for a typical workstation with an Internet browser,
anti-virus, and local files, or a web server with FTP and remote management
services. The templates could be extended to include small LANs, such as a



201

development laboratory or a virtual classroom.

The subject of automatic security policy enforcement is vast and only par-
tially explored. This thesis is by no means an exhaustive coverage of the
issue, but contributes by mapping another area of the domain. We hope
that it motivates and inspires further research.





Bibliography

[1] Pietro Abate and Rajeev Goré. System Description: The Tableaux
Work Bench. Available at: http://csl.anu.edu.au/ abate/twb. In
TABLEAUX, LNCS, pages 164–175. Springer, 2003.

[2] K. Adi, M. Debbabi, and M. Mejri. A new logic for electronic commerce
protocols. In International journal of Theoretical Computer Science
(TCS) 291, 2003.

[3] E. S Al-Shaer and H. H Hamed. Discovery of policy anomalies in dis-
tributed firewalls. In INFOCOM ’04: Twenty-third AnnualJoint Con-
ference of the IEEE Computer and Communications Societies, pages
2605–2616. IEEE, 2004.

[4] Arnon Avron. The method of hypersequents in the proof theory of
propositional non-classical logics. In Logic: From Foundations To Ap-
plications, European Logic Colloquium, pages 1–32, 1994.

[5] J. C. M. Baeten. A brief history of process algebra. Theoretical Com-
puter Science, 335(2-3):131–146, 2005.

[6] David Basin, Vincent Jugé, Felix Klaedtke, and Eugen Zălinescu. En-
forceable security policies revisited. ACM Trans. Inf. Syst. Secur.,
16(1):3:1–3:26, June 2013.

[7] David Basin, Felix Klaedtke, and Samuel Müller. Monitoring secu-
rity policies with metric first-order temporal logic. In Proceedings of
the 15th ACM Symposium on Access Control Models and Technologies,
SACMAT ’10, pages 23–34, New York, NY, USA, 2010. ACM.

[8] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies.
In In Foundations of Computer Security, Copenhagen, Denmark, 2002.

203



204

[9] Lujo Bauer. Composing security policies with polymer. In In Proceed-
ings of the ACM SIGPLAN 2005 Conference on Programming Lan-
guage Design and Implementation, pages 305–314. ACM, 2005.

[10] Lujo Bauer, Jay Ligatti, and David Walker. A language and system
for composing security policies. Technical report, Princeton University,
2004.

[11] Bernhard Beckert and Rajeev Goré. Free variable tableaux for proposi-
tional modal logics. TABLEAUX-97 LNCS 1227, pages 91–106, 1997.

[12] Steven M. Bellovin. Distributed firewalls. ;login:, 24(Security):39–47,
November 1999.

[13] Jan A. Bergstra and Jan Willem Klop. Algebra of communicating
processes with abstraction. Theoretical Computer Science, 37:77–121,
1985.

[14] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO spec-
ification language LOTOS. Computer Networks and ISDN Systems,
14(1):25–59, 1987.

[15] C. Braghin, A. Cortesi, R. Focardi, and S. van Bakel. Boundary infer-
ence for enforcing security policies in mobile ambients. In Proceedings
of the 2nd IFIP International Conference on Theoretical Computer Sci-
ence (TCS), pages 383–395. Kluwer Academic Publisher, 2002.

[16] Chiara Braghin, Agostino Cortesi, and Riccardo Focardi. Control flow
analysis of mobile ambients with security boundaries. In FMOODS ’02:
Proceedings of the Fifth International Conference on Formal Methods
for Open Object-Based Distributed Systems V, pages 197–212. Kluwer,
B.V., 2002.

[17] Daniel Brand and Pitro Zafiropulo. On communicating finite-state
machines. Journal of the ACM, 30(2):323–342, 1983.

[18] Michele Bugliesi and Giuseppe Castagna. Secure safe ambients. In
POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 222–235, New
York, NY, USA, 2001. ACM.



205

[19] J. Burns, A. Cheng, P. Gurung, S. Rajagopalan, P. Rao, D. Rosen-
bluth, A.V. Surendran, and D. Martin-Jr. Automatic management of
network security policy. DARPA Information Survivability Conference
and Exposition (DISCEX II’01), 02:1012, 2001.

[20] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.
In Proceedings of the Twelfth ACM Symposium on Operating Systems
Principles, SOSP ’89, pages 1–13, New York, NY, USA, 1989. ACM.

[21] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Soft-
ware Science and Computation Structures: First International Confer-
ence, FOSSACS ’98. Springer-Verlag, Berlin Germany, 1998.

[22] L. Cardelli and A. D. Gordon. Types for mobile ambients. In Sympo-
sium on Principles of Programming Languages, pages 79–92, 1999.

[23] Luca Cardelli and Luca Cardelli. Mobile ambient synchronization.
Technical report, Digital Systems Research, 1997.

[24] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: Modal
logics for mobile ambients. In Proceedings of the 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’00, pages 365–377, New York, NY, USA, 2000. ACM.

[25] Luca Cardelli and Andrew D. Gordon. Ambient logic. Mathematical
Structures in Computer Science, 2006.

[26] E. Cerny. Controllability and fault observability in modular combi-
national circuits. IEEE Transactions on Computers, 27(10):896–903,
October 1978.

[27] Luis Fariñas del Cerro, David Fauthoux, Olivier Gasquet, Andreas
Herzig, Dominique Longin, and Fabio Massacci. Lotrec: The generic
tableau prover for modal and description logics. In Proceedings of the
First International Joint Conference on Automated Reasoning, IJCAR
’01, pages 453–458, London, UK, UK, 2001. Springer-Verlag.

[28] Rance Cleaveland. Tableau-based model checking in the propositional
mu-calculus. Acta Informatica, 27(8):725–747, September 1990.



206

[29] A. Cortesi and R. Focardi. Information flow security in mobile ambi-
ents. Electronic Notes in Theoretical Computer Science, 54, 2001.

[30] Ince D.C. A graph theoretic solution to the interface equation. In
Applications of Combinatorial Mathematics, volume 0, pages 185–197,
1997.

[31] Pierpaolo Degano, Francesca Levi, and Chiara Bodei. Safe ambients:
Control flow analysis and security. In ASIAN ’00: Proceedings of the
6th Asian Computing Science Conference on Advances in Computing
Science, pages 199–214, London, UK, 2000. Springer-Verlag.

[32] Antoni Diller. Z: An Introduction to Formal Methods. John Wiley &
Sons, Inc., New York, NY, USA, 1990.

[33] G. Ferrari, E. Moggi, and R. Pugliese. Guardians for ambient-based
monitoring. F-WAN: Foundations of Wide Area Network Computing,
66, 2002.

[34] Colin Fidge. A comparative introduction to CSP, CCS and LOTOS.
Technical report, University of Queensland, 1994.

[35] F.B. Fitch. Tree proofs in modal logic. Journal of Symbolic Logic,
31:152, 1966.

[36] Melvin Fitting. Tableau methods of proof for modal logics. Notre Dame
Journal of Formal Logic, 13(2):237–247, 04 1972.

[37] Melvin Fitting. First-order Logic and Automated Theorem Proving.
Springer-Verlag New York, Inc., New York, NY, USA, 1990.

[38] Melvin Fitting. Prefixed tableaus and nested sequents. Annals of Pure
and Applied Logic, 163(3):291 – 313, 2012.

[39] Cédric Fournet, Jean-Jacques Lévy, and Alan Schmitt. An asyn-
chronous, distributed implementation of mobile ambients. In TCS
’00: Proceedings of the International Conference IFIP on Theoretical
Computer Science, Exploring New Frontiers of Theoretical Informatics,
pages 348–364, London, UK, 2000. Springer-Verlag.

[40] Amy Fowler. A swing architecture overview. SUN/Oracle, 2004.



207

[41] Olivier Gasquet, Andreas Herzig, Dominique Longin, and Mohamad
Sahade. Lotrec: Logical tableaux research engineering companion. In
Proceedings of the 14th International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods, TABLEAUX’05,
pages 318–322, Berlin, Heidelberg, 2005. Springer-Verlag.

[42] J. A. Goguen and J. Meseguer. Security policies and security models.
1982 IEEE Symposium on Security and Privacy, 00:11, 1982.

[43] A. D. Gordon and L. Cardelli. Equational properties of mobile ambi-
ents. In Foundations of Software Science and Computation Structure,
pages 212–226, 1999.

[44] Daniele Gorla and Rosario Pugliese. Resource access and mobility
control with dynamic privileges acquisition. In In Proc. of ICALPŠ03,
volume 2719 of LNCS, pages 119–132. Springer-Verlag, 2003.

[45] Daniele Gorla and Rosario Pugliese. Enforcing security policies via
types. Security in Pervasive Computing: First International Confer-
ence, Boppard, Germany, March 12-14, 2003. Revised Papers, pages
86–100, 2004.

[46] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Speci-
fication. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1st edition, 1996.

[47] J. D. Guttman. Filtering postures: Local enforcement for global poli-
cies. In IEEE Symposium on Security and Privacy, pages 120–129,
1997.

[48] Kevin Hamlen. Security Policy Enforcement by Automated Program-
rewriting. PhD thesis, Cornell University, Ithaca, NY, USA, 2006.
AAI3227141.

[49] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computabil-
ity classes for enforcement mechanisms. ACM Transactions on Pro-
gramming Languages and Systems, 28(1):175–205, 2006.

[50] M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory
of access and mobility control in distributed systems. In Theoretical
Computer Science, pages 282–299. Springer-Verlag, 2003.



208

[51] Matthew Hennessy and Robin Milner. On observing nondetermin-
ism and concurrency. In Proceedings of the 7th Colloquium on Au-
tomata, Languages and Programming, pages 299–309, London, UK,
1980. Springer-Verlag.

[52] Matthew Hennessy and Robin Milner. Algebraic laws for nondetermin-
ism and concurrency. Journal of ACM, 32(1):137–161, 1985.

[53] Matthew Hennessy and James Riely. Resource access control in systems
of mobile agents. Information and Computation, 173:2002, 1998.

[54] D. Hirschkoff, E. Lozes, and D. Sangiorgi. On the expressiveness of the
ambient logic. In Logical Methods in Computer Science, 2006.

[55] Daniel Hirschkoff. An extensional spatial logic for mobile processes. In
CONCUR, pages 325–339, 2004.

[56] C. A. R. Hoare and C. A. R. Hoare. Communicating sequential pro-
cesses. Communications of the ACM, 21:666–677, 1985.

[57] Pengelly A. Ince D.C. Quotient machines, the interface equation and
protocol conversion. In Computer Journal, volume 43, pages 24–39,
2000.

[58] Sotiris Ioannidis, Angelos D. Keromytis, Steven M. Bellovin, and
Jonathan M. Smith. Implementing a distributed firewall. In ACM
Conference on Computer and Communications Security, pages 190–
199, 2000.

[59] Ken Cutler John Wack and Jamie Pole. Guidelines on firewalls and
firewall policy. Technical report, NIST(National Institute of Standards
and Technology), January 2002. Special Publication 800-41.

[60] F. Khendek, G. von Bochmann, and C. Kant. New results on deriving
protocol specifications from service specifications. SIGCOMM Comput.
Commun. Rev., 19(4):136–145, 1989.

[61] Raphaël Khoury and Nadia Tawbi. Equivalence-preserving correc-
tive enforcement of security properties. Int. J. Inf. Comput. Secur.,
7(2/3/4):113–139, November 2015.



209

[62] R. Khédri. Concurrence, bisimulations et équation d’interface : une
approche relationnelle. PhD thesis, Université Laval, 1998.

[63] Dexter Kozen. Results on the propositional µ-calculus. In Proceed-
ings of the 9th Colloquium on Automata, Languages and Programming,
pages 348–359, London, UK, 1982. Springer-Verlag.

[64] Saul Kripke. Semantic considerations on modal logic. Acta Philosophica
Fennica, 16:83–94, 1963.

[65] Alexandre Lacasse, Mohamed Mejri, and Béchir Ktari. Formal im-
plementation of network security policies. In The Second Annual
Conference on Privacy, Security and Trust (PST04). New Brunswick,
Canada, 2004.

[66] Mahjoub Langar and Mohamed Mejri. Formal and efficient enforcement
of security policies. In Foundations of Computer Science, pages 143–
149, 2005.

[67] Momamed Langar, Mohamed Mejri, and Kamel Adi. Formal enforce-
ment of security policies on concurrent systems. Journal of Symbolic
Computation, 3:997–1016, 2011.

[68] Björn Lellmann. Linear nested sequents, 2-sequents and hypersequents.
In Automated Reasoning with Analytic Tableaux and Related Methods
- 24th International Conference, TABLEAUX 2015, Wrocław, Poland,
September 21-24, 2015. Proceedings, pages 135–150, 2015.

[69] Francesca Levi and Davide Sangiorgi. Controlling interference in am-
bients. In Symposium on Principles of Programming Languages, pages
352–364, 2000.

[70] Francesca Levi and Davide Sangiorgi. Mobile safe ambients. ACM
Transactions on Programming Languages and Systems, 25(1):1–69,
2003.

[71] L. Logrippo, M. Faci, and M. Haj-Hussein. An introduction to lo-
tos: learning by examples. Computer Networks and ISDN Systems,
23(5):325–342, 1992.



210

[72] F. Martins and V. Vasconcelos. Controlling security policies in a dis-
tributed environment, 2004.

[73] T. Mechri, Mahjoub Langar, Mohamed Mejri, Hamido Fujita, and Yu-
taka Funyu. Automatic enforcement of security in computer networks.
In SoMeT, pages 200–222, 2007.

[74] Philip Merlin and Gregor V. Bochmann. On the construction of sub-
module specifications and communication protocols. ACM Transac-
tions on Programming Languages and Systems, 5(1):1–25, 1983.

[75] W. Miksad and William A. Wulf. Specification and verification of se-
curity policies. Technical report, University of Virginia Charlottesville,
1996.

[76] R. Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1982.

[77] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
parts. I and II. Information and Computation, 100:1–77, 1992.

[78] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, June 1999.

[79] M.T.Norris. The role of formal methods in system design. British
Telecom Technical Journal, 1985.

[80] George C. Necula. Proof-carrying code. pages 106–119. ACM Press,
1997.

[81] Rocco De Nicola and Michele Loreti. A modal logic for mobile agents.
ACM Trans. Comput. Logic, 5(1):79–128, 2004.

[82] F. Nielson, H. R. Nielson, R. R. Hansen, and J. G. Jensen. Validating
firewalls in mobile ambients. In International Conference on Concur-
rency Theory, pages 463–477, 1999.

[83] Arie Orlovsky and Danny Raz. Decentralized enforcement of security
policies for distributed computational systems. In SAC ’07: Proceed-
ings of the 2007 ACM symposium on Applied computing, pages 241–
248, New York, NY, USA, 2007. ACM.



211

[84] Hakima Ould-Slimane, Mohamed Mejri, and Kamel Adi. Using edit
automata for rewriting-based security enforcement. In DBSec, pages
175–190, 2009.

[85] J. Parrow. Submodule construction as equation solving in ccs. Theo-
retical Computer Science, 29(1):175–202, 1989.

[86] J Parrow. An introduction to the pi-calculus. In Dans Handbook of
process algebra, Bergstra, Ponse et Smolka éditeurs, Elsevier, pages
479–543, 2001.

[87] Lawrence C. Paulson. Introduction to isabelle, 1998.

[88] Lawrence C. Paulson. The isabelle reference manual, 2008.

[89] Robert L. Probert and Kassem Saleh. Synthesis of communication
protocols: Survey and assessment. IEEE Trans. Comput., 40(4):468–
476, 1991.

[90] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications,
21:2003, 2003.

[91] Davide Sangiorgi. Extensionality and intensionality of the ambient
logics. In Symposium on Principles of Programming Languages, pages
4–13, 2001.

[92] Davide Sangiorgi and David Walker. Pi-Calculus: A Theory of Mobile
Processes. Cambridge University Press, New York, NY, USA, 2001.

[93] Alan Schmitt and Inria Rocquencourt. An implementation of ambients
in jocaml. position paper for the 5th mobile object systems workshop,
1999.

[94] Fred B. Schneider. Enforceable security policies. ACM Transactions
on Information and System Security (TISSEC), 3(1):30–50, 2000.

[95] M. W. Shields. Extending the interface equation. In Technical Report
SE/079/3, Electronic Engineering Laboratory. University of Kent at
Canterbury, August 1986.



212

[96] M. W. Shields. Solving the interface equation. In Technical Report
SE/079/2, Electronic Engineering Laboratory. University of Kent at
Canterbury, July 1986.

[97] M. W. Shields. Implicit system specification and the interface equation.
Comput. J., 32(5):399–412, 1989.

[98] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework 2.0. Addison-Wesley Professional,
2nd edition, 2009.

[99] Colin Stirling. Modal and temporal logics for processes. In Banff Higher
Order Workshop, pages 149–237, 1995.

[100] Guangye Sui and Mohamed Mejri. Faser formal and automatic security
enforcement by rewriting by bpa algebra with test. International Jour-
nal of Grid and Utility Computing, 4(2/3):204–211, September 2013.

[101] Guangye Sui and Mohamed Mejri. Security enforcement by rewriting:
An algebraic approach. In Foundations and Practice of Security, pages
311–321. Springer International Publishing, 2015.

[102] D. Teller, P. Zimmer, and D. Hirschkoff. Using ambients to control
resources. International Journal of Information Security, 2:126–144.
Springer, 2004.

[103] Úlfar Erlingsson and Fred B. Schneider. Sasi enforcement of security
policies: a retrospective. In NSPW ’99: Proceedings of the 1999 work-
shop on New security paradigms, pages 87–95, New York, NY, USA,
2000. ACM.

[104] D. Walker and D. Sangiori. The pi-calculus : A theory of mobile
processes. In Cambridge University Press, 2003.

[105] P Zafiropulo, C H West, H Rudin, and D D Cowan. Brand,d.: Towards
analyzing and synthesizing protocols. IEEE Transactions on Commu-
nications, 4(28):651–661, 1980.


	Introduction
	Building Blocks: Main Concepts and Literature Review
	Process Algebras and Logics
	Process Algebras
	CSP
	The -Calculus
	The Ambient Calculus

	Process Logics
	The Hennessy-Milner Logic
	The ADM Logic
	The Ambient Logic

	Conclusion

	Security Policy Verification and Enforcement Techniques
	Formal Verification of Security Policies
	Tableau-Based Model Checking in Mu-Calculus
	Tableau-Based Proof System for a E-Commerce Protocol
	LoTREC Tableaux Theorem Prover

	Formal Enforcement of Security Policies
	Static Analysis
	Proof-Carrying Code
	Type Systems

	Execution Monitoring
	Program Rewriting

	Security Policy Enforcement with Ambients and Related Calculi
	Control Flow Analysis
	Safe Ambients and Derived Approaches
	Guarded Boxed Ambients
	Controlled Ambients

	Critical Remarks


	Applicability to Security Behaviour Analysis
	A Calculus for Distributed Firewall Specification and Verification
	Introduction
	Ambients and Firewall Policies
	Distributed Firewall Specification
	Syntax
	Semantics

	Distributed Firewall Verification
	Case Study
	Conclusion

	Intruder Oriented Security Behavior Analysis of Computer Systems
	Introduction
	Computer Systems Security Specification
	Syntax
	Semantics

	Case Study
	Regular Process Behavior
	Intruder
	Security Correction

	Conclusion


	Security Policy Verification
	Tableau Based Verification Algorithm for Security Policies
	Introduction
	System Specification Calculus
	Specification Syntax
	Specification Semantics

	Security Policy Logic
	Logic Syntax and Sematics
	Formula Closure

	Tableau-based Proof System for SPL
	Building the Tableau
	Tableau Finiteness, Soundness, and Completeness

	Case Study
	System Specification
	Proof Tree

	LoTREC Implementation of the Tableau Proof System for SPL
	SPL Connectors
	SPL Rules and Strategies

	Conclusion


	Security Policy Enforcement
	Formal Framework for Security Policy Enforcement
	Introduction
	Our Approach
	Security Enforcement Calculus
	Syntax
	Semantics

	Security Enforcement Logic
	Security Policy Enforcement
	Case Study
	System Specification
	Security Policy Enforcement

	Software Implementation
	Conclusion

	Conclusion and Future Work


