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Résumé

Des sommets d’un réseau informatique ont la capacité de stockage de don-

nées. Ces données peuvent être transportées vers les autres sommets par les agents

mobiles les visitant. Des agents traversent les arcs du réseau en consommant

l’énergie proportionnellement à la distance parcourue. Des agents peuvent se ren-

contrer dans le réseau et au moment d’un tel rendezvous peuvent échanger les

informations possédées ainsi qu’une portion quelconque de l’énergie. Des agents

collaborent afin de transferer l’information entre des sommets du réseau.

Dans cette thèse les agents opèrent dans le réseau sous forme d’un arbre

pondéré. Initialement un sous-ensemble de sommets contient des agents mobiles,

chacun avec une quantité d’énergie (possiblement différente pour chaque agent).

Le poids associé à un arc de l’arbre correspond à la distance qui doit être parcourue

en traversant cet arc. Trois protocoles de communication sont analysés:

1. La livraison de données ou l’information initiale d’un sommet s doit être

transportée par les agents vers un sommet t de l’arbre.

2. La diffusion ou l’information d’un sommet s doit être transportée vers tous

les autres sommets de l’arbre.

3. La consolidation ou l’information de tous les sommets de l’arbre doit être

transportée par les agents afin d’être consolidée dans le sommet t.



L’objectif de cette thèse est de donner les algorithmes de décision pour chaque

protocole de communication. Chaque algorithme proposé doit décider si la con-

figuration initiale des agents dans le réseau et leurs quantités initiales d’énergie

permettent de réaliser le protocole de communication correspondant.



Abstract

A computer network contains nodes at which data may be stocked. Such

data packets may be carried by mobile agents and deposited at other nodes. The

agents travel along the network using energy proportionnally to the distance tra-

versed. When agents meet, they can exchange the possessed data as well as any

amount of energy. The agents collaborate in order to realize a data transfer be-

tween network nodes.

In this thesis the considered environment is a weighted tree network. Initially

agents are placed in a sub-set of network nodes, each agent with some fixed amount

of energy (possibly different). The weight of an edge equals the distance which

needs to be traversed by walking along this edge.

Three communication protocols are being studied:

1. The data delivery, when the initial data of node s needs to be delivered by

the agents to node t of the tree.

2. The broadcast, when the data packet of node s needs to be transferred to all

other nodes of the tree.

3. The convergecast, when the data packets of all tree nodes must be transported

by the agents to node t.

The objectif of this thesis is to provide decision algorithms for all communi-

cation protocols. Each proposed algorithm must decide whether the initial con-

figuration of the agents in the tree and their energy levels allows to realize the

corresponding communication protocol.



Chapter 1

Introduction

1.1 Motivation

The mobile agents are an important component of people everyday life such as

autonomous vehicles that are controlled by sensors of extraordinary intelligence.

These vehicles render an important service in the daily life of the blind, the elderly,

and those who do not have a driving license. With more research these vehicles

can deliver merchandise from a source point s to a terminal point t. Who knows,

thanks to the intelligence of distributed computing and the technology of a system

based on the model of the mobile agents we will one day have autonomous freighter

planes to transport goods from one city to another and one country to another.

Autonomous vehicles are the future, the next challenge for research. Certainly

this application is the residue of the mobile-agent model, a model that is based on

collections of mobile agents executing their tasks in parallel. This technology will

have important impacts on mobility behaviour and spatial planning.

The school transportation system is based on a model of parallel mobile agents

to transport students. Buses play the role of mobile agents who are controlled by

qualified drivers. The main research problem here is to schedule the movements
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1. Introduction 2

of the buses in order to do it using minimum time and/or energy. This is a fun-

damental problem in operational research known as the Vehicle Routing Problem

(VRP). This is an old problem and several versions of it has been solved using

mathematical optimization algorithms. Such a problem is one of the numerous

examples of theoretical problems in mathematics and computer science involving

mobile agents

1.2 Mobile Agents

Mobile agents emerged in the mid-1990s and have raised considerable interest in

the research community. Proponents associate several benefits with their use. A

mobile agent is a process that can move from machine to machine, from one state

to another, in a database from one record to another, from one field to another,

from one node to another in a tree or any connected graph, in order to perform a

specific task.

A mobile agent is related to an algorithm that guides the agent in its move. It

is a mobile robot able to observe, communicate and perform calculations necessary

for its operation. There are as many different types of robots as there are tasks

for them to perform. Mobile agents are particularly useful if they work in teams,

collaborating with one another, by exchanging individually collected information,

in view of achieving a common goal. Depending on the application, mobile agents

may have different capabilities with the most fundamental ones being the following:

1. Mobility, i.e. an agent is capable of moving inside its environment.

2. Perception, i.e. an agent has the capability to observe elements of its envi-

ronment, including the presence of other agents.

Mobile Agents



1. Introduction 3

3. Computation, i.e. an agent can execute calculations by an algorithm, using

some input data that it may acquire during its work.

4. Communication, i.e. agents may exchange possessed information or send it

to the central authority.

Computer science research projects related to physical mobile robots are usu-

ally done in the domain of robotics, where the capacities of robots, their physical

dimensions, and their reliability are all taken into account.

Within theoretical computer science, mobile agent problems are mainly inves-

tigated in the domain of operational research, and algorithms (often distributed

algorithms). Most often, related problems are formulated as some optimization

questions, where researchers look to minimize time needed to complete the task,

energy used, memory needed, communication (e.g. the number of synchronous

rounds), etc. The fundamental task often given to mobile robots is exploration of

their environment, sometimes in order to find some target or in order to learn or

produce a map of the environment.

1.3 Data Delivery Problems

In the present thesis we address the question of data communication by mobile

agents in tree networks. We suppose that agents may communicate only when

being in the same time moment at the same location (a so-called face-to-face

(F2F) communication model) and they need to perform the following tasks:

1. Data delivery, i.e. transferring a packet of data from some node to some

other node of the tree

Data Delivery Problems
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2. Convergecast, i.e. integration of the data from all other nodes in the hands

of a single agent

3. Broadcasting, i.e. transferring a data packet of some specific node to all

other nodes of the tree

We assume that each agent possesses an amount of energy that it may exchange

with other agents when meeting them. The objective is to verify whether the de-

sired communication task is feasible.

Data Delivery Problems



Chapter 2

Literature Review

2.1 Introduction

We briefly start with few arbitrarily chosen examples of mobile robots used in

every day life.

The fundamental research problem concerning mobile agents is related to search-

ing, when the agents need to find a target placed at an unknown position in the

environment. This task implies exploration of the environment, which may be:

1. An environment entirely known to the agents, (e.g., [10, 23, 12, 13, 22, 36,

54, 46, 62, 90, 91]).

2. An environment completely unknown to them (e.g., [2, 24, 25, 30, 31, 33, 53,

50, 63, 64]).

3. Some parameters of the environment, or at least its type may be known to

the agents, but not the entire environment (e.g., [2, 8, 39, 40, 57, 65, 70, 74,

73, 78, 81, 82, 87]).

In some scenarios, the target may be mobile and its movement is usually set by the

adversary so that the "cost" of the search performed by the proposed algorithm

5



Literature Review 6

(whatever is defined by the cost in the analyzed setting) is maximized.

Even if the target is considered motionless (e.g., see [13, 22, 36, 54, 62, 87]),

the adversary places it at a position, that maximizes the cost of the proposed algo-

rithm. Consequently, the search problem may be considered a game between the

two players, the mobile agent (or a group of collaborating agents), and the target,

which is represented by the omnipotent adversary, having the full knowledge of the

environment and the applied algorithm. Both players clearly have contradictory

goals with one trying to complete the search as soon as possible, and the other

attempting to delay or even prevent it, if possible.

Somewhat inverse perspective is present in the case of the rendezvous problem

when two or more agents need to meet as soon as possible. Consequently the

rendezvous problem is sometimes considered a game between two or more players

having compatible goals of meeting as fast as possible and collaborating in order

to achieve this goal (see [3]).

In light of the above, after briefly reviewing signalling scattered positions of

literature related to agents in every-day life, the surveyed literature will primarily

be devoted to search and rendezvous problems, as well as some variants of research

problems related to them.

The last section of this chapter concerns the data delivery problems, which are

closely related to the present thesis. Most of the scenarios considered were studied

recently, i.e. in the last 4− 5 years.

Introduction
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2.2 Mobile Agents in Every-Day Life

The agents are usually of two categories:

- physical robots operating in real environments

- software agents, which are programs that usually “travel” in computer net-

works

Below, we provide some references to applications of mobile agents in everyday

life.

In the Canadian climate, an important winter task is snow removal and the

distribution of salt on road networks. Large teams of mobile agents represented by

snow plows and salt spreaders need to complete their tasks as quickly as possible

so that the population may restart their every-day activities. This problem is a

typical question asked in the domain of vehicle routing, cf. [103].

In recent decades there was a lot of progress in the domain of drone tech-

nology. A drone, in a technological context, is an unmanned aircraft. Drones are

often addressed as unmanned aerial vehicles (UAVs) or unmanned aircraft systems

(UASs). Essentially, a drone is a flying robot that may be controlled remotely or

flown autonomously through software-controlled flight plans in their embedded

systems, working in conjunction with on-board sensors and GPS. Drones are used

for monitoring forest fires, fields, and lakes, to detect animal presence in certain

places, for military operations, etc. (e.g. see [105]).

A drone is a physical robot that is particularly useful for military operations.

However, there are several other types of mobile robots that have military usage.

A very well known mobile military robot can save lives and destroy mines. Typi-

Mobile Agents in Every-Day Life
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cally a military robot is either autonomous or it is controlled from the outside by

the owner. In some cases we use two mobile robots to perform this operation, one

that locates the bomb, and the other to destroy it. An interested reader may see

[108, 109] for recent surveys of mostly mobile military robots. Clearly for security

reasons, the above surveys are far from representing the state of current research

projects, with most of them involving mobile robots being developed by the De-

fence Advanced Research Project Agency (DARPA), see [110, 111].

Almost all car-producing companies actively participate in research on au-

tonomous cars called unmanned surface vehicles (USVs) with advance guidance,

navigation and control (GNC) capabilities. An autonomous car is a vehicle capa-

ble of driving without the intervention of a human being. With many sensors and

particularly elaborate calculation software, it is able to move through traffic and

to make decisions alone, without a driver. See, for example [112, 113] for recent

surveys.

All the examples previously given in this section concern physical robots. Al-

though some of them are controlled by an external authority, the most attractive

physical mobile robots are the autonomous ones (cf. [111, 113]). The question of

mobile agent autonomy is fundamental in distributed computing.

Mobile robots have numerous applications in healthcare, for example, mod-

ern information management in hospitals need interoperability between different

health management entities. This kind of control with an ontology on an accepted

public health standard, is based on a multi-agent system providing a framework

for interactions in a distributed systems environment. This requires a client-server

approach to facilitate the flow of patient information into an entire organization

Mobile Agents in Every-Day Life
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linking hospitals as well as emergency clinics (e.g. see [107]).

In the field of medicine, doctors use mobile robots to practice their jobs, op-

erating on patients using a mobile agent that acts as a camera, a lens, a surgical

scalpel, etc. The aim is to reduce the patient’s injury, the number of specialists

involved, time, as well as the risk of infections. They often use two or more mobile

robots. These mobile agents are most often controlled externally by specialists,

doctors or technicians. Therefore, we can say that they are robots controlled by

external entities (e.g. see [96]).

Other examples from healthcare applications of mobile agents involve mobile

agents software. For example, the authors of [97] discuss a distributed medical

systems environment using mobile agent models to circulate patient information

across a whole healthcare organization. In [104], using mobile agent technology

and agent-driven security is being used to give the high level communication and

access to patient data, to do some analysis and browse some patient informa-

tion. Clearly, the above types of applications are not exclusive for the domain

of healthcare. For example, the authors of [80] study the information retrieval

from electronic calendars for multiparty event scheduling based on mobile agents

technology.

There are other situations in which software agents are useful. For example,

in electronic commerce, mobiles agents are programs moving along the network

searching the sites of the retailer in order to purchase a product (cf. [95, 114, 115].

In information retrieval systems, mobile agent platforms are an alternative to a

traditional client/server approach (e.g. see [80, 116]).

Mobile Agents in Every-Day Life
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2.3 Environment Exploration

The problem of search or exploration of a given environment is the fundamental re-

search question in computer science, robotics, operational research and the related

domains. Some authors consider environment search and environment exploration

as equivalent problems while for some other authors search implies the knowledge

of the environment, while explorations assumes that the environment is a priori

unknown. The objective of an exploration is sometimes not only the search for

a target placed in an unknown position but also the creation of the map of the

environment.

2.3.1 Exploration by a Single Agent

A mobile robot is used to explore a graph or a geometric environment in order

to acquire knowledge about it, to look for information stored at unknown place

or, for example, to move information from one node to another. Most research in

the last 50 years concerned environment exploration by a single agent (e.g. see

[2, 23, 22, 52, 77]).

2.3.1.1 Graph Exploration

Typically a mobile agent explores a graph to search for target information placed

in a certain node of the graph. Sometimes, when the graph is weighted, the target

may be placed at a point belonging to the interior of some edge. As mentioned

previously, depending on the studied scenario, the graph may be a priori known

to the searcher [23, 22, 62], it may be completely unknown, (e.g. [2, 33, 63]) or

partial information about some parameters of the graph may be available to the

searching agent (cf. [4, 74, 94]). In some research papers the goal is to create a

map of an unknown graph, where the approach taken needs to be different and

Environment Exploration
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the model studied must be usually stronger (e.g. [24, 33]).

The search problem is interesting even in the case of a very simple environ-

ments. Several papers (e.g. see [10, 23, 22, 62]) consider the problem of a single

agent on a line looking for a target placed at unknown distance D. As knowing

the position of the target permits to perform the search in time D, the authors

of [10, 23, 22, 62] ask for the competitive ratio, i.e. the time of search when the

position (and distance) to the target is unknown to the searcher. It is worth noting

that, for agents of the same maximal unit speed, the time used and the distance

travelled are commensurable, hence using exchangeably either of these measures

is justified. This is the case of the above cited papers as well as the case of the

present thesis. Suppose that, as studied in [23], we know that a particle that we

are looking for is located in the interval (x, x+ dx), somewhere along the real line

−∞ < x < ∞ with a probability density function g(x). We start at some initial

point x0 and can move in either direction. What policy minimizes the expected

time required to find the particle, assuming a uniform velocity? [23] and indepen-

dently [22] gave algorithms completing the search in time 9D. The authors of [10]

proved that 9D is the best possible competitive ratio, i.e. the online algorithms of

[23, 22] are optimal.

On the other hand, [62] consider the line search when a cost of d is added to

each change of direction of the robot. The authors of [62] find an algorithm solv-

ing the problem in O(9 ∗ OPT + 2d) time. They also consider the star search or

cow-path problem with turn cost, where the hidden object is placed on one of m

rays emanating from the original position of the robot. The paper also discusses a

trade-off between the corresponding coefficients, and briefly considers randomized

Environment Exploration
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strategies.

In [2] a robot is used to explore an unknown environment (strongly connected

graph) to construct a complete map. The robot needs to visit all nodes and edges,

attempting to minimize the number of edge traversals. A similar problem for the

directed graph has been considered in [64], where one robot explores all edges of an

unknown, directed, strongly connected graph (i.e. when every vertex in the graph

is reachable from every other vertex). At every point the robot memorizes all edges

and nodes visited. The goal is to minimize the ratio of the total number of edges

traversed to the optimum number of edge traversals had the graph been known in

advance. For an Eulerian graph this ratio is 2; the ratio is unbounded when the

deficiency of the graph (defined as the number of edges that have to be added to

make it Eulerian) is unbounded. In this paper the authors provide an algorithm

that achieves a bounded ratio when the deficiency is bounded; unfortunately the

considered competitive ratio is exponential in the deficiency.

In distributed computing the most often studied scenario concerns anonymous

graphs (i.e. graph nodes are unlabeled) and the graph is usually unknown to the

agents. In such case, if nothing is known about the graph, the construction of

the map of the graph is impossible (e.g., see [24, 25]). In [24] a robot explores a

strongly connected directed general graph using pebbles. The authors prove that

the robot needs one pebble if it knows the upper bound of the number of nodes

of the graph. Otherwise, if no upper bound on the size of the graph is provided,

Θ(log log n) pebbles are necessary and sufficient to explore the graph. All algo-

rithms considered in [24] are deterministic.

Environment Exploration
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Sometimes the goal of graph exploration is not to optimize its time, but rather

the memory used by the agent. In a network exploration task by a mobile agent

with a small memory [4], the agent must traverse all the nodes and edges of a net-

work (represented as a non-directed connected graph) and return to the starting

node. The network nodes are not tagged and the edge ports are labeled locally

at each node. The agent has no prior knowledge of the network topology or its

size, and cannot mark the nodes. Under such weak hypotheses, the cycles in the

network can prevent the feasibility of the exploration, therefore [4] restricts the

consideration to the trees. They present an algorithm to perform tree exploration

(with return) using O(log n) bits of memory for all trees with n nodes.

The fundamental problem concerning anonymous graph exploration using small

memory has been studied in [101]. An algorithm given in [101] implies a way to

construct in log-space a fixed sequence of directions that guides a deterministic

walk by a robot to visit all the vertices of any connected graph. Specifically,

[101] gives log-space constructive universal-traversal sequences for graphs with

restricted labeling and log-space constructive universal-exploration sequences for

general graphs.

The algorithm presented in [101] is, however, unable to produce the map of

the explored graph. In [33] a robot needs to construct a map of an unknown en-

vironment represented as an unlabeled undirected graph. The robot starts at a

single vertex of the graph and it needs to visit all nodes and return to its starting

point while constructing the map of the graph. The robot knows the size n of the

graph and the maximum degree of its nodes. [33] gives two algorithms, the first

one for the minimal number of edges traversed and the second to minimize the

Environment Exploration
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robot memory.

There were numerous other papers studying different scenarios of graph explo-

ration. A robot in [94] explores an unknown, undirected connected graph starting

at some vertex and it must visit all nodes of the graph without having to traverse

all its edges. When the robot is located at some node it knows the weights of all

edges adjacent to this node. The goal in this paper is to find a tour of minimum

total costs. Authors of [94] provide a constant competitive algorithm for the case

of general graphs with a bounded number of different weights.

Most recently researchers considered exploration of dynamic graphs, i.e. graphs

whose structure changes over time (e.g., see [72]). A robot in [74] explores a pe-

riodically varying graph (V P ) where the edges only exist at moments (unknown)

defined by the periodic movements of the carriers. These graphs naturally model

highly dynamic networks without infrastructure such as fixed-time public trans-

port, Low Earth Orbit (LEO) satellite systems, security towers, and so on. Dif-

ferent scenarios are considered depending on the knowledge of the length of the

longest path, the memory of the robot, the knowledge of the size of the graph and

the uniformity of the length of the roads. The authors of [74] present two optimal

solution algorithms in the worst case: one for anonymous graph systems and one

for graphs with distinct node identifiers.

2.3.1.2 Exploration of Geometric Environment

The geometric environment is usually represented in two-dimensional Cartesian

space. It is either an empty plane or a bounded or unbounded polygonal terrain,

possibly with polygonal obstacles.
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One of the very first papers on exploration geometric environments is [63],

where the terrain considered, as well as the obstacles are rectilinear. The authors

of [63] present a 2-competitive algorithm. In [63] the authors explore an unknown

polygonal terrain with obstacles by a single robot. They are looking for an algo-

rithm whose complexity depends on the distance of the worst case path in order

to see all the visible points of the environment and create a map.

The authors of [10] study the best way to search a possibly unbounded re-

gion for an object. The costs for this search algorithm’s model is proportional

to the distance of the next prob position relative to the current position. This

model is meant to give a realistic cost measure for a robot moving in the plane.

As a line may be also considered as one-dimensional geometric terrain the papers

[10, 23, 22, 62], discussed previously, also fall in the scope of the present section.

The polygon exploration problem belongs to the category known in computa-

tional geometry as Art Gallery Problem. The typical problem in this domain is to

minimize the number of guards or minimize the length of their trajectories such

that at some point in time each point of the environment is seen by some guard.

The case of a single mobile guard is studied in [82]. The authors in [82] present

an on-line strategy that enables a mobile robot with vision to explore an unknown

simple polygon. They prove that the resulting tour is less than 26.5 times as long

as the shortest watchman tour that could be computed off-line.

A robot r looks for a target t in a unknown rectilinear polygon in [87], and

the position of the target is unknown. The robot recognizes the target if it sees

it, if the segment rt belongs to the polygon. The author has found a randomized

algorithm to find the target in a minimum delay or a minimum traversal distance.
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This algorithm achieves the competitive ration of 5/4.

In [52] a mobile robot explores an unknown terrain with obstacles that have

the shapes of arbitrary polygons. The robot is represented by a point p and it

must explore all points q, such that distance(p, q) ≤ 1. For unlimited vision of the

robot, the provided exploration algorithm is such that the length of the trajectory

of the robot is O(P +D
√
k) where P is the perimeter of the terrain plus those of

the obstacles, D is the diameter of the convex hull of the terrain and k is the num-

ber of obstacles. P , D and k are unknown by the robot. When the vision of the

robot is bounded to a unit circle, the provided algorithm produces an exploration

path of length O(P + A +
√
Ak), where A is the area of the terrain without the

obstacles, and P and k are as described above.

In the case of the three-dimensional geometric environment, one can talk about

a mobile robot that navigates there as a motion of an underwater vehicle, cf. [93].

Thanks to an algorithm based on simple geometric functions and on certain known

curves, this vehicle can circulate by carrying a camera and report videos of its tra-

jectory to realize a specific task such as to look for an airplane that fell in the

bottom of the sea or a lake, to study the density of fish in a region, to transport

explosive materials or realize other operations [93].

2.3.2 Exploration and Searching Problem by a Team of Mo-

bile Robots

Exploration using a team of collaborating robots has as a main difficulty to ensure

a good partition of the work between the members of the team. As the environment
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is often considered a priori unknown, this task may cause substantial problems.

[78] considers the problem of exploration of an n-node tree by k mobile agents

initially starting from the root. The goal is to explore the tree in minimal time.

This is an NP-hard problem. In this paper they studied the problem of distributed

collective exploration of unknown trees. The algorithm proposed in [78] explores

any tree in time O(D + n/ log k) where D is the diameter of the tree. Assuming

that agents can communicate by leaving information at visited nodes, an explo-

ration algorithm whose execution time for any tree is only O(k/logk) larger than

the optimal exploration time with a complete knowledge of the tree. They proved

that in the case where the robots do not communicate with each other then each

distributed exploration algorithm operates in time Ω(k) longer than the time of

exploration knowingly optimal for some trees. In [81] it is shown that the strategy

presented in [78] is precisely Θ(k/ log k).

The work of [65] proposes the first exploration algorithm of a graph which

works in time O(D), where D is the radius of the graph (i.e. the distance from

the node where all agents are initially present to the farthest node). The number

of agents used in [65] is polynomial in D and the size n of the graph. The agents

do not need to know D and n.

A different, DFS-based algorithm was proposed in [29] where the proposed ex-

ploration algorithm works in time O(n/k + Dk−1). If the tree is sparse then the

work of [70] proposes the strategy giving the competitive ratio of O(D1− 1
p ). The

parameter p is defined as the density of the tree in [70]. On the other hand, the

best lower bound gives the competitive ratio of Ω(log k/ log log k). This bound,

given in [71] holds for any deterministic algorithm such that k <
√
n. For so-called
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class of greedy algorithms [81] proves a better lower bound of Ω(k/ log k).

However the results of [29, 70, 71, 81] are valid only for labeled graphs (i.e.

each node has a different identifier). For unlabeled graphs the problem seems

much harder, as agents cannot recognize whether, arriving at a graph node, this

node was already visited in the past. The work [25] shows that having two agents,

permits to explore and map any directed graph. Recall that, according to [24], a

single agent is not sufficient to learn a graph unless it possesses some additional

power, like ability to mark vertices. [24] proved that one pebble (or one bit of

marking information) is sufficient to achieve mapping of a graph by a single agent.

The extra agent used in [25] may simply be used exclusively for the marking pur-

pose. If the size n of the graph is known in advance [25] propose a polynomial

algorithm exploring and mapping an unknown graph of at most n nodes, using a

constant number of pebbles.

An exploration is sometimes possible when the team of agents can exploit some

additional knowledge of the environment. For example, in [73] the authors provide

an exploration of an n-node ring by k identical, unconscious and asynchronous

mobile robots, assuming that k and n are relatively prime numbers. These robots

are able to see the environment but cannot communicate. Despite the difficulties

the authors prove that an exploration of the ring described above is possible. They

prove that the required time is O(log n) where n (large) is the size of the ring and

that the minimum number of agents is estimated at ρ(n) = Ω(n). They prove that

the problem is insoluble in the case where k divides n.

In [60] there are k identical asynchronous agents, initially located at different

nodes of an unknown indirect simple graph. The agents may initially know either
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the number n of the graph nodes, or the total number k of agents. The authors

provide a deterministic algorithm with O(km) complexity, where m is the number

of edges in the graph, that constructs the labeled map of the graph.

[58] studies exploration of an unknown tree using a set of agents having limited

energy. The height of the tree is bounded by the agents’ energy limit B. The

objective of [58] is to design an algorithm using as few agents as possible. The au-

thors give an O(logB)-competitive algorithm (comparing to the offline algorithm

that knows the tree in advance).

The case of exploration of geometric environments by collection of mobile

robots has been also studied. In the case of one-dimensional environment the

problem is not difficult if the agents possess the knowledge of their initial posi-

tions. The author of [91] studies the optimal exploration of a line segment by two

mobile agents having knowledge of their initial positions in the environment. Each

point of the segment must be visited by at least one agent and the exploration time

must be minimized. This time of the exploration is defined by the longer between

the lengths of the trajectories of both agents or the time of the exploration of the

“last” point of the line environment.

The work of [91] was extended in [90], where the cases of n mobile agents in the

line and ring environments have been considered. The O(n2) algorithm computing

trajectories of all n agents resulting in optimal exploration time was proposed in

[90].

In the case of the two-dimensional plane [11] studies algorithms searching for a

point or a line at unknown position but at a known distance from the origin. The
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cases of one, two and many mobile searchers are investigated.

Some studied setting considered the case of two non-uniform robots, i.e. robots

speeds that may have different maximal speeds. [46] and [12] consider exploration

of one-dimensional environments, by n mobile robots initially placed at the same

point of the environment. Each of these robots has a search speed si and a walking

speed wi where wi < si. A search of the environment is completed when each of its

points has been searched by at least one of the n robots. More exactly, one of the

robots needed to visit such point in its searching "mode". The goal is to complete

the search as quickly as possible knowing that each robot knows the speeds of

the other ones. [46] considers the case of exploration of the segment, while [12]

considered the same problem for ring environment. Two types of algorithms were

studied in [12] and [46]: one for which the size of the environment to search is

known in advance and the case where it is unknown. It has been proven in [46]

that in the former case all mobile robots need to be used while in the latter one

some robots must be left unused if the optimal worst-case exploration time must

be obtained. Both algorithms are proven to be optimal in [12] and [46].

In some research papers the studied scenarios assume agents having different

speeds (e.g. [21]). The search on a line environment using two mobile agents hav-

ing different maximal speeds was studied in [36]. The search is completed when

the second of the two searchers reaches the target (it is called group search in [36]).

The agents communicate face-to-face (F2F), so the agent finding the target needs

to walk to meet the other agent and then they both travel towards the target.

Although no general algorithms were given in [36] some provided examples are

interesting. The case of two agents performing group search on a line has been

solved in [13]. The agents have different maximal speeds and two scenarios were
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studied in [13]: the F2F communication and wireless communication. For each

case a search schedule has been designed in [13] and its optimality has been proven.

Some papers consider exploration by teams of agents with some unknown “im-

perfections”. In [54] the authors consider a problem of finding a target on a line by

n mobile robots such that up to f of them may be defective (f < n). The position

of the target is unknown by the robots. The robots are placed at the same start-

ing point. Defective robots can not detect the target. Reliable robots can find the

target when they reach its position. The authors found a parallel algorithm that

minimizes the competitive ratio, represented by the worst case between the time

of arrival of the first reliable robot on the target, and the distance from the source

to the target. Some results are found that if n > 2f + 2, the algorithm is simple

with a competitive ratio 1 and for any f < n < 2f + 2, the algorithm found is a

proportional schedule algorithms A(n, f), whose competitive ratio is

(
4f + 4

n

) 2f+2
n
(

4f + 4

n
− 2

)1− 2f+2
n

+ 1

[88] subsequently proved that the above competitive ratio is optimal for any n and

f , such that f < n < 2f + 2.

A different situation is presented in [50] when the robots may experience byzan-

tine faults. The byzantine robots mail fail to report the target or they may report

it being found at wrong positions. The authors of [50] present specific algorithms

for different ratio f/n of faulty robots. Some of these algorithms are proven opti-

mal, i.e. finding the target in the shortest possible time assuming that the f faulty

robots are chosen by an adversary.
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Some of the papers on exploration by a team of robots seek to optimize agents

energy. In [57] a tree is explored by mobile robots that hold a limited amount of

energy B (the height of the tree is limited by the bound energy B). The robots

are installed at the root of the tree. The goal is to exfoliate the tree with mini-

mal number of agents and minimum energy expenditure in the cases, whether the

agents know the environment or not. Without knowledge of the tree the cost is

estimated at O(logB) independent of the number of nodes in the tree. The au-

thors prove in [57] that it is the best possible competitive ratio for the exploration

of unknown trees.

The robot power awareness was also studied in [69], where k mobile robots

installed at the root of a tree explores all the leaves of the tree minimizing the dis-

tance traveled by each agent. An algorithm is developed for this NP-hard problem

in the case where the tree is known by the agents, and an optimal algorithm is

presented if k is constant. The authors show that for any number k their solution

gives 2-approximation algorithm. They also prove that any such algorithm cannot

be better than an 1.5-approximation.

The question of power awareness has been also studied in other context present

in operation research (e.g. see [1]), especially in scheduling. The authors in [84]

considered battery-based systems, so their interest is to save energy. They studied

two mechanisms, the first is the standby state if it is inactive and the second is

to vary the speed at which the tasks are executed. In the first case we need a

quantity of energy to replenish the system and bring it back to the active state.

In the second case they have found a function P (s) which indicates the level of

energy consumption given at a particular speed where P (s) is convex, non decreas-

ing and not negative for s > 0. The problem is to plan the arrival work in order
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to minimize the total energy consumption and finish each job after its launch and

before it expires. A 2-approximation algorithm is provided in [84].

2.4 Rendezvous and Gathering Problems

A rendezvous between two or more agents is very important in distributed com-

puting. The meeting agents may then exchange information (e.g., individually

collected by each agent during its work) or energy. In some cases, following a

rendezvous between agents, some of them change their search and exploration

opinions.

In [3] the rendezvous problem is considered a task that is dual to search - both

agents collaborate in order to meet one another as soon as possible. The literature

on rendezvous is very rich; we cite below only a small portion of chosen positions.

The most recent survey on deterministic rendezvous may be found in [98].

The rendezvous (or gathering) problem may be considered as a special case

of pattern formation problem (cf. [106, 75, 61]) where the set of robots need to

finish their walks when forming a required pattern (in this case a point). One

of the very first papers on rendezvous is [8], an algorithm with complexity O(n)

is presented to minimize the maximal length to visit all nodes of a tree by two

traveling salesmen.

Among the first papers on asynchronous rendezvous in the domain of dis-

tributed computing [66] and [92] considered the graph environment. [66] studies

rendezvous between two agents having distinct identifiers in an unknown, anony-
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mous, connected graph under two scenarios, when both agents start executing the

algorithm at the same time, and when starting times of the agents are arbitrarily

decided by an adversary. In both cases the complexity is O(n+log l) on any n-node

tree, and l is the smaller of the two identifiers. In the case of the simultaneous

startup in the ring, the complexity is Θ(D log l), where D is the initial distance

between agents.

An asynchronous rendezvous studied in [92] occurs between two mobile robots

with distinct tags located at nodes of an unknown connected graph. The ren-

dezvous can be inside an edge of the graph, not necessarily at a node. If the

agents are initially located at a distance D in an infinite line, the authors of [92]

present an algorithm achieving a rendezvous with the cost O(D|Lmin|2) when D is

known in advance and O((D+|Lmax|)3) if D is unknown, where |Lmin | and |Lmax

|are the lengths of the shorter and longer label of the two agents, respectively.

A gathering of n mobile robots in the plane without any means of direct com-

munication, operating in the (LCM) Look-Compute-Move cycle is studied in [37].

The venue of the meeting is not planned in advance. These robots are uncon-

scious and fully asynchronous. Existing algorithmic contributions for such robots

were previously limited to solutions for n ≤ 4 or for restricted sets of initial robot

configurations. The question of whether such weak robots could assemble deter-

ministically remained open. In this article, the authors prove that indeed the

gathering problem is solvable, for all n > 2 and any initial configuration.

Some papers considered the rendezvous problem when the agents have limited

radius of visibility. In [76] the authors study the problem of gathering by a number

of identical mobile agents in the same location of the plane. The case where the
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visibility of the agents is unlimited was approached in the past, while for the case

where the visibility is limited, the existing previous algorithmic results are only for

the convergence (towards a common point, without ever reaching it) and only for

the semi-synchronous environments, where robot motions are assumed instantly.

The authors of [76] considered a totally asynchronous environment, where the

actions, calculations and movements of robots require a finite but unpredictable

time. They presented an algorithm that allows unconscious anonymous robots

with limited visibility to congregate at the same place in a finite time, provided

that they have an orientation (i.e. agreement on a coordinate system). The result

indicate that, with respect to gathering, the common orientation is the very pow-

erful knowledge that the team of robots may use.

In [99] the authors study the problem of meeting anonymous, totally asyn-

chronous autonomous mobile robots in the 2-dimensional plane. The robots have

no memory of the past calculations and they can not communicate explicitly be-

tween them. The robots act executing WAIT-LOOK-COMPUTE-MOVE cycle

attempting to meet at any unplanned point of the plane. It is proven in [99] that

such weak robots cannot meet in the plane.

[102] considered a deterministic rendezvous problem in general indirect graphs

(introduced as the so-called “deterministic treasure hunt problem”). The authors

of [102] used the powerful concept of Universal Traversal Sequences (see also [101]).

The concepts of Universal Traversal Sequences has been also applied in [53].

A rendezvous problem considered in [53] between two identical, anonymous

mobile agents is in an unknown connected graph. The same problem may be con-

sidered in an unknown terrain in the plan. A recent well-known result on explo-
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ration, due to Reingold [101], indicates that deterministic exploration of arbitrary

graphs can be performed in logarithmic space, i.e. by using an agent equipped with

O(log n) memory bits, where n is the size of the graph. A deterministic algorithm

has been provided in [53], which ensures the rendezvous between the two agents

using O(log n) memory for each agent.

The asynchronous rendezvous in infinite plane has been considered in [56]. The

authors prove that if the agents, placed at any two positions in the plane, have

non-zero visibility radius they can always meet in finite time, despite the fact that

their movements can be arbitrarily delayed by an adversary. The authors of [56]

prove that the same result holds also in the case of an arbitrary, possibly infinite,

graph. On the other hand, the authors of [68], again using the powerful concept

of Universal Traversal Sequences proved that the above results from [56] may be

obtained using polynomial-time algorithms.

It happens that the time of the rendezvous algorithm in the infinite plane may

be substantially improved if the robot may use a GPS device. The authors of [40]

study a rendezvous of two asynchronous agents with limited visibility in the plane

(Euclidean 2-dim space). Each agent knows its own initial position in the plane

given by its Cartesian coordinates, but it doesn’t know about other agent position.

Such agents are called location-aware in the literature. The algorithm complexity

is measured by the sum of the lengths of the trajectories of both agents. The

authors propose an algorithm depending on d being the original distance between

the agents. The algorithm achieves the rendezvous in O(d2+ε) time. This result is

almost optimal, as the Ω(d2) lower bound is easy to prove.

Rendezvous and Gathering Problems



Literature Review 27

The original work of [40] introduced the concept of the central partition. The

concept may be adapted to work in other types of environment. A rendezvous

problem studied in [41] concerns two anonymous robots travelling in some envi-

ronment where each agent knows its own initial position. The goal is to design an

algorithm achieving the rendezvous in minimum time in the worst case. The time

is measured by the number of synchronous rounds that agents need to meet. In

this paper the authors study two types of environments: finite or infinite graphs

and Euclidean spaces. The authors found an asymptotically optimal rendezvous

algorithm. For the line, the agents can rendezvous in time O(d) where d is the

distance between the initial positions of the agents. In general n-node graphs, the

rendezvous can be achieved in O(d log2 n) time.

Some papers consider rendezvous when the environment may be subject to

some faults. [34] studies a rendezvous problem between two synchronous labeled

agents at a node in a graph of size n using a deterministic algorithm. Agents do

not know the graph size and they can incur delay fault; every agent knows its label

but not the label of the other robot. If an agent incurs a fault in a given round,

it remains in the current node, regardless of its decision. If it planned to move

and the fault happened, the agent is aware of it. The authors consider three cases

of fault distribution: random (independently in each round and for each agent

with constant probability 0 < p < 1); unbounded adversarial (the adversary can

delay an agent for an arbitrary finite number of consecutive rounds); and bounded

adversarial (the adversary can delay an agent for at most c consecutive rounds,

where c is unknown to the agents). The performance of the rendezvous algorithm

is measured by the number of edges traversed. For random faults, [34] proposes

an algorithm with cost polynomial in the size n of the network and polylogarith-

mic in the larger label L, which achieves rendezvous with very high probability in
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arbitrary networks. By contrast, for unbounded adversarial faults they show that

a rendezvous is not possible, even in the class of rings. Under this scenario the

authors of [34] give a rendezvous algorithm with cost O(n`) , where ` is the smaller

label, working in arbitrary trees, and they show that Ω(`) is the lower bound on

rendezvous cost, even for the two-node tree. For bounded adversarial faults, [34]

gives a rendezvous algorithm working for arbitrary networks, with cost polynomial

in n, and logarithmic in the bound c and in the larger label L.

Mobile agents that could experience Byzantine faults were considered in [27].

Every agent has its label (positive integer number) and the agent does not know

the other agents’ labels or their positions. Agents move in synchronous rounds and

can communicate when they are at the same time in the same node. Among the

agents we can have up to f of them that are Byzantine. A Byzantine agent can

choose an arbitrary port when it moves, can convey arbitrary information to other

agents and can change its label in every round, in particular by forging the label of

another agent or by creating a completely new one. The authors of [27] prove that

havingM = f+1 reliable agents guarantees a deterministic gathering of all of them

when the agents initially know the size of the network. If the size of the network is

unknown it is shown in [27] thatM = f+2 reliable agents guarantee the gathering.

Gathering in the presence of Byzantine agents was also studied in [67]. In this

search two cases are being discussed: among the agents there are some who are

strongly Byzantine and the other case in which the faulty agents are weakly Byzan-

tine. A strongly Byzantine agent may choose an arbitrary port when moving and

may transmit arbitrary information to other agents, including its incorrect label.

On the other hand, a weakly Byzantine agent may do the same, except changing

its label. The authors of [67] designed an algorithm that determines the number
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of reliable agents that guarantee the gathering. In the weakly Byzantine case, any

number of good agents solve the problem for networks of known size. If the size of

the network is unknown, a deterministic polynomial algorithm is used that gather

all the good agents placed in an arbitrary network, provided that there are at least

f + 2 reliable agents. In the case of strongly Byzantine agents [67] provides a

deterministic gathering algorithm for at least 2f + 1 reliable agents when network

size is known and for at least 4f + 2 good agents when it is unknown.

In [38] the authors consider n robots whose sensors are not perfect, where mo-

tion and internal calculations may have small inaccuracies to perform the task

of convergence. A distributed convergence control algorithm is presented under

certain conditions, motions and computational errors.

2.5 Other Search-Type Problems for Teams of Mo-

bile Agents

In this section we discuss variations of some other problems for teams of collabo-

rating mobile agents.

2.5.1 Evacuation Problem

The evacuation of the agents’ addresses an important scenario from everyday life

such as saving people from a fire, or from dangerous or flooded places. The authors

of [47] study the evacuation of a number k of mobile robots from a unitary disk

through an exit door which is on the perimeter of the disk. They considered that

the robots start at the center of the disk in both cases: wireless communication or
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local communication (F2F ), i.e., communication when the robots are at the same

point. To complete the evacuation the time needed is at least

3 +
2π

k

and a lower bound of

3 +
2π

k
−O(k−2)

is proven in [47] for the F2F communication.

In the wireless communication case [47] proves the upper bound of

3 +
π

k
+O(k

−4
3 )

and the lower bound of

3 +
π

k

.

In [45] the authors study evacuation of two robots from a domain that is repre-

sented by a unitary circle that admits k exit doors. These two robots can commu-

nicate on wireless mode. The robots do not know their initial positions but they

know where the exit doors are and the distances between them. In other words,

the robots possess the map of the environment with all the exits provided, but

they do not know their own position on this map. The algorithm results in an

evacuation (not necessarily through the same exit door for both robots) in minimal

time in the worst case.
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Some results of [45] has been later improved. In [51] the lower bound and the

upper bound for the F2F communication model were improved for two robots.

The authors of [51] suggested a surprising algorithm in which the two robots are

forced to meet at some fixed point, independently whether one of them already

found an exit or not. The upper bound 5.628 of [51] has been improved to 5.625

in [28].

The same problem is considered under the wireless communication setting in

[89] in the case when the robots have different speeds. The authors provided an

optimal algorithm for the case when the fastest robot is at least 2.75 times faster

than the other. For the case when robots speeds are not that different [89] pro-

vided lower and upper bounds.

2.5.2 Boundary Patrolling Problem

In the patrolling problem the environment must be regularly explored in a peri-

odic basis. The efficiency of the patrolling algorithm is measured by the worst-case

maximal period of time between two explorations of the same point.

[48] is the first paper on boundary patrolling by robots of different speeds. A

boundary patrol problem by k mobile robots as discussed in [48] is to protect the

border of an intruder who tries to enter the environment. The paper discusses the

case which is known in the robotics literature as fence patrolling, i.e. the envi-

ronment is homeomorphic with an open curve, and boundary patrolling, when the

environment is homeomorphic with a Jordan curve. Two strategies are discussed:

the cyclic strategy and the partition strategy. Each agent has its own predefined

maximum speed and is able to exceed this limit without. The intruder needs a
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certain time T to complete the intrusion. In both strategies, and in the case of

2, 3 and 4 robots, an optimal result is found.

Some of the results of [48] have been subsequently approached in [85]. For

example [85] disproved the conjecture stated in [48], that the partition strategy is

optimal. The authors of [85] provided a counter-example involving 6 agents for

which the partition strategy was not optimal.

The patrolling problem was also considered for the same-speed mobile agents.

In [39] n mobile robots are distributed and must patrol a simple finite curve com-

posed of a finite set of vital segments separated by neutral segments. The robots

do not have to patrol neutral segments. The authors proved that either the par-

tition strategy or cycling strategy leads to the optimal idle time if the robots are

having the same bound on their maximal speed.

The problem of patrolling by k mobile robots with distinct visibility is dis-

cussed in [55]. It has been proven in [55] that it is an NP-hard problem if the

environment is a general graph and if the robots may have distinct visibility radii.

The same problem for point visibility robots (i.e. robot see only the point at

which it is present) has an algorithm of polynomial complexity. Other algorithms

are provided for fence patrolling and boundary patrolling, when all robots have

the same maximum speed. In addition they show that the problem of patrolling

by robots with distinct ranges of visibility is essentially different. The case of the

fence patrolling by two robots with distinct maximal speeds and different ranges

of visibility is discussed, and an algorithm is provided.
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In [49] the authors discuss a patrolling algorithm of mobile robots that are

deployed on a weighted graph, knowing that among them there are some that are

unreliable. The goal is to minimize the time between successive visits of each edge

point by a reliable robot. An optimal algorithm is provided in [49] for the case of

fence patrolling.

2.5.3 Cops and Robbers Problem

In the classic search or exploration problem a mobile agent or a team of agents

need to find a stationary target. The time of the deterministic search or explo-

ration is often measured using a worst-case analysis, i.e. the adversary places the

target at the portion of the environment which is the last to be searched.

The problem of pursuing a thief or malefactor (Robber) is a problem of ex-

ploring a terrain, a domain equipped with obstacles or a graph in order to catch

this robber or robbers who are mobile and can hide in order to flee the police. The

Cops and Robbers literature is primarily interested whether the assumed capaci-

ties of the searchers (Cops) and the topology of the environment are sufficient so

that the capture of the robber is always possible. An interesting book [26] provides

mathematical foundations of the game of Cops and Robbers.

The game is considered won by the Cops if there exists their motion so that

eventually, in finite time, the Robber is captured by them. The Robber win if,

knowing the Cops strategy, it can indefinitely continue to move while never being

captured. Most papers on the Cops and Robbers game consider the case of the

graph environment. the authors of [26] analyse several variations of the problem

discussing the cases when the Robber or the Cops have a winning strategy.

[77] provides a survey of the graph-searching literature and a large collection

of discussed results contains a moving target. In [79] the authors study the ques-
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tion of the cop number, i.e. the minimum number of cops that are needed to catch

the robber. For example it is shown in [79], that if the robber can move as fast as

R edges per one unit of time, then there exist graphs needing n1− 1
R−2 cops moving

at the speed of one edge per time unit so that the capture of the robber is possible.

For the case of R = 1, [79] discusses the case of strongly connected directed graphs

on n vertices. They prove that the cop number of such graphs is O(n (log logn)2

logn
).

The cops and robbers literature is very vast (cf. [77]). The interested reader

may consult [26] where numerous scenarios are discussed as well as the survey [77].

2.6 Data Delivery

The information dissemination has been discussed in the past in the model of

message passing systems for interconnection networks (e.g., see [83]). The typical

questions involve how to communicate in parallel between the processors, repre-

sented by the network nodes, while avoiding conflicts inside local communication

channels, so that the communication protocol is realized in the smallest possible

number of communication rounds. For example, message broadcasts from an arbi-

trary processor to all other ones was studied in [9] from the perspective of message

complexity. The complexity depends on unbounded or bounded message length,

knowledge of the network and synchronous and asynchronous network models.

The typical communication protocols studied for the interconnection networks are

broadcast, convergecast and gossiping. [83] analyzes numerous variants of the prob-

lems arising in this context. Some of these protocols are studied for wireless sensor

networks, e.g. [7, 100] and ad-hoc networks [86].

One of the interesting problems for the interconnection networks communica-

tion is the advantage of using randomized algorithms. It happens that the use of
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the randomization permits to construct algorithms fundamentally more efficient

than the possibilities offered by deterministic algorithms. For example, in [18] the

authors study deterministic and randomized protocols for achieving broadcast (dis-

tributing a message from a source to all other nodes) in arbitrary multi-hop radio

networks. They show that a randomized algorithm may achieve broadcast using

O((D+log nε) log n) time-slots, where n is the number of processors in the network

and D is its diameter. On the other hand, [18] proves a Θ(n) time-complexity in

the deterministic broadcast protocol. This shows an exponential gap in complexity

between the two scenarios.

In data delivery problems considered in this thesis the mobile agents transport

packets of data between the nodes of weighted networks. The agents use energy

proportionally to the distance traveled. The typical problems studied are related

to different communication protocols:

1. One-to-one data delivery, where the data packet originally possessed by one

network node needs to be transported to some other node.

2. Broadcast, in which the packet initially possessed by some network node

must be delivered to all remaining nodes.

3. Convergcast, i.e. the data packets initially present at all nodes must be

consolidated at some node.

4. Gossiping, where each network node needs to collect the data packets initially

present at all other nodes.

For each communication protocol the problems studied are:
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1. The feasibility of the problem, i.e. whether an algorithm exists if the corre-

sponding communication protocol may be realised for the initial distribution

of agents in the network.

2. Realization of the communication protocol using the minimal possible energy.

3. Realization of the communication protocol in the minimal possible time.

In the typical problem of data delivery a set of k agents is distributed in some

nodes of an n-node graph, each agent having some initial amount of energy.

The data delivery problem was initiated in [5], where the authors study the

problem of convergecast by a set of mobile agents distributed on a line. Each agent

has the same amount of energy. The O(n) algorithm given in [5] computes the

minimal amount of energy needed by each agent so that convergecast on a line

may be successfully achieved. The authors of [5] prove that the same problem on

a tree network is NP-hard, and they give a 2-approximation distributed algorithm.

For general graph networks [5] gives a centralized 2-approximation algorithm.

Four years later the full version of the above work appeared in [6], where the

problem of broadcast was also studied, which also proved to be NP-hard. The

authors gave a 4-approximation distributed algorithm for broadcast. Moreover,

it was proven as well that the constant of 2 is the best possible for distributed

convergecast as for no ε > 0 there exists a (2− ε)-approximation distributed con-

vergecast algorithm.

The problem of one-to-one data delivery on the line was studied in [35] for

agents having not necessarily the same amount of energy. Surprisingly this sim-

ple problem was proved to be NP-hard. For instances where all input values N
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are integers is quasi-pseudo-polynomial.The algorithm for solving this problem has

a complexity of O(∆2N1+4 log∆) where ∆ is the distance between the points s and t.

The data delivery problem was the subject of the PhD thesis by Andreas

Bärtschi (see[15]). In this thesis k mobile agents located in distinct nodes in a

indirect graph cooperate to move packages in the graph. Every agent i has a

velocity vi and a weight ωi. The goal is to deliver all packages, minimize the to-

tal energy consumption of all agents and respect the constrained resources of the

agents. The thesis studied various scenarios of the problem under the assumption

that agents may have bounded capacities, i.e. each agent could carry a limited

number of data packets.

In [17] the authors considered agents data delivery of several packets, each one

between a specific source and target nodes of a given graph. The agents of [17]

are heterogeneous as each of them may consume energy at a different rate. The

objective of [17] was to minimize the total energy needed to be spent by the team

of agents. When the agents capacities were limited to one data packet, the prob-

lem was proved to be NP-hard, even for a single agent. However a polynomial

time 2-approximation is proposed in [17]. When the energy-consumption rates are

private, i.e. each one is known only by a corresponding agent, [17] proposes a

solution resulting in a constant approximation of a total energy spent.

Bärtschi, [15], considered also a time-efficient delivery (see also [19]). The

authors of [19] proved that the problem is NP-hard even for planar graphs and

NP-hard to approximate in general. However [19] gives a polynomial time algo-

rithm for delivery of a single package.
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The papers [19] and [20] considered bicreteria-efficient delivery, in which the

authors attempt to minimize the energy consumption E and simultaneously the

delivery time T . Clearly, minimizing one of these parameters may be performed

at the expense of the other one. In [20] the authors propose a polynomial-time

dynamic program that finds the behaviour of the agents that lexicographical mini-

mizes (E, T ). However the result of [19] states that when the priorities are reversed,

i.e. when (T,E) must be minimized, the problem becomes NP-hard.

The problem studied in [16] concerns the scenario similar to [5] where a single

packet must be delivered to the target position while agent budgets (i.e. initial

energy levels) must be respected. The authors of [16] analyze the Non-Returning

Delivery problem, when the agents may terminate their walk anywhere and the

Returning Delivery, when the agents are required to return to their initial posi-

tions. While the non-returning version of delivery has been previously proven in

[35] to be NP-hard for lines, [16] proposes a polynomial-time solution for tree net-

works. However for the class of planar graphs the Returning Delivery is proven to

be NP-hard in [16]. Because of the hardness of this problem, the authors of [16]

consider the question of resource-augmentation: by what factor must the energy

level of all robots be augmented, so that if the delivery problem was feasible for

the original energy levels, there is a known algorithm for the resource-augmented

case. [16] gives tight lower bounds for the resource augmentation necessary for the

returning and non-returning versions of the delivery problem.

Closely related to the data delivery problem is the tree exploration by a col-

lection of mobile agents investigated in [57]. Each agent of [57] is placed at the

same initial node and it has the same amount B of energy, that is known to be

sufficient to reach any leaf of the tree. The tree is a priori unknown to the agents,
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but they can exchange partially acquired information while they are collocated at

a same node of the tree. The objective of [57] is to minimize the number of agents

used for exploration. The exploration algorithm of [57] has a competitive ratio of

O(logB), compared to the best offline algorithm having the full knowledge of the

tree. This competitive ratio is proven to be the best possible.

When the tree is known to the agents, the exploration investigated in [57] is

done more efficiently in [59]. The authors of [59] give an algorithm which covers

a given tree with the minimal number of routes starting and ending at the same

node (root) of the tree.

The only other paper investigating data delivery by energy-exchanging agents

is [14]. The agents are placed at given nodes of the input graph and each of them

has two units of energy. The objective is to verify whether the delivery from a

given source node s to a given target node t is possible. The authors prove that

this problem is NP-complete. However, consider the following problem: ′′Given a

subset H of nodes of the graph and an integer k, is it possible to place k agents in

some nodes of H so that the delivery is possible?′′ The authors of [14] prove that

this problem has a polynomial time solution.
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Summary of results

3.1 Preliminaries

We are given a tree T containing n nodes v1, v2, . . . , vn. The tree is edge-weighted

i.e. each edge (vi, vj) has a weight w(i, j) >0.

We assume that if nodes vi and vj are not adjacent, then we extend the weight

function so that w(i, j) =∞.

Therefore we can say that w : V × V −→ Z+ ∪ {∞}.

At selected nodes of the tree are placed k mobile agents denoted by the integers

0, 1, . . . , k− 1. Each node i, for 0 6 i < k has an initial amount of energy ei being

a non-negative real number. The mobile agents can walk along the edges of the

tree while spending energy proportionally to the distance traveled.

Some nodes of the tree initially contain the data packets.
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During the algorithm, a subset of data packets may be carried by an agent as

well as being held by a tree node. We assume that node and agent capacities are

unlimited, i.e. that each agent and each tree node may be in possession of any

number of data packets.

Suppose that at some time moment agent i carries a set of packets Pi, a node

v possesses a set of packets Pv and agent i is about to visit node v. Then, when

agent i leaves node v it departs counting the set of packets Pi ∪ Pv and the same

set of packets remains in possession of node v.

Similarly, consider a meeting of agents i and j, respectively possessing sets of

packets Pi and Pj, before the meeting. We assume that after the meeting both

agents continue their walks possessing the set of packets Pi ∪ Pj.

The agents may meet when arriving at the same time moment to the same

point of the network. We assume that at a moment of meeting the agents may

exchange any amount of currently possessed energy.

3.2 The Problems

The basic problems related to energy-exchanging mobile agents concern different

protocols of communication of data packets. In each problem is given a tree T and

a collection of k mobile agents placed at same nodes of T , each agent having some

non-negative initial energy level.
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Data Delivery Problem: Let be given a source node s and a target node

t. Decide if the initial configuration of the agent positions and their energy levels

permit to construct a schedule of agents movements and energy transfers between

meeting agents, which result in the initial data packet of source s being delivered

to the target node t.

Convergecast Problem (to a given node): Let t be a given node of T .

Suppose that every node of T initially possesses a data packet. Decide if the initial

configuration of the agent positions and their energy levels permit to construct a

schedule of agents movements and energy transfers between meeting agents, such

all data packets being delivered to the target node t.

Convergecast Problem (to an unspecified node): Suppose that every

node of T initially possesses a data packet. Decide it there exists some node t ∈
T such that the initial configuration of the agent positions and their energy levels

permit to construct a schedule of agents movements and energy transfers between

meeting agents, which result in all data packets being delivered to the target node t.

Broadcast Problem: Suppose that a given node s ∈ T contains a data

packet. Decide if the initial configuration of the agent positions and their energy

levels permit to construct a schedule of agents movements and energy transfers

between meeting agents, which result in the initial data packet of s reaching every

node of T .
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3.3 The Results Obtained

In Chapter 4 we present first an algorithm solving the Data Delivery Problem for

line networks. Then we observe that our solution can be extended on tree net-

works. We also solve the Convergecast Problem for tree networks. The algorithm

works for the convergecast to a specific tree node. However, it may be modified in

order to function when the target node is not specified. All algorithms from this

chapter work in an optimal O(n) time (where it is assumed that k 6 n). However,

we show that for general graph networks the Data Delivery Problem is NP-hard.

The problem of broadcasts, when agents start at the same initial position, is

studied in Chapter 5. We consider first the case when the source, which is the

broadcast node, is the starting node for each agent. We give an O(n log n) al-

gorithm solving the Broadcast Problem for this case. We also propose an O(n)

algorithm for this setting when the number k of available agents is at least equal

to the number of leaves of tree T . Finally, we show that our algorithms may be

extended to the case when the source node s is different from the starting position

of all agents.

The problem of broadcast is continued in Chapter 6, where each agent is ini-

tially placed at arbitrary node of the network. This solves the Broadcast Problem

in its general setting. However, as the setting of this chapter assumes arbitrary

distribution, the time complexity of the proposed algorithm is O(nk2), that is

much larger than O(n) and O(n log n) that we obtained in Chapter 5 for agents

starting together.
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Our approach in each chapter permits not only to solve the decision problem

whether the analyzed communication protocol is feasible, but also finds the largest

amount of energy that may be saved while realizing the protocol. Such an optimi-

sation problem (that is more general that its decision version) is a byproduct of

the chosen methodology, rather than the goal by itself.
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Data Delivery and Convergecast

We consider two problems:

1. Data delivery problem: Given two nodes s, t of G, is it possible to transfer

the initial packet of information placed at node s to node t?

2. Convergecast problem: Is it possible to transfer the initial information of

all nodes to the same node?

We will look for schedules of agent movements which will not only result in

completing the desired task, but also attempt to maximize the unused energy. We

call such schedules optimal.

We conservatively suppose that, whenever two agents meet, they automatically

exchange the entire collections of data packets that they currently hold. This

information exchange procedure is never explicitly mentioned in our algorithms,

supposing, by default, that it always takes place when a meeting occurs.

We consider first the line environment and then we extend our results for trees.

We show that both communication have linear time algorithms on trees. On

the other hand, for general undirected and directed graphs we show that these

problems are NP-complete.
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4.1 The Line Environment

In this section we start with a cartesian line environnement and suppose that we

are given a collection of k agents, each agent i having initial energy ei.

4.1.1 Data Delivery

On the line are given two points s (source) and t (target) and the agents need

to collaborate in order to carry the data packet initially placed at point s to the

target position t. We suppose s < t.

Observe that, without a loss of generality, we may replace many agents starting

at the same point by a single agent whose initial energy equals to the sum of the

amounts of all agents present at this point.

Note also limited use of the agents initially present outside the interval [s, t] of

the line. Indeed the agents on the left-hand side of s (starting from the leftmost

one) walk left-to-right collecting energy of the encountered other agents. If some

energy can be brought this way to s, we obtain an extra agent which will start at

s. Symmetrically, the agents on the right-hand side of t act in order to possibly

bring the maximal amount of energy to point t. It is easy to see that this is the

best use of agents placed outside the interval [s, t]. Consequently, we may assume

s ≤ a1, ak ≤ t.

Our first algorithm is only a decision version. Its main purpose is to show

how certain useful table can be computed; all subsequent algorithms are based on

computing similar type of tables.
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Consider the partial delivery problemDi, in which agents larger than i are removed,

together with their energy, and the goal is to deliver the packet from point a1 to

point ai. We say that the problem Di is solvable iff such a delivery is possible.

We define the following table
−→
∆ :

• If Di is not solvable then
−→
∆ i = −δ, where δ is the minimal energy which

needs to be added to ei (to the energy of i-th agent) to make Di solvable.

• If Di is solvable then
−→
∆ i is the maximal unused energy which can remain in

point ai after delivering the packet from a1 to ai. Note that it is possible

that
−→
∆ i > ei since during delivery the unused energy of some other agents

can be moved to point ai.

Assume that points s and t are the starting points s = a0 and t = ak+1 of

virtual dummy agents 0 and k + 1, respectively. Each virtual agent 0 and k + 1

has zero initial energy ( or a positive energy if the agents initially placed left to s

or right to t, could having such energy to s or t, respectively). Therefore, we may

assume that the original positions of the agents are s = a0 ≤ a1 < a2 < a3 < . . . <

ak ≤ t = ak+1.

We have the following decision algorithm.
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ALGORITHM Delivery-Test-on-the-Line ;

1. A := e0 = 0; a0 := s; ak+1 := t; ek+1 := 0;

2. for i = 1 to k + 1 do

3. d := ai − ai−1;

4. if A ≥ d then A := A− d

5. else if A ≥ 0 then A := −2(d−A)

6. else A := A− 2d;

7. A := A + ei;
−→
∆ i := A;

8. return (A ≥ 0) ;

0 10 20 30 4014

−→
∆1 = 4

−→
∆2 = −2

−→
∆3 = 18

−→
∆4 = 8

e0 = 0 e1 = 24 e2 = 10 e3 = 40 e4 = 0

−→
∆0 = 0

Figure 4.1: Schedule of agent movements for ai’s and energies given in Example 1.

Example 1. Assume [a0, a1, . . . , a4] = [0, 10, 20, 30, 40, 50], [e0, e1, . . . e4] = [0, 24, 10, 40, 0].

Then (assuming, by convention,
−→
∆0 = 0, see also Figure 4.1) we have

−→
∆ =

[0, 4, −2, 18, 8].

Remark. The values of
−→
∆ i are not needed to solve the decision-only version.

However they will be useful in creating the delivery schedule and also in the con-

vergecast problem.

Lemma 1. The algorithm Delivery-Test-on-the-Line correctly computes the

table
−→
∆ (thus it solves the decision version of the delivery problem) in linear time.

We prove by induction on i, that the value of
−→
∆ i is correctly computed in line

7 of the algorithm.
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Suppose first the case i = 1. In the case a0 = a1, as A = e0 = 0, in lines 4

and 7 we compute the value of A =
−→
∆1 = e1, which is correct as agent 1 does not

need to use any energy to pick up the packet at point a0. Otherwise, if a0 < a1

we have A = 0 and A < d, so lines 5 and 7 are executed, in which case we have

A =
−→
∆1 = e1 − 2d. As agent 1 needs to cover distance d in both directions to

bring the packet to point a1 this is correct, independently whether the computed

value negative or not.

Suppose now, by inductive hypothesis, that the algorithm computed correctly

A =
−→
∆ i−1 in the previous iteration. There are three cases:

Case 1 (line 4 of the algorithm). The instance Di−1 was solvable and after

moving the packet from a1 to ai−1 the maximal remaining energy was
−→
∆ i−1.

As in this case we have
−→
∆ i−1 = A ≥ d, the energy

−→
∆ i−1 is sufficient to move

the packet from ai−1 to ai. Consequently, we spent d energy to travers the

distance d in one direction and we have
−→
∆ i =

−→
∆ i−1 − d + ei as correctly

computed in lines 4 and 7.

Case 2 (line 5). The instance Di−1 was still solvable but after moving the packet

from a1 to ai−1 the remaining energy
−→
∆ i−1 is not sufficient to reach ai without

help from agents to the right of ai−1. Then the (i − 1)-st agent moves only

one-way by distance
−→
∆ i−1. The remaining distance d − −→∆ i−1 to point ai

should be covered both-ways from ai. Hence we need to use the amount

of 2(d − −→∆ i−1) energy, which is expressed by statement 5. The value of
−→
∆ i is computed correctly independently whether the addition of ei makes it

positive or not.

Case 3 (line 6). In this case the instance Di−1 was not solvable, i.e. the agents

1, 2, . . . , i − 1 could not deliver the packet to point ai−1. Consequently, the
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interval [ai−1, ai] has to be traversed entirely in both direction and we obtain
−→
∆ i =

−→
∆ i−1 − 2d+ ei, which is correctly computed in lines 6 and 7.

The cases correspond to the statements in the algorithm, and show its correctness.

This completes the proof.

Once the values of
−→
∆ i are computed, the schedule describing the behaviour of each

agent is implicitly obvious, but we give it below for reference. Note that the action

of each agent ai is started once the process involving lower-numbered agents has

been completed. We are not interested in this chapter in finding the shortest time

to complete the schedule (allowing agents to work in parallel).

ALGORITHM Delivery-Schedule-on-the-Line;

{ Delivering packet from s to t }

pos := s;

for i = 1 to k do

if
−→
∆ i ≥ 0 and pos < ai then

1. The i-th agent walks left collecting energy of all encountered

agents until arriving at the packet position. It picks up the packet.

2. The i-th agent walks right collecting energy of all encountered

agents until exhausting its energy or reaching t.

3. The i-th agent leaves the packet at the actual position pos.

Delivery is successful iff pos = t;

Figure 4.1 illustrates the execution of the above algorithm for Example 1.

We conclude with the following theorem.

Theorem 1. The algorithm Delivery-Schedule-on-the-Line decides in O(n)

time, where n is the number of agents, whether the information of any agent can
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be delivered to any other agent and, if it is possible, it produces the centralized

schedule which performs such a delivery.

4.1.2 Convergecast

The convergecast consists in communication in which the union of initial informa-

tion of all nodes arrives to the same node. In some other papers (e.g. [5]), the

convergecast problem consists in determining whether the union of the entire in-

formation may be transferred to the same agent. However, for energy exchanging

agents, this is not a problem: if convergecast is possible then any agent may be its

target, as agents may swap freely when meeting.

We present below the algorithm finding if convergecast is possible. We will use

algorithm Delivery-Test-on-the-Line to compute the values of
−→
∆ i as defined

before, assuming that s = a1 and t = ak. Similarly we denote by
←−
∆ i the values of

the energy potential at point ai that the symmetric algorithm would compute while

transferring the packet initially situated at the point ak towards the target position

at ai. Therefore,
←−
∆ i equals the deficit or the surplus of energy during the transfer

of information initially held by agent n to agent i using agents i, i+ 1, · · · , k.

ALGORITHM Convergecast-on-the-Line;

1. for all i = 1, 2, · · · , n compute the values of
−→
∆ i and

←−
∆ i representing the

energy potentials at ai, for deliveries from a1 to ai and an to ai, respectively

2. for i = 1 to n do

3. if
−→
∆ i ≥ 0 ∧←−∆ i+1 ≥ 0 ∧ −→∆ i +

←−
∆ i+1 − (ai+1 − ai) ≥ 0 then

4. return Convergecast possible;

5. return Convergecast not possible;

We have the following theorem.
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Theorem 2. Algorithm Convergecast-on-the-Line in O(n) time solves the

convergecast problem.

Proof. The convergecast is possible if and only if the information of agent a1 and

the information of agent an may be transferred to the same point of the line. This

is equivalent to the existence of a pair of agents i and i+ 1, such that transferring

the information from point a1 to ai using agents 1, 2 · · · , i results in a surplus of

energy brought to point ai, as well as that transferring the information from point

an to ai+1 using agents n, n− 1 · · · , i+ 1 results in a surplus of energy brought to

point ai+1. Moreover, the sum of these two surpluses of energy must be sufficient

to complete a walk along the entire segment [ai, ai+1] permitting agents i and i+ 1

to meet. This is exactly what is verified at line 3 of algorithm Convergecast-

on-the-Line.

An interested reader may observe, that the condition of the if clause from line

3 may be simplified to
−→
∆ i+

←−
∆ i+1− (ai+1−ai) ≥ 0 as in such case the convergecast

is also possible although the convergecast point may not be inside the interval

[ai, ai+1]. However, the current condition at line 3 permits to identify all points of

the environment to which the union of all node information may be transported.

We call such points convergecast points. Indeed, if
−→
∆ i +

←−
∆ i+1 − (ai+1 − ai) = 0,

then there exists a unique convergecast point inside the interval [ai, ai+1]. The

surplus of energy permits to deliver the convergecast information to an interval of

the line larger than a single point. We have the following Corollary.

Corollary 1. If the condition in line 3 of algorithm Convergecast-on-the-

Line is true, then the set of convergecast points of the line equals [ai+1−
←−
∆ i+1, ai+

−→
∆ i].
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4.2 The Tree Environment

In this section we observe that our solutions for lines may be adapted so they work

for a more interesting tree environment.

4.2.1 Data Delivery

The technique developed for delivery in lines can be extended easily to delivery

in undirected trees. In this case, the agents are placed at the nodes of the tree.

Observe that from the original tree we can remove subtrees which do not contain

s, t or any agents. Consequently, we obtain a connected tree whose every leaf either

contains s or t or an initial position of some agent.

The delivery problem for a tree is easily reducible to the case of a line.

Theorem 3. We can solve delivery problem and construct delivery-scenario on

the tree in linear time.

Proof. Consider the path π in the tree T connecting s with t. Suppose we remove

from T all edges of path π. The tree splits into several subtrees anchored at nodes

of π. For each such subtree we direct all edges towards the root, which is a node of

π. The agents initially present at the leaves of such trees are walking up along the

directed paths towards their roots accumulating energies at intermediate nodes. To

avoid having two agents walking along the same edge it is sufficient to move agents

present at leaves only and remove every such edge after the move is made. Agents

having energy use it during their walk bringing the remainder to the intermediate

nodes. Agents with zero energy are moved freely bringing no energy. The process

terminates when the subtree is reduced to a single root belonging to path pi. This

way we optimize the energy that can be brought to path pi. The problem of the

delivery on the tree is now reduced to the delivery on the line π. Consequently,
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all steps of this construction may be computed in linear time. This completes the

proof.

4.2.2 Convergecast

In this section we extend to the case of trees the basic ideas developed for the

problem of convergecast for the line environment. The tables
←−
∆ and

−→
∆ for lines

were computed locally, looking only at neighboring nodes. Simiarly, the values

of the corresponding table
−→
∆ for a node in a tree is computed looking at the

neighbors of this node. However, as the flow of the information passing through

node v can be made in dv directions, where dv is the degree of v, for each node

v we will compute dv different values of ∆ . For this purpose, though the input

tree is undirected, we will consider direction of edges. For each undirected edge

(u, v) we consider two directed edges u → v, v → u. We define the subtree Tv→u

as the connected component containing v and resulting by removing from T the

edge (v, u), see Figure 4.2. Observe that at the moment of convergecast, there are

two agents meeting at a point of some edge, that we call convergecast point, where

these agents start possessing the initial information of all nodes.

T2 T2

v v

u u
u

v

T1 T1

Figure 4.2: Testing if there is a convergecast point on the undirected edge (u, v) is
reduced to computation of the costs ∆u→v and ∆v→u of moving all packets in the
trees T2 = Tu→v and T1 = Tv→u.

In order to compute all needed values of ∆, for each directed edge u → v of

the tree we define ∆u→v as the energy potential of moving all packets from the

The Tree Environment



Data Delivery and Convergecast 55

subtree Tu→v to its root u without interacting with any node outside Tu→v. More

exactly, if ∆u→v ≥ 0, then it represents the maximal amount of energy that can

be delivered to u, together with all data packets originated at the nodes of Tu→v.

Observe that, if Tu→v initially does not contain any agents, then ∆u→v equals twice

the sum of weights of all edges of Tu→v. Indeed, in such case, the delivery must be

performed by an agent starting at u and performing the DFS traversal of Tu→v. If

Tu→v initially contains some agents, the value of ∆u→v is smaller, but always equal

at least the sum of weights of its edges. If ∆u→v < 0 then −∆u→v is the minimal

amount of energy that we need to deliver to u by some agent, initially outside

Tu→v, so that this agent can bring to node u all data packets from the nodes of

Tu→v. In both cases, will be used all agents initially present inside Tu→v as well as

their entire energy.

In order to correctly compute the values of ∆ we define an order in which

the consecutive directed edges of T will be treated by our algorithm. We denote

x→ y ≺ y → z, when x 6= z, meaning that, for consecutive edges, an edge ending

at a node precedes (according to relation ≺) an edge starting at this node.

Observation 1. The relation ≺ in a tree is a partial order and it can be extended

to a linear order X in O(n) time.

We propose the following algorithm.

The Tree Environment



Data Delivery and Convergecast 56

ALGORITHM Convergecast-on-the-Tree(T );

1. Compute a linear order X of directed edges of T according to relation ≺.

2. for each directed edge u→ v taken in order X do

3. Compute ∆u→v;

4. for each undirected edge (u, v) of T do

5. if (∆u→v ≥ 0) ∧ (∆v→u ≥ 0) ∧ (∆u→v + ∆v→u ≥ weight(u, v))

6. then return Convergecast is possible

7. return Convergecast is not possible

The values of ∆u→v are computed by the following procedure.

PROCEDURE Compute ∆u→v;

1. ∆u→v := eu; {initial energy of node u}

2. for each indirect edge x→ u, such that x 6= v do

3. if ∆x→u ≥ weight(x, u)

4. then ∆u→v := ∆u→v + ∆x→u − weight(x, u)

5. else if ∆x→u > 0

6. then ∆u→v := ∆u→v + 2 ∗ (∆x→u − weight(x, u))

7. else ∆u→v := ∆u→v + ∆x→u − 2 ∗ weight(x, u)

We have the following theorem:

Theorem 4. Algorithm Convergecast-on-the-Tree in linear time solves the

convergecast problem for trees.

Proof. We show first the following claim:

Claim:, The for loop from line 2 of the algorithm correctly computes the value of

∆u→v for every directed edge u→ v.
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The proof of the claim goes by induction on the consecutive iterations of the

for-loop from line 2. Consider the first directed edge u → v of X. As the tree

Tu→v is then composed of a single node, we obtain correctly ∆u→v = eu, i.e. the

initial energy of node u. The claim is also true for any other edge u→ v, treated

later by the for loop of line 2, such that u is a terminal node.

Consider now the case when the for loop from line 2 takes an edge u → v for

a non-terminal node u. Let v1, v2, · · · , vp be all nodes adjacent to u, such that

vi 6= v, for i = 1, · · · , p. Note that, at that moment, the values of ∆vi→u for all

i = 1, · · · , p have been already computed. Observe that, bringing packets from

all vi 6= v, i = 1, · · · , p to u needs to be done across the respective edges vi → u,

sometimes bringing the unused energy to u and other times using some energy

from ∆u→v to traverse twice edge (vi, u), or its portion, by an agent coming from

u.

Take any vi and suppose first that ∆vi→u ≥ weight(vi, u). Then by inductive

assumption, the agents present at Tvi→u can perform the convergecast to vi bringing

there the amount of ∆vi→u extra energy. This energy is sufficient to transfer

all packets of Tvi→u through edge (vi, u) and the remaining amount of ∆vi→u −
weight(vi, u) energy is accumulated at ∆u→v, which is correctly computed at line

4 of procedure Compute ∆u→v.

Suppose now, that ∆vi→u ≤ 0. In order to bring all packets of Tvi→u to u, an

agent present at u must traverse the edge u→ vi, bring the packets to node using

−∆vi→u extra energy and then traverse the edge (u, vi) in the opposite direction

vi → u. For this purpose is needed the extra energy of −∆x→u + 2 ∗ weight(x, u),

which is correctly suppressed from ∆u→v at line 7 of the procedure.

Consider now the remaining case when 0 < ∆vi→u < weight(vi, u). In this case,

all packets of Tvi→u are brought to node vi by some agent initially present within

Tvi→u, but this agent does not have enough energy to traverse edge vi → u by itself.
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Such agent will use its entire energy of ∆vi→u to traverse a portion of edge vi → u

and some other agent need to come from u and to traverse the other portion in

both directions in order to transfer the packets to u. The energy needed by the

second agent equals 2∗ (weight(vi, u)−∆vi→u), which is correctly suppressed from

∆u→v at line 6 of the procedure. This completes the proof of the claim.

To complete the proof, consider the moment when in an optimal convergecast

algorithm one agent obtains the union of the initial information of all nodes of

the network. This happens while two agents meet on some edge (u, v), one of

them carrying the union of information from the subtree Tu→v, and the other one -

from the subtree Tv→u. These agents need to have enough positive energy to meet

within the edge (u, v). This is equivalent to the condition tested in line 5 of the

algorithm.

The condition from line 5 of algorithm Convergecast-on-the-Tree per-

mits to decide only if the convergecast is possible. However, similarly to the line

case, an interested reader may observe that one can easily identify the set of all

convergecast points. For this purpose we define the set of Du,v(d) containing a

subset of points from the edges of T . Consider a point p and the simple path

Π(u, p) of T joining p with u. We define p /∈ Du,v(d) if the path Π(u, p) goes in

the direction of edge (u, v) and its length exceeds d, i.e. |Π(u, p)| > d. All other

points of T belong to Du,v(d). We have the following corollary.

Corollary 2. If the condition in line 5 of algorithm Convergecast-on-the-

Tree is true, then the set of all convergecast points of the tree equals Du,v(∆u→v)∩
Dv,u(∆v→u).

4.3 NP-Completeness for Digraphs and Graphs

We use the following NP-complete problem:
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Integer Set Partition (ISP): Given set X = {x1, x2, . . . , xn} of positive integer

values verify whether X can be partitioned into two subsets with equal total sums

of values.

We have the following theorem.

Theorem 5. The delivery and convergecast problems are NP-complete for general

directed graphs.

Proof. Denote E =
∑n

i=1 xi. Given an instance of the ISP problem, we construct

the following graph GX (see Figure 4.3). The set of n+ 3 nodes of GX consists of

three nodes s, t, a and the set of nodes V = {v1, v2, . . . , vn}. Each node vi contains

a single agent i having an initial energy e = xi, for i = 1, 2, . . . , n. The weights

of edges outgoing from nodes of V are w(vi → s) = xi/3 and w(vi → a) = 0

for i = 1, 2, . . . , n. Moreover we have w(s → a) = E/3 and w(a → t) = E/2.

Consider a delivery from s to t. W.l.o.g. we can suppose that this is done by

x1

3

x2

3

xn

3

s
a tv2(e2 = x2)

vn(en = xn)

v1(e1 = x1)

E/2

E/3

0

0

0

GX

Figure 4.3: Delivery from s to t is possible iff the set of weights xi can be partitioned
into two sub-sets of the same sum.

some agent i, which must traverse the path vi → s → a → t. As no agent can

do it using only its own energy (otherwise xi ≥ 5E/6 and the ISP trivially has no
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solution), some other agents of the collection must walk to s and some other ones

must go directly to a, in order to deliver to agent i additional energy needed to

complete its path vi → s→ a→ t.

Assume that X1, X2 are the sets of agents which directly move to s and a,

respectively. Let

α =
∑
i∈X1

xi, β =
∑
i∈X2

xi

Hence the energy delivered to s, unused by the agents X1 incoming to s, is 2
3
α. As

this energy must be sufficient to traverse at least edge s→ a, we have

2

3
α ≥ E/3 (4.1)

Consider now the maximal energy, which may be available to agent i at point a.

It is equal to the sum of energy β, which is brought to point a by agents X2, and

the energy unused by agent i, ending its traversal of edge s → a, which equals

2α/3 − E/3. As the sum of these energies must suffice to traverse edge a → t of

weight E/2 and α + β = E we have

E

2
≤ β +

2

3
α− E/3 =

1

3
α +

2

3
β =

E

3
+

1

3
β (4.2)

From (4.1) we have α ≥ E/2 and (4.2) leads to β ≥ E/2, which implies α = β =

E/2.

Consequently, the delivery from s to t in graph GX is possible if and only

if the given instance of the integer partition problem is solvable. This implies

NP -completeness of the delivery problem.

As t is the only node having paths incoming from all other nodes, the con-

vergecast for GX implies the delivery from s to t, hence the convergecast problem

is also NP -complete.
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Theorem 6. The delivery and convergecast problems are NP-complete for general

undirected graphs.

E + x1

3

E + x2

3

E + xn

3

s
a tv2(e2 = E + x2)

vn(en = E + xn)

v1(e1 = E + x1)

E/2

E/3

E

E

E

HX

Figure 4.4: The undirected version of the graph from Figure 4.3. The weights of
nodes vi and lengths of edges incident to these nodes are increased by E.

Proof. Consider graph HX - an undirected version of the graph from the previous

proof (see Figure 4.4). Increase the energy of every agent by E, i.e. agent i, initially

placed at node vi, now has energy E+xi, for i = 1, 2, . . . , n. Moreover increase by

E the weight of each edge, which is incident to node vi, i.e. w(s, vi) = E + xi/3

and w(vi, a) = E, for i = 1, 2, . . . , n.

Delivery. Consider delivery from s to t. Observe that no edge incident to vi, for

i = 1, 2, . . . , n, can be used twice. Indeed, in order to transfer energies between

agents they have to meet moving from their initial positions. However, at the

moment of such meeting the sum of the remaining energies is smaller than E,

which does not permit to traverse any edge incident to xi for the second time.

Clearly traversing directed edges a → s and t → a is also useless, hence the

delivery from s to t in graph HX is equivalent to the respective delivery in GX .
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Convergecast. If we consider t as the convergast node, the conergecast problem

is equivalent to the delivery from s to t, which implies its NP -completeness.
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Chapter 5

Broadcast when Agents Start at the

Same Node

In this chapter we consider the problem of broadcast when all agents are initially

placed at the same node of the tree. We will see, that even in this simplified case

the broadcast problem is more involved that the general case of the “symmetric”

convergecast problem. Observe that in this case, the energy-exchange aspects of

the problem setting are not really relevant. More exactly, we need to attribute

energy to all agents so that the agents perform a successful broadcast using the

smallest possible total amount of energy. We consider first the case when the

source node i.e. the node at which all agents are initially present is also the data

source, i.e. it contains the data packet that needs to be broadcast. Our solution

to this problem computes the optimal energy needed to perform exploration of a

(known) tree by a set of k agents. It is well known that the same problem when the

time of the schedule is to be optimized (i.e. the time of arrival to its destination

of the last robot), is NP-complete (see [8]).
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Then we consider the broadcast problem, in which the source node is different

from the data source, i.e. the node from which the data packet needs to be

broadcast.

We present almost linear-time, greedy algorithms solving data broadcasting.

Our problem can be solved in O(n log n) time, independently of the number k of

available agents. This complexity is reduced to O(n) time in case of unlimited

number of agents, or when the number of agents is at least equal to the number

of leaves of T .

In the special case when the root, from which all agents start, is also the source

node, our approach solves the search problem, when the collection of agents need

to search the tree optimally, i.e. using the smallest total energy. Surprisingly,

according to our knowledge, this natural setting of the search/exploration problem

has not been studied before.

5.1 Agents Starting from the Source Node

We start with an easier case when the root r is the same as the source node s,

which contains the initial data packet. Observe that, even if we have unlimited

number of agents in r, the problem is nontrivial. In the proposed solution, every

agent i initially takes an exact amount of energy needed to traverse some subtree

T (i) and its traversal of T (i) must be optimal. The union of all subtrees must sum

up to the entire tree T and the choice of the sub-trees must minimize the total

energy needed to traverse them.

We consider separately cases of limited and unlimited number of agents. We

will show that not all the agents are always activated, i.e. in some cases making

walk too many agents would result in a suboptimal algorithm. We say that an

agent is activated if it is used for walking (consumes a non-zero amount of energy),
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copies a data packet to its memory, when arriving to a node at which a copy of data

packet is present, and subsequently disseminates it to all nodes visited afterwards.

Denote by Tv the subtree of T rooted at v.

Lemma 2. Suppose that the source node s is the same as the root r. In every

optimal broadcast algorithm, each activated agent should terminate its walk at a

leaf of T .

Proof. The proof goes by contradiction. Suppose that, in an optimal broadcast,

some agent i terminates its walk in a non-leaf node v, traversing some edge (w, v)

as the last edge of its route. Two cases are possible:

Case1: The traversal of the last edge (w, v) does not coincide with the first

visit of node v by agent i. In this case we can remove the traversal of the last

edge (w, v) from the route of agent i and the tree explored by agent i remains the

same. However, such shortening of the route of agent i reduces its energy cost by

weight(w, v), which contradicts the optimality of the original traversal.

Case2: The traversal of the last edge (w, v) by agent i coincides with its first

visit of node v. In such a case, agent i could not previously enter the subtree Tv

(otherwise this would imply the second visit of v). Consequently, as Tv contains

at least one leaf, unvisited by agent i, it must be visited by some other agent j.

However, to reach any leaf of Tv from the starting position r, agent j must visit

v on its route. As v does not need to be visited by two different agents, we can

then again shorten the route of i by the last edge (w, v), reducing its cost. This

contradicts optimality of its original route.

The subset of leaves of T , at which the activated agents of an optimal algorithm

terminate their paths, are called critical leaves. Each path from root r to a critical

leaf is called a critical path. The union of all critical paths forms a tree, rooted at

r, that we call the frame of the algorithm.
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5.1.1 Scheduling Agent Movements when Critical Leaves

are Known

We start with the presentation of an algorithm which designs the movements of

the agents once the set of critical leaves has been obtained. As agents possess

the information about the packet from the start, it is sufficient to generate the

trajectories of all robots, disregarding synchronization between actual movements

of different agents.

Consider a subset L of critical leaves of tree T . Define frame(L) as the union

of all critical paths, i.e. the sub-tree of T induced by L and all its ancestors,

see Figure 5.1. By |frame(L)| we understand the sum of weights of all edges of

frame(L). Observe that the edges T \ frame(L) form a set of sub-trees rooted at

the nodes of frame(L). We call them hanging s and we denote the set of hanging

sub-trees by H(L).

Once we know the optimal set of critical leaves L, then an optimal schedule

is easy to construct. Below we give the algorithm ConstructSchedule, which con-

structs the optimal schedule for the given set of k agents. In fact we concentrate

later only on computing the optimal L (needed in line 1 of the algorithm Construct-

schedule). Our main result is the computation of minimum cost in almost linear

time, which also implies computing the optimal set L.
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Algorithm ConstructSchedule(k);

1. Compute the set of critical leaves L, such that |L| ≤ k, which maximizes ∆(L).

2. Assign to every critical leaf li a different agent i which will terminate its walk at li.

3. Assign arbitrarily each subtree T ′ ∈ H(L) to a single critical leaf L(T ′),

such that T ′ has the root on the critical path from r to L(T ′).

4. for each leaf li ∈ L do

4.1. Agent i follows the critical path from r to the critical leaf li,

4.2. On the way to its assigned critical leaf li the agent i makes a full DFS

traversal of each hanging subtree T ′ ∈ H(L) such that L(T ′) = li.

Observe that the total number of edge traversals, generated by the algorithm

ConstructSchedule, can be quadratic.

Denote by path(u, v) the set of nodes on the simple path between u and v

(including u, v) and let |path(u,w)| denote the distance (sum of edge weights)

from node u to w in tree T . We denote also depth(w) = |path(r, w)|.
We define below a function ∆(L) which measures the efficiency of the broad-

casting algorithm having L as its critical leaves.

∆(L) = 2|frame(L)| −
∑
w∈L

depth(w) (5.1)

The following lemma shows what is the value of MinCost(T, k) - the energy

cost of the schedule produced by the algorithm ConstructSchedule for k agents

starting at the root of tree T . The energy depends on the choice of the set of

critical leaves L. The construction of the set L minimizing the energy cost will be

discussed in the subsequent sections.
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Lemma 3. Assume k agents are placed initially in the source node r = s of T .

Then

MinCost(T, k) = 2|E| −∆(L),

where L is a subset of leaves maximizing ∆(L) over |L| ≤ k.

Proof. The algorithm has enough agents, so that to every critical leaf li corresponds

a different agent i, which terminates its walk at li. The edges of all hanging sub-

trees H(L), i.e. all edges of T \ frame(L), are traversed twice in step 4.2 of

the algorithm. Moreover each edge of a critical path is traversed in step 4.1 as

many times as there are critical paths containing this edge. Consequently, the

total cost of such traversal of T is twice the sum of lengths of edges belonging to

T \ frame(L), and the sum of the critical path lengths of the frame(L). Hence

the total cost equals

2|T | \ frame(L)| +
∑
w∈L

depth(w) = 2|E| − (2 · |frame(L)| −

∑
w∈L

depth(w)) = 2|E| −∆(L)
(5.2)

By Lemma 2, each optimal algorithm using at most k agents, corresponds to

frame(L) for some L. Therefore, the cost represented in equation 5.2 is minimized

for maximal ∆(L).

Consequently, the broadcasting problem reduces in this case to the computation

of L which maximizes ∆(L) with |L| ≤ k. The set L will be computed incremen-

tally and in a greedy way. We conclude this section with some observations needed

for the incremental construction of the optimal set of critical leaves.

Assume L is a set of leaves and consider a leaf w /∈ L. Denote by LCA(w,L)

the lowest common ancestor of w and some leaf from L (i.e. the lowest node

belonging to path(w, r) and frame(L)). Define LCA(w, ∅) = r.
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Let

δ(w,L) = |path(u,w)| − |path(r, u)|, (5.3)

where u = LCA(w,L). Equivalently we have

δ(w,L) = depth(w)− 2 · depth(LCA(w,L)) (5.4)

Observation 2. For L1,L2 such that L1 ⊆ L2 and for any leaf w we have

δ(w,L1) ≥ δ(w,L2).

Indeed the statement of the Observation 2 follows from the fact that L1 ⊆ L2

implies depth(LCA(w,L1)) ≤ depth(LCA(w,L2)).

Lemma 4. For a given subset of leaves L and a leaf w̃ /∈ L:

∆(L ∪ {w̃}) = ∆(L) + δ(w̃,L). (5.5)

Proof. If we add w̃ to L, the new path between LCA(w̃,L) and w̃ is added to

frame(L) (cf. Figure 5.1). Hence, according to formula 5.1 we have

∆(L ∪ {w̃})−∆(L) = 2|frame(L ∪ {w̃})| − 2|frame(L)| −

∑
w∈(L∪{w̃}) depth(w) +

∑
w∈L depth(w) = 2|path(LCA(w̃,L), w̃)| − depth(w̃) =

depth(w̃)− 2 · depth(LCA(w̃,L) = δ(w̃,L)

5.1.2 A Schematic Algorithm Computing the Minimal Cost

The formula (5.5) from Lemma 4 is used to design our algorithm Schematic-

MinCost. The idea of the algorithm may be viewed as an incremental, greedy

construction of the optimal set of critical leaves L, by adding them, one by one.

At each step we have a current version of the frame, which is augmented by a new
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subpath when a new leaf is added to L. Consider frame(L) obtained from the

leaves L assigned to the first i−1 agents (that terminate their paths at i−1 leaves

of L). In the i-th iteration of the main loop we try to decide what is the best use

of the next available agent. The i-th agent will terminate its traversal at some leaf

wi of T , not yet present in frame(L). Therefore, frame(L ∪ {wi}) will contain

some new subpath, disjoint with frame(L), starting at some vertex of LCA(wi,L)

and ending at wi. Observe, that the usage of agent i, permits the subpath from

LCA(wi,L) to wi to be traversed once (by a new agent) rather than twice (by

some other agent which would need to perform a complete traversal of some sub-

tree containing this path), which results in some energy gain. However such energy

benefit is at the expense of bringing the agent from the root r to (LCA(wi,L).

The main loop executions continue as long as such gain is possible (i.e. benefit

minus expense is positive) and there are still available agents to be used. Such

benefit is represented by the function δ(wi,L) and our algorithm chooses the leaf

offering the largest benefit. We prove later that this greedy approach results in

construction of the best possible set of critical leaves.

Algorithm Schematic-MinCost(T, k);

1. L := ∅;

2. while |L| ≤ k and ∃(w /∈ L) δ(w,L) > 0 do

3. choose a leaf w /∈ L with maximum δ(w,L);

4. L := L ∪ {w};

5. return |2E| −∆(L);

Example 2. Figure 5.1 illustrates the execution of one step of the algorithm. The

set L contains leaves w1, w2. The value of ∆(L) = 36− 19 = 17, cf. formula 5.1.
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Among the remaining leaves, the maximal benefit is obtained by including w4 in

the set of critical leaves as δ(w4,L) = 3. Then ∆({w1, w2, w4}) = 20. As for the

remaining leaves the values of δ are not positive, only three agents are activated

(even if more are available) and, by Lemma 3, the cost of the optimal algorithm

equals

2|E| −∆({w1, w2, w4}) = 56− 20 = 36.

=⇒

1
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3

3 2
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LCA({w1, w2}, w4)

Figure 5.1: The iteration which starts with a set of leaves L = {w1, w2}, then
w4 is added to L. Bold edges belong to the frames (subtrees frame(L) of paths
from the root to set L of critical leaves) before and after inclusion of w4. We have
∆({w1, w2, w4}) = ∆({w1, w2}) + δ(w4, {w1, w2})

Observe that algorithm Schematic-MinCost is in fact non-deterministic as it

is possible that more than one leaf having the same value of δ may be chosen in

line 3. Moreover, among optimal broadcasting algorithms, it is possible that the

number of agents used may be different. This is possible if we activate an agent

terminating at a leaf w for which δ(w,L) = 0.

The following lemma will show that the greedy approach of our algorithm,

which is based on taking the leaves in decreasing profit for our algorithm is correct.

The idea of its proof is to show that the set L′ must contain some leaf w∗, such

that w∗ 6= wi, for i = 1, 2, . . . , t + 1 and that exchanging w∗ by wt+1 in the set

L” will not increase the cost of the corresponding broadcasting algorithm. More

precisely we have the following lemma:
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Lemma 5. Assume that in the algorithm Schematic-MinCost we insert the se-

quence w1, w2, . . . wm of leaves into L and there is a set L′ maximizing ∆(L′) such

that {w1, w2, . . . wt} ⊆ L′, t < m. Then there exists a set L′′, also maximizing

∆(L′′), which contains {w1, w2, . . . wt, wt+1}.

Proof.

Let A denote the set of all optimal broadcasting algorithms using s agents with

s ≤ k.

Denote Lt = {w1, w2, . . . , wt} Suppose, to the contrary, that there exists no op-

timal algorithm in A whose set of critical leaves contains all {w1, w2, . . . wt, wt+1}.
Consider the set of critical leaves L′ and frame(L′). Let u = LCA(wt+1,L′). As

Lt ⊂ L′, u lies on the path from LCA(wt+1,Lt) to wt+1. Two cases are possible:

Case 1: u = LCA(wt+1,Lt).
Due to LCA(wt+1,Lt) = LCA(wt+1,L′) and formula 5.4 we have:

δ(wt+1,Lt) = δ(wt+1,L′) (5.6)

We have:

∆(Lt) < ∆(Lt+1) ≤ ∆(L′) and δ(wt+1,L) > 0,

hence, by Equation 5.5 there exists a leaf w∗ ∈ L′, such that w∗ /∈ Lt (see Fig 5.2

(a)).

By the condition in line 3 of algorithm Schematic-MinCost, as the algorithm

choses wk+1 rather than w∗, we have

δ(wt+1,Lt) ≥ δ(w∗,Lt) (5.7)
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Finally by Observation 2

δ(w∗,Lt) ≥ δ(w∗,L′) (5.8)

Combining equations 5.6, 5.7 and 5.8 we get δ(wt+1,L′) ≥ δ(w∗,L′), hence, by
formula 5.5

δ(wt+1,L′) ≥ δ(w∗,L′) (5.9)

Using formula 5.4 we have then

∆(L′ \ {w∗} ∪ {wk+1}) = ∆(L′)− δ(w∗,L′) + δ(wt+1,L′) ≥ ∆(L′) (5.10)

Therefore, replacing leaf w∗ in set L′ by wk+1 we obtain a set of critical leaves

containing {w1, w2, . . . wt, wt+1}, which still leads to the optimal cost. This is a

contradiction.

Case 2: u 6= LCA(wt+1,Lt).

Here, similarly to the previous case, we also look for a leaf in L′ which may

be replaced by wt+1, so that the total efficiency ∆ of the set of leaves is not be

decreased.

Denote v = LCA(wt+1,L′). As LCA(wt+1,Lt) 6= v, the subtree of frame(L′)
rooted at v contains at least one leaf w∗ ∈ L′.

Observe that v is the lowest common ancestor of wt+1 and w∗ in tree T (see

Fig. 5.2 (b)). Let x = LCA(w∗,L′ \{w∗}). Clearly x = v or x is a descendant of v

in L (cf. Fig. 5.2 (b)). By the condition in line 3 of algorithm Schematic-MinCost,

as the algorithm chose wk+1 rather than w∗, we have δ(wt+1,Lt) ≥ δ(w∗,Lt), hence

|path(u, v)|+ |path(v, wt+1)| − |path(r, u)| ≥

|path(u, v)|+ |path(v, x)|+ |path(x,w∗)| − |path(r, u)|
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This implies that:

|path(v, wt+1)| ≥ |path(v, x)|+ |path(x,w∗)|

Consequently, we have

δ(wt+1, L′ \ {w∗}) = |path(v, wt+1)| − |path(r, v)| ≥ |path(v, w∗)| − |path(r, v)|

≥ |path(x,w∗)| − |path(r, x)| = δ(w∗,L′ \ {w∗})

Hence replacing in L′ leaf w∗ by wk+1 we obtain a set of critical leaves contain-

ing {w1, w2, . . . wt, wt+1} which leads to the optimal cost. This is a contradiction

completing the proof of the lemma.

Lemma 6.

(a) The set L computed by the algorithm Schematic-MinCost maximizes ∆(L).

(b) The value 2|E| − ∆(L), output by the algorithm Schematic-MinCost, is the

minimum amount of energy needed for broadcasting using k agents initially placed

in the source r = s.

Proof.

(a) Using inductively Lemma 5 we prove that the entire set w1, w2, . . . wm belongs

to a set of critical leaves used by an optimal algorithm. By the exit condition

of the while loop at line 2 of the algorithm Schematic-MinCost, there is no other

leaf which may be added to such critical set of leaves improving the cost of the

algorithm.

(b) This point follows directly from (a) and Lemma 3.

Observe that every agent possesses the information about the packet at the

very beginning of the algorithm. Then, as observed before, once the trajectories
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of each activated agent are determined, the timing of the travel of each agent is

independent of the timing of the travel of any other agent. We conclude then by

the following observation, which will be useful in the next section.

Observation 3. Any energy-optimal schedule may be designed in such a way that

the time intervals, during which agents perform their travel, are pairwise disjoint.

In particular, we can choose any agent and make this agent complete its walk before

any other agent starts walking.

5.1.3 Efficient Implementation of the Algorithm

Schematic-MinCost

Efficiency of Schematic-MinCost depends on the cost of computing on-line the

best δ(w,L). We replace it by introducing a more efficient function Gain(v) which

does not depend on L and can be computed off-line in linear time. The algorithm

Schematic-MinCost subsequently adds leaves to the set L, each time choosing the

leaf w offering the largest gain, i.e. the largest reduction δ(w,L) in the cost of the

broadcasting schedule. The values of function δ for any leaf w, which does not yet

belongs to L, may change with subsequent modifications of frame(L). In order

to avoid recalculations of the function δ we propose the following solution.

Consider the moment when the leaf w is being added to the current set L.
Let v be a child of LCA(w,L), which belongs to the path from LCA(w,L) to

w. Let maxpath(v) be the longest path starting at v (and going away from the

root). If there is more than one such path, we choose any one of them arbitrarily.

We denote by leaf(maxpath(v)) the last node on such path. Observe that, at the

moment when w is being added to L, we have |maxpath(v)| = |path(v, w)|. For

any node v 6= r we define

Gain(v) = |maxpath(v)|+ weight(parent(v), v)− |path(r, parent(v))| (5.11)

Agents Starting from the Source Node



Broadcast when Agents Start at the Same Node 76

By convention, we also set Gain(r) = |maxpath(r)|.

Observation 4. Assume L is a set of leaves. It follows from Equation 5.3, that

max{Gain(v) : v /∈ frame(L)} = max{δ(w,L) : w /∈ L}

Following the above Observation, in our algorithm we will be looking for nodes

v, which are not in the current frame(L).

Algorithm MinCostLimited(T, k);

1. X : = {v ∈ V : Gain(v) > 0};

2. Sort X with respect to Gain(v) in non-increasing order;

3. ∆ := 0 ; L := ∅;

4. while X 6= ∅ and |L| ≤ k do

5. choose v ∈ X with maximum Gain(v);

6. ∆ := ∆ + Gain(v);

7. remove from X all nodes belonging to maxpath(v);

8. L := L ∪ leaf(maxpath(v));

9. return 2 · |E| − ∆

/* |L| equals the number of activated agents */

Theorem 7. The algorithm MinCostLimited(T, k) correctly computes in O(n log n)

time the minimal amount of energy, which is needed to perform the data broadcast

by k agents.

Proof. We prove, by induction on the iteration of the while loop from line 4, that

the node v chosen in line 5 does not belong to the current frame(L). Indeed, in

the first iteration of the while loop from line 4, frame(L) is empty. In every other
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iteration, because of the leaf added to L in line 8, frame(L) is augmented by the

nodes of maxpath(v), but all these nodes are then removed from set X in line 7.

Therefore, in each execution of line 5 no node of X belongs to frame(L).

Consequently, by Observation 4, every value of Gain chosen in line 5 of al-

gorithm MinCostLimited is the same as the value of δ from the corresponding

iteration of line 3 of algorithm Schematic-MinCost. Moreover, the same leaf is

added to the set of critical set of leafs L in the corresponding iterations of both

algorithms. The final critical set of leaves is then the same for both algorithms.

In the variable ∆ is accumulated the sum of the values of function Gain for all

nodes chosen in all iterations of the while loop. By Observation 4, after exiting

the while loop, ∆ equals the sum of values of function δ for all leafs from the

final critical set L. By Lemma 4, this sum equals ∆(L) and the final value of the

computed cost equals 2|E| − ∆(L). By Lemma 6 this proves the correctness of

algorithm MinCostLimited. We consider now the time efficiency of the algorithm.

Observe first, that in the preprocessing, the values of Gain(v) can be computed

in linear time. Recall that, by formula 5.11, we need to compute the values of

|maxpath(v)|, weight(parent(v), v) and |path(r, parent(v))|
Observe, that all these values may be computed using depth-first-search traver-

sal (DFS) of T . Indeed weight(parent(v), v) and |path(r, parent(v))| may be ob-

tained when DFS enters node v from its parent. On the other hand, |maxpath(v)|
is obtained when DFS visits v for the last time (arriving from its last child).

The amortized complexity of line 7 is also linear. Assume that X is imple-

mented as a bidirectional list and each node v of the tree T contains a pointer to

the element of X corresponding to Gain(v). Then the removal operation in line 7

takes constant time for each considered node v, hence the O(n) time overall. As

each other instruction inside the while loop takes constant time, the complexity
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of all lines of the algorithm, except line 2, is O(n). The overall complexity is then

dominated by the O(n log n) sorting in line 2.

5.1.4 Unlimited Number of Agents in the Source

For a set of nodes Y denote by children(Y ) the set of all children of nodes in Y .

Algorithm MinCostUnlimited(T );

/* The number of agents is unlimited */

1. X := {r}; ∆ := 0; L := ∅;

2. while X 6= ∅ do

3. v := Extract any element of X;

4. Add to X each x /∈ maxpath(v) such that

parent(x) ∈ maxpath(v) and Gain(x) > 0;

5. ∆ := ∆ + Gain(v); $L := L ∪ {leaf(maxpath(v)};

6. / * X = { v ∈ children(frame(L)) : v /∈ frame(L) } */

7. return 2 · |E| − ∆

We show now that in the case of the unlimited number of available agents, or if

the number of agents is at least equal to the number of leaves of T , the algorithm

computing the minimal amount of energy works in O(n) time. The proof is based

on the fact that the set X is now restricted only to the children of the current

frame and we choose each of them at some time. Since any two nodes, which

are present in X at a same moment, never interfere (i.e. choosing one of them

does never affect the Gain function of the other one), they may be treated in any

order (as the number of available agents is sufficient for taking each of them at

some time). This allows to avoid sorting and the time of the entire treatment is
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proportional to the number of edges of T . More precisely we have the following

theorem:

Theorem 8. Assume that the number of agents initially placed at the source node

is at least equal to the number of leaves of T . Then the algorithm MinCostUnlimited(T )

correctly computes in O(n) time the minimal amount of energy needed for the

broadcast in T .

Proof. We first observe that, at the end of each iteration of while loop from line

2, each element xi of X has a parent in the current frame(L) (cf. the comment

in line 6). Indeed, at the beginning of the first iteration, the root r - the only

element of X is extracted from it and since then only elements having parents in

maxpath(v) are added to X.

As maxpath(v) leads to the new critical leaf, added in line 5, mathpath(v)

belongs to the current frame, so parent(xi) ∈ frame(L). By line 4, xi /∈ frame(L)

and Gain(xi) > 0.

From the above observation we conclude that the set of critical leafs L com-

puted by algorithm MinCostLimited is the same as the set computed by algo-

rithm MinCostUnlimited. Indeed, by the above observation, for each pair of nodes

x1, x2 ∈ X we have maxpath(x1)∩maxpath(x2) = ∅. Therefore the order in which

the elements of X are considered is irrelevant and they generate the same sets L
of critical leafs but possibly in different order.

Consequently, the values returned in line 9 of MinCostLimited and the line

7 of MinCostUnlimited are the same. This completes the proof of correctness of

MinCostUnlimited.

We prove now O(n) time complexity. Function Gain is precomputed in O(n)

time as in MinCostLimited. Observe that line 4 of the algorithm MinCostUnlim-

ited is executed in O(n) total amortized time. Indeed, for each node of the tree T

added to maxpath(v) we consider each of its children x to check if x /∈ maxpath(v)
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and if Gain(x) > 0 in order to decide its inclusion in X. The overall time complex-

ity of line 4 does not exceed the number of edges of T . As there is O(n) iteration

of the while loop from line 2, all other instructions take O(n) time as well.

5.2 All Agents Start from the Same Node r that

is Different from the Source s

In this section we extend the consideration to the case when the initial position of

the packet is not at the root of the tree. We show that this setting may be reduced

to the case studied in the previous sections.

It would be helpful if we design the schedule, so that a robot moves along

its trajectory independently from the timing of the motion of any other robot.

By Observation 3, this was possible when the robots were initially placed at the

source node s. However, in the current setting, at every time moment the robots

executing an optimal schedule can be divided into two categories: the robots which

already know the packet and the robots that do not. Clearly, the former category

of robots are not restricted by their movement. On the other hand, the robots not

knowing the packet might need to delay their movement as they may have to visit

a node after the packet is deposited there.

The path between the root r and the source s we call the backbone of tree T

and we denote it by B. We start with the following lemma.

Lemma 7. There exists an optimal broadcasting algorithm in which the first

activated agent starts moving towards the source node s, eventually returning to r,

before any other agent is activated.
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Proof. The packet initially present at the source node s needs to be transported

to all other nodes of the tree, including root r. Therefore, there must exist an

agent which travels from r to s to pick up the packet. After that, a copy of the

packet must be transported along the backbone B, starting at s and ending at r.

During this travel of the packet along B, it may be transported by divers agents.

However, when the packet is left by some agent i at a point p of B and picked later

by some agent j, we can make agent i wait at point p until the arrival of agent j.

At that moment, as agents are identical, we could exchange the roles of agents i

and j and it is still agent i which continues to transport the packet. We conclude,

by induction, that the packet is transported all the way by the same agent.

Observe as well, that the remaining agents that were exchanging roles with the

agent i, in fact, do not need to start their travel before agent i reaches r. Indeed,

they may wait at r until the packet is brought there by agent i and start their

respective routes afterwards.

We now construct the reduction from the setting where r 6= s to the case

r = s. For every instance I of the problem for r 6= s we create an instance I ′ of

the problem where r = s. We show that to solve I it is sufficient to solve I ′, where

we use the results from the previous sections.

Let I be a given instance of the broadcast problem, in which we have tree T

with k agents 1, 2, . . . , k initially placed at root r and the source s 6= r.

We describe an instance I ′ of the broadcast problem with s = r and k + 1

agents. We construct the tree T ′ by adding to T one extra leaf w0 and an edge

from node s to w0 of weight W , where W equals the sum of weights of all edges of

T . We define its root r′ = r in which we place k′ = k+1 mobile agents, represented

by the integers 0, 1, . . . , k. We also set the source s′ = r′ (see Fig. 5.3).
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Lemma 8. [Reduction-Lemma] If s 6= r in T then

MinCost(T, k) = MinCost(T ′, k + 1) + |path(r, s)| − W,

where in T ′ the source nodes′ equals the initial location of k + 1 agents.

Proof. Consider first an optimal solution to the instance I ′ produced by algorithm

ConstructSchedule. The weight of the edge incoming to node w0 is so large that

the leaf w0 must belong to the set of critical leaves L and some agent 0 must

terminate its walk in w0. By Observation 3, we can suppose that agent 0 is the

very first agent activated and the remaining agents didn’t start before agent 0

reaches node w0. Denote by TH the set of all edges, traversed by agent 0, outside

the simple path from r to w0. By algorithm ConstructSchedule, TH forms a subset

of hanging sub-trees.

Consider now an optimal solution to the instance I, which verifies Lemma 7. In

this solution, the first activated agent 1, starting at r, travels along the backbone

B to the source s (without any detour) and then continues its walk, eventually

returning to r (bringing the packet), before any other agent starts moving. Ob-

viously, on its way back along the backbone (i.e. from s to r) agent 1 may visit

some nodes outside the backbone before returning to r.

Assume then, that agent 1, during its return from s to r along the backbone,

traverses exactly the subtrees formed by the edges TH (cf. Fig. 5.3). Consider the

time moment in instance I ′ where agent 0 arrives at leaf w0 and the time moment

when in instance I agent 1 returns to root r. In both cases we have k agents

and the packet available at the root r and the part of the tree that still needs to

be explored equal to T \ (TH ∪ B). Therefore, if we use the trajectories of the

remaining k agents 1, 2, . . . , k from the optimal solution of instance I ′ to complete

the instance I the obtained solution of I is also optimal.
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Observe that the assumption that agent 1 visited the sub-trees formed by the

edges of TH may be dropped. Indeed, all sub-trees of TH are the hanging subtrees of

the optimal solution and each of them is DFS traversed by some agent. Assigning

any such sub-tree to agent 1 or any other agent visiting its root does not change

the cost of the solution (recall line 3 of algorithm ConstructSchedule).

As from the moments when the situations in instances I ′ and I are identical

all agents walk along the same trajectories in T and T ′, respectively, the cost of

the solution of instance I differs from the solution of instance I ′ by the difference

in the amounts of energy spent by the first agents of each instance, respectively.

As this difference is W − |path(r, s)|, we have

MinCost(T, k) = MinCost(T ′, k + 1) + |path(r, s)| − W

Theorem 9. Suppose that in the tree T the root r is different from the source s.

We can solve the limited broadcast problem in O(n log n) time. If k is at least equal

to the number of leaves in T we solve the broadcast problem in O(n) time.

Proof. Due to Lemma 8 limited broadcast reduces in linear time to the case when

the source is the same as starting location of agents. In the unlimited case we can

use Lemma 8 with k = n.

Hence the time complexity is asymptotically of the same order as that of the

algorithm MinCostLimited(T, k), which is O(n log n). The case of unlimited broad-

cast can be done similarly in O(n) time, by reduction to the algorithm MinCos-

tUnlimited.
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u = LCA(wt+1,Lt)
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w1 w2 wt wt+1

r

LCA(wt+1,L′)

x

(a) (b)

Figure 5.2: The two cases for the proof of the optimality of MinCost. The solid
edges belong to both, Lt and L′. The dashed edges belong only to Lt and the
dotted ones belong only to L′. In both cases, replacing w∗ by wt+1 does not
increase the cost of the schedule.

.
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Instance I ′

T ′

Instance I

T

r′ = s′

W

w0

r

s

k agents(k + 1) agents

Figure 5.3: On the left: the trajectory of the first activated agent, when the
algorithm MinCostLimited is run for instance I ′. The first agent terminates its
walk in w0. On the right: trajectory of the first activated agent for instance I.
The first agent traverses the same nodes (except w0) but returns to r to be reused
later.
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Chapter 6

Broadcast with Mobile Agents

Distributed on a Tree

6.1 Introduction

In the previous chapter we presented the solution to the Broadcast problem when

the mobile agents start at the same initial position. The energy exchange aspects

of the scenario was irrelevant in this case as the agents can distribute freely the

available energy at the start of the process. Moreover, as agents did not com-

municate any data from one to another, no collaboration between the agents was

necessary. Also each agent could move independently, i.e. consecutive moves of

two different agents could be interweaved arbitrarily.

In this chapter we study the Broadcast Problem when the agents are arbitrarily

dispersed in the nodes of the tree. They need to collaborate in order to communi-

cate the data packet present at the root of the tree to all other agents. Each agent

is given an amount of initial energy (which may be different for different agents)

that is used proportionally to the distance travelled. When two agents meet, they

may exchange between them any amount of currently possessed energy. More-
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over, if one of the meeting agents possesses the knowledge of the data packet, this

knowledge is automatically acquired by the other agent. An agent possessing the

knowledge of the packet communicates it also to the nodes that the agent is visit-

ing. Our goal is to schedule the moves of the mobile agents and energy transfers

between them that results in the data packet being communicated to all nodes

of the tree. Hence, contrary to the model studied in the previous chapter, the

agents need to collaborate by scheduling their moves in order to create meetings

permitting transfers of energy and the data packet.

Moire exactly we consider the following problem:

General Broadcast Problem

Input :

1. The weighted tree T = (V,E) of n nodes (|V | = n).

2. A source node r ∈ V , designed as the root of T containing a data packet Pr.

3. , A collection of k agents A = {0, 1, . . . , k − 1}

4. A function i : A −→ V defining the initial position of each agent.

5. A function e : A −→ R+ defining the initial energy of each agent. R+ is

the set of non-negative real numbers.

Agents’ capabilities

1. Agent may walk spending energy proportionally to the distance traveled

(sum of weights of the traversed edges).

2. Agent may stop at any node.

3. Agent visiting node r possesses the knowledge of packet Pr and retains this

knowledge until the end of the process.
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4. Two agents arriving at the same time to a node may exchange between them

any amount of actually possessed energy.

5. If one of the two meeting agents possesses the knowledge of Pr then from the

meeting time both agents possess the knowledge of Pr until the end of the

process.

Output

The decision (YES or NO) whether there exists a schedule, i.e. the sequence

of agent’s moves and energy transfers between meeting agents such that at some

point

a) Each tree node has been previously visited by an agent possessing

the knowledge of Pr, and

b) No agent exceeded energy needed for its walk.

The main part of the algorithm will be the computation of the optimal agent’s

migration flow, i.e. the number of agents traversals of each edge in one direction,

minus the number of traversal in the other direction.

The optimal migration flow will be computed using dynamic programming,

when for every tree edge the optimal energy usage wil be computed for each pos-

sible agent’s migration flow through this edge. The dynamic programming will be

performed in bottom up traversal of tree T.

Our goal is to solve the following decision problem:

Data broadcasting decision problem: We are given a source node r of an n-

node tree T , and a configuration of k agents, placed at selected nodes, each

having some initial amount of energy (possibly different for all agents). Is it

possible to schedule the moves of the agents and energy transfers so that the

initial packet of information placed at node r reaches all nodes of T?

Introduction



Broadcast with Mobile Agents Distributed on a Tree 89

We will look for schedules of agents’ movements that will not only result in

completing the broadcast, but also attempt to maximize the energy, which is

eventually brought to the root. We call such schedules optimal. Consequently,

our approach permits to solve a more general optimization problem:

Data broadcasting optimization problem: What is the largest amount of

energy, which may be deposited at source r while some sequence of moves of

the agents and energy transfers result in the initial packet reaching all nodes

of T?

6.1.1 Preliminairies

In the remainder of the chapter we assume that the tree T is rooted at its source

node r.

In our algorithm we propose a specific treatment for each tree node, related to

its number of children, presence or absence of an agent and weight of the incident

edges. To ease its understanding, we convert the given tree to another one, in

which every node will have only one property that needs to be taken into account

by our algorithm. The structure of the tree and the lengths of the corresponding

weighted paths remain the same for the converted tree, hence the movements of

the agents performing broadcasting produced by our algorithm may be reconverted

back to the original tree.

We observe first that using the standard folklore technique, by adding extra

nodes and edges of zero weight, the original weighted tree may be converted to

a binary tree, in which all weighted path lengths between the corresponding tree

nodes are the same. Although the depth of such converted binary tree is increased,

its complexity remains O(n) and it may be obtained in O(n) time. Hence w.l.o.g.

we can assume that the given initial tree is binary.

We have the following lemma.
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Lemma 9. By adding extra nodes and edges of zero weight we can convert a binary

tree T with agents placed at its nodes into a tree with the following four types of

nodes (see Fig. 6.1):

(a) if v is a terminal node, then it initially contains no agents,

(b) if v is a parent of two children, then v contains no agents and both children

are accessible by edges of zero weight,

(c) if v originally contains one or more agents, it has exactly one child accessible

by an edge of zero weight, or

(d) node v may contain one child accessible by an edge of non-zero weight.

v

v

u1 u2

00

(a)

u

v

0

Av/ev

(b)

u

v

w

(c) (d)

Figure 6.1: Four cases of node v in tree T : (a) terminal node, (b) node with two
children, (c) node with an incoming edge of non-zero weight, (d) node containing
Av agents having total energy ev.

Moreover, the converted tree is of O(n) size and the paths between the cor-

responding nodes in the converted tree are of the same weight as in the original

one.

The proof of the lemma is easy and we omit it. It is possible to make such

conversion in linear time with respect to the size of the original tree. For conve-

nience we add to such converted tree one extra node r of type (d), which we make

parent of the root of T , using zero-weight edge. In the remainder of the chapter

we assume that T denote the converted, rooted version of the tree.

Introduction



Broadcast with Mobile Agents Distributed on a Tree 91

Despite the fact that tree T is undirected, as agents move along the edges in

particular direction, we consider also directed version of the edges. In particular,

for two adjacent nodes v, w, we denote by (v, w) an undirected edge between v, w

and by v → w and w → v the two directed edges. For any node v 6= r, we denote

by Tv a subtree of T , rooted at v, and containing all descendants of v in T . If

w = parent(v) we call v → w the exit edge of tree Tv. Hence all exit edges point

in the direction of the root.

6.2 Testing Feasibility of Broadcast

In this section we describe an algorithm, which computes the largest amount of

energy that may be deposited at the root r by the agents performing a successful

packet broadcasting from r to all remaining nodes. The algorithm needs to ma-

nipulate its three resources in the form of information (packet), agents and energy.

Consequently, energy might be transported by agents from some parts of the tree

T to other parts, where it is more needed. Similarly, agents might be more useful

when moving from some parts of T so that they finish their walks in other parts.

The main idea of our algorithm is to find a combination of transfers of energy and

agents across the tree, resulting in the largest unused energy, which is eventually

deposited at the root. This is realized by a dynamic programming approach.

Consider an isolated subproblem of the broadcast of the packet present at node

v to all nodes of the sub-tree Tv. Such a broadcast might be successfully performed

using only agents originally present in Tv (and their energy). However, we may

also use agents originally from outside Tv and/or extra energy, incoming via its

reversed exit edge. On the other hand, unused energy and/or agents which do not

need to terminate their walks inside Tv may be transferred through its exit edge

to other parts of tree T , where they turn up to be more useful. We will show that
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with respect to any given exit edge v → w, an optimal schedule might consist of

three steps (in this order):

1. If the total energy available inside Tv is sufficiently large, an agent will first

traverse edge v → w bringing an excessive energy to node w. Such energy

may be subsequently transferred and deposited at the root r. Depending on

the distribution of energy inside Tv this step may or may not exist.

2. An agent A will traverse edge w → v in order to transport the packet into

Tv.

3. Then

(a) Either a number of other agents traverse together edge w → v. Then

all these agents, together with agent A and the agents initially present

inside Tv will transport the packet to all nodes of Tv.

(b) Or, a number of other agents traverse together edge v → w. Before

exiting from Tv these agents together with agent A and the agents

initially present inside Tv will transport the packet to all nodes of Tv.

(c) Or, no other agent traverses either of the edges w → v and v → w.

In this case agent A together with agents initially present inside will

transport the packet to all nodes of Tv, eventually terminating their

walks inside Tv.

Suppose for a moment that we know some optimal schedule. Suppose also that,

for this optimal schedule and for every subtree Tv, the integer iv denotes the

difference between the number of agents’ walks traversing the exit edge v → w

and the number of agents’ walks traversing the reverse edge w → v. For a given

schedule, we call such iv the agents migration flow of the edge v → w or shortly

its M-flow. For any possible value of M-flow iv, we denote by Bv[iv] the energy
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potential of the exit edge v → w. The value Bv[iv] equals the largest energy that

could be deposited at node v, which would permit a successful completion of the

broadcast from node v to all nodes of Tv, assuming iv being the M-flow of the

edge v → w. More exactly, if Bv[iv] ≥ 0, then it represents the maximal amount

of unused energy that may be left at node v after a successful broadcast from v

to all nodes of Tv. Similarly, if Bv[iv] < 0, then −Bv[iv] represents the minimal

amount of energy that must be added at node v, after which it would be possible

to perform a successful broadcast inside Tv.

It is assumed, that if iv ≥ 0, there will be a total of iv agents available at node

v after the broadcast and ready to be used outside Tv. Similarly, it is assumed

that if iv < 0, the total number of −iv extra agents that were not initially placed

inside Tv will be used to terminate their broadcasting walks inside Tv.

Fig. 6.2 illustrates the values of all tables B computed for an example tree.

At this stage, it may not be completely clear to the reader how the values of

tables B are computed. This is the goal of Algorithm Test-Broadcast-from-

Root given below. However, it is interesting to note, that each table contains

a non-increasing sequence of values. This is due to the fact that energy and

agents are, to some extent, exchangeable resources. Consider a tree with "heavy"

terminal edges. If we send one agent to broadcast a packet inside a given subtree

Tv, this agent needs to traverse all but one heavy terminal edges twice (once in

each direction). If we have more agents available, they may terminate their walks

inside Tv, so that many heavy edges will be traversed once only and energy will

be saved.

As in fact we do not know in advance any optimal schedule, our algorithm

will compute energy potential for any possible M-flow of every edge. It is worth

noting that more than one value of M-flow of a given edge may lead to an optimal

schedule. The most important part of our algorithm is the computation of M-flows
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Figure 6.2: Computing B tables for an example tree. At nodes b, c, h, i are present
agents B,C,H, I having the initial amounts of energy 14, 35, 4, 7, respectively.
Each tree node has a B table associated to it. Only the significant entries of each
table are illustrated: for all larger indices of each table all entries are equal to
−∞; for all smaller indices of each table the entries are the same as the first one
illustrated. As an example note that Bb[1] = −2 corresponds to agent B trajectory
bdbeh of length 16 and agent I trajectory ieieb of length 7. Agent H does not move
and its energy is lost in this case. Bb[1] = −2 means that 2 extra units of energy are
needed initially at b so that the broadcast resulting in 1 agent eventually arriving
at b.

for all edges of T , resulting from some optimal broadcast schedule. This process is

done in bottom-up order (i.e. postorder) of tree T . For each exit edge of some tree

Tv we compute the array Bv[] by calculating the energy potentials for all possible

M-flows through this edge.

The following algorithm computes the upper bound on the amount of energy

that may be brought to the root of T , so that the broadcast may be still performed

successfully.
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ALGORITHM Test-Broadcast-from-Root(T );

{ input: tree T rooted at r; if node v contains agents, then Av is

the number of agents present at v and ev is their total energy }

1. for all v ∈ T and all −k ≤ i ≤ k do

2. Initialise Bv[i] := −∞;

3. for all v ∈ T taken in an ascending order with respect to root do

4. Compute B(v);

5. if Br[0] ≥ 0

6. then Report r as a possible broadcast node;

7. Report Br[0] as the maximum energy which may be left

at r during a succesful broadcast from r;

8. else Report broadcast from r is infeasible;

Procedure Compute B(v) computes the array Bv[] for each node v, assuming

that the same array for the children (or child) of v has been previously computed.

PROCEDURE Compute B(v);

1. for i := k to −k do

2. case type of node v of

3. (a) if i ≤ 0 then Bv[i] := 0;

4. (b) Bv[i] := max{Bu1 [j] + Bu2 [h] : j + h = i};
5. (c) if (i−Av ≥ −k)

6. then Bv[i] := Bu[i−Av] + ev

7. else Bv[i] := Bu[−k] + ev;

8. (d) if i ≥ 0 ∨ Bu[i] > 2 · weight(u, v)

9. then Bv[i] := Bu[i]− (|i|+ 2) · weight(u, v)

10. else Bv[i] := i · weight(u, v);

11. if (i < k) ∧ (Bv[i] < Bv[i + 1]) then Bv[i] := Bv[i + 1];
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The following lemma proves that for each node v the sequence of elements of

the table Bv[] is nondecreasing.

Lemma 10. For any node v and any index i∗, s.t. −k < i∗ ≤ k, we have

Bv[i∗ − 1] ≥ Bv[i∗].

Proof. The proof goes by induction on the height of node v. The claim is clearly

true for each node of depth 0 (node of type (a)), for which Bv[i] = 0 if i ≤ 0 and

Bv[i] = −∞ if i > 0 (cf. line 2 of algorithm Test-Broadcast-from-Root(T )

and line 3 of procedure Compute B(v)).

Suppose that the claim of the lemma is true for each node of height at most h

and consider any node v of height h+ 1. Three cases are possible:

Case 1 (node v is of type (b), cf. Fig. 6.1). Take any index i∗ and suppose that

j∗ and k∗ are such that i∗ = j∗ + k∗ and

Bv[i∗] = max{Bu1 [j] + Bu2 [k] : j + k = i∗} = Bu1 [j∗] + Bu2 [k∗]

according to line 4 of procedure Compute B(v). As nodes u1 and u2, which are

the children of v, are both of height at most h, by the inductive hypothesis we

have

Bv[i∗] = max{Bu1 [j] + Bu2 [k] : j + k = i∗}

= Bu1 [j∗] + Bu2 [k∗] ≤

≤ Bu1 [j∗ − 1] + Bu2 [k∗]

≤ max{Bu1 [j] + Bu2 [k] : j + k = i∗ − 1}

= Bv[j∗ − 1]

Case 2 (node v is of type (c)).
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Suppose first that i∗ − Av − 1 ≥ −k. Then, using the inductive hypothesis,

according to line 6 of procedure Compute B(v) we have

Bv[i∗] = Bu[i∗ − Av] + ev ≤ Bu[i∗ − Av − 1] + ev = Bv[i∗ − 1]

Consider the remaining case, when i∗−Av − 1 < −k. Then we have Bv[Av − k] =

Bu[−k] + ev and for which i < Av − k, the value of Bv[i] is computed in line 7 of

procedure Compute B(v). In this case we have

Bv[Av − k] = Bv[Av − k − 1] = · · · = [−k]

hence the claim of the lemma in this case is also true.

Case 3 (node v is of type (d)). The claim of the lemma follows directly from line 11

of procedure Compute B(v). Indeed, in this case either we have Bv[i∗−1] ≥ Bv[i∗]
or the condition of the if-clause from line 11 is true and after its execution we obtain

Bv[i∗ − 1] = Bv[i∗].
This completes the proof.

Before proving that no broadcasting algorithm can bring to the root more

energy than Algorithm Test-Broadcast-from-Root(T ) in line 7, we give some

intuition.

For any node v of type (b), the computation of each component Bv[i] results in
a choice of respective indices j, h for nodes u1, u2, which maximize the energy that

may be transferred towards the root. This implies the optimal choice of M-flows

through the exit edges of Tu1 and Tu2 . Considering exit edges in the top-down

order, we can compute then the index iv of each table Bv[] obtaining the M-flows

of all edges of tree T , which result in the deposit of Br[0] energy at the root. Each

such value iv is the difference between the number of agents traversing the exit
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edge v → w of Tv and the reverse edge w → v. We call iv an optimal flow index of

node v.

The broadcasting schedule induces some directed multigraph TM , built over

the set of nodes of T : each directed edge x → y ∈ TM corresponds to a traversal

by some agent of the edge (x, y) ∈ T . We can partition the edges of TM into three

classes: packet transfer edges Tp, energy transfer edges Te and agent migration

edges Ta. The class Tp is composed of one copy of each edge x→ y, such that x is

parent of y in T . As the packet kept in r needs to be broadcast to all nodes of T ,

each such multi-edge is clearly needed in TM .

The class Te contains multi-edges going up the tree T . Their goal is to conjointly

move portions of energy in the direction of the root. Clearly only some edges of T

induce multi-edges belonging to Te, as energy is moved towards only when some

excess of it is available. Although the subgraph Te may turn out to be disconnected

we create in Te a multi-edge v → y whenever B[iv] > 2 ·weight(v, y) or when iv ≥ 0

and B[iv] > weight(v, y).

All remaining edges of TM belong to class Ta and their number and direction

observe the M-flow of the corresponding edge of T . In particular, consider any exit

edge v → y of Tv. Let k = 1 if there exists a multi-edge v → y ∈ Te, otherwise
k = 0. Then if the optimal flow index iv ≥ 0, there are iv − k copies of v → y

multiedge in Te. Otherwise, if iv < 0, we have k − 1 − iv copies of the reverse,

y → v multiedge in Te.

In the sequel, we denote by the f(x→ y) the element of the M-flow being the

number of agents that traverse the edge x → y. Consequently, if x is a child of y

in T , we have

B[ix] = f(x→ y)− f(y → x)

The following lemma shows that the value of Br[0], as computed by the algo-

rithm Test-Broadcast-from-Root(T ), is the upper bound on the amount of
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energy, which may be left at the root of T , when executing a successful broadcast-

ing algorithm.

Lemma 11. There exists no schedule of agents’ movements which performs suc-

cessful broadcasting and results in depositing at the root r of tree T an amount of

energy larger than Br[0].

Proof. Suppose that the claim of the lemma is not true and consider a broadcasting

schedule S∗ depositing at r an amount of energy E∗ > Br[0]. Let M∗ denote the

agent migration flow of such schedule and Mv denote (for any node v) the amount

of energy Ev, deposited by S∗ at node v. We prove by induction on the height of

node v that Ev ≤ Bv[iv], where iv is the agents’ migration flow through the exit

edge of Tv, as computed by the algorithm Test-Broadcast-from-Root(T ).

The claim is clearly true for each node v of height 0 (leaf). Suppose that the claim

is true for any node of height h and consider a node v of height h + 1. Let iv be

the flow of the exit edge of Tv in M∗. Three cases are possible:

Case 1 (node v is of type (b)), see Fig. 6.1. Let iu1 and iu2 denote the flows

of M∗ through the edges (u1, v) and (u2, v), respectively. As weight(u1, v) =

weight(u2, v) = 0, we can assume that in the optimal schedule S∗ no agent finishes

its walk at node v. Moreover, as no agent was initially present at v we have

iv = iu1 + iu2 . By the inductive hypothesis Eu1 ≤ Bu1 [iu1 ] and Eu2 ≤ Bu2 [iu2 ].
Hence,

Ev ≤ Eu1 + Eu2 ≤ Bu1 [iu1 ] + Bu2 [iu2 ] ≤ max{Bu1 [j] + Bu2 [k] : j + k = iv} = Bv[iv]

For the remaining Cases 2 and 3 we denote by iu the flow of M∗ along the exit

edge of Tu and we assume, by the inductive hypothesis, that Eu ≤ Bu[iu].

Case 2 (node v is of type (c)). As at node v there are Av new agents with
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total energy ev, we have iv ≤ iu+Av, otherwise flowM∗ is not feasible. Therefore,

by line 6 of the procedure we have

Ev ≤ Eu + ev ≤ Bu[iu − Av] + ev = Bv[iv]

Case 3 (node v is of type (c)). Denote w = weight(u, v). In order to show

the bound on Ev, we need to evaluate the cost of energy Ẽ spend by the agents

traversing the edge e = (u, v) in both directions. Clearly

Ẽ ≥ w · (f(u→ v) + f(v → u))

There is at least one agent which has to traverse edge e in the direction from

v to u, namely the agent which brings the broadcast packet to u. Therefore,

f(v → u) ≥ 1. We will consider 3 sub-cases of Case 3.

Sub-case 3a (iu ≥ 0). In this situation, iu + 1 agents have to traverse the edge

u→ v, i.e. f(u→ v) = iu + 1 and

Ẽ ≥ w · (f(u→ v) + f(v → u)) = (|iu|+ 2) · w

However, this case is treated at line 9 of procedure Compute B(v), according to

which

Ev = Eu − Ẽ ≤ Bu[iv]− (iu + 2) · w = Bv[iv] (6.1)

Sub-case 3b ((iu < 0) ∧ (Bu[iu] ≥ 2w)), i.e. there exists an amount of energy

that is not needed to perform a local broadcasting inside Tu. If f(u → v) = 0,

then no agent can transport this energy so it may be subsequently potentially
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transferred to the root r of T . In such a case this energy is lost. We can then

assume that one agent transports the amount of Bu[iu]− 2w units of energy from

u to its parent v and later there is an agent that returns to u with the packet, so

that the broadcasting inside Tu may be successfully completed. Note that such

energy may later reach the root or lost (if the cost of its subsequent transfer is to

large), but its transfer from u to v would never imply that the energy deposited

at the root is diminished.

Consequently, we can assume that f(u → v) = 1, hence f(v → u) = −iu − 1

and the equation (6.1) holds in this sub-case as well.

Sub-case 3c ((iu < 0) ∧ (Bu[iu] < 2w)). In this case, even if Bu[iu] > 0 the

extra energy available at u cannot be transferred towards the root without a loss

of energy deposited at the root. Indeed, as iu < 0, an attempt to transfer energy

from u to v results in f(u→ v) ≥ 1, which in turn implies Ẽ ≥ |iu + 2|w. In such

a case we would obtain

Bv[iv] ≤ Bu[iu]− Ẽ ≤ Bu[iu]− |iu + 2|w < −|iu| · w = iu · w

where the last amount equals the energy potential computed for this case in line

10 of procedure Compute B(v).

We conclude by induction that Er ≤ Br[0], which completes the proof.

6.3 Constructing broadcast schedule

Lemma 11 shows the upper bound on the amount of energy which may be de-

posited at the root of the tree from which a broadcast may be performed. We

present now an algorithm generating a broadcasting schedule which succeeds in

depositing such maximal amount of energy. Obviously, if this amount of energy
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is negative, there exists no broadcasting schedule for the given tree. The rough

idea of the algorithm is the following. Firstly, we compute an optimal M-flow of

T . Then, using this M-flow, in each sub-tree, the excessive energy is transferred

up the tree towards the root, deposited there and never used. Finally, a recursive

procedure transferring the broadcast packet from the root r is called. This pro-

cedure performs the agents’ transfer according to the optimal M-flow computed

before. Interestingly, the algorithm performs four traversals of tree T , which are

alternately bottom-up (1st and 3rd) and top-down (2nd and 4th). Each of them

may be given as a recursive procedure, but, for clarity, we chose only the last one

to be recursive. Before giving our algorithm we describe below its idea in more

details. Because of the lack of space the proof of correctness of the algorithm is

deferred to the Appendix.

In the first step of the algorithm we call procedure Test-Broadcast-from-

Root(T ) computing for each node v its table Bv.
The second step performs a top-down traversal of tree T and, using the tables

B compute an optimal distribution of agent flows between any given node and its

children. Note that, when a node v is of type (b) for any already computed optimal

flow iv through the exit edge of tree Tv, we obtain feasible optimal flows iu1 and

iu2 . This step computes the entire M-flow of tree T , which results in achieving the

amount of Br[0] energy deposited at the root. The rest of the algorithm refers to

this M-flow.

The agents’ moves forming an optimal broadcasting schedule are generated in

the third and the fourth step of the algorithm. The third step generates the moves

corresponding to the energy transfer edges Te of the multigraph TM . This step

makes a bottom-up traversal of T and identifies the subtrees containing excessive

energy, i.e. the energy which is not needed to perform the local broadcast inside

the subtree. Such amounts of energy are moved up the tree by mobile agents and

Constructing broadcast schedule



Broadcast with Mobile Agents Distributed on a Tree 103

the amount of Br[0] energy is eventually accumulated at the root. Observe that

a bottom-up traversal ensures that, whenever two or more different agents arrive

to the same node, they wait until the last such agent appear at the node. Then a

single agent collects the energy of all other agents and alone continues its upward

walk. Note that, it may happen that some energy of the system may be lost (cf.

energy of agent H from Fig. 6.3) because transferring it up the tree results in a

bigger cost than the amount of energy to transport. Moreover, the set of edges

Te may be disconnected, hence some energy that is moved up might not reach

the root. The edges used to transfer energy are marked, so that in the rest of

the algorithm the number of agents traversing them according to the computed

M-flow is diminished by 1.
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Figure 6.3: Example of a broadcast on a tree T from node a. (a) original tree
with agents B,C,H, I and their initial energy levels, (b) trajectories of agents and
energy transfers: the trajectory of agent C is given by normal arrows, while the
paths of agents B and I are represented by dashed and dotted arrows, respectively.
Agent H never moves; formula X → E, attached to a node, means that agent X
deposits an amount E of energy at this node, while X ← E signifies that agent X
picks up energy E when arriving at the node. Agent moves are set so that energy
deposit and pick-up are synchronized (c) agents migration flow.

The final, fourth step starts when one of the agents walking up the tree reaches

the root and deposits there the amount of Br[0] energy. This agent starts the

procedure of distributing it down the tree. The diffusion is performed by the
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recursive procedure Inform. When a recursive call of Inform is made to a node

with two children, a child with a larger flow is visited first. Indeed, it might be

necessary to bring superfluous agents exiting from this child in order to use them

in its sibling sub-tree.

ALGORITHM Broadcast-in-Tree(T );

STEP 1: Test-Broadcast-from-Root(T );

STEP 2: r.Mindex := 0;

for each edge u→ v of T taken in top-down order do

u.Mindex := the value used to obtain v.Mindex when

computing Bv in Test-Broadcast-from-Root(T )

STEP 3: for each edge u→ v of T taken in an bottom-up order do

if Bu[u.Mindex] > 0 then Move-Extra-Energy-Up(u)

STEP 4: Remove-Energy(r,Br[0]);

Inform(r);

Theorem 10. The optimal broadcasting on a tree of n nodes having k agents can

be computed in O(nk2) time. The size of the optimal schedule is O(nk).

Proof. Observe that for any given tree of n nodes its converted version (cf. Fig.

6.4) is of size Θ(n) and it may be obtained in O(n) time. The time complexity of al-

gorithm Test-Broadcast-from-Root is dominated by the call of Broadcast-

in-Tree(T ), which calls function Compute B O(n) times. The function Com-

pute B consists of a for-loop executed O(k) times. The most expensive case is

when an iteration of the loop executes the max operation at line 4 (the case of

node de type (b)) which takes O(k) time, resulting in the overall time of O(nk2).

The complexity of for-loops from lines 2 and 4 of the algorithm Test-Broadcast-

from-Root equal O(n) as each iteration is carried in constant time. Finally, the

recursive call to function Inform in STEP 4 takes O(nk) time. Indeed, there are
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Figure 6.4: Tree T and its converted version. White nodes are added. At
nodes b, c, h, i are present agents B,C,H, I having the initial amounts of energy
14, 35, 4, 7, respectively. Nodes are marked according to their types. Correspond-
ing weighted path lengths (between non-white nodes) are the same.

O(n) total number of calls of function Inform. Every call to Inform executes

functions Move-Up and Move-Down, each one containing a loop executed the

number of times equal to the flow of the corresponding parameter. As each flow

is bound by k, we have O(nk) complexity of the function Inform and the same

complexity for the number of agent moves generated by our algorithm.

We pose as open questions the design of polynomial-time algorithms for the

problem of broadcasting from a set of many source nodes and for the gossiping

problem for trees (in energy exchange setting).

Constructing broadcast schedule
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6.4 Proof of correctness of the algorithm Broadcast-

in-Tree(T )

Procedure Inform generates the sequence of agents’ moves resulting in moving

the packet from the root down to all other nodes. It also controls the migration

of the agents according to the optimal M-flow computed earlier.

PROCEDURE Inform(v);

1. case type of node v of

2. (a) Exit ;

3. (b) if u1.Mindex ≥ u2.Mindex then f1 := u1, f2 := u2

else ( f1 := u2, f2 := u1);

4. Move-Down(u1); Inform(u1); Move-Up(u1);

5. Move-Down(u2); Inform(u2); Move-Up(u2);

6. (c), (d) Move-Down(u); Inform(u); Move-Up(u);

Procedure Inform calls two procedures Move-Down(u) and Move-Up(u) to

execute the travel according to the flow of the exit edge u→ v, for v = parent(u).

These procedures call the function Move, whose purpose is to generate the sched-

ule of the agents’ moves.

Procedure Procedure Move-Extra-Energy-Up(u) tests whether the exces-

sive energy available in Tu is sufficiently large so that the transferring it along edge

u→ v is not too costly.

PROCEDURE Move-Extra-Energy-Up(u);

1. v := parent(u); w := weight(u, v); iu := u.Mindex;

2. if iu < 0 ∧ Bu(iu) > 2w) ∨ Bu(iu) > w then

3. Move-Energy(u); Mark-Edge(u→ v);

Proof of correctness of the algorithm Broadcast-in-Tree(T )
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Procedures Move-Down(u) and Move-Up(u) generate the moves of the groups

of agents, respectively, up and down a given edge u→ parent(u). We assume that,

when the sequence of such moves is made from the function Move-Up(u), or from

the function Move-Down(u) for which u is an only child, they carry the entire

energy available. Otherwise, if u has a sibling (i.e. it’s parent is a node of type

(b)), the energy is split according to the calls to Move-Down(u1) and Move-

Down(u2). Procedure Move-Energy(u) creates a move of a single agent up the

tree from node u, carrying entire energy (brought to u by all agents present there).

PROCEDURE Move-Down(u);

1. v := parent(u); iu := u.Mindex;

2. Move(v → u); {packet transfer move}

3. if edge u→ v marked then e := −iu else e := −(iu + 1);

4. for i := 1 to e do Move(v → u); {moves of agents beside the packet-

transferring one}

PROCEDURE Move-Up(u);

1. v := parent(u); iu := u.Mindex;

2. if edge u→ v marked then e := iu − 1 else e := iu;

{e agents to exit Tu; if edge marked, an energy-transferring agent

moved earlier}

3. for i := 1 to e do Move(u→ v); {agents exiting according to M-flow}

Lemma 12. The excessive energy of Br[0] is accumulated at the root r at the

completion of STEP 2 of algorithm Broadcast-in-Tree.

Proof. We prove that, after each iteration of the for-loop from STEP 2, the maxi-

mal energy Bx[x.Mindex], available inside Tx but not used for the broadcast from

x into Tx, is present at node x. Moreover, if Bx[x.Mindex] > 0 at least one agent

Proof of correctness of the algorithm Broadcast-in-Tree(T )
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is present at x. The prove goes by induction on the height of Tx. The statement

is clearly true for x being a leaf of T . Suppose that the statement of the lemma is

true for trees of height h. Take edge x → y leading to node y of height h + 1. If

Bx[x.Mindex] ≤ w = weight(x, y) then no energy may be transferred to node y,

as the cost of this transfer equals w. Otherwise, if i = x.Mindex < 0, two cases

are possible: either i agents enter Tx and no agent exits it, so no energy transfer

along edge x → y is made, or, one agent exits Tx transporting excessive energy

along edge x→ y and i+ 1 agents enter Tx. The total cost of all traversals of edge

x → y is then iw in the former case and (i + 2)w in the latter one. The transfer

of such energy is then profitable only in the case when it exceeds 2w, otherwise it

is lost and never used in the schedule. This is exactly what is done in lines 2 and

3 of procedure Move-Extra-Energy-Up. Observe that, as Bx[x.Mindex] > 0,

by inductive assumption, the energy required for the transfer is already available

at x as well as an agent necessary to perform the transfer is present at x.

Lemma 13. All agent actions generated by the calls of procedure Inform(y) are

feasible, i.e. when an agent move is generated along an edge x → y (or along an

edge y → x) then, there is an agent available at node x (or y) and there is at least

weight(x, y) energy available at x (or y), so that such move may be successfully

completed.

Proof. All agents’ moves generated from a call to Inform(x) are the moves down

or up the tree T . We show first that all moves down the tree T , i.e. those generated

through the procedure Move-Down, are feasible. The proof goes by induction

on the depth of x. The claim of the lemma is clearly true for x being the root r as

it has an agent (which brought excessive energy to it) and the weight of the edge

incident to it is zero (by construction). Consider now x being any other node. By

the inductive hypothesis, the claim of the lemma is true for node y, the parent of

x, therefore there is an agent present at x and enough energy to reach y.

Proof of correctness of the algorithm Broadcast-in-Tree(T )
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We show now that all moves up the tree T (i.e. those generated through the

procedure Move-Up(x)) are feasible. The proof goes by induction on the height

of x. The claim of the lemma is clearly true when x is a leaf. Consider now x

being any non-leaf node and suppose, by the inductive hypothesis, that the claim

of the lemma is true for node x. Denote y = parent(x). The claim of the lemma

is clearly true for y if no agent needs to go along the edge x→ y according to the

M-flow used, or if the only agent traversing edge x→ y was the energy-transferring

agent. Otherwise, since the energy available at node y at the moment of the call

to Inform(y) was sufficient to broadcast in Ty according to the M-flow computed,

all the moves in procedure Move-Up are feasible.

Theorem 11. If Br[0] ≥ 0, the algorithm Broadcast-in-Tree produces a cor-

rect broadcasting schedule, which deposits Br[0] energy at the root of T .

Proof. By Lemma 12 the excessive energy Br[0] is indeed accumulated at the root

r at the end of the for-loop from STEP 2. This energy is removed by the function

Remove-Energy.

The remaining part of the algorithm is done by the function Inform. By

Lemma 13, all agent moves generated from the main call of Inform(r) are feasible.

Observe, that the sequence of produced agent moves contains a subsequence which

results in transferring the information from the root to all other nodes. Indeed,

procedure Inform is called for the root r and then recursively for all other nodes

of the tree in the top-down order. Each call of Inform to any node v contains

calls to the children of v, at the same time generating agent moves along edges

leading to these children. This results in the transfer of the broadcast information

to all nodes. This completes the proof.

Proof of correctness of the algorithm Broadcast-in-Tree(T )
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Final remarks

This thesis was interested in communication protocols realized in tree networks

with aid of energy-exchanging mobile agents. The considered communication pro-

tocols were data delivery (realizing one-to-one communication), convergecast (i.e.

many-to-one communication) and broadcast (one-to-many communication). We

designed efficient algorithms verifying if an input configuration of agents with their

initial energy levels permits to realize a given communication protocol. In each

case, such a decision problem has been realized by conversion to an optimization

problem, in which our goal was to deposit a maximal amount of energy in the root

of the tree.

Similar problems, studied in operations research (particularly in vehicle rout-

ing), sometimes assume limited capacities of robots and quantities of product to

be transported. In our case, the amount of product to be carried by a robot

is irrelevant. Consequently, similarly to [35], we categorize our problem as data

communication using mobile agents.

Below we attempt to observe that some slight modifications of the settings an-

alyzed in this thesis may lead to obvious positive results, i.e. relatively elementary

algorithms. On the other hand, some other slight settings modifications imply
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negative results, which is the NP-hardness of the problem. We also discuss some

variations of the related problems that may lead to interesting open questions.

It is somewhat remarkable that, without energy exchange, even the simplest

problem of data delivery is NP-complete in the simplest environment of the line,

(cf. [35]), while, as we have shown in Chapter 4, considered communication prob-

lems with energy exchange are solvable in linear time even for tree networks. On

the other hand, it is not surprising that energy exchange in general graphs does

not help and the problems are NP-complete.

The broadcasting algorithm, presented in Chapter 5, permits to generate an

efficient data dissemination in a tree network using mobile agents. In the case

when the source node (containing the packet to be broadcast) coincides with the

root of the tree (at which the agents are initially placed) our problem is equivalent

to the tree exploration problem. Surprisingly this version of the tree exploration,

which needs to optimize the total energy used, has not been investigated in the

past.

Observe that, if the agents exploring the tree, starting from the same node,

are required to return to their initial position, the optimal-energy solution would

be obtained trivially by using only one agent performing a standard depth-first

search of the tree. Indeed, each tree edge has to be traversed at least twice (at

least once in each direction), hence single-agent DFS solution is optimal. The

technique presented in Chapter 5 exploits the fact that our agents need not return

to their home base. Consequently, every agent used in the exploration process may

finish its trajectory at some other node of the tree. The main difficulty was to find

a subset of tree nodes at which the agents may end their routes. Sometimes such

set of nodes turn up to be of the size smaller than the number of available agents

and some agents are not to be activated.
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An interested reader may observe that, in the case of general graphs rather than

trees, the exploration problem optimizing total energy used is NP-hard already for

a single agent case by reduction from the Hamiltonian path problem. Indeed,

the decision question whether an n-node graph having unit-weight edges may be

explored by an agent using n− 1 units of energy is equivalent to the existence of

Hamiltonian path starting from the source node.

If the case when the number of available agents is at least equal to the number

of leaves of the tree our algorithm has O(n) time complexity for an n-node tree

network. This is clearly optimal as each tree node needs to be taken into con-

sideration by the algorithm. In case when the number of agents is smaller than

the number of tree leaves, our algorithm works in O(n log n) time. We leave it as

an open problem whether this time complexity may be improved over the obvious

lower bound of Ω(n). We conjecture that, when k < o(n) the above lower and

upper bounds (as functions of parameters n and k) may be both improved.

The main question asked in our research for energy-exchanging agents was to

decide, whether the agents can schedule their moves and data transfers resulting

in transporting data packets successfully. Nevertheless, in the model studied in

Chapter 5, the scheduling aspect of the agents’ moves is not really relevant, as

the agents can move independently. Indeed, the agents should share the available

energy before the start of their movements so that the subsequent broadcast is

possible and then each agent continues its walk without any synchronization with

the movements of other agents. It is worth noting that the same problem for agents

that cannot share energy is hard. In particular, it has been shown in [35] that if a

collection of agents is distributed along a line, each of them having some amount

of energy that it cannot share with other agents, the decision problem whether the

agents can collectively transport a data packet between two given points of the

network, is proven to be NP-hard.
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There are several other open questions related to the communication problems

and data delivery for mobile agents. An interesting open problem is to design

a schedule for energy-exchanging agents resulting in gossiping, i.e. when data

packets initially present at the tree nodes need to be disseminated so they reach all

other nodes of the tree. Another variant of this problem is to design an algorithm

generating the schedule for energy-exchanging agents, when data packets initially

present at some source nodes need to reach some specific target nodes.

When the initial amounts of energy are a priori assigned and the agents cannot

share their energy, most communication problems for mobile agents are shown

to be NP-complete (cf. [6, 35]). However, when the assignment of energy levels

to the agents is left to the algorithm, minimization of total energy used for the

communication problems remains open.

Another possibility for open problems arise when we can use non-homogenous

mobile agents. However, when different maximal speeds are considered, problems

concerning mobile agents often turn up to be hard and the research interest corre-

sponding to them is relatively limited. Moreover, where agents’ speeds are taken

into consideration, the researchers seek to optimize time rather than energy used.

As for many such problems, it is necessary to divide the tasks between the agents

that often leads to NP-hardness (by reduction from partition) even for same-speed

agents, e.g., see [78]. However it may be interesting to try to extend the results

of the present paper to the case when the agents do not have the same rate of

energy consumption. Such extension may be easier to obtain for the case of agents

starting from the same node (the case of the present paper) rather than for agents

initially distributed over the tree nodes (cf. [44]).

Our approach from Chapter 6 may be extended to compute within the same

time bound all tree nodes from which the broadcast may be performed. We may

show the following
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Theorem 12. In O(nk2) time we can find all nodes from which we can perform a

successful broadcasting in a given tree T of n nodes with k agents. Moreover, for

each node x of T we can compute the maximal amount of energy which may be left

at x while performing a broadcast from it.

Proof. (sketch). Consider a converted version of T . The algorithm Broadcast-

in-Tree(T ) computes the optimal energy, which can be deposited by the successful

broadcast at its root r. The algorithm considers the set of directed edges u → v,

for all nodes u, v such that the path from u to r in T contains v. The algorithm

computes tables Bu performing a bottom-up traversal of this set of edges. Observe

that we can consider the set of all directed edges of the tree (in both directions),

which is only twice larger. It is easy to see, that this set may be ordered so that

for any edge u → v, each edge y → u, for u 6= y is earlier in this order. We can

run slightly modified our algorithm Broadcast-in-Tree for such set of edges.

Consequently, for any node x of the tree, we will have available the tables Bu for

u being children of x (x has at most two children for the converted version of T ).

Having them, in constant time we can compute the largest energy which may be

delivered to x, from which the broadcast needs to be performed.

The approach presented in Chapter 6 is the most involved among all the tech-

niques studied in this thesis. Consequently, we believe that one of the most in-

teresting remaining open problems is to improve the O(nk2) time complexity of

the algorithm generating the broadcasting schedule for energy-exchanging agents,

initially dispersed in the different nodes of the tree network.

The optimisation criterion studied in the present thesis was to maximize the

total amount of energy, which can be deposited at the root of the tree, while

the studied communication protocol is still successfully terminated. The time at

which the protocol might be concluded (which equals to maximal energy used

by the activated agents) is not studied. An interesting open problem is to try to
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minimize the time of the generated schedule, while still staying within the smallest

possible total amount of energy.

The above mentioned problem may be possibly solved by scheduling the agents’

movements so they walk in parallel, while they still meet to perform the necessary

energy transfers. This may be possibly done by "merging" the moves of the agents

by adding minimal waiting times for some of them, which allows the meetings

necessary for the energy transfers. More interesting open problem concerning

minimization of the schedule time may arise if the total energy used is not to be

optimized. For example, consider the case when the initial energy levels of available

agents are sufficient to realize a communication protocol while some (surplus)

amount of energy may be deposited at the root. How can such surplus of energy

can be used in order to minimize the time of the schedule.

Several variants of data delivery problems have been studied in the PhD the-

sis of Bärtschi (see [15]), where the proposed algorithms concerned agents having

possibly different data-carrying capacities, different rates of energy consumption

and they were analyzed under various optimization criteria. In all scenarios inves-

tigated in [15] the agents could not exchange energy between them. Possibly some

of these problems might be also studied under the energy-exchanging scenarios.
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