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Résumé 

 

En pratique, les données collectées par plusieurs capteurs, dans différentes périodes, 

fusionnées dans un seul jeu de données produisent des fonctions de distribution. Souvent, 

ces dernières ne peuvent pas être analysées efficacement sur une hypothèse uni-modale.  

La modélisation de systèmes multimodaux à l'aide de méthodes conventionnelles, telles 

que les méthodes empiriques, semi-empiriques, semi-analytiques, quasi-analytiques ou 

analytiques peut dégrader considérablement la précision des modèles empiriques. 

 

Dans ce travail, nous visons à développer un processus automatisé pour modéliser des 

systèmes multimodaux appliquant un cadre itératif basé sur l'apprentissage automatique.  

Cette nouvelle technique peut être appliquée à un large éventail de problèmes de régression 

et de classification notamment avec des applications dans diverses branches d'ingénierie. 

La méthodologie proposée, appliquée sur un jeu de données, utilise un processus itératif 

qui, après avoir déterminé le nombre de modes, extrait successivement les meilleurs 

candidats d’entrainement appartenant à chaque mode. Ensuite, elle classifie le jeu de 

données en classes binaires et sélectionne de manière itérative de nouveaux ensembles de 

données étiquetées. 

 

La méthode proposée peut être décrite, succinctement, comme une séquence itérative de 

procédures de classification et de régression. Elle améliore la fonction de prédiction d’un 

classificateur donné et, par conséquent, le modèle de données résultant.  Nous validerons 

et démontrerons l'efficacité de la méthode proposée en abordant deux problèmes 

complexes dans lesquels la multimodalité des données affecte l'extraction de modèles 

précis.  Dans notre premier problème, nous avons estimé la concentration de chlorophylle 

existant dans le lac Winnipeg dans la province canadienne de Manitoba- un exemple de 

problème de régression classique.  

 

Notre méthode a démontré que l'introduction d'un mécanisme itératif de sélection de 

l'échantillon améliore la précision du modèle de prédiction de la concentration de 

chlorophylle. 
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Dans le deuxième problème, nous nous sommes concentrés sur la reconnaissance des 

activités de locomotion humaine telles que marcher, être debout, s'asseoir et se coucher. 

Cette expérience est basée sur des enregistrements par plusieurs accéléromètres sans fil. 

Ce problème classique de modélisation d’un système dynamique à partir de données multi 

capteurs est un exemple de problème de classification.  Dans ce scénario, notre mécanisme 

itératif de sélection des échantillons a amélioré l'exactitude de la classification, tout en 

accélérant le processus d’entraînement et en minimisant le problème de surapprentissage 
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Abstract 

 

In practice, data collected by multiple sensors, in different timeframes and merged into a 

single dataset, produce data distribution functions that often cannot be efficiently analyzed 

when using strictly a unimodal hypothesis. Modeling multimodal systems using 

conventional methods, such as empirical, semi-empirical, semi-analytical, quasi-analytical 

or analytical can markedly degrade the precision of empirical models.   

 

In this work, we aim to develop an automated process for modeling multimodal systems 

by applying an iterative framework based on machine learning.  This novel technique can 

be applied in a broad spectrum of regression and classification problems with application 

in various engineering problems. The proposed methodology, applied on a given dataset, 

uses an iterative process that, after determining the number of modes, extracts successively 

the best training candidates belonging to each mode, classifies the given dataset into binary 

classes and iteratively selects new, expanded sets of labeled data. The proposed method 

can be succinctly described as an iterative sequence of regression and classification 

procedures that improves the prediction function in a given classifier and consequently in 

the resulting data model.  We validate and demonstrate the efficacy of the proposed method 

by addressing two complex problems in which data multimodality affects the extraction of 

precise data models.   

 

In our first experiment, we estimate the chlorophyll concentration occurring in large 

aquatic areas - an example of classical regression problems.  In this case, a wide range of 

chlorophyll concentration and different types of waters with contrasting optical properties 

are combined with the interaction of multiple components in the optical data flow, making 

this problem a difficult one from the standpoint of developing a precise and robust 

regression models over the entire range of spectral frequencies.  Our method has 

demonstrated that the introduction of an iterative sample selection mechanism improves 

the accuracy of the chlorophyll concentration model.   
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In a second experiment, we focus on recognizing human locomotion activities such as 

walk, lie, sit and stand using readings recorded by multiple wireless acceleration sensors, 

a classical problem of multi-sensor analysis of a dynamic system and an example of a 

classification problem.  In this experiment, our iterative sample selection mechanism has 

improved the classification accuracy, while at the same time speeding up the training 

process and minimizing the problem of overfitting. 
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CHAPTER I: INTRODUCTION 

 

1.1  Modeling multimodal systems  

The integration of multiple sources of information coming simultaneously from multiple 

sensors can broaden the knowledge about the complex interaction between the variables 

involved in modeling of the physical phenomenon under observation.   In order to obtain 

an accurate model, the multimodality of the data sources and data distributions should often 

be considered and properly dealt with in the modeling process. 

 

The multimodality phenomenon can be produced by multiple factors, such as simple 

covariate shift, prior probability shift, sample selection bias, imbalanced data, domain shift 

and source component shift [1] and it often occurs when a physical process under 

observation (energy exchange, mass transfer, variations of optical properties, etc.) is 

described by different physical quantities, for which measurements are obtained by sensors 

operating on multiple measuring principles and technologies [2].  Finding a consistent and 

robust data model is especially challenging when the diversity of information sources is 

coupled with a large observation time.  In practice, information obtained from multiple 

data acquisition missions, using multiple sensors and technologies, and processed by 

different teams in different time frames, is frequently merged in a single dataset, producing 

a data distribution function that cannot be efficiently modeled under a unimodal hypothesis. 

 

Modeling complex systems using conventional methods (e.g. empirical, semi-empirical, 

semi-analytical, quasi-analytical or analytical) does not always lead to the best precision 

of the system, especially in the presence of statistical multimodality.  Machine learning 

provides an excellent approach to deal with the aforementioned problem because the 

system behavior is learned from data empirically, using discrepancies between predictions 

and the model being trained from data [10], to improve the prediction performance and the 

model accuracy.  It also provides a broad number of options to build data models when an 

adequate and complete theoretical data model is difficult to obtain due to the number of 



19 

 

variables, the variable interaction, and when the spatiotemporal interdependence is 

complex [11,6,12]).   

 

1.2  Objectives and contributions 

The overall objective of this research is to develop an automated process for modeling 

multimodal systems using an iterative machine learning approach, which can be applied in 

abroad number of engineering problems solving both regression and classification tasks.  

We also aim to reach five specific objectives:   

• To allow the modeling algorithm to develop models that span the whole input 

domain (as opposed to piecewise models).  

• To enhance the level of robustness to variations in the quality of input data.   

• To integrate a mechanism based on a multimodal hypothesis in order to assess the 

occurrence of multimodality.  

• To validate the proposed approach when modeling multimodal systems in 

regression problems using spatial data. 

• To validate the proposed approach when modeling multimodal systems in 

classification problems using temporal data. 

 

Building on the general data-driven iterative learning methodology, the thesis solves two 

complex technical problems: the empirical assessment of chlorophyll type a (chl-a) 

concentration using in-situ measurements (an example of a regression problem, i.e. the 

problem of predicting a continuous quantity output, using a spatial data set), and the human 

locomotion classification using readings recorded by body-worn sensors (an example of 

classification problem, i.e. the problem of predicting a discrete class label output, using a 

temporal data set).  As such, in contrast to most traditional modeling methods, this work 

brings an important contribution by providing a method for solving a broad scope of 

technical problems, offering at the same time the advantage of a reduced number of the 

training samples and consequently, a reduced time required to build the analytical data 

model. 
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1.3 Motivation 

This thesis presents a general adaptive machine learning-based solution that deals with data 

structure complexity, capable of resolving a large class of classification and regression 

problems.  The main motivation for the research came from a large-area environment 

monitoring problem consisting in the estimation of chl-a concentration in inland waters. 

The acquisition of multispectral information by the use of remote sensing equipment with 

different spatial, temporal, spectral and radiometric characteristics is a typical example in 

which there is a high probability of the occurrence of data multimodality. Building 

analytical data models for the estimation of chlorophyll concentration is an especially 

challenging task due to the complex interaction of biophysical variables existing in the 

ecosystem, and the elaborated sensor data processing procedures.  From the perspective of 

monitoring water quality in in-land areas, chl-a is frequently used as indicator of the 

ecological health of aquatic environments, which is of key importance to sustain human 

economic activities like fishing, agriculture and human consumption.   

 

For the purpose of monitoring large areas, the spectral information is generally collected 

by using remote sensing technology due to its cost-effectiveness and accuracy, comparing 

with technologies relying on in-situ data acquisition, which are demanding both in terms 

of resources and time [3].  By using optical satellite imagery, the level of chl-a 

concentration is determined by the amount of phytoplankton biomass, the latter being 

responsible to produce distinct changes in watercolor, and its effect can be detected using 

optical properties of the incident light or the reflectance [4].  This reflectance, used in the 

form of indices derived from the shape of the spectral characteristics, is combined in band 

ratios to build data models using the regression analysis.    

 

In order to extend the investigation of multimodal systems into a classification type of 

problem we addressed the issue of human locomotion recognition by using readings 

obtained from wireless wearable sensors. Wireless wearable sensor technologies are 

gaining interest in research communities due to the increased availability of significantly 

miniaturized electronic components, with low power consumption, which makes them the 
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standard data acquisition equipment for a variety of applications related to human activity 

recognition in indoor and outdoor environments. Wireless sensors are an excellent solution 

for gathering information in health rehabilitation, respiratory and muscular activity 

assessment, sports and safety applications [5], allowing users to perform natural execution 

of any physical activity. When collecting information from multiple wireless wearable 

sensors to recognize human locomotion activities (e.g., in popular Fitbits), readings are 

affected by various factors, such as sensor data alignment, data losses, and noise, among 

other experimental constraints, all introducing a bias in the resulting data model [6, 7]. This 

situation is even more challenging when solving multi-class classification problems [8], 

because samples with different class membership can be found in the same spatial region, 

increasing the complexity when using traditional modeling methods.    

 

These two complex technical problems have driven this research and provided 

implementation and testing platforms for the proposed system modeling solution, such as 

reported in [13-19]. 

 

1.4 Thesis outline 

This thesis contains eight chapters.  After the Introduction, Chapter 2 presents the 

multimodality problem, focusing on large-area monitoring systems and multi-sensor 

analysis of dynamic systems. In Chapter 3, a literature review and state-of-the-art in 

multimodal modeling and machine learning are presented. The research objectives and 

contributions are described in detail in Chapter 4. An overview of the proposed 

methodology is presented in Chapter 5.  The application of the proposed approach in 

solving two kinds of engineering problems (regression and classification) is illustrated in 

Chapters 6 and 7, and conclusions are presented in Chapter 8.  
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CHAPTER II: THE MULTIMODALITY 

PROBLEM 

 

Modeling multimodal systems is affected by miscellaneous problems occurring in the data 

acquisition process, for instance the measurement uncertainty, outliers, sensor alignment, 

noise and data correlation among other factors that impact negatively the input data quality, 

biasing the resulting data model.  In practice, the collected data - obtained from multiple 

sensors in different timeframes - are merged into a single dataset, producing a data 

distribution function, which often cannot be evaluated by using a unimodal hypothesis. 

This is because datasets are often not coincident in both time domain (nonstationary data) 

and frequency domain as a result of time delays in the process of data acquisition and 

information processing.  The combination of statistical modality of data related to the data 

distribution and the aforementioned data acquisition considerations make the analysis and 

design of data models a challenging endeavor. The presence of multimodality in the data, 

and the resulting fluctuation of the data distributions in the datasets associated with each 

modality can result in a substantial degradation of the precision of empirical models, as 

further discussed in Sections 2.3 and 2.6.   

 

2.1  Modeling multimodal systems 

Depending on the data application, modeling multimodality systems can be approached by 

using deterministic or stochastic modeling solutions [20]. A deterministic approach is when 

the resulting data model depends on the observed phenomena and it does not consider the 

complexity of the inputs or its underlying processes.  A stochastic approach uses random 

features drawn from a possible data distribution to conduct multiple simulations.  While 

both these modeling approaches present interesting advantages, neither of them is a good 

candidate for modeling when data structures change dynamically or when theoretical 

models are difficult to obtain [6, 11, 12].   

 

The key factor to build a solution that considers the complexity of multimodal variable 

interactions is the determination of the grade of modality (number of modes) presented in 
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system. There are two general modeling approaches, when the problem is reduced to a 

unimodal case, and when the problem is modeled as a composition of several unimodal 

problems.  In the first case, the problem is reduced to finding the dominant single mode by 

using traditional dimension reduction procedures, such as principal component analysis 

(PCA) or independent component analysis (ICA) [20].  This is a valid approach when 

problems are not subject to inherent high dimensionality; otherwise, statistical analysis 

methods or optimized models must be used, such as in the technique based on kernel 

density estimates introduced by Bernard W Silverman, commonly used to determine the 

number of modes in the input domain [21-25].  Some of the most popular methods to 

estimate multimodality use histograms, kernel density estimates, and mixture models 

(Bayesian and Markov) [21].  Table 1 summarizes some of the techniques used to 

determine the grade of multimodality. 

 

Determining the grade of 

multimodality  

Algorithms 

Problem is reduced to a unimodality case. 

• PCA or ICA [23]  

• Histograms, kernel density estimates 

and mixture models [26] 

• Silverman’s test [21-25]  

The excess mass approach • Silverman’s test [24] modified. 

Table 1.  Modality assessment 

 

The principal component analysis (PCA) algorithm is a dimension reduction tool that can 

be used to reduce a large set of variables to a small set that still contains most of the 

information from the large set. The idea is to transform a number of possibly correlated 

variables into a smaller number of uncorrelated variables called principal components.  The 

first principal component accounts for as much of the variability in the data as possible and 

each succeeding component accounts for as much of the remaining variability as possible.  

For a given dataset, PCA can deconstruct the distribution using eigenvectors and 

eigenvalues.  The eigenvectors are linear combinations of the original variables and 
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weighted by their contributions to explain the variance in an orthogonal dimension. These 

eigenvectors (direction) exist in pairs with their eigenvalues, which are numbers that 

measure the amount of variation in the given dataset.  The PCA method was implemented 

in our framework, as presented further detailed in Chapters 6 and 7 in order to reduce the 

dimensionality in our datasets.  Figure 1 illustrates the use of PCA to transform high data 

(3 dimensions) to low dimension (2 dimensions) [144].    

 

 

Figure 1. Three-dimensional gene data reduced to a two-dimensional space using PCA [27] 

 

Like PCA, the independent component analysis (ICA) is another statistical technique 

intended to deconstruct the input data into a set of vectors, which are independent 

components for the given data. All components are equally important and mutually 

independent.  This characteristic makes ICA an ideal solution to deal with cases when input 

domain is noisy, and when features cannot be correlated due to non-Gaussian, non-linear 

and non-stationary conditions [28].    

 

Although ICA is similar to PCA, the ICA algorithm is computationally demanding, 

especially in terms of memory capacity, that’s why it was not implemented in our 

framework.  In many problems, it is common to face the issue of latent variables and the 

way to associate collected values to those latent variables.  In our second experiment, for 

example, we found cases when some sensors were not recording information and dataset 

values where registered as not-a-number (NaN).    In these cases, the mixed model strategy 
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is the most convenient way to deal with this problem.  In mixed models, the latent variable 

corresponds to the mixture component. In general, a mixture model assumes that data are 

generated by the following process: sample latent variables and then sample the 

observables x from a distribution which depends on the latent variables, called z, 

formulated as follows: 

 

𝑝(𝑧, 𝑥) = 𝑝(𝑧)𝑝(𝑥|𝑧)     (1) 

 

where 𝑝(𝑧) is always a distribution and 𝑝(𝑥 ⋮ 𝑧) can take a variety of parametric forms, 

for example a Gaussian distribution, in this case the resulting model is referred to as a 

“mixture of Gaussians” [29].  A reference to this method is found during the assessment of 

the multimodality of the chlorophyll concentration in Chapter 6.    Finally, the Silverman’s 

test is a methodology to determine modality based on kernel estimates.  The term “kernel” 

defines a special type of probability density function (PDF) with the additional following 

characteristics: non-negative, real-valued, even and its integral over its support set must be 

equal to 1 [30].  Some of the most popular kernels are as follows: triangular, parabolic and 

Gaussian.  The problem with this method occurs when the input domain includes a mixture 

of component distributions with low and high variance, resulting in low accuracy 

performance.  To cope with this problem, auxiliary methods such as the dip test and the 

excess mass estimates [31,32] can be deployed.      

 

2.2  Multimodality in remote sensing 

As stated in the introduction, this thesis aims to propose, implement and validate an 

automated process for modeling multimodal systems using an iterative machine learning 

approach in regression problems using spatial data as well as in classification problems 

using temporal data. The following sections explain the issue of large-scale environment 

and human motion monitoring, the technology behind the monitoring process, and how 

this technology impacts the modality of the acquired datasets.   

 

The first implementation problem dealt with in this thesis is defined and approached in 

terms of solving a regression problem in the context of the remote sensing technology.  
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Remote sensing is a science of acquiring information about the earth’s surface without 

being in contact with it.  This is made possible by sensing and recording the reflected or 

emitted energy. Figure 2 illustrates the basic components required in a remote sensing 

system. The process starts when a source of energy produces the light required to illuminate 

a target of interest.  The electromagnetic energy, in form of radiation, travels from the 

source of energy to the target, interacting with it. Depending on the target properties, the 

resulting reflecting energy travels from the target to the sensor that is not in direct contact 

with the target interacting with the atmosphere as depicted in Figure 2.   

 

 

 

Figure 2  Remote sensing components 

 

The energy emitted or scattered from the target is collected and recorded by the sensor. 

During this period of traveling, the light, which comes from the source to the target of 

interest and from the target to the sensor, interacts with the atmosphere as it passes through 

it .  The readings are transmitted to earth stations in which data are processed and converted 

into images.  This process ends when the resulting images are interpreted to extract 

information about the target of interest to solve a particular problem.  However, repeated 

observations of a given area over time produce radiometric inconsistency due to changes 

in sensor calibration, differences in illumination and observation angles, and variations in 

atmospheric effects [83], resulting in a data model with a degraded predictive power.  
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Remote sensing technologies play a key role in environmental monitoring and modeling, 

impacting multiple disciplines, such as hydrology, meteorology, forestry and geography.  

They are widely used for monitoring water quality over large aquatic basins due to the cost 

and flexibility advantages associated to their deployment.  Some of the best-known 

technologies are the low-resolution Sea-viewing Wide Field-of-view Sensor (SeaWiFS), 

Moderate Resolution Imaging Spectro-radiometer (MODIS), launched in 2002 on the 

Aqua satellite, and the Medium Resolution Imaging Spectrometer (MERIS), launched in 

2002 on the ENVISAT platform. Figure 3 illustrates three images obtained from MERIS, 

MODIS Agua and SeaWiFS sensors. In this thesis, we use empirical data collected by 

MODIS and MERIS to estimate chl-a concentration. 

 

Remote sensing readings are subject to bias because electromagnetic energy is affected by 

the atmospheric and target interactions that produce reflection, refraction, scattering and 

absorption, thus distorting the collected data. Raw data contain additive atmospheric noise, 

which must be de-noised by a radiometric correction process, as presented in Figure 4. The 

source of radiometric noise depends on the sensor technology, the imaging mode, and the 

way it is used to capture the image [89]. Another source of data distortion is the variation 

of the viewing geometry (sensor-earth). In this case, a geometric correction process is 

required. Some sources of this type of errors are as follows: the variation of altitude, the 

Figure 3.  True color classification of natural waters using Hue angle image processing of MERIS, MODISA and 

SeaWiFS (left to right). Area North Sea, date 4 May 2006 [84] 
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relief displacement, and nonlinearity in the sweep of the sensor instantaneous field of view 

(IFOV). Once data acquisition process is completed and the information is recorded, the 

image data and auxiliary data are used to produce the final application product.   

 

 

Figure 4.   Remote sensing data processing 

Remote sensing of water constituents requires a careful atmospheric correction since more 

than 90% of the upward directed radiance at the satellite altitude comes from the 

atmosphere, including direct sunlight and skylight, which are specularly reflected from the 

water surface. Small errors in determining the optical properties of the atmosphere may 

induce large errors in the retrieval of water constituent concentrations [90].  Figure 5 shows 

the atmospheric correction process for medium resolution imaging spectrometer (MERIS) 

sensor.  The various elements presented in this figure are described in [90] as follows:  
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Figure 5.   Atmospheric correction process for MERIS sensor [90] 

 

Inputs (1 – 4): are the input values to the procedure obtained from the MERIS image pixel 

by pixel, except for the solar flux. The angles are converted into Cartesian coordinates to 

avoid the angle problems around the nadir angles. 

Compute TOSA (5): is a module which computes the top-of-standard-atmosphere radiance 

reflectance (RL_TOSA) using the deviation of the atmospheric pressure and ozone 

concentration from the standard values, i.e. 1013 hPa and 350 Dobson units (DU), 

respectively. This module considers also the altitude of the target lake in the pressure 

calculation.  

Water Correction (6): is the module for the correction of the influence of water vapor on 

band 9 (708 nm). It uses the standard algorithm as implemented in the instrument 

processing facility (IPF). 

Optional (7): optional procedures for correcting or reducing the camera boundary problem 

and for considering the polarization in the atmosphere. 

 AC correction (8): The atmospheric correction neural network (NN), which considers the 

influence of aerosols, thin cirrus clouds, sun and sky glint and the water leaving radiance.  

Outputs (9 – 12):  output of the NN: (9) path radiance reflectance, i.e. radiance entering the 

sensor from all sources above the water surface, (10) transmittance, (11) water leaving 

radiance reflectance, (12) aerosol optical thickness for 4 wavelengths. 
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Aerosol angstrom (13): coefficient alpha computed from the aerosol optical thicknesses at 

443 and 865 nm. Depending on the application type, readings are also affected by data 

values fluctuating from one location to another or over the time at the same location 

producing outliers that are recorded in the collected data.  These outliers are categorized in 

[91] as follows: 

 

Unusual time series snippets:  We can identify Earth observation data patterns such as 

diurnal or seasonal cycles which are relatively stable. However, there exist snippets in a 

time series that deviate from the stable pattern. That is the case in the images in Figure 6 

where the duration of high brightness temperatures each summer is relatively stable. 

However, one snippet, the high brightness temperature, persisted longer than usual.  This 

error could be caused by either unusual natural events or reading errors [91].  

 

 
Figure 6.   Unusual time series on two different sampling dates [91] 

 

Level shifting:  Figure 7 also shows a situation when a group of adjacent pixels 

significantly increases or decreases, causing a temporal discontinuity that may appear 

normal when viewed spatially at a specific time and can only be discovered when viewed 

as a time series at a given location [91]. 
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Figure 7.   Unusual time series and level shifting [91] 

 

Local spatial outlier:  As shown in Figure 8, pixel A is an outlier with respect to its 

neighbors, but normal when viewed globally. Pixel B has the same value as pixel A but is 

not a local spatial outlier [91]. 

 

 

Figure 8.  An illustration of objects and local spatial-temporal neighborhoods. Pixel A and B have the same 

value [91] 

 

The occurrence of level shifting and unusual time series snippets in readings obtained in 

our experiments produced statistical modality issues considered during the design of our 

methodology (see Table 5 and 6, section 3.5, Chapter III).   
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2.3  Wearable wireless sensors for recognizing human activity 

The second scenario in which the automated process for modeling multimodal systems 

using an iterative machine learning approach is validated is a classification problem in the 

context of human motion monitoring using wearable sensors.  This section reviews the 

sensor system used in human locomotion recognition and how this technology impacts the 

modality of the acquired datasets.  

 

The new wearable technology used to recognize human activity is becoming extremely 

attractive to customers in a wide area of applications, ranging from fitness to clinical 

monitoring, for both indoor and outdoor environments.  These applications allow users to 

achieve a natural execution of any physical activity, while providing good results in 

multiple practical applications, such as health rehabilitation, respiratory and muscular 

activity assessment, sports and safety applications [5].  Wearable sensor technologies are 

gaining interest in research communities due to the use of significantly miniaturized 

electronic components, with low power consumption. Currently, wearable sensor solutions 

include devices with the capacity to register, amplify, process and transmit information 

about the target of interest, reducing direct human intervention and allowing integration 

between body-worn sensor and ambient sensors with excellent applications in monitoring 

patients or athletes, while providing more efficacy during assessment.  A wide offer of 

wireless sensors is available, such as accelerometers, gyroscopes, barometers and other 

devices with low power consumption.  With a growing market calculated in 560 million 

units a year by the end of 2021, this market is widely dominated by accelerometer sensors, 

which use the design principle of Newton’s law and Hooke’s law [61].  Designed to sense 

one, two or three axes, accelerometers use the piezoelectric effect in crystal structures, or 

capacitors for sensing changes in capacitance.  In both cases an accelerative force interacts 

with crystals or capacitances generating a voltage from the applied stress, and the 

accelerometer interprets the voltage to determine the corresponding velocity and 

orientation. Other type of sensors can make use of hot air bubbles, piezo-resistive effect 

and light [81].  
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The interpretation of data collected by such sensors, when characterizing the type of 

activities being executed by a user, is still a significant challenge.  The main problems 

related to modeling multimodal systems in wireless sensors are: the complexity of human 

activities (i.e. certain activities contain similar gestures), the extraction of relevant features, 

data loss that characterizes any wireless transmitter, and complex data pre-processing 

required to deal with factors related to data alignment. Other problems such as data losses, 

experimental constraints and noise inherent in the collected measurements [54, 6] 

depreciate the data quality and the final model’s accuracy [6].  The non-ergodicity of the 

acquisition process from acceleration sensors, will result in poor performance [80] and 

searching patterns becomes a challenging process [82]. 

 

The new wearable technology used to recognize human activity is becoming extremely 

attractive to customers in a wide area of applications, ranging from fitness to clinical 

monitoring.  A wide offer of wireless sensors is available, such as accelerometers, 

gyroscopes, barometers and other devices with low power consumption. As the data we 

are using in the context of this thesis is coming from accelerometers, we will focus the 

discussion on this category of wearable sensors only. An accelerometer is an 

electromechanical device that measures acceleration forces [81].   

 

One of the most typical accelerometers is the piezoelectric.  A basic diagram is exhibited 

in Figure 9.  This device uses a quartz crystal or a polycrystalline ceramic material.  Due 

to the Newton’s second law of motion, the mechanical stress produced by the acceleration 

force acting against the material is equal the change in the electrical charge within the 

material [86].  As presented in the Figure 9, signal leads connected to the piezoelectric 

material are connected to a circuit to make the signal suitable for display or recording.  

Typical accelerometers are constructed to monitor multiple axes. For example, to 

determine two-dimensional movement, a 2-axis unit is required, and to monitor three-

dimensional positioning, a 3-axis unit will be required.  Most smartphones typically make 

use of three-axis models, whereas cars simply use only a two-axis to determine the moment 

of impact. The sensitivity of these devices is quite high as they are intended to measure 
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even very minute shifts in acceleration. The more sensitive the accelerometer, the more 

easily it can measure acceleration [85].   

 

 
Figure 9.  Piezoelectric accelerometer [86] 

 

The interpretation of the data collected by such sensors when characterizing the type of 

activities being executed by a user still brings serious challenges to developers [54], as 

described in Table 6, section 3.5 in Chapter III. 

 

In practice, the user understands their test requirements well.  However, data analysis runs 

into difficulty when matching the test requirements with available accelerometer models. 

There exists, then, a need for a comprehensive description and explanation of 

accelerometer specifications that manufacturers routinely use [87].  As the data we are 

using in the context of this thesis was acquired using piezoelectric accelerometers, key 

specifications used to describe piezoelectric accelerometers [88] are important to define, 

essentially because these parameters are source of introducing statistical multimodality, i.e. 

the measurement range represents level of acceleration supported by the sensor’s output 

signal specifications, typically specified in ±g (gravity, where 𝑔 = 9.8
𝑚

𝑠2
). This is the 

greatest amount of acceleration the sensor can measure and accurately represent as an 

output.  The sensitivity defines the ideal, straight-line relationship or ratio between the 

sensor’s electrical output to mechanical input (e.g., gray dashed line in Figure 10). 

Sensitivity is specified at a particular voltage and is typically expressed in units of 

millivolts per gravity [mV/g] for analog-output accelerometers. 
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Figure 10.  Piezoelectric sensor response [88] 

 

In general, the cumulative effect produced by collecting information from this type of 

accelerometers, especially with different frequency response, sensitivity and range of 

operation parameters could produce issues such as the level shifting, distortion and clipping 

in the output signal that is detected as statistical multimodality during the data acquisition 

process. 

 

2.4  Conclusions 

In practical problems, multimodality in data sources produces a cumulative effect in the 

accuracy and quality of the final data models.  For example, in the context of remote 

sensing, optical properties from different sensors might introduce marked differences on 

readings from a target under observation.  Assessing the grade of modality (number of 

modes) in a multimodal system becomes a key factor to build a data model that considers 

the interaction of multiple input variables, while dealing with different levels of noise 

originated from a wide range of technical issues such as outliers, level shifting and usual 

time series snippets that could be merged with other data sources.  Similarly, in the context 

of human recognition using multi-sensor systems, the identification tasks require 

processing of a large amount of sensor data as well as considering the influence by a 

varying degrees of human activities, over the period of observation, of the noise produced 

by the wireless components, of the bandwidth limitation and of the sensor’s technical 

specifications, making the construction of a precise and robust data model challenging.      
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CHAPTER III: STATE OF THE ART 

 

The main objective of the state-of-the-art review in this chapter is the exploration of the 

most used data analysis methodologies, with the focus on the data learning process. Given 

a strong component of the thesis related to the verification of the presented methodology 

through the solution of two distinct engineering problems, a broader perspective of 

analyzing and designing intelligent engineering systems is also included.  Encouraged to 

explore the most used data analysis methodologies accepted by industry and scholars, we 

have included section 3.1 to explain the data learning process, which provides a reference 

to understanding the problem of the random and false discoveries.  Essentially, data 

preparation and problem understanding were challenging activities in our experiments, 

mainly because raw datasets were affected by the lack of ground-truth information, non-

ergodicity, scarcity, data overlapping, and in some cases by excessive noise.  In section 

3.2, we provide a brief overview of machine learning methods and other learning 

methodologies currently used including the iterative learning and its taxonomy, focusing 

on the concept of the training sample selection and the way it can improve performance 

prediction and the resulting data model precision.  In section 3.3 we present the metrics 

used to measure the model performance of our method.  Finally, in section 3.4, we review 

the main challenges encountered when applying machine learning in remote sensing and 

human recognition problems.        

 

3.1  Data mining architectures  

One of the most used methodologies in data science and highly recommended to improve 

the structure of the process of problem analysis the Cross-Industry Standard Process for 

data mining (CRISP-DM).  CRIPS-DM has been widely adopted by many industries as a 

tool for data analysis because it is soundly based on the practical, real-world experience of 

how people conduct data mining projects. The methodology consists in a cycle of six 

phases, which are shown in Figure 11.   The sequence of the phases is not rigid; the outcome 

of each phase determines the next task or phase to be performed, and arrows indicate the 

most important and frequent dependencies between the phases [48]. 
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Figure 11.  Phases of the CRISP-DM reference model [48] 

 

The first phase of CRISP-DM or Business Understanding or problem understanding 

focuses on understanding the objectives and requirements; the outcome will be a 

preliminary plan designed to achieve the objectives. The data understanding phase starts 

with the initial data collection, checking their quality, exploring of data, and becoming 

familiar with the problem, getting the insights on the data as well as to form hypotheses 

regarding the hidden information.   

 

The data preparation phase includes all activities required to construct the final dataset, 

which serves as an input to the modeling tool in the next step.  Data preparation tasks are 

likely to be performed multiple times and not in any prescribed order. Tasks include table, 

record, and attribute selection, as well as transformation and cleaning of data.  In the 

modeling phase, various modeling techniques are selected and applied on the cleaned data, 

and their parameters are calibrated to optimal values.  Once the model is built, it is 

important to determine if the results meet the original objectives, reviewing those aspects 

that have not been sufficiently considered. This phase is called evaluation.  At the end of 

this phase, a decision on the use of the data mining results should be reached. The model 

also defines the development phase that will depend on the requirements.  
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The deployment phase can be as simple as generating a report or as complex as 

implementing a repeatable data mining process across the problem space. In this phase, the 

resulting data models are applied and used to set up for continuous mining of the data [48].   

It can be noticed that CRIPS-DM matches the general, sequential, waterfall-type learning 

process exhibited in Figure 12.     

 

 

 

In Figure 12, the ‘Identification of the required data’ process determines the nature of the 

target and the problem complexity.  Data pre-processing and feature selection determine 

the size of the samples, attempting to maintain quality, while removing spurious 

combination between features and their interrelationships. 

 

Sometimes, construction of new features and their combinations may improve the accuracy 

of the model, thus leading to the creation of more concise and accurate classifiers. Some 

of the most typical problems encountered in this process are related to cleaning the data 

[34, 35], missing data issues [36], data formatting [34], data transformation and data 

reduction [37].  Machine learning – arguably the most important stage - uses computational 

Figure 12.  General learning process 
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methods and experience to improve performance or to make accurate predictions.  

Validation and selection of best performing hypothesis will lead us to the completion of 

the model selection process.   

 

Another methodology frequently used in data mining is called SEMMA, acronym that 

stands for Sample, Explore, Modify, Model and Assessment, illustrated in Figure 13. It 

was commercially implemented in 2008 [49]. This method presents five distinct stages of 

knowledge discovery as follows [50]: 

 

Sample: This is where a portion of a large dataset (big enough to contain the significant 

information yet small enough to manipulate quickly) is extracted. For optimal cost and 

computational performance, some (including the SAS Institute) advocate a sampling 

strategy, which applies a reliable, statistically representative sample of the full-detail data 

that will be used during training (used for model fitting), validation (used for model 

assessment and to prevent overfitting) and testing (to review model performance and 

generalization). 

 

Explore: After sampling data, the next step is to explore them visually or numerically to 

identify inherent trends or groupings. Exploration helps to refine and to redirect the 

discovery process, allowing the user to search for unanticipated trends and anomalies in 

order to gain a better understanding of the dataset.   

 

Modify: This step aims to create, select and transform the variables upon which to focus 

the model construction process. Based on the discoveries in the exploration phase, one may 

need to manipulate data to include information such as the grouping, significant subgroups, 

or to introduce new variables. Because data mining is a dynamic, iterative process, this step 

is required to update data mining methods or models when new information becomes 

available. 

 

Model: Once data are prepared, models are built to explain patterns in the data.  The 

acceptable model performance depends on searching for combinations of variables that 
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reliably predicts the desired outcome. Modeling techniques in data mining include artificial 

neural networks, decision trees, rough set analysis, support vector machines, logistic 

models, and other statistical models, such as time series analysis, memory-based reasoning, 

and principal component analysis. 

 

Assess: In this step, we evaluate the usefulness and the reliability of findings from the data 

mining process, assessing how well models perform. A common means of assessing a 

model is to apply it to a portion of dataset put aside (and not used during the model 

building) during the sampling stage. 

 

 

Figure 13.  Phases of the SEMMA reference model [50] 

Table 2 shows each of the three methods previously described and their equivalent 

processes.    
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Once the data is prepared and the features are selected, the next phase consists in choosing 

an appropriate algorithm (learner) for the task. This phase is critical, because it helps to 

control and optimize the model accuracy. 

 

Almost every algorithm comes with a large number of settings or hyper-parameters that 

must be specified [38]. The hyper-parameter tuning is in general a difficult problem.  The 

hyper-parameters are considered as the parameters of a learning algorithm, for example in 

the k-nearest neighbor algorithm (KNN), the value of integer k is a hyper-parameter.  

According to [39], the process of finding the best-performing model from a set of models 

that were produced by different hyper-parameter settings is called model selection and it is 

often determined by the bias-variance trade-off used to fixe hyper-parameters in the 

learning algorithm.  For example, a small training dataset produces high bias and low 

variance when using Naïve Bayes and that represents low computational time, which is an 

advantage over low bias and high variance in classifier like KNN.   

 

In machine learning, parameter tuning, training and model validation are important tasks 

and they are needed to maximize the model accuracy.  In real problems, it is critical to 

measure the performance achieved by a learning algorithm. Let us consider a scenario for 

a supervised learning algorithm. Three datasets are required during the learning process: 

training set, validation set and testing set.  The validation set is used to avoid the 

phenomenon called overfitting [40]. Once the learner is trained on the training set, the 

resulting data model is tested on the testing set. The learner’s performance is measured by 

comparing the predicted labels with unseen samples (which were not available during the 

training process). Only accuracy measured on an independent test set is a fair estimate of 

General learning process CRISP-DM SEMMA 

Identification of required data Data understanding Sample and explore 

Data preparation and feature selection Preparation phase Modify 

Selection and parameter tuning Modeling process Model 

Training and Validation Evaluation process Assess 

Table 2.  Comparison of standard data mining processes 
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accuracy on the whole population [40].  However, we might wonder about the number of 

examples needed on each set to learn successfully and how to split them. The most common 

methods are as follows: dataset split and cross-validation. 

 

Dataset split: aims to achieve low variance over the model parameters. This technique   

divides the input domain randomly in training-validation and testing sets. A common 

practice is to start with 80%-20% split (80% training and 20% test).    

 

Cross-validation: A common practice to exploit the label data for both model selection and 

training is called n-fold-cross-validation.  This technique is extensively used, mainly 

because the amount of labeled data is often too small to set aside a validation sample since 

that would leave an insufficient amount of training data.  The process defines a vector of 

free parameters of the algorithm denoted as 𝜃. The method consists of first randomly 

partitioning a given sample S of m labeled examples into n subsamples, or folds.  The ith 

fold is thus a labeled sample ((𝑥𝑖1, 𝑦𝑖1), . . , (𝑥𝑚𝑖, 𝑦𝑚𝑖)) of size 𝑚𝑖.  Then for any i ∈ [1, 𝑛], 

the learning algorithm is trained on all folds but the ith fold to generate a hypothesis ℎ𝑖, 

and the performance of ℎ𝑖 is tested on the ith fold as shown in Figure 14. The parameter 

value 𝜃 is evaluated based on the average error of the hypothesis ℎ𝑖, which is called cross 

validation error.  This quantity is computed as [41]: 

 

 �̂�𝑐𝑣(𝜃) =
1

𝑛
∑

1

𝑚𝑖
∑ 𝐿(
𝑚𝑖
𝑗=1

𝑛
𝑖=1 ℎ𝑖(𝑥𝑖𝑗), 𝑦𝑖𝑗)   (2) 

 

The folds are chosen to have equal size, that is 𝒎𝒊 =
𝒎

𝒏
 for all 𝒊 ∈ [𝟏, 𝒏]. In this formula, 

L represents the loss function.  
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Figure 14.  Partitioning of training data into 5 folds 

 

The special case in n-fold-cross-validation where n=m is called leave-one-out cross 

validation (the value of n is fixed to m, where m is the size of the dataset), since at each 

iteration exactly one instance is left out of the training sample. In general, leave-one-out is 

computationally costly, because it requires to train n times in samples of size m-1 [41]. In 

general, the appropriate choice of the number of folds is subject to a trade-off between bias 

(how well the model can approximate the data) and variance (model’s ability to respond to 

new data) and it might depend on the size of the dataset in some cases.   

 

Some of the algorithms are sensitive to the hyper-parameter settings and their selection 

could be challenging because the relationship between parameters and model performance 

is intrinsic and vague [42], imposing a deep “searching” of the parameter space for the 

optimum values that will produce the lowest variance.  Some typical solutions are as 

follows [43]: grid search [44, 45], random search [45, 46] and Bayesian optimization [47].   

 

Grid search is the most basic hyper-parameter tuning method. This technique aims to build 

a model from which global optimum parameters could be computed.  Random search is 

widely seen in optimization algorithms and it differs from grid search in that discrete 

parameter values are not provided; instead, statistical distribution for each parameter is 

provided from which values may be randomly sampled.  The reason to prefer this technique 

over the grid search is because in many cases, parameters are not equally important [45, 

46].  Bayesian optimization is a powerful strategy for finding the extrema of objective 

functions that are expensive to evaluate. It is applicable in situations where one does not 
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have a closed-form expression for the objective function, but where one can obtain 

observations (possibly noisy) of this function at sampled values.  

 

Machine learning does not deal with the interdependency of the input variables or their 

interaction with the environment around the target or system under observation, but deals 

with the system’s behavior, learning data structures empirically, using loss functions to 

express discrepancies between predictions and the model being trained from data [3].  

Machine learning is defined as computational methods using experience to improve 

performance or to make accurate predictions [51].  Indeed, the amount of data and its 

quality are essentials to reach the level of precision and learning generalization required to 

perform valid predictions (including low generalization error and entropy) by a learner. In 

general, the most common problems tackled in machine learning are: 

 

• Classification: involves assigning a category (labels) to each item; it could be 

simple (binary classification) or complex (multi-class classification). 

• Regression: implies predicting a real value for each item; the penalty for an 

incorrect prediction depends on the magnitude of the difference between the true 

and predicted values.    

• Ranking: involves ordering items according to descending order of relevance. 

• Clustering: involves partitioning items into homogeneous regions.  

• Dimensionality reduction or manifold learning implies transforming an initial 

representation of data into a lower dimensional representation, while preserving 

some properties of the original representation. 

 

Machine learning can be summarized as learning a function f that maps inputs variables x 

to output variables y, 𝑦 = 𝑓(𝑥). The goal is to learn about the target by mapping the 

function from training data [37].  Based on how the function is learned (by making different 

assumptions), we identify two groups of algorithms: parametric and nonparametric. In the 

first group, the algorithm uses a well-known form, such as a line (linear regression), a 

sigmoid curve (logistic regression) or a Gaussian bell (linear discriminant analysis), to 

adjust its mapping function. Therefore, the learning model performs prediction with a set 
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of parameters of fixed size to define, for example, a probability density function described 

by two parameters (mean and standard deviation), independent of the number of training 

samples and making them faster to learn from data with a limited amount of training 

samples.  A disadvantage is the poor fit due to dependency on choosing a functional form 

that matches with the target function.  Some well-known parametric algorithms are logistic 

regression and linear discriminant analysis [52].  In the second group, the algorithm relies 

on data and no assumptions are required regarding the variable dependency.  In other 

words, the algorithm is free to learn any functional form from the training data with some 

ability to generalize to unseen data [52].  However, it might be a drawback because the 

algorithm will require more training data to better estimate the target function and 

consequently slowing down the learning time. The best-known algorithms in this group are 

k-Nearest Neighbors, decision trees and neural netrworks.   In addition, when working with 

machine learning two learning categories are used to deal with classification, regression 

and clustering type of problems: supervised and unsupervised.  Table 3 exhibits the well-

known algorithms applied to those problems.   

 

Machine Learning 

Supervised learning Unsupervised learning 

Classification Regression Clustering 

Support Vector machines 
Linear Regression, 

General Linear Model 

K-means, K-Medoids, Fuzzy 

C-means 

Discriminant Analysis 

Support Vector 

Regression, Gaussian 

Process Regression 

Hierarchical 

Naïve Bayes Ensemble Methods Gaussian Mixture 

Nearest Neighbor Decision Trees Hidden Markov Model 

Neural Networks Neural Networks Neural Networks 

 

Table 3.  Typical machine learning algorithms [39] 

 

In our thesis, we capitalize on the property of nonparametric algorithms of not making 

assumptions about the underlying functions, it allows us to apply our framework in a wide 

spectrum of classification and regression problems.  We used clustering techniques as 

described in section 5.3.      
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When the learner receives a limited series of labeled and unlabeled examples, semi-

supervised learning can be used for training to make a prediction on unseen examples [6, 

10, and 11]. Typically, a fraction of the labeled data (as labeled data is not always available 

in practical problems) is used during the training process that is combined with unlabeled 

data that is less expensive and takes less effort to acquire.  Many scholars define this 

category as halfway between supervised and unsupervised learning.  To apply this category 

of learning, the problems must meet three assumptions [53]: the smoothness (continuity) 

assumption: “If two points 𝑥1, 𝑥2 in a high-density region are close, then so should be the 

corresponding outputs 𝑦1, 𝑦2”.  The continuity assumption applies for both classification 

and regression problems.  The cluster assumption:  because of the previous assumption, in 

classification problems, “if two points 𝑥1, 𝑥2 are in the same cluster, then they are likely to 

be of the same class 𝑦1 = 𝑦2”.  The cluster assumption can also be formulated as follows: 

“The decision boundary should lie in a low-density region”, this is known as low density 

separation assumption.  The third assumption is named the manifold assumption: “High-

dimensional data lie roughly on a low-dimensional manifold”.  By using this assumption, 

the learning algorithm can essentially operate in a space of corresponding dimension 

without having to pay the overload of computing processing. This assumption is useful for 

classification and regression.  In general, the semi-supervised and supervised learning are 

both used in classification, regression and ranking problems [41].     

 

Machine learning has applicability in text classifications, natural language processing, 

speech recognition, optical character recognition (OCR), computational biology 

application, computer vision tasks, fraud detection, games, unassisted vehicle control, 

medical diagnosis, remote sensing and information extraction systems. 

 

3.2  Other learning methodologies 

Aside from previous learning categories, we present other learning techniques that are not 

necessarily oriented to task-driven (supervised) or data-driven (unsupervised) 

architectures, albeit, they are powerful in a broad number of problems.  
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3.2.1  Iterative learning 

One of the key aspects in iterative learning is the ability to extract training samples from 

previous instances and then use them to improve task performance in the next iteration. 

This implies updating a learning function with the best result, therefore improving the 

prediction model.  There are many fields of application for iterative learning 

methodologies, for example in the control of robotic arms [125], when work is required to 

perform the same action repeatedly with high precision.  An iterative process reduces the 

classification error and generates a rule of prediction that increasingly improves the learned 

function.   

 

A technique that has influenced the landscape of machine learning since its inception in 

early 90s [54, 55] is boosting.  In literature, we find various examples of boosting 

applications, especially in problems related to text recognition, control, data de-noising and 

model accuracy.  To improve the efficiency of iterative learning, it is necessary to trade-

off between the selection of the optimal set of parameters for the weak classifier and the 

form of the loss function (a method of evaluating how well the algorithm models the given 

data, e.g. mean squared error, likelihood loss, log, etc.) [56]. A weak classifier is a learning 

algorithm capable of producing classifiers with probability of error strictly (but only 

slightly) less than that of random guessing (0.5, in the binary case). On the other hand, a 

strong classifier is able (given enough training data) to yield classifiers with arbitrarily 

small error probability [57].  Since a loss function plays an important role in statistical 

inference, the relation between the loss function and the prediction performance is widely 

studied in statistics and machine learning communities.  

 

In last decade some useful loss functions for classification problems have been proposed, 

for example, the hinge loss for support vector machines, and the exponential loss for 

Adaboost, among others [58].  In some cases, the boosting model can take advantage of 

using the weak learners at multiple resolutions. Two solutions are proposed by [59]: (1) 

using model-driven multi-resolution, achieved by varying the complexity of the 

classification boundary, providing a systematic procedure that increases the complexity of 

the weak learner as the boosting iterations progress, and thus reducing the over-fitting 
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problem; or (2) using a data-driven multi-resolution by considering the data (not the model) 

at multiple resolutions during each iteration in the boosting algorithm. The selection of the 

weak learners for the boosting algorithm can best fit the current resolution and as the 

additive modeling iterations progress, the modeling resolution is increased. A complete 

solution presented by [59] included the combination of AdaBoost (model-driven solution) 

and LogistBoost (data-driven solution). The AdaBoost algorithms build a hypothesis ℋ 

that is a linear combination of weak or base hypothesis ℎ𝑡 [60], thus ℋ can be of the form: 

 

ℋ(𝑥) = sign(∑ 𝛼𝑡𝑡 ℎ𝑡(𝑥))      (3) 

 

where 𝛼𝑡 is a weight or confidence value ∈ ℛ. At the model level, iterative learning plays 

an important role helping to define fitting parameters and tuning hyper-parameters. The 

gradient descent algorithm uses an iterative learning methodology very useful to deal with 

the fitting parameter definition. The algorithm calculates the loss achieved by a model with 

a given set of parameters and then alters those parameters to reduce the loss.  It repeats this 

process until that the loss cannot substantially be reduced further [35].  When tuning hyper-

parameters, for example in SVM, two essential parameters must be defined, namely cost 

(C) and gamma (γ). The intention is to identify an optimal combination that minimizes the 

loss by evaluating iteratively the performance of the given hyper-parameter combination 

using cross-validation.  Figure 15 shows a typical classification problem that is solved 

using AdaBoost.  



49 

 

 
Figure 15.  AdaBoost for classification problems [146] 

 

In Box 1, data have been assigned equal weights and the first decision stump (D1) has been 

applied to classify them as plus (+) or minus (-). The incorrect samples will now carry more 

weight, in this case D1 has misclassified three (+).  In Box 2, D2 has misclassified three (-

).  In Box 3, D3 has misclassified one (-) and two (+).  The Box 4 uses previous individual 

weak learners D1, D2 and D3 to build a most accurate predictor. The model would continue 

adjusting the previous error obtained until building the most accurate predictor [146].   This 

type of algorithms is known to be very sensitive to outliers and noisy data and being 

disadvantageous in applications as those aimed in this proposal, i.e. remote sensing or 

recognition of locomotion using acceleration sensors.  In our case, the prediction 

mechanism was optimized by hybridizing the data model adjustment with both correct and 

incorrect predictions from previous predictors.   

 

3.2.2  On-line learning 

Instead of learning from a training set and then testing on a test set, the on-line learning 

scenario intermixes both training and testing in multiple rounds. On each round, the 

classifier receives an unlabeled training point, makes predictions and verifies whether its 

prediction is correct or incorrect.  The model is adjusted on-the-fly with correct predictions 

and then used to next rounds. The objective is to reduce the cumulative error (loss) over all 

rounds.  Performance in on-line learning is measured using a mistake model and the notion 
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of regret. The on-line learning algorithms are particularly attractive in modern applications 

since they form a very interesting solution for large-scale problems. By processing one 

sample at a time, these algorithms are more practical than batch algorithms, because they 

take an initial guess model and then pick up one observation from the training population 

and recalibrate the weights on each input parameter, as presented in Figure 16 [61] 

 

 

Figure 16.  Batch learning algorithms vs On-line algorithms [61] 

 

3.2.3  Reinforcement learning 

The principle of reinforcement learning is to collect information through a course of actions 

by interacting with the environment. In response to an action, the agent or learner, receives 

two types of information: the current state in the environment and a real-value or reward, 

which is specific to the task and its corresponding goal. In this technique, there is no fixed 

distribution according to which instances are drawn. The choice of a policy defines the 

distribution, therefore, its choice is a very sensitive issue, since it will impact the rewards 

to be received.  Reinforcement learning is widely connected to control theory, optimization 

and cognitive sciences. Figure 17 shows a diagram of the scenario of reinforcement 

learning. 
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Figure 17.  Reinforcement learning scenario [62] 

The objective of the agent is to maximize his reward and therefore to determine the best 

course of action or policy to achieve such objective. However, the information he receives 

from the environment is only the immediate reward related to the action taken, therefore 

no future or long-term reward feedback is provided by the environment. An important 

aspect to be considered in this technique is the concept of delayed reward or penalties. The 

agent faces the dilemma of getting more information from the environment by exploring 

unknown states and the rewards or exploiting the information already collected to optimize 

his reward. This concept is known as exploring vs exploiting trade-off [63]. 

 

3.3  Model accuracy metrics 

The most common metrics for model evaluation in regression and classification problems 

with machine learning are presented in Table 4.  

 

 

 

 

 

 

 

 

 

Regression Classification 

Mean Absolute Error Accuracy 

Mean Squared Error Precision, Recall 

Root Mean Squared Error F-score, AUC 

Coefficient of determination Receiver Operating Characteristic (ROC) 

Table 4.  Data model evaluation metrics 
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The regression metrics aim to evaluate and compare the real and the estimated values and 

determine the accuracy of the data model in prediction.  Classification metrics evaluate the 

prediction performance of the algorithm.   Let us review the most common regression 

metrics [79]: 

 

Mean absolute error (MAE): measures the difference between two continuous variables 

and it can only be compared between models whose errors are measured in the same units. 

It is usually similar in magnitude to root mean squared error, but slightly smaller. Using 

the following notations: �̂�𝑖: predicted value, 𝑦𝑖: real value, n: dataset size, i {1,..,n}), the 

mean absolute error can be computed as: 

𝑀𝐴𝐸 =
∑ |�̂�𝑖−𝑦𝑖|
𝑛
𝑖=1

𝑛
      (4) 

 

Mean squared error (MSE): assesses the quality of a predictor and is calculated as: 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1     (5) 

 

Root mean squared error (RMSE): measures the error rate of a regression model.  

However, it can only be compared between models whose errors are measured in the same 

units. The formula to compute this error is as follows: 

 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖−𝑦𝑖)

2𝑛
𝑖=1

𝑛
      (6) 

 

Coefficient of determination (R2): summarizes the explanatory power of the regression 

model and is computed from the sums of squares terms as: 

 

𝑅2 =
∑(�̂�−�̅�)2

∑(𝑦−�̅�)2
= 1 −

∑(𝑦−�̂�)2

∑(𝑦−�̅�)2
      (7) 

 

𝑅2 describes the proportion of variance of the dependent variable explained by the 

regression model.  
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The most common metrics to evaluate performance in classification problem (binary case) 

are accuracy, precision, recall, F-score and ROC.  For a binary problem, a class instance 

can take only two possible values: positive or negative (0,1).  The instances correctly 

predicted by the classifier are called true positive (TP) or true negatives (TN).  Contrary, 

for those instances wrongly predicted by the classifier, the class instances are called false 

positive (FP) or false negative (FN), respectively. 

 

Accuracy: is defined as the percentage of correct predictions that is determined by the ratio 

between the number of correct classification samples and the total number of samples. 

Accuracy (𝐴𝑐𝑐) is computed as:  

 

𝐴𝑐𝑐 =
1

𝑛
[∑ 1(𝑦𝑖 = 𝑦�̂�)

𝑛−1
𝑖=1 ] × 100%      (8) 

 

where n is the number of samples, 𝑦𝑖 and 𝑦�̂� are actual and predicted labels, and i an integer 

{1,..,n}.  Due to its simplicity, it has restrictions to provide a thorough analysis of the 

algorithm behavior, for example, it is good when various classes in the input domain are 

nearly balanced.  However, it would not be helpful to use it in problems with presence of 

a dominant class.  For this reason, it is convenient to use the confusion matrix, which can 

contain a summary of prediction results with count values for true positive, true negatives, 

false positive and false negative [37].   The Acc can be defined in these terms as: 

 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
      (9) 

 

Precision: indicates how many samples where classified correctly among samples 

classified as positive. It is the ratio of true positive (TP) divided by the sum of the TP and 

false positives (FP). 

 

      Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
       (10) 
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Recall or Sensitivity: It is the ratio between TP divided by the sum of TP and false negatives 

(FN).  It is called sensitivity in binary classification. 

                       Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (11) 

 

F-Score: considers both recall and precision and it is a good way to evaluate how a 

classifier behaves.  It is computed as: 

Fβ =
Precision∗recall∗(1+β2)

Precision+recall∗β2
     (12) 

 

where 𝛽 is a parameter that controls the importance given to the precision and recall.  When 

equal importance is given to both metrics, then 𝛽 = 1, therefore, 𝐹1 −measure is defined 

as: 

F1 =
2∗Precision∗recall

Precision+recall
      (13) 

 

Receiver operative characteristic (ROC): It is a tool used to evaluate discriminate effects 

among various methods. To plot the ROC curve, it is necessary first to obtain sensitivity 

and specificity values from data under consideration and normalize them into the same 

equal interval [80].  Specificity (SP) is defined as follows: 

 

𝑆𝑃 =  
𝑇𝑁

𝐹𝑃+𝑇𝑁
        (14) 

 

The ROC (probability curve) plots the TP rate (recall) against the FP rate, providing also a 

way to compare two classifiers with each other by measuring the area under the curve 

(AUC).  Figure 18 shows the ROC AUC of a classifier.  If the classifier is 100% correct, 

would have a ROC AUC of 1 represented by the curve plotted in blue, in this case two 

classes are distinguished.  The red line represents a situation when the model does not have 

the capacity to distinguish between two classes. 
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Figure 18.  ROC AUC. A classifier that is 100% correct would have a ROC AUC of 1 [147] 

  

The following section describe the use of machine learning techniques for the two scenarios 

that we are exploring in this project, namely remote sensing and wearable sensors. 

 

3.4.  Machine learning applications in remote sensing and wearable sensors 

In the area of remote sensing, the applications of machine learning are diverse and include 

different domains such as trace gases, aerosol products, vegetation indices, ocean products, 

characterization of rock mass, liquefaction phenomenon, ground motion parameters and 

the interpretation of the remote sensing images [64].  Some examples are the estimation of 

the typhoon rainfall over ocean using multivariable meteorological satellite data [65], 

monitoring of water quality using remote sensing [66], mapping of base-metal deposits 

[67], image thresholding for landslide detection [68] and soil moisture distribution analysis 

[69]. Machine learning application in remote sensing dates back to the 90’s with Huang 

and Jensen [70], [71], who built a knowledge-based data solution using minimal input from 

human experts and then created decision trees to infer the rules from the human input for 

the expert system. The generated rules were used at a study site on the Savannah River and 

the study demonstrated that results yielded the highest accuracy compared to conventional 

methods at that time [70].  In general, machine learning becomes an important tool to solve 

various problems in remote sensing like [72]: 
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a. Complexity in data/image fusion or merging for higher spatial and temporal 

resolution. 

b. Feature extraction of different environmental quality images. 

c. Cloud contamination, image reconstruction and cross-mission data merging  

d. The design of integrated detection support systems.  

Classification maps are the main product of remote sensing image processing. In the last 

years, data-driven approaches have gained relevance in the remote sensing community and 

non-parametric methods have demonstrated good performance [73].   

 

There are several characteristics of geoscience applications that present a challenge and 

may limit the usefulness of traditional machine learning algorithms for knowledge 

discovery. They occur primarily in three situations [74]: first, there are some inherent 

challenges arising from the nature of geoscience processes. For example, objects that have 

amorphous boundaries in space and time, showing non-stationary highly multi-variate 

characteristics, and often involved in interesting but rare events. Second, data have multiple 

resolutions of space and time, and are impacted by varying degrees of noise, are 

incomplete, and present uncertainties.  Third, in the case of supervised learning, the small 

sample size (e.g., small number of historical years with adequate records) becomes a 

challenge, as does the scarcity of standard ground truth in most geoscience applications. 

 

These problems are discussed in more detail in Chapter 6. Authors in [74] report three 

major categories of challenges for applying machine learning techniques in geoscience and 

remote sensing: challenges inherent to the geoscience process, challenges related to data 

collection and challenges related to the paucity of samples and ground truth information.  

These are summarized in Table 5.   

 

A second type of application involving machine learning in this thesis is related to the 

recognition of human locomotion by processing information recorded with wireless 

wearable sensors.  Body activity recognition using the wearable sensor technology has 

drawn more and more attention over the past few decades.  The complexity and variety of 
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body activities makes it difficult to fast, accurately and automatically recognize body 

activities [75]. 

 

Challenge type Constraint 

Geoscience process Objects with amorphous boundaries 

Spatiotemporal structure 

High dimensionality 

Heterogeneity in space and time 

Interest in rare phenomena 

Data acquisition Multi-resolution data 

Noise, incompleteness and uncertainty 

Paucity of samples and 

ground truth 

 

Small sample size 

Paucity and ground truth information 

 

Table 5.  Machine learning challenges in geoscience and remote sensing [74] 

 

The application of machine learning techniques over data obtained via wearable sensors 

applications is described in [54]. The authors reported on human activity recognition 

systems based on supervised learning approaches, with overall accuracy between 84% and 

97.5%, in applications related to exercise analysis and monitoring of patients with heart 

disease, diabetes and obesity, with data gathered on a daily or weekly basis. The authors 

also reported applications based on semi-supervised learning techniques with an overall 

accuracy up to 96.5%. Some of these results were obtained by using a training dataset 

containing 2.5% of the total amount of data and employing multi-graph algorithms and 

support vector machines (SVM) combined with multiple eigen-spaces. This approach is 

close to our approach, since we also make use of eigenvalues (scores) produced by 

principal component analysis (PCA). Other learning techniques, like decision trees, 

Bayesian and neural networks, fuzzy logic, Markov models and boosting [76] have also 

shown significant potential in wearable sensing, especially when dealing with problems 

like segmentation (determined by the variability and the periodicity produced by human 

activity) and classification [54, 77].  In human activity recognition, data collection with 
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varieties of sensors is preceded by other data analytics phases such as pre-processing, data 

segmentation, extraction of salient and discriminative features, and finally classification of 

activity details [78]. Although the research on activity recognition is beneficial from the 

perspective of wireless sensors’ unobtrusiveness and deployment flexibility, it also faces 

major challenges [77], as presented in Table 6.   

 

Tables 5 and 6 exhibit the major challenges for machine learning applications using 

spatiaotemporal information registered by remote and acceleration sensors.  In general, in 

this type of problems, the accuracy of data models will strongly depend on the selection 

and application of an adequate data preparation process that mitigates the negative effects 

produced by the constraints presented in Tables 5 and 6.  

 

Challenge type Constraints 

Data acquisition  

process 

Noise, incompleteness and uncertainty 

Industry manufacturing standards 

Feature extraction 

Activity signal pre-processing 

Inherent to 

phenomenon 

Motion during transition period between two activities. 

Insufficient training set  

Model training 

Location and orientation of the wearable sensor   

User dependent 

model 

Subject sensitivity 

 

Table 6.  Machine learning challenges in wearable wireless sensors [77, 78] 

 

The complex problem of recognizing human activity has motivated different groups of 

researchers to benchmark different real-world, multi-mode, non-stationary scenarios with 

wearable sensing solutions. As mentioned in Chapter 2, machine learning provides an 

excellent approach to improve model accuracy, based on data structures that might 

dynamically change, while dealing with complex and large datasets acquired from a 

particular environment [12].  One critical problem found in the design of data solutions for 
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recognizing human locomotion is the limitations (e.g. noise, jitter, interference, etc) 

introduced in the data acquisition process and their repercussions during the selection of 

the training dataset [54].  Figure 19 shows the taxonomy of human activity recognition 

(HAR) systems discussed by [54].  Challenges and other details were discussed in section 

2.5 

 

 

Figure 19.  Taxonomy of HAR system [54] 

3.5 Conclusions 

In this chapter, we described the learning process and the types of challenges faced when 

using different machine learning methodologies in the design of multimodal systems.  We 

found the use of three types of learning frameworks: CRISP-DM, SEMMA and general 

learning process, which have been deployed to improve the process of problem analysis, 

mitigating the problem of having random or false discoveries that bias the expected results. 

We also discussed classical and also other machine learning methodologies such as 

iterative learning, on-line learning and reinforcement learning, placing special emphasis on 

the iterative learning.  Finally, we presented the most relevant challenges found in machine 

learning when modeling data solutions in geoscience and remote sensing as well in the 

recognition of human locomotion by using wearable wireless sensors. 
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CHAPTER IV: OBJECTIVES AND 

CONTRIBUTIONS 

 

This work aims to develop a machine learning approach to automate the process of 

modeling multimodal systems, with application in both regression and classification 

problems. To demonstrate the validity of the proposed iterative learning framework, we 

solve two problems:  

a. The estimation of chlorophyll using data extracted from remote sensing platforms. 

b. The recognition of human locomotion activities using data collected using wireless 

wearable sensors.  

In this context, this thesis has a general objective and four specific objectives as presented 

below. 

 

4.1  Research objectives 

4.1.1 General objective 

The ultimate objective of this research is to develop an automated process for modeling 

multimodal systems using an iterative machine learning approach.  We aim at building an 

iterative process that progressively adjusts the previous error found by the learner until 

obtaining the most accurate data model on each iteration.  The objective of our research 

work further extends to the verification of the developed process by solving engineering 

tasks that are representative of the range of problems that can be successfully addressed by 

the proposed approach.   The first problem that will be investigated is the issue of building 

analytical data models for the estimation of chlorophyll concentration –a challenging task 

due to the complex interaction of biophysical variables affecting the accuracy of the model, 

and the elaborated sensor data processing procedures.  The second problem investigates 

the problem of building a data model in a non-stationary environment, when human 

locomotion recognition is done by using acceleration sensors readings.  Two major issues 

are addressed in this problem, the difficulty to deal with motion during transition period 

between two activities and the presence of noise that alters the resulting readings. 
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4.1.2  Specific objectives 

a)  Integration of a mechanism based on a multimodal hypothesis to assess the 

occurrence of multimodality. 

Our intention is to integrate in our approach a mechanism based on multimodal hypothesis, 

which determines the occurrence of multimodality, instead of reducing the problem to a 

unimodal hypothesis such as proposed in [93, 94, and 95].  In order to reach this goal, we 

propose to make use of the Akaike information criterion (AIC) and the Bayesian 

information criterion (BIC) to weight contributions provided by each modality. 

 

b)  Development of regression models spanning the entire input domain  

We aim to improve the precision of the model by developing an iterative process that 

combines the regression analysis with data classification in order to effectively deal with 

multi-resolution data spanning the whole input domain.  These type of technical problems 

are presented in [74].      

 

c)  Enhancement of the level of robustness to variations in the quality of input data 

The data acquisition process plays an important role when extracting training samples and 

when the variations in the quality of the acquired data have a negative impact on the feature 

extraction process and the resulting data model. We thus aim at mitigating the influence of 

the noise present during the process of data acquisition by using an iterative learning 

process that extracts only the best training samples from previous instances and then use 

them to improve the task performance in the next iteration.   

 

d)  Validation of the proposed approach when modeling multimodal systems in 

regression problems  

We propose the application of our approach in solving the problem of the assessment of 

chl-a concentration using in-situ measurements in Lake Winnipeg in Manitoba, Canada 

and optical datasets collected for MODIS and MERIS in a series of lake surveys carried 

out in the years 2002–2004. 
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e)  Validation of the proposed approach when modeling multimodal systems in 

classification problems using temporal data. 

We propose the application of our approach in solving the problem of classifying human 

locomotion activities, such as walk, stand, lie and sit using readings acquired from body–

worn sensors available in the open source dataset Opportunity [6].  

 

 4.2  Contributions 

The proposed modeling framework covers a wide spectrum of problems, primarily 

regression and classification, and improves the accuracy of the data model regardless the 

size and quality of the dataset [74, 77, 78]. The proposed approach reduces significantly 

the training size and the time needed to build accurate data models.   

 

The proposed data-driven architecture combines unsupervised (regression and clustering) 

with supervised iterative learning to identify, through an iterative process, the selection of 

the best candidate training samples.  Indeed, introducing a sample selection mechanism 

improves the model accuracy and brings a two-fold benefit: reduction of the training 

process time, and minimization of the problem of overfitting and of the complexity of the 

classifier.   

 

The proposed methodology can be adapted to practically any classification or regression 

problem. In such case, changes in the pre-processing phase can be easily implemented by 

using any of the data mining solution discussed in Chapter 3, such as CRISP- DM or 

SEMMA.     

  

One of the most promising applications of our framework are multiple areas of 

environment monitoring, management and control, thanks to the reduction of the operation 

costs required when collecting in-situ samples and the shortening of the intervals between 

data gathering processes whilst speeding up the analysis of the collected information with 

a quasi-real time response.     
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Our framework has also a potential for extensive application in human locomotion 

recognition and particularly in monitoring the elderly with limited range of motion and the 

athletes to follow up on their performance. This is because our framework is a user-

dependent data model, thus becoming a valid option for clinical treatment, where 

diagnostics are customized according to user’s needs.   
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CHAPTER V: METHODOLOGY 

 

This chapter presents an overview of the proposed methodology, which has been developed 

in order to reach the thesis objectives.  The methodology, in its core, consists in using an 

iterative classification process that extracts successively the best training candidates 

belonging to each mode, classifies the given dataset into binary classes and selects new, 

expanded sets of labeled data. The models generated for each class and their joint error are 

compared with the error of the previous set of models and the model with the lowest 

misclassification error is designated as the resulting data model.    

 

In general, our methodology focuses on generating datasets associated with each statistical 

modality of the given dataset, spanning the entire instance space for each modality. The 

core component in our methodology is therefore the training dataset extraction process, 

which ensures a high level of robustness to variations in the quality of input data and 

consequently leads to an improvement in the data model accuracy.  We can distinguish 

four building blocks of our methodology: 

 

• The assessment of the use of the multimodal hypothesis in building a precise model 

from the application dataset.  To validate this part, we use Akaike information 

criterion (AIC) and the Bayesian information criterion (BIC). 

• The mechanism to select candidates from the input data, used later in building a 

training dataset, which can optimize the learner’s prediction process. 

• The iterative classification process, which successively classifies the data and 

selects new, expanded sets of labeled data. 

• The model selection with the lowest error or misclassification rate. 

 

The general architecture, which includes the multimodal system modeling methodology, is 

presented in Figure 20 and described in sections 5.1 through 5.4.    
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Figure 20.  Block diagram for proposed framework 

 

Overall, four core processes can be distinguished in our general modeling framework: the 

data pre-processing process is required to prepare raw data by removing noise, outliers and 

spurious values, etc. The multimodality assessment process allows us to validate the 

occurrence of multimodality in the given dataset.  Depending on the problem type (linear 

regression or classification), we use an appropriate partitioning mechanism that extracts 

the initial training dataset (made up of the best candidates). This phase is called the training 

samples extraction process. The iterative learning process consists in classifying data 

successively into binary classes, using a portion of the training dataset in order to generate 

a hyperplane that defines a separation curve used to determine the re-labeled data further 

for estimation.  In each iteration, the resulting data model is stored, and its labeled data 

used into the next iteration.  The process ends when all training samples are completely 

used by the iterative learning phase. The model selection focuses on getting the lowest 
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modeling or misclassification error produced by each of the resulting models found in each 

iteration.        

 

The implementation of this general framework follows the CRISP-DM standard presented 

in Chapter III, section 3.1.  In our model, the business understanding phase corresponds to 

the multimodality assessment process, the data preparation phase is equivalent to the 

training dataset extraction process, and the evaluation and modeling phases with the 

proposed iterative learning process. 

 

5.1.  Data pre-processing 

This initial process includes data cleaning, data formatting, and problem-specific data 

transformations. The data pre-processing step is also required to select relevant features.  

In order to deal with the problem of high dimensionality, techniques such as PCA and 

singular value decomposition (SVD) are applied in this phase.  In problems related to multi-

sensor analysis of dynamic systems, additional steps such as timestamping in a consistent 

manner, resampling, filtering and de-noising of the raw data are required to enhance the 

precision of the resulting data models.   

  

5.2  Multimodality assessment  

The multimodality assessment process determines the number of modes existing in the 

given data distribution.  We use Akaike information criterion (AIC) and the Bayesian 

information criterion (BIC) to detect the optimal number of modes.  The process starts by 

creating a Gaussian mixture model, and continues by increasing the number of modes until 

getting the minimum value of AIC and/or BIC; the minimum value determines the quality 

of the best model.  In our work, BIC was used to agree on the results obtained through AIC.  

That is because BIC penalizes the model complexity more severely than AIC. 

 

The Akaike information criterion is a tool used to measure the model quality based on the 

maximized likelihood estimate of a data model.  The idea of AIC is that a chosen model is 

correct if it can sufficiently describe any future data with the same distribution.  In our 

work, AIC was used to compare model performance produced by statistic modalities.  The 
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value  of  AIC  for  a  given  model  is  a measure of the loss of information which results 

from the use of the model to explain a particular variable or pattern [149].  The AIC is 

defined as follows: 

𝐴𝐼𝐶 = −2(𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝐾   (15) 

 

where K is the number of estimated parameters included in the model and log-likelihood 

of the given data.  The lowest AIC value will indicate the best model among all models 

specified for the dataset [149].  In our work, AIC was used to determine the quality of each 

model over Gaussian distributions produced by each statistical modality (i.e., bi-modal in 

the case of our first experiment as shown in Chapter VI), therefore, the most accurate model 

will have the smallest AIC value.  We used an AIC score defined as follows [150]:      

 

𝐴𝐼𝐶 =  log 𝔣 +
2k

𝑁
      (16) 

 

where 𝔣 is the loss function, 𝐾 is the number of estimated parameters, and 𝑁 is the number 

of values in the estimation dataset.  The loss function is given by [150]: 

 

𝔣 = 𝑑𝑒𝑡 [
1

𝑁
∑ 𝜀((𝑡, 𝜃𝑁))(((𝑡, 𝜃𝑁)))

𝑇𝑁
1 ]    (17) 

 

where N is the number of values in the estimation dataset, 𝜀((𝑡, 𝜃𝑁) represent the prediction 

error given 𝜃𝑁 estimated parameters.  A more robust criterion but not necessarily better 

than AIC is the Bayesian information criterion (BIC).  In general terms, BIC uses the same 

principle of the optimal loglikelihood function value.  However, it includes a penalty 

function that depends on the sample size.  BIC is formalized as [151]: 

 

  𝐵𝐼𝐶 = −2(𝑙𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 𝐾 ∗ log (𝑁)   (18)  

 

where K is the number of estimated parameters and N is the number of samples.  The lowest 

BIC score is produced by the most accurate model.  In equation (18) the term 𝐾 ∗ log (𝑁) 

is known as the penalty term that grows with the number of samples.   
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5.3  Training samples extraction: the initial partition 

Once the number of modes in the data set is determined, our process continues with the 

initial partition process, which extracts the training samples to be used during the training 

process.  For regression problems, the initial partition consists in generating a regression 

curve (linear, exponential, and polynomial) from the given data, and then extracting the 

samples with the largest Euclidean distances that are measured between each data sample 

of the given data and the regression curve, as depicted in Figure 21.  This strategy is called 

policy layer, where the largest distances are defined as those resulting distances that are 

larger than mean plus the standard deviation of all the Euclidian distances on the given 

data.  Figure 21 illustrates a bimodal system with two classes.  Samples coloured in yellow 

are labelled as Class 1, dots in blue are labelled as Class 2.  Dots in red represent the 

regression curve.  

 

The same principle is used for classification problems.  However, the policy layer is 

determined by the distance between each sample in the input data and its cluster’s centroid 

instead of using a regression curve.  Figure 22 exhibits the initial partition for classification 

problems. The number of centroids is defined according to the number of modes 

determined in the modality assessment process (see Chapter VI, section 6.5 and Chapter 

VII, section 7.6) 
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Figure 21.  Initial partition using linear regression for a bimodal data distribution.  Yellow dots belong to 

Class 1 and blue dots belong to Class 2.  The regression curve is represented by red dots. 

 

 

 

Figure 22.  Initial partition using centroids.  Red dots belong to cluster 1 and blue dots to cluster 2. 
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5.4  Iterative learning process 

The aim is to build a process that classifies data successively into binary classes and selects 

new, expanded sets of labelled data. This process can be described as follows: The learner, 

a support vector machine algorithm (SVM), receives a fraction of the training samples 

found in the initial partition (5.3).  The size of this training subset depends on the size of 

the training dataset and the number of desired iterations: 

 

Trainig subset size = 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒 ∗ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑      (19) 

 

where threshold is  
1

# 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 , a parameter used to control the number of samples in 

each iteration (see Chapter 6, Figure 30). The number of iterations, noted as m is defined 

in section Chapter VI, section 6.9.  The training subset is used to select the best combination 

of hyper-parameters such as regularization parameter (C), tolerance (𝜀) and kernel 

parameters (e.g. γ) via cross-validation.  The resulting model is used to predict over the 

unseen data.  This process is repeated, by increasing the size of the training subset, until 

reaching the size of the training dataset of the initial partition.   

 

By comparing the data model generated by a current iteration and its joint error with the 

error of the previous set of models, we take advantage of the concept of the maximum 

margin in SVM.  In this case, only those class members with single class membership can 

define a better line of separation in reference to those members where class membership is 

difficult to determine, for example in regions with high data density.   

 

The important feature of SVM, as opposed to probabilistic type classifiers, is that the 

discriminative power of the classifier is defined by a set of support vectors, i.e., samples 

located close to the separating hyperplane, and not on the parameters of unknown 

distributions of multi-class data. This strategy corresponds to the maximum margin 

principle.   

 

A two-class SVM can be defined as follows: let 𝑥𝑖⃗⃗  ⃗ ∈ 𝑅
𝑑 be a multidimensional empirical 

input vector, and 𝑦𝑖 ∈ {−1,1} the label of the class which is assigned to each input vector. 
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The problem consists in assigning a label to each vector according to its class, -1 or +1. 

The space 𝑅𝑑 is split into two regions by a hyperplane 

 

  𝑥𝑖⃗⃗  ⃗. �⃗⃗� + 𝑏 = 0    (20) 

 

where  �⃗⃗�  is normal to the hyperplane and b is a constant.  If 𝑥+ is a sample labeled as 1 

and 𝑥− is labeled as -1, the widest margin that produces the optimal separation of positive 

and negative examples is defined as finding the maximum of: 

 

    (𝑥+⃗⃗ ⃗⃗ − 𝑥−⃗⃗ ⃗⃗ ) (
�⃗⃗� 

||�⃗⃗� ||
) =

2

||�⃗⃗� ||
    (21) 

 

subject to 𝑦𝑖(𝑥𝑖⃗⃗  ⃗. �⃗⃗� + 𝑏) − 1 = 0 ∀𝑖.  Lagrange multipliers and the Wolfe theorem are used 

to solve the previous problem [122].  The optimal margin  𝐿𝑑 is obtained from: 

 

𝐿d =
1

2
||�⃗⃗� ||2 − ∑ 𝛼𝑖(yi(xi⃗⃗⃗  . w⃗⃗⃗ + b) − 1)

𝑙
𝑖=1    (22) 

where: 

 �⃗⃗� = ∑ 𝛼𝑖yi
𝑙
𝑖=1 xi⃗⃗⃗   and ∑ 𝛼𝑖𝑦𝑖

𝑙
𝑖=1 = 0, 𝛼𝑖 > 0   (23) 

 

It can be noticed that the optimal margin depends on dot products produced by all samples 

in the input space.  This solution works fine when samples in the input space are linearly 

separable. The problem of linear separability is dealt with by applying the “kernel trick” 

[123].  By introducing kernel functions, a non-linear problem defined in the input space 

can be transformed into a linear problem in a high-dimensional feature space. 

Consequently, by operating in the kernel space  

 

𝑘(xi⃗⃗⃗  , xj⃗⃗⃗  ) = 𝜑(xi⃗⃗⃗  ). 𝜑(xj⃗⃗⃗  )     (24) 

 

the optimal margin will be reduced to: 

 

𝐿𝑑 = ∑ 𝛼𝑖 −
1

2
∑ 𝛼𝑖𝛼𝑗yiyj𝑘(xi⃗⃗⃗  , xj⃗⃗⃗  )𝑖,𝑗

𝑙
𝑖=1    (25) 
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The margin analysis is a vital part in the modeling framework because by fixing the 

decision rule in each iteration it determines the way samples are classified as in Figure 23.  

In each iteration the margin is adjusted according to the labels that are obtained in the 

previous iteration. In the first iteration, they are obtained from the initial partition. The semi 

supervised learning strategy consists, therefore, in finding a subset of best candidate 

samples, which are most distant to the partitioning curve and produce a maximally large 

margin. While iterating, the learning process produces new, larger sets of labeled data, a 

new separation line with a narrower margin, and an updated data separation between the 

two classes. 

 

 

Figure 23   Margin 𝐿𝑑  is adjusted on each iteration 

 

This approach is shown in Figure 24 for an iterative process applied to a bimodal data 

distribution.  Lines in red illustrates the separation plan generated by a linear SVM 

classifier.  Note that the model is progressively adjusted by increasing the number of 

training samples as found in section 5.3.  These samples (circled in orange) are the ones 

with the largest Euclidean distances identified during the initial partition.   The model with 

the lowest misclassification rate is the winner model.   
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The general pseudo-code is shown in Figure 25.  The SelectClassifierParameters 

procedure, displayed in Figure 25, takes place after performing the partitioning procedure 

and uses a uniform selection grid to find the best combination of parameters.  These 

parameters can be extracted from a k-fold cross validation procedure, with k=5, and thus 

using four subsets for training and one subset for testing.  This strategy allowed us to set a 

range of values for C and γ organized in a grid of values to enable the selection the pair of 

parameters which has the lowest training error.  In our case, we use C = (2−5, . . , 27) and 

γ = (2−5, . . , 27). 

 

 

 

 

 

 

 

Figure 24.  Iterative learning process in three iterations. Red line defines the separation hyperplan 

generated by training candidates circled in orange (a,b,c).  The best model is shown in (d)   
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5.5  Conclusions 

Our proposed mechanism of selection, based on the largest Euclidian distance, measures 

the distance between each sample and a given partition curve (in regression) or cluster’s 

centroids (in classification), locating the samples with a unique class- membership regions, 

such as shown in Figure 23.  This concept combined with the SVM maximum margin 

definition, is applied to build a decision function that is fully specified by the training 

dataset, and able to identify those samples that “matter” in defining the separating line and 

consequently improving the prediction mechanism.     

 

It is worth mentioning that we take advantage of hybridizing in our approach both 

unsupervised and supervised learning methods using key learning concepts from each of 

them: learning how to extract the structure from the given data (unsupervised), and learning 

Figure 25.  General pseudo-code for the proposed framework 
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to predict outputs from the input data (supervised).  By extracting a most coherent training 

dataset, we also optimize the time required for training - a serious disadvantage for non-

parametric algorithms because of the need for a significant number of samples during the 

training phase.  More implementation details are presented in Chapters VI and VII.  
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CHAPTER VI: SOLVING A REGRESSION 

PROBLEM 

 

 

In this chapter we present the application of our modeling framework in the problem of 

estimating chlorophyll concentration in large aquatic areas using remote sensing 

technologies, a problem that has challenged researchers for years due to the complex 

interactions of biophysical variables and their direct impact on the accuracy of the model. 

 

Obtaining precise models in environment monitoring is important. The fact that we are 

obtaining data from different remote sensing (RS) sources, often from different data 

acquisition missions and different time periods, makes the environment modeling process 

especially prone to statistical multimodality.  A wide range of chlorophyll concentration 

values and different types of waters with contrasting optical properties, combined with the 

interaction of multiple components in the optical data flow make this environment 

monitoring problem especially difficult from the standpoint of developing precise and 

robust regression models. 

 

6.1  Monitoring of chlorophyll concentration in large aquatic areas 

Chlorophyll is a color pigment, the molecule of which are used as photoreceptors in the 

process of photosynthesis.  Chlorophyll type a (chl-a) is one of six different chlorophylls, 

and it is the primary molecule responsible for photosynthesis. It is found in plants, algae, 

and oxygenic photosynthetic organisms (phytoplankton) that sustains all terrestrial life by 

producing oxygen. 

 

From the standpoint of the quality of inland waters, chl-a is frequently used as the indicator 

of the ecological health of aquatic environments. Nutrient enrichment, occurring in many 

water basins surrounded by the agriculture land, causes water eutrophication by reducing 

the oxygen levels and increasing the concentration of organic matter [96].  Therefore, chl-
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a concentration can act as a water eutrophication indicator [97], tracking phytoplankton 

biomass [98].  

 

Precise levels of chl-a concentration can be estimated with in-situ methods, such as 

fluorometry and chromatography, or using remote sensing, which uses different techniques 

to retrieve the chl-a concentration from selected spectral bands, for example red and near 

infra-red regions of the light spectrum. Remote sensing technologies are widely used for 

monitoring water quality over large aquatic basins due to the cost and flexibility advantages 

as compared with in-situ methods. However, they require the use of sophisticated data 

processing techniques. 

 

Full global coverage for ocean color products was first provided by the low-resolution Sea-

viewing Wide Field-of-view Sensor (SeaWiFS). Two medium-resolution sensors have 

been widely used for determining chl-a concentration in in-land waters: The Moderate 

Resolution Imaging Spectroradiometer (MODIS), launched in 2002 on the Aqua satellite, 

and the Medium Resolution Imaging Spectrometer (MERIS), launched in 2002 on the 

ENVISAT platform. Recent improvements applied to the MODIS products are discussed 

in [99]. 

 

The level of concentration of chl-a is determined by the amount of phytoplankton biomass 

that produces distinct changes in water color by absorbing and scattering the incident light 

[4].  In the open-ocean Case-1 water, chl-a concentration can be derived from the blue and 

green spectral bands.  Case 1 is that of a high concentration of phytoplankton compared to 

other particles. In contrast, a suspension of nonliving material with a zero concentration of 

pigments is called the Case 2 water [148].  Overlapping absorptions by dissolved organic 

matter limit the utility of the blue spectral region. Therefore, in turbid productive water, 

spectral algorithms which are based on the reflectance in the red and the near-infrared 

(NIR) spectral regions are often preferable [100].  

 

An advantage of the MERIS sensor is the availability of a spectral channel at 708 nm, 

commonly used to detect fluorescence wavelength peaks, which are emitted by the 
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phytoplankton’s pigment at that band [101].  MODIS has significant advantages in the 

number of bands in the IR portion. However, the absence of a spectral channel at 708 nm 

makes it less reliable for applications in turbid and productive inland waters [102]. The 

study reported in [103] advocates the use of some improved approaches, such as vicarious 

cross-calibration method, to improve the poor noise value of MODIS shortwave IR (SWIR) 

bands [103]. An improved SWIR iterative algorithm for MODIS data when applied to 

monitor the water quality in Lake Taihu was presented in [104]. 

 

6.2  Modeling chl-a estimation using remote sensing techniques 

To estimate chl-a concentration from optical satellite imagery, indices derived from the 

shape of the spectral characteristics are used. Two examples of empirical models based 

upon reflectance band ratios are the ocean chlorophyll 2 algorithm (OC2v4) and the ocean 

chlorophyll 4 algorithm (OC4v4), which are frequently used with reflectance data collected 

by SeaWiFS [105].  The OC2v4 algorithm uses two bands (490, 555 nm), located in the 

blue and green portion of the light spectrum.  The chl-a concentration is predicted from the 

band ratio 𝑅𝑠(490)/𝑅𝑠(555) by plugging the obtained value into a fourth order 

polynomial function.  In a similar manner, OC4v4 uses four bands (443, 490, 510, and 555 

nm) [106].  The chl-a concentration is assessed by determining the maximum band radio 

(MBR) produced by 𝑅𝑠(443)/𝑅𝑠(555), 𝑅𝑠(490)/𝑅𝑠(555) or 𝑅𝑠(510)/𝑅𝑠(555) [107].   

 

The utility of reflectance data collected in the red (610 nm - 680 nm) and the near-infrared 

(NIR) spectral regions (790 nm – 890 nm) was demonstrated in [108, 109]. The chlorophyll 

concentration can be estimated by NIR-Red parametric models [4], such as the two and 

three band models are:   

𝐶ℎ𝑙(𝜆) = 𝑓 (
𝑅𝜆3
(𝑅𝜆1)

)       (26) 

 

       𝐶ℎ𝑙(𝜆) = 𝑓 (𝑅𝜆3 (
1

𝑅𝜆1
−

1

𝑅𝜆2
))    (27) 

 

Two algorithms directly related to the chl-a concentration phenomenon have proven their 

usefulness: the maximum chlorophyll index (MCI) and the fluorescent line height (FLH).   
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The spectral model based on MCI or FHL associates the chlorophyll concentration with 

the height of the reflectance peak produced in the wavelength where the fluorescence is 

emitted by the phytoplankton’s pigment [110] and at nearby bands, where the fluorescence 

phenomena is reduced or absent.  These peaks are detected in bands 709 nm (MCI-MERIS) 

[111] and 673 nm (FLH-MODIS) [112]. In general, MCI and FHL, also called line height 

algorithms, are based on the reflectance spectral response that is retrieved by a linear 

interpolation of two baseline bands, and can be expressed as follows [113]: 

 

    𝐶ℎ𝑙(𝜆) = 𝑅(𝜆) − 𝑅(𝜆−) − {𝑅(𝜆+) − 𝑅(𝜆−)} × [
𝜆−𝜆−

𝜆+−𝜆−
]    (28) 

 

where 𝑅(𝜆) is the value of the reflectance in a central wavelength (λ) band, and λ+and λ−  

are the neighbor bands preceding and succeeding the central wavelength band. MCI 

indicates the presence of chl-a against a scattering background by correlating the height of 

the peak at the 709 nm band with a linear baseline defined by radiances at the wavelengths 

of 681 nm and 753 nm [114]: 

 

𝑀𝐶𝐼 = 𝑅𝑠(709) − 𝑅𝑠(681) − [
(709−681)

(753−681)
(𝑅𝑠(753) − 𝑅𝑠(681))]  (29) 

 

Though MCI applies primarily to the MERIS satellite sensor, a spectral response based on 

FLH can be obtained by computing MERIS bands at 680.5 nm, 664 nm and 708 nm [115].  

In the case of MODIS, FLH can be determined by using bands 13, 14 and 15, and can be 

calculated as follows [116, 117]: 

 

𝐹𝐿𝐻 = 𝑅𝑠(678) − 𝑅𝑠(748) + [
748−678

748−667
] (𝑅𝑠(667) − 𝑅𝑠(748))   (30) 

 

The precision of measuring the chl-a concentration depends not only on the selection of 

the appropriate index, but also on such factors as water turbidity, depth, and temperature.  

In deep ocean waters, the optical properties are more directly affected by phytoplankton 

and the observed spectral response can be more easily related to the concentration of chl-a 

[118]. When observations are done over inland waters (Case-2 waters), the observed 

spectral response can be markedly affected by other water constituents, such as the 
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concentration of total suspended solids (TSS), dissolved organic carbon (DOC) and 

particulate organic carbon (POC). Their concentrations do not necessarily co-vary with the 

chl-a concentration. Thus, retrieving water constituent absorption coefficients in turbid and 

hypereutrophic waters from remote sensing reflectance data is a challenging issue [119].  

 

Apart from the problem of optical characteristics of the water, there are some important 

practical restrictions intervening in the process of building precise data-driven models. The 

nonstationary character of environmental phenomena, the often longtime of data 

acquisition missions, biases introduced by pre-processing procedures, and the use of 

different types of sensors can generate datasets with multimodal statistical distributions. 

Data multimodality can markedly degrade the precision of empirical models. Another 

general problem in verifying environmental models, in this case, water quality models, is 

the scarcity and high cost of obtaining the ground-truth information for different water 

types and conditions. 

 

6.3  Data pre-processing 

Our analysis was performed on two optical datasets that were collected in Lake Winnipeg, 

Manitoba, Canada, from locations in the zone UTM easting 487130 - 684992 and UTM 

northing 5598980 - 5965192. Lake Winnipeg, covering an area of 24,514 square 

kilometers, is diverse both geographically and in terms of optical characteristics of its 

water. The South Basin and the east shore of the North Basin are turbid regions, with high 

concentrations of suspended solids. Widespread plankton blooms have developed mostly 

in the remaining parts of the North Basin. High levels of dissolved organic carbon 

concentrations (DOC) occur near the mouths of tributary rivers, especially those draining 

from the agriculture region to the east of the lake.  In situ chl-a measurements were acquired 

in a series of lake surveys carried out in the years 2002–2004 during the months of June 

and August, using the equipment on board of MV Namao operated by the Lake Winnipeg 

Research Consortium.  

 

The chlorophyll biomass was estimated by Fluoroprobe (manufacturer: bbe-Moldaenke, 

Germany) at 5-minute intervals. The chl-a concentration was analytically determined by 



81 

 

using a high-performance liquid chromatography (HPLC) method [120]. The spectral 

measurements were performed by using an ASD FieldSpec spectrometer, with the capacity 

to record radiance in 1.4 𝑛𝑚 -wide bands from 330-1050 𝑛𝑚 at 1 second intervals.  Water 

samples were taken using a van Doorn sample bottle roughly 0.1-0.3 m below the surface 

of the lake at intervals of approximately 6-7 km [121].  Collected optical data were sampled 

to the wavelengths corresponding to MERIS and MODIS satellites.  The resulting data 

were grouped in two sets of 148 measurements each: the first one in a range of 16 MODIS 

bands (412 𝑛𝑚 to 940 𝑛𝑚) and the second one in a range of 15 MERIS bands (412.5 𝑛𝑚 to 

900 𝑛𝑚).  The chl-a concentration varies from a minimum of 0.4 𝑚𝑔/𝑚3  to a maximum 

of 133.6 𝑚𝑔/𝑚3.  We processed the collected optical information using a transformation 

process that takes the optical radiance indices from the light bands where chl-a is mainly 

detected, converting them into light reflectance band ratios, in our case using two 

parametrical models: the maximum chlorophyll index (MCI) and the fluorescent line height 

(FLH).  Raw data is plotted in Figures 26a and 26b; and data transformation is shown in 

Figures 27a and 27b. Figure 26 also exhibits reflectance values collected for MODIS and 

MERIS.   
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Figure 26.  Data transformation using a) FHL for MODIS and b) MCI MERIS 
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6.4  Multimodality assessment 

Once the pre-processing process has taken place, we identified a bimodal distribution as it 

is observed in Figure 27. Points colored in magenta and blue represent two different 

modalities found in the data distribution.  This distribution is produced when MCI and FLH 

algorithms are applied to the input data domain. In this problem, we are interested in 

deploying a mechanism that determines the occurrence of multimodality based on 

statistical analysis.  The analysis of the data carried out in the next paragraphs addresses 

the multimodality issue in more detail.   

 

Assuming a Gaussian distribution for each dataset, we built Gaussian mixture models 

(GMM), aiming to obtain a generative probabilistic model discribing the distribution of the 

data (see Figure 28), instead of hyper-spherical clusters with the same radius.  In other 

words, we do not need to standardise the input variables.   In order to assess the level of 

modality that would produce the best model, the dataset was tested against two criteria, the 

Akaike information criterion and the Bayesian information criterion as described in 

Chapter 5, section 5.2.  Since both AIC and BIC are likelihood maximization criteria, the 

model with a lower AIC/BIC score value is preferred, because negative contributions from 

the likelihood are greater than positive contributions from the parameters. These results of 

the modality analysis are presented in Table 7.  
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(a) (b) 

Figure 27.  Reflectance indexes collected in Lake Winnipeg. (a) Spectral shape response for MODIS.  (b) Spectral 

shape response for MERIS  
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MODIS MERIS 

Modality AIC BIC AIC BIC 

Unimodal -364,74 -349,75 -467,88 -452,89 

Bimodal -728,71 -695,74 -874,85 -841,89 

Trimodal -762,84 -711,88 -950,08 -899,13 

Quadmodal -791,12 -722,18 -960,61 -891,68 
 

Table 7.  AIC and BIC score  

Table 7 shows resulting scores reported for MODIS and MERIS when applying AIC and 

BIC.  From the table we observe that a bimodal assumption enhances the goodness on each 

data distribution (MODIS and MERIS) with respect of the unimodal distribution.  

According to the Akaike theory, the most accurate model will have the smallest AIC score. 

Like AIC, BIC uses the optimal loglikelihood function value and penalizes more complex 

models [155], hence the most accurate model will have the smallest BIC score value.  The 

best results are shown in Table 7 (see values in red).   

 

Technically, the best scores are found in the Quad-modal distribution.  However, as shown 

in Figure 28, a few samples are located in and outside of the region circled in blue. 

Particularly for MODIS (Figure 28.a) and MERIS (Figure 28.b) we found just, two and 

three samples respectively.  Comparing these populations with the amount of samples 

significantly higher, in the regions circled in red and magenta, we conclude that the 

quadmodal distribution assumption does not describe the whole input domain precisely 

enough.  In this context, the samples located in the blue regions are not necessarily 

considered as those of different water types.  Indeed, the difference between bimodal, 

trimodal and quadmodal distributions (28,41) is marginal comparing with difference 

between unimodality and bimodality models (363,97).  This analysis, therefore, helps us 

to confirm the presence of two dominant classes along the data input domain, such as 

shown by the number of samples in the regions within the red and magenta circles and 

observed in the Figure 28. 
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6.5  Training samples extraction 

As explained in Chapter V, section 5.3, the automated modeling process receives two input 

datasets denoted as follows: the first one 𝒳 ∈ ℝ𝑛 is a multidimensional vector of 

reflectance indices, which are produced by parametric algorithms like MCI and FLH.  The 

second input denoted as  𝒴 ∈ ℝ is a unidimensional vector of empirical values of chl-a 

concentrations distributed according to a distribution 𝒟 over 𝒳 defined by f: 𝒳 → 𝒴.  Once 

modality level has been assessed, in this case a bimodal distribution, the process continues 

with the initial partition of the dataset.  

 

The initial set of labeled data consists of the best candidates, which are the instances most 

distant from an initial partition curve, in this case the regression curve produced by input 

variables 𝒳,𝒴.  This partitioning process is explained as follows.    

 

The proposed partition mechanism extracts the datasets used for building regression 

models by producing a separation curve that is further used to determine the re-labeled 

data.  Since our objective is not to obtain piece-wise models, it is important to span the 

separation line along the whole input domain. Three partitioning mechanisms are analyzed: 

linear, polynomial and exponential.  The resulting regression curves determine the initial 
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Figure 28.  Probability density function (pdf) for Gaussian mixture distributions, for normalized 

values: a) Chl-a (y) vs FLH (x), and b) Chl-a (y) vs MCI (x). 
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labels.  For simplicity, samples situated above the curve are labeled as “1” (mode 1), while 

those below the curve as “0” (mode 2).   

 

Figure 29 shows the initial separation of the MERIS dataset as produced by each 

partitioning scheme. At the same time, the initial partition curve serves as an initial 

unimodal model, which the final model results are compared with. Table 8 summarizes the 

coefficients of determination (𝑅2) obtained at the stage of the initial partition.  The same 

analysis can be extended to the MODIS dataset. 

 

 

 

PM 

mechanism 

Index # Samples in 

Mode 1  

# Samples in 

Mode 2 

𝑹𝟐 

Linear  FHL-MODIS 56 92 0.322 

Polynomial FHL-MODIS 70 78 0.657 

Exponential FHL-MODIS 62 86 0.612 

Linear  MCI-MERIS 85 63 0.637 

Polynomial MCI-MERIS 55 93 0.730 

Exponential MCI-MERIS 60 88 0.719 

 

Table 8.  Initial data partitioning for MERIS and MODIS 
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Total samples in Class 1: 55

Total samples in Class 0: 93
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Total samples in Class 0: 63
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Figure 29.  Initial partitioning for MERIS based on regression analysis a) linear, b) polynomial and c) exponential. 
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6.6  Iterative learning process 

As presented in Chapter V, section 5.4, once the initial labels are defined, the process 

continues with an iterative classification routine. Typical unsupervised learning methods, 

such as k-means algorithms, cannot be used in this case, since they limit the resulting 

clusters to some segments of the input domain. Supervised learning strategies require 

reference samples. Therefore, in absence of a reference dataset, we are confronted with the 

problem of defining a suitable set of samples.  Our approach provides a solution with two 

core features.  First, those samples that are most distant to the partitioning curve are 

assumed to have the greatest probability to belong to the class as determined by the curve, 

and second, we adopt a support vector machine (SVM) classifier, a nonparametric 

algorithm, as the partitioning mechanism operating at the subsequent stages of the learning 

process.  The reasons for this selection are: the robustness against the outliers, controlled 

by cost C (The algorithm is especially effective in problems where a number of dimensions 

is high) and the flexibility of parameter adjustments (In our case, we use both linear and 

non-linear partitioning mechanisms).   

 

6.7  The training set selection: the policy layer 

Let  𝑅𝑠 (𝑖) be the resulting unidimensional residual vector that is independently produced 

by each mode.   𝑅𝑠 (𝑖) is given by: 

 

 𝑅𝑠 (𝑖) = |𝑓(𝑥(𝑖)) − �̂�(𝑖)| ;        𝑖 = [1,… , 148] ∈ 𝒩   (31) 

 

where 𝑓(𝑥(𝑖)) is the value produced by the initial partition, and �̂�(𝑖) is the value produced 

by the current partition curve.  Let 𝑓𝑠 be a ranking function, based on the mean 𝑅𝑠  ̅̅ ̅̅ (𝑖) and 

the standard deviation 𝜎(𝑅𝑠 (𝑖)) independently applied to each mode, and defined as 

follows: 
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𝑓𝑠(𝑅𝑠  (𝑖)) =

{
 
 

 
 𝑆1(𝑖) ∶  𝑅𝑠  (𝑖) ≥ 𝑅𝑠  ̅̅ ̅̅ (𝑖) + 𝜎

𝑆2(𝑖) ∶   𝑅𝑠  ̅̅ ̅̅ (𝑖) ≤ 𝑅𝑠  (𝑖) < 𝑅𝑠  ̅̅ ̅̅ (𝑖) + 𝜎

𝑆3(𝑖) ∶   𝑅𝑠  ̅̅ ̅̅ (𝑖) − 𝜎 ≤ 𝑅𝑠  (𝑖) < 𝑅𝑠  ̅̅ ̅̅ (𝑖)

𝑆4(𝑖) ∶    𝑅𝑠  (𝑖) < 𝑅𝑠    
̅̅ ̅̅ ̅(𝑖) − 𝜎

   (32) 

 

The datasets 𝑉𝑠1,𝐶𝑙𝑎𝑠𝑠1 (𝑖) and  𝑉𝑠1,𝐶𝑙𝑎𝑠𝑠2 (𝑖) contain the items with the largest Euclidian 

distance from the partition curve. These data are considered as the best candidates and are 

included in the training dataset.  Thus, three components are associated: the distance, the 

sample 𝑓(𝑥(𝑖)) and its label 𝑦 = {1,0}. Since datasets 𝑉𝑠1,𝐶𝑙𝑎𝑠𝑠1  and 𝑉𝑠1,𝐶𝑙𝑎𝑠𝑠2  may be 

imbalanced [124], we used a strategy that includes a mechanism to control the number of 

training candidates assigned to each class.  The size of the training dataset depends on the 

minimum number of members in 𝑉𝑠1,𝐶𝑙𝑎𝑠𝑠1  and 𝑉𝑠1,𝐶𝑙𝑎𝑠𝑠2 : 

 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐿𝑦={1,0} = min{𝑙𝑒𝑛𝑔𝑡ℎ(𝑉𝑠1,𝐶𝑙𝑎𝑠𝑠1 ), 𝑙𝑒𝑛𝑔𝑡ℎ(𝑉𝑠1,𝐶𝑙𝑎𝑠𝑠2 )}   (33) 

 

Equation (33) produces the same number of samples per class in the training set. The same 

strategy is applied to the second training set, using 𝑉𝑠2,𝐶𝑙𝑎𝑠𝑠1(𝑖) and 𝑉𝑠2,𝐶𝑙𝑎𝑠𝑠2 (𝑖) in the 

iterative classification routine. With each iteration we increment the training dataset by a 

portion of the extended training set.  During each round, the algorithm calculates the 

resulting coefficient of determination R1,2
2  defined as follows: 

 

𝑅1,2
2 = [

∑ (𝑦1,𝑖−𝑦1,𝑖
∗ )2𝑚

𝑖=1
𝑚

 + 
∑ (𝑦2,𝑖−𝑦2,𝑖

∗ )2𝑛
𝑖=𝑚+1

(𝑛−𝑚)
 

∑ (𝑦𝑖−𝑦𝑖̅̅̅̅ )
2𝑛

𝑖=1
𝑛

 
]             (34) 

 

where 𝑚 is the number of members in the first class,  (𝑛 − 𝑚) is the number of members 

in the second class, and 𝑛 is the number of input data. The resulting labels and model 

parameters are stored for determining the final labeling. 
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6.8  Model selection 

The final classification results are used to obtain the empirical models. The quality of the 

models is assessed according to the value of its correlation coefficients. Once the iterative 

learning process is completed, the algorithm builds a matrix of labels with those models 

that satisfy the condition 𝑅1,2
2 ≥ 𝑅2. Each row contains the labels assigned to each sample 

during the iteration process.  The next task is to determine the most probable label for each 

sample. A probabilistic function LabelValue weighs each row in the matrix of labels, 

scoring the 1s and 0s: 

𝐿𝑎𝑏𝑒𝑙𝑉𝑎𝑙𝑢𝑒(𝑗)𝑙=1 =
∑ [𝑥(𝑖)=1]𝑛
𝑖=1

𝑛
= 𝛼𝑗 , 𝑗 ∈ [1, . . , 𝑚]   (35) 

𝐿𝑎𝑏𝑒𝑙𝑉𝑎𝑙𝑢𝑒(𝑗)𝑙=0 = 1 − 𝛼𝑗 = 𝛽𝑗 , 𝑗 ∈ [1, . . , 𝑚]    (36) 

 

where 𝑛 is the number of labels in each row, 𝑚 is the number of rows, j is the jth sample, 

and i is the ith column.  Once the scoring process is done, the label matrix is reduced to 

an 𝑚 × 2  matrix  

[
𝛼1 𝛽1
: :
𝛼𝑚 𝛽𝑚

]     (37) 

 

The values produced in (35) and (36) determine the label that is assigned to a particular 

sample.  The label assignation process is performed based on a linear range that is defined 

by three approximately equal segments.  The first segment [0-0.35], positively negative, is 

used to label samples as “0”.  The second segment [0.35-0.65] defines an uncertainty 

region. The last segment [0.65-1], positively positive, is used to label samples as “1”. In 

the case of four rounds of classification, the task of labeling the samples in the uncertainty 

segment is limited practically to breaking the parity. In our experiments, the samples with 

an even number of “0”s and “1”s were labeled according to the results of the classification 

performed using the Initial Partitioning curve. By adopting an uncertainty segment labeling 

scheme, a consistent approach is offered also for a higher number of classification rounds. 

The complete algorithm is presented in Figure 30. 
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Figure 30.  Partitioning algorithm 

 

6.9  Model performance evaluation 

The model performance is measured using the root mean squared error and the coefficient 

of determination 𝑅2.  To demonstrate the performance of the algorithm, we compared our 

results with those obtained by applying classical linear and non-linear regression methods.   
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(a)                                                                   (b) 

 

(c)                                                                  (d)  

 

(e)       (f) 

 

Figure 31.  A sequence of 7 iterations using a linear partition presented in Figure 29.  The resulting training 

sets are used on each iteration (a,b,c,d and e) to determine the best model (f). 
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Figure 31 exhibits normalized chl-a in-situ values versus the maximum chlorophyll index 

(MCI) obtained for the MERIS data.  The samples above the regression curve are 

considered members for class ‘1’and labelled as plus ‘+’, otherwise class ‘0’ and labelled 

as ‘o’.  During the initial partitioning, we found the coefficient of correlation (𝑅2 = 0,32) 

obtained when using linear regression, see Chapter VI, section 6.5, Table 8.  Next, we 

select the training set based on measuring the Euclidean distance between each sample and 

the regression line (policy layer).  Next, we use the resulting training samples to evaluate 

the data model on each iteration as shown in Figure 31 a,b,c,d,e.  Finally, using the resulting 

matrix of weights, we calculate the probability of the label each sample must have and 

generate the final model as in Figure 31.f.  The iterations 5 and 6 were arbitrary omitted in 

order to allow the reader to better trace the process and to enhance the legibility of the 

content of the Figure 31.       

 

6.10  Experimental results  

The experiments were performed on the dataset described in section 6.4 . The whole 

solution was implemented in MatLab 2016 and the SVM classifier was integrated from the  

LibSVM library, version 3.20 [152].  In order to estimate the chl-a concentration, three 

experiments were performed, based on the three partitioning mechanisms discussed in 

section 6.5: linear regression, non-linear polynomial and exponential regression.  In an 

additional experiment, the impact of different kernels on the performance of the proposed 

partitioning mechanisms was investigated.   

 

Our framework was applied over MODIS and MERIS datasets independently.   Table 9 

shows the resulting values when applying linear regression as a partitioning mechanism. 

We present two modes and the number of samples associated to each modality.  The 

number of iterations are fixed as m=(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐿𝑦={1,2}) ∗ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, where m is the 

number of training samples, 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐿𝑦={1,2} , defined in equation (32) and a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 

as defined in (15).  Through trial and error, we concluded that using a threshold of  0.25 𝜎 

provided us the best control over the number of iteration the algorithm can run.  In this case 

we have four iterations until reaching the condition m<= 𝜎(𝑅𝑠 (𝑖)) , where 𝑅𝑠 (𝑖) is defined 
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in equation (31).  Based on the resulting training size, the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 must be updated, such 

as in Chapter VII, section 7.5, where threshold was identified as 0.125 𝜎.  On each iteration, 

we select a new, expanded sets of labeled data, producing a coefficient of determination 

  𝑹𝟏,𝟐
𝟐  defined in equation (34), which measures the performance of the model.  In the Table 

9, the “Final labeling” row displays the resulting data model after applying the model 

section mechanism described in section 6.8.    

 

MCI-MERIS FLH-MODIS 

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 

 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬 
Mode I Mode II   𝐑𝟏,𝟐

𝟐  Mode 1 Mode II   𝐑𝟏,𝟐
𝟐  

1 136 12 0.7468 50 98 0.7944 

2 136 12 0.7468 55 93 0.7769 

3 91 57 0.9061 50 98 0.8006 

4 90 58 0.9072 50 98 0.8006 

Final labelling 91 57 0.9061 51 97 0.7974 

 

Table 9.  Results obtained for a linear regression partitioning 

 

We can observe that using traditional linear regression, the coefficient of determination 

calculated for MERIS-MCI was 0.637 and 0.32 for MERIS-FLH (see Table 8).  Comparing 

with values obtained with our method, the model obtained from the iterative learning 

process provides a significant improvement, especially in the case of FLH-MODIS.   

 

In the second experiment, we used a partitioning mechanism based on a non-linear 

regression with a cubic polynomial function (𝑥, 𝑥2, 𝑥3).  The results are shown in Table 

10. 
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MCI-MERIS FLH-MODIS 

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 

 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬 
Mode  I Mode II   𝐑𝟏,𝟐

𝟐  Mode I Mode II   𝐑𝟏,𝟐
𝟐  

1 126 22 0.9391 54 94 0.9002 

2 126 22 0.9391 54 94 0.9002 

3 126 22 0.9391 31 117 0.9111 

4 126 22 0.9391 31 117 0.9111 

Final labelling 121 27 0.945 32 116 0.9111 

 

Table 10.  Results obtained when applying a non-linear regression partition (cubic polynomial function) 

 

We notice an important improvement on the data model performance produced when 

implementing our method. For MCI-MERIS, the coefficient of determination was 

improved from 0.73 to 0.945, while for FLH-MODIS it was improved from 0.68 to 0.91.    

 

In the third experiment, when the exponential (𝜶𝒆𝜷𝒙)  nonlinear regression was applied as 

the partitioning mechanism, the results are shown in Table 11. 

 

MCI-MERIS FLH-MODIS 

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 

 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬 
Mode I Mode 2   𝐑𝟏,𝟐

𝟐  Mode 1 Mode 2   𝐑𝟏,𝟐
𝟐  

1 138 10 0.8656 87 61 0.8872 

2 135 13 0.8754 89 59 0.8777 

3 102 46 0.9487 89 59 0.8777 

4 115 33 0.9183 89 59 0.8777 

Final labelling 96 52 0.9621 72 76 0.8903 

 

Table 11.  Results obtained when applying non-linear regression partition (exponential function) 

 

As shown in Table 11, the values reported for both FLH-MODIS and MCI-MERIS are 

better than those obtained via non-linear regression using exponential functions.  When 

assessing FLH-MODIS, we obtained an improvement of 35.01% on the accuracy of the 

model.  Likewise, an improvement of 17% was obtained on the resulting model for the 

MCI-MERIS data.  In our three experiments, the obtained results have demonstrated the 

advantage of applying nonlinear partitioning mechanisms. A marked increase in the model 
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performance can be observed especially for MODIS data.  It is important to note that we 

do not perform the experiment on MCI-MODIS since MCI bands are not available in 

MODIS.   

 

The selection of the type of the kernel is an issue that should be considered in the SVM 

classification. In our fourth experiment, the impact of selecting different kernel functions 

on model precision was assessed. Apart from the linear kernel, the kernel functions listed 

in Table 12 were used to analyze the classifier’s performance.  In this experiment, we tested 

the following additional kernels: Radial Basis Function (RBF), sigmoid and polynomial.  

 

Kernel Function 

Linear 𝑘(𝑥𝑖 , 𝑦𝑗) = 𝑥𝑖
𝑇𝑦𝑖 

Polynomial 𝑘(𝑥𝑖 , 𝑦𝑗) = (𝛾𝑥𝑖
𝑇𝑦𝑖 + 𝑟)

𝑑, 𝛾 > 0 

RBF 𝑘(𝑥𝑖 , 𝑦𝑗) = 𝑒
− 𝛾‖𝑥𝑖−𝑦𝑗‖

2𝑑

, 𝛾 > 0 

Sigmoid 𝑘(𝑥𝑖 , 𝑦𝑗) = tanh (𝛾𝑥𝑖
𝑇𝑦𝑖 + 𝑟) 

 

Table 12.  Kernel functions 

Table 13 shows the implementation of our method with the SVM classifier using 

different kernels and different partitioning methods.   
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Kernel 
Partition mechanism (PM) 

  𝑹𝟏,𝟐
𝟐  Linear   𝑹𝟏,𝟐

𝟐  Polynomial   𝑹𝟏,𝟐
𝟐 Exponential 

FHL-MODIS 

Linear 0.7974 0.8073 0.8647 

RBF 0.4970 0.8822 0.8954 

Sigmoid 0.7959 0.8410 0.8938 

Polynomial 0.7937 0.9111 0.9035 

MCI-MERIS 

Linear 0.9361 0.9556 0.9203 

RBF 0.9065 0.9548 0.9183 

Sigmoid 0.9369 0.9619 0.9621 

Polynomial 0.8571 0.945 0.8864 

 

Table 13.  Results of our learning process using four kernels with three different partitioning methods 

 

We observed that the kernel behavior is different in both dataset distributions. For FHL-

MODIS, the polynomial kernel produced the highest values; however, the sigmoid kernel 

was even better in the case of MCI-MERIS.   The improvement in the model performance 

was reached when we changed the input data feeding strategy of the classifier.   In our 

initial experiments, the SVM classifier was fed with the same number of positive and 

negative examples, with the focus on alleviating the problem of the dominant class and the 

resulting biased data model.   

 

With the objective to improve the model generalization capability, we modified our initial 

feeding strategy by considering the class member imbalance, giving us some level of 

freedom in the data set to vary independently.  This resulted in slightly different results, 

but also in more robust models.  It should be noted that the issue of imbalanced training 

sets has been extensively researched in the area of machine learning, for example in [154].  

The best resulting models (polynomial and sigmoid) are illustrated in Figures 32 to 35.  
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Figure 32 shows classification results for the MERIS data when our framework uses a 

normalized MCI index with a sigmoid kernel.  Figure 33 shows the resulting comparison 

between estimated and observed models for MERIS.  

 

 

Figure 32.  Final classification for MERIS data with an exponential partitioning and a sigmoid kernel. 

 

Figure 33.  Estimated chl-a vs. observed chl-a values for MERIS 
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Similarly, classification results for the MODIS data using normalized FHL with a 

polynomial kernel are illustrated in Figure 34, while Figure 35 shows the resulting 

comparison between the estimated and observed models for MODIS.  

 

 

Figure 34.  Final classification for MODIS with a cubic polynomial partitioning 

 

Figure 35.  Estimated chl-a vs. observed chl-a values for MODIS 
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Finally, Table 14 summarizes the improvement obtained when using our method with 

different initial partitioning mechanisms.  

 

 

Kernel 
Partition mechanism 

Linear [%] Polynomial [%] Exponential [%] 

MODIS 

Linear 48 15 25 

RBF 18 23 28 

Sigmoid 47 18 28 

Polynomial 47 25 29 

MERIS 

Linear 30 23 20 

RBF 27 22 20 

Sigmoid 30 23 24 

Polynomial 22 22 17 

 

Table 14.  Model improvement indices 

 

The model improvement index (MII) applied in Table 14 to evaluate the results produced 

by using different kernels on each PM is calculated as follows: 

 

𝑀𝐼𝐼 = (𝑅1,2 − 𝑅𝑃𝑀) ∗ 100%     (38) 

 

where 𝑅𝑃𝑀 is the coefficient of determination produced by each partition, and 𝑅1,2 is the 

final coefficient of determination produced by our method.    

 

The final models for both modalities are as follows. Let �̂� 0 be the predicted value of chl-a 

in class 0, obtained from the final labeling procedure, and �̂� 1 in class 1.  For MERIS, where 

X values correspond to MCI indices, the two models are:  
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{
ŷ 0,i = −232679.296 ∗ e

(5.355∗Xi) + 232678.747 ∗ e(5.362∗Xi)

 ŷ 1,i =  3.166 ∗ e(49.366∗Xi) − 14.747 ∗ e(−234.240∗Xi)
   (39) 

with 𝑋 varying from (−1.20 × 10−4) to 6.52 × 10−2.   

For MODIS, where X values correspond to FHL indices, the obtained models are: 

{
ŷ 0,i =  25.798 − 9193.272 ∗ Xi + 1.427 × 10

7 ∗ Xi
2 − 7.634 × 107 ∗ Xi

3

 ŷ 1,i =  5.861 − 2423.418 ∗ Xi + 6.0921 × 10
5 ∗ Xi

2 − 5.447 × 107 ∗ Xi
3  (40) 

with  𝑋  varying from  (−7.4 × 10−3) to 6.2 × 10−3 .  

 

6.11  Conclusions 

Two important components are required in machine learning: the data and the algorithm.  

From the data perspective, we introduced the concept of policy layer, which uses the largest 

Euclidean distances, calculated from each data sample of the given data and the regression 

curve obtained in the initial partitioning. This strategy allowed us to identify samples with 

unique and strong class membership, thus alleviating the risk of using samples with dual 

membership and consequently unsatisfying outcomes.   

 

From the perspective of the algorithm, our framework capitalizes on the combined use of 

unsupervised and supervised techniques, allowing us to exploit the best features from each 

technique and to produce the highest quality and accuracy in the resulting data models.  

This fact is important in environmental management, when the need for robust and precise 

data models is essential to develop standards and reliable value references for 

environmental legislation and environmental risk management.   

 

The proposed iterative learning algorithm was validated using two independent 

multispectral datasets (data from MERIS and MODIS satellites) collected by the Lake 

Winnipeg Research Consortium, Canada. Our methodology significantly improved the 

resulting data model. The final labeling process resulted in new regression models with a 

lower value of residual sum of squares (unexplained variance) as shown in Tables 9 

through 11, as compared to the classical regression method used in the initial partitioning 

as shown in Table 8.  When modeling spectral information from MODIS, the improvement 
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was of the order 20.25% to 40% on average, whereas the MERIS model improvement was 

on average of the order of 20.25% to 27.25%.   

 

Our iterative process successfully dealt with two practical restrictions: the lack of ground 

truth information regarding the water type classification and the absence of a suitable label 

set.  

 

In our experiments, the classifier was fed with imbalanced positive and negative training 

data sets.  Using this framework, we also improved the generalization power of the models, 

obtaining more robust data models. It should be noted that the issue of imbalanced training 

sets has been extensively researched in the area of machine learning.  A specific 

implementation of the proposed framework may incorporate, if desired, one of several 

techniques of dealing with imbalanced data sets as found in [154]. 
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CHAPTER VII: SOLVING A 

CLASSIFICATION PROBLEM 

 

This chapter demonstrates the applicability of our methodology in a non-stationary 

environment when temporal data coming from multiple wireless sensors are used for 

human locomotion recognition.  As presented in Chapter II, section 2.3, two major issues 

are addressed in this problem, the difficulty to deal with the motion during the transition 

period between two activities and the presence of noise that alters the resulting readings.  

When monitoring a multimodal system using information acquired by wireless sensors, the 

designer must address problems associated with several sensor-related factors, such as data 

alignment, data losses, and noise, among other experimental constrains. This situation 

represents a challenge because the multimodality influences the input data quality, 

deteriorating the resulting model accuracy.   

 

The problem of recognizing human activity is solved here by adapting the framework 

presented in Chapter V.  Our challenge – apart from a proper modification of the learning 

framework - is to classify low-intensity human locomotion activities, such as walking, 

standing, lying and sitting. To accomplish this, we modify the data pre-processing phase 

to handle the temporal signals.  First, we use a timestamp function to organize the given 

dataset in a coherent time-event order.  Second, we introduce a two-stage consecutive 

filtering approach used to enhance the quality of the given data, thus minimizing the effect 

of spurious data that could otherwise interfere with the classification process. 

 

7.1  Dataset description 

To demonstrate the capabilities of the proposed framework on classification problems, we 

adapted it to work on temporal data acquired from body–worn sensors, using the open 

source dataset Opportunity in view of recognizing human activity. The Opportunity dataset 

has been previously used as a benchmarking reference for modeling different systems, such 

as labeling large robot-generated activity datasets [125], sensors relocation due to 

replacement or slippage [126,127], dynamic sensor selection with power minimization 
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[128], and other application-related initiatives [129]. According to the technical description 

of the Opportunity project [130], the body-worn sensors used in this experiment are as 

follows: twelve 3-axial acceleration sensors and seven inertial measurement units – IMUs 

(i.e. Xsens MT9, technical specifications in reference [130]). The location of these units is 

summarized in Table 15 [6]. The dataset has a total of 58 dimensions including the time 

stamp. Each device senses the acceleration in three perpendicular axes, recording the 

acceleration values at the sampling rate of 30 Hz. Records are labeled according to four 

primitive classes, namely walk, lie, sit and stand. The signal acquisition protocol is 

performed under a pre-established scenario with six experimental sessions (or runs), 

performed independently by each of four users. The extracted dataset contains a total of 

869,387 samples, which are distributed as follows: 234,661 samples for user 1; 225,183 

samples for user 2; 216,869 samples for user 3, and 192,674 samples for user 4.   

 

Table 15.  Placement of sensors (as specified in the OPPORTUNITY Activity recognition dataset [6]) 

 

Figure 36 shows the first 400 samples collected from user 1 by a 3-axial acceleration sensor 

placed on the hip.  Amplitude values are in gravities (𝑔 = 9.8
𝑚

𝑠2
), and time in seconds. 
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Figure 36.  Example of readings collected from user 1 by a 3-axial acceleration sensor placed on the hip. 

 

7.2  Data pre-processing  

As presented in Chapter II, section 2.3 and 2.5, wireless wearable sensors are affected by 

various technical constraints during data acquisition that decrease data quality.  The non-

ergodicity of the acquisition process, especially when processing signals from acceleration 

sensors, will result in poor learning performance, affecting applications involving multi-

class classification. The proposed pre-processing data procedure address these issues in 

two steps. The first one consists in excluding values affected by data losses and the noise 

presented in the communication path.  To deal with the problem of missing data, we fused 

all readings produced by each sensors. We proposed a double filtering stage, using a finite 

impulse response (FIR) filter to enhance the precision of the given sensor readings. Then, 

we coupled a second filtering, based on wavelets, to efficiently denoise raw data. The 

process is explained in the following two sections.  

 

7.3  Finite impulse response filter 

In our analysis, high frequency bands are not relevant, since users are not performing 

routines with high motion intensity like running, jumping or jogging. Moreover, in general, 

the acceleration signals present a high level of correlation within a limited-length time 
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window, implying that a FIR filter can be efficiently used in this application [131,132,133]. 

We use a FIR passband architecture of the order of 40, which is a compromise between the 

complexity of the signals under observation and the delay introduced by higher orders. We 

also use cutoff frequencies of 2Hz and 15Hz due to the characteristics of the 3-axial 

acceleration sensors used, which have sampling frequencies of 32Hz and 64Hz. The 

frequency of 15Hz meets the Nyquist theorem requirements (𝑓𝑠 > 2 ∗ 𝑓𝑛), where 𝑓𝑠 is the 

sampling frequency and 𝑓𝑛 corresponds to the motion intensity [134].  The frequency of 

2Hz is selected according to criteria presented in [134]. The selected passband provides us 

with an optimal range of motion intensity, since the recorded motion in this study does not 

go beyond 15Hz, making it acceptable to perform human motion sensing. Once the FIR 

filtering is processed, we proceed with the second stage - based on wavelets.   

 

7.4  Wavelet filter 

To efficiently denoise raw data, we include a mechanism that guarantees that the resulting 

classification model is not biased due to the quality of the input data [135]. In general, the 

acceleration sensors are influenced by several noise sources, such as electrical noise 

induced by the electronic devices [136], or the noise produced by the wireless 

communication processes, resulting from the propagation phenomenon and causing 

distortion in the transmitted signal as mentioned in Chapter II, section 2.3.  The noise 

present in the acceleration sensor measurements has commonly a flat spectrum. It is present 

in all frequency components, constituting a serious challenge for traditional filtering 

methods, which by removing sharp features, can introduce distortions in the resulting 

signal. Decomposition of the noisy signal into wavelets [137] eliminates small coefficients, 

commonly associated with the noise, by zeroing them, while concentrating the signal in a 

few large-magnitude wavelet coefficients. Wavelet filtering consists in the decomposition 

of the signal into wavelet basis functions (WBF)  ψa,b(t) given by [138]: 

 

ψa,b(t) =
1

√a
ψ(

t−b

a
)             (41) 

 

where a, b ∈ ℝ are called scale and position parameters respectively. The wavelet basis is 

defined by the selection of the previous parameters. Their choice is commonly known as 
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critical sampling, hence a = 2−j and b = (k)2−j, where 𝑘 and 𝑗 are integers, will give a 

spare basis [139]. The function in (41) can be represented in powers of two; this strategy 

is called dyadic and can be formulated as: 

 

ψm,n(k) = 2
−m

2 ψ(2−mk − n)      (42) 

 

where m, n ∈ ℤ. By computing an inner product between any given function 𝑓(𝑘) and 

ψm,n(k), we can obtain the discrete wavelet transform as: 

 

    DWT(m, n) = 〈f. ψm,n〉 = 2
−m

2 ∑ f(k). ψ(2−mk − n)∞
k=−∞    (43) 

 

The advantage of having a function represented in wavelets is the flexibility of the 

mathematical model, defined in the domain of both frequency and time; in the frequency 

domain via dilation and in the time domain via translation. This feature is helpful also when 

removing noise, because the main characteristics of the original signal can be more easily 

preserved. Wavelet de-noising involves thresholding of a range of wavelet coefficients. 

Setting wavelet coefficients below a specific value (λ) to zero [138] is called hard-

thresholding and it can be represented as: 

 

f(k) = {
k if |k| >  λ
0, otherwise

      (44) 

 

In addition, if the wavelet coefficients are below the threshold value, they are shrunk, and 

when the coefficients are above the threshold value, they are scaled. This process is called 

soft-thresholding and can be represented as: 

 

f(k) = max(0,1 −
λ

|k|
)      (45) 

In literature, we can find four well-known threshold estimation methods [138], namely the 

minmax criterion [139], the Square root log (sqtwolog) criterion [139], the Rigrsure 

criterion [140] and the heursure criterion. In general, the correct selection of the threshold 
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Figure 37.  Measurements recorded for user 1 for a 3-axial acceleration sensor located on the up-right knee:  

(a) raw data and (b) after applying 2-stage filtering 

leads to a better noise suppression; a large threshold value will bias the estimator, while a 

low value will increase the variance. The thresholding approach selected in this work 

employs the Sqtwolog criterion, because it guarantees a high signal-to-noise ratio (SNR) 

with a low mean square error (MSE). The threshold values are calculated by the universal 

threshold √2 ∗ ln (. ) or λi = σj√2log (Nj), where Nj is the length of the noise at jth scale 

and σj is the Median Absolute Deviation (MAD) at the jth scale given by [138]: 

 

σj =
MADj

0.6745
=

median(|ω|)

0.6745
       (46)  

 

where 𝜔 represents the wavelet coefficients at scale 𝑗.  The value 0.6745 in (46) is obtained 

as: 
1

𝐸𝑟𝑓(0.5)∗√2
 , where the Gauss error function (Erf) is computed by integrating the normal 

distribution. This value will scale the MAD to obtain an approximation for sigma (only for 

a Gaussian distribution).  Figure 37 shows the result when using 2-stage filtering. 
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7.5  Training samples extraction 

After filtering the raw data, we proceed with the feature extraction and selection process.  

The aim is to retrieve a set of data with high correlation, allowing us to extract the best 

candidates for the training dataset [141]. This process focuses on the extraction of 

kinematics features, such as roll, pitch, yaw (RPY), and the norm of the axial components 

produced by each of the body-worn sensors. Our first feature set is based on the signal 

magnitude vector (SMV). At each time instance j, the acceleration sensor k produces a 3-

axial vector, consisting of acceleration values along a system of orthogonal axes aj,k =

(accx, accy, accz) ϵ ℛ
3. For each sensor, we first retrieve the single magnitude vector |aj,k|. 

The second feature set is related to roll, pitch and yaw (RPY) angles, calculated as follows:  

 

𝑟𝑜𝑙𝑙𝑗,𝑘 = 𝑎𝑡𝑎𝑛 (
𝑎𝑐𝑐𝑥

√𝑎𝑐𝑐𝑦+𝑎𝑐𝑐𝑧
);  𝑝𝑖𝑡𝑐ℎ𝑗,𝑘 = 𝑎𝑡𝑎𝑛 (

𝑎𝑐𝑐𝑦

√𝑎𝑐𝑐𝑥+𝑎𝑐𝑐𝑧
); 𝑦𝑎𝑤𝑗,𝑘 = 𝑎𝑡𝑎𝑛 (

𝑎𝑐𝑐𝑧

√𝑎𝑐𝑐𝑥+𝑎𝑐𝑐𝑦
)  

  (47) 

 

Finally, we build a matrix with all axial components produced by all sensors under 

observation: 

 

𝑎𝑐𝑐𝑥,𝑦,𝑧,𝑘 = {[𝑎𝑐𝑐𝑥,𝑘], [𝑎𝑐𝑐𝑦,𝑘], [𝑎𝑐𝑐𝑧,𝑘]}             (48) 

 

This matrix has 𝑛 × aj,k × 𝑘 components, where n is the number of samples in each 

experiment for 𝑘 sensors in aj,k dimensions. To deal with the absence of some values, we 

use principal component analysis (PCA) and singular value decomposition (SVD). PCA 

provides a mechanism to reduce dimensionality, while SVD provides a convenient way to 

extract the most meaningful data. Combining these techniques, we find data dependency 

while removing redundancy. PCA [142] and SVD [143] ensure the preservation of the 

nature of the data and consequently the original data structure in each feature category in 

the resulting transformed data.  When applying PCA, we reduce the problem to only two 

principal components.  Similarly, when SVD is applied, each feature is reduced to two 

SVD dimensions, as shown in equation (49). The new target function 𝑓𝑗,𝑘() is represented 

as follows:  
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𝑓𝑗,𝑘 = 𝑓(𝑝𝑐𝑎 (𝑅𝑃𝑌), 𝑝𝑐𝑎(𝑆𝑀𝑉), 𝑝𝑐𝑎(𝑎𝑐𝑐𝑥,𝑦,𝑧,𝑘), 𝑠𝑣𝑑(𝑅𝑃𝑌), 𝑠𝑣𝑑(𝑆𝑀𝑉), 𝑠𝑣𝑑(𝑎𝑐𝑐𝑥,𝑦,𝑧,𝑘) )

 (49) 

where j corresponds to each observation produced by sensor k.  We are therefore reducing 

our analysis to a function with three attributes (RPY, SMV, accx,y,z,k) using two 

mathematical methods, PCA and SVD.  Our learning framework aims to classify human 

activities using a single multi-class SVM classifier, such as shown in Figure 38. 

 

 

 

 

 

 

 

 

 

To achieve this goal, we must deal with two data constrains: 1) the large size of the 

experimental dataset, containing in many cases overlapping class members and high data 

density; and 2) the non-ergodicity of the recorded signals. To improve the classification 

accuracy, while keeping the required processing time at the minimum, 

features ((f1, f2), . . , (fj, fk)) produced by (48) are grouped pairwise to cover all the possible 

combinations. The candidates for the training dataset are then determined by measuring the 

Euclidean distance between each class member and the centroid of each distribution of 

(fj, fk). If the resulting distance is larger than the mean plus the standard deviation of all 

resulting Euclidean distances, then the class member is considered a candidate for the 

training set. This process leads to the creation of support vectors, which generate the 

optimal separation planes to classify the remaining data with only a fraction of the total 

data presented for each user experiment.  The following procedure, illustrated in detail in 

Figure 39, summarizes the process for the extraction of the training dataset: 

1. Select sensor readings recorded (in this case, from the Opportunity dataset [6]), 

perform time stamping and missing-data imputation. 

 

Classifier 

Walk 

Stand 

Lie 

Sit 

𝑓𝑗,𝑘 

Figure 38.  Locomotion recognition using a single classifier with a multimodal input 
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2. Select band-pass FIR filter (2-15 Hz) and perform wavelet de-noising using 

Sqtwolog criterion (Figure 37) 

3. Perform multimodality assessment 

4. Extract kinematics features: signal magnitude vector, roll, pitch, yaw (RPY), 

and the norm of the axial components produced by each of the body–worn 

sensors, in order to create the target function 𝑓𝑗,𝑘() as indicated in Equation 

(48). This step will produce twelve features. 

5. Build a subset of features (𝑓𝑗 , 𝑓𝑘), where 𝑗 = (1, . . ,11) and 𝑘 = (2, . . ,12) from 

target function 𝑓𝑗,𝑘() and extract classes presented in subset (𝑓𝑗 , 𝑓𝑘) (Figure 

40a).   

6. Select a pair of classes (𝑥𝑛, 𝑥,𝑚), from subset (𝑓𝑗 , 𝑓𝑘) where 𝑛 = (1, . . 𝑙 − 1) 

and 𝑚 = (2, . . 𝑙) and 𝑙 is the number of labels in the dataset (in our case four 

classes corresponding to each locomotion activity), and extract centroids 

produced by members of each class. 

7. Extract the Euclidean distance between each class member in (𝑥𝑛) and the 

centroid of the class (𝑥𝑚). Store the results in a vector of distances 𝑅𝑛,𝑚(𝑗): 

 

𝑅𝑛,𝑚(𝑗) = |(𝑥𝑛,𝑚(𝑗)) − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑛,𝑚|    (50) 

 

where n and m are the classes of (𝑓𝑗 , 𝑓𝑘), 𝑗 is a class member and 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑛,𝑚 is 

the centroid of the class, with respect to the discriminating hyperplane, of the 

class member under evaluation (Fig. 40b).   

8. If the resulting Euclidean distance vector 𝑅𝑛,𝑚(𝑗) satisfies condition (51), then 

the class member is a candidate for the training dataset.   

 

𝑅𝑛,𝑚(𝑗) ≥ 𝑅𝑛,𝑚̅̅ ̅̅ ̅̅ + 𝜎(𝑅𝑛,𝑚)      (51) 

 

where 𝑅𝑛,𝑚̅̅ ̅̅ ̅̅  and 𝜎(𝑅𝑛,𝑚) are the mean and standard deviation of the Euclidean 

distance vector 𝑅𝑛,𝑚(𝑗). The candidate is stored in a vector of candidates 

(VoC), VoC(𝑥𝑛,𝑚(𝑗))  (Figure 40c).  
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9. Repeat steps 9 to 12 until 𝑛 = 𝑙 − 1 and 𝑚 = 𝑙  

10. Repeat steps 7 to 13 until 𝑗 = 11 and 𝑘 = 12. 

 

Figure 40a shows the data distribution when PCA is applied to features generated by axial 

components from the sensor measurements, for example, for the first two PCA components 

𝑓1,2 = 𝑓(𝑝𝑐𝑎(𝑎𝑐𝑐𝑥,𝑦,𝑧,𝑘)).  Both components are called scores. The advantage of PCA is 

that the resulting score does not change the order of the original rows (observations), 

helping us to preserve the previously assigned labels. In this figure, we also observe a clear 

separation between the sit (shown in yellow) and the lie (shown in cyan) instances, while 

the stand (shown in red) and the walk (shown in blue) classes overlap. Permutation of the 

members from 𝑓𝑗,𝑘 helps us to find different data distributions from the original data 

Figure 39.  Modified framework for human locomotion recognition 
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Figure 40.  Training sample extraction results.  (a) PCA is applied to 𝑎𝑐𝑐𝑥,𝑦,𝑧,𝑘(data distribution corresponds to the 

first and second principal components).  (b) Classes are extracted in pairs (𝑥𝑛, 𝑥,𝑚), centroids are extracted, and 

Euclidean distances are calculated according to step 6; and (c) Training candidates extracted after applying the policy 

layer. 

structure. This provides some distributions with linearly separable data, which decreases 

the misclassification error rate produced by the multi-class classifier.    

 

Figure 40b represents the extraction of two classes (𝑥𝑛, 𝑥,𝑚) from 𝑓𝑗,𝑘 and their respective 

clusters.  We extract the samples producing the largest Euclidean distances between each 

of them and their corresponding centroid.  The whole set of training samples is extracted 

by pairing all given classes (stand=1, walk=2, sit=3 and lie=4) as follows: 

(1,2),(1,3),..,(3,4).    

 

Figure 40c shows the resulting VoC(𝑥𝑛,𝑚(𝑗)) composed by samples that satisfy equation 

(51), that is:VoC(𝑥𝑛,𝑚(𝑗))= [(𝐶𝑙𝑎𝑠𝑠1, 𝐶𝑙𝑎𝑠𝑠1), (𝐶𝑙𝑎𝑠𝑠1, 𝐶𝑙𝑎𝑠𝑠2),… , (𝐶𝑙𝑎𝑠𝑠𝑛−1, 𝐶𝑙𝑎𝑠𝑠𝑚)],  

where n, m = 4. The resulting VoC(𝑥𝑛,𝑚(𝑗)) provides an effective way to deal with non-

separable data (data overlapping). Because the SVM classification depends only on the 

training samples near the decision boundary, the optimal separation margin will be 

determined by the separation of the training samples controlled by the cost parameter 𝐶. 

The improvement can be observed by comparing the separation on Figure 40a with Figure 

40c, where we notice a strong overlapping of data samples, in particular for the stand, walk 

and sit classes. 

 

 

 

 

 

 

 

 

(a)                                                                 (b)                                                            (c) 
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7.6  Model selection 

Once the best training dataset VoC(xn,m(j)) is identified, we proceed with the selection of 

the best classification model using a multi-class SVM classifier with an RBF kernel. The 

training and testing samples are normalized in the range of 0 to 1. The kernel selection is 

done based on an experimental performance evaluation with different kernels, e.g. linear, 

cubic polynomial and sigmoid. The evaluation presented in [18], and confirmed by initial 

tests on the Opportunity dataset, indicates that RBF kernels consistently produce models 

with the lowest or close to the lowest misclassification error rates.  The selection of the 

one-versus-all (OVA) classification method reduced our original multi-class problem to a 

binary classification problem. Designing the SVM classifier requires to find the best 

combination of the cost and gamma (C, γ,) parameters. By using a grid search (𝐶 and γ) 

and a k-fold cross validation process with k = 5 (four subsets for training and one subset 

for testing) we determine the best performing hyper-parameter. This process allows us to 

find a tradeoff between bias and variance by adjusting 𝐶 and γ. To find the best 𝐶 and γ we 

use a grid search, where C = (2−5, . . , 27) and γ = (2−5, . . , 27). In practical terms, the best 

combination, in the sense of a high variance and a low bias, is that of large C with small 𝛾. 

 

The resulting model is then used to predict the labels on the testing dataset. Once the 

classification rate is determined, the algorithm stores the accuracy values, features (fj, fk), 

C, γ and the size of the VoC(xn,m(j)) and repeats the process until all combinations of 

(fj, fk) are exhausted. 

 

7.7 Model performance evaluation 

Model performance is measured by using accuracy measures and the F-score, summarized 

in Chapter III, section 3.4.  Additionally, we will compare our results with values reported 

by the Opportunity team in section 7.8.2 

 

7.8  Experimental results 

The proposed solution, based on iterative learning, is tested in two scenarios, the first one 

using a single-stage filtering and the other one on a two-stage consecutive filtering.  The 

whole process is presented in Figure 41. 



113 

 

 

 
Figure 41.  Process block diagram implemented during experiments 

 

7.8.1  Results obtained using single-stage wavelet filtering  

The proposed process was evaluated initially using a single wavelet filtering stage in three 

experiments: two considering the measurements of a sole sensor and one combining the 

use of various sensors. Two measures were used to validate the results, namely the 

prediction accuracy (Acc) and the size (as percentage of the total dataset) of the training 

dataset that was used for classification (Ts): 

 

Acc = 
𝐿𝑎𝑏𝑒𝑙𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

(𝑠𝑖𝑧𝑒 𝑜𝑓 𝑢𝑠𝑒𝑟′𝑠 𝑑𝑎𝑡𝑎𝑠𝑒𝑡)
× 100%;  𝑇𝑠 =

𝑠𝑖𝑧𝑒(𝑅𝑛,𝑚)

(𝑠𝑖𝑧𝑒 𝑜𝑓 𝑢𝑠𝑒𝑟′𝑠 𝑑𝑎𝑡𝑎𝑠𝑒𝑡)
× 100%       (52)    

 

 It is important to note that the values of Acc and Ts depend on the size of the user dataset 

and the resulting value of 𝑅𝑛,𝑚(𝑗) in eq. (51). These values are changing with the number 

of measurements done for each user in each experiment. Table 16 presents the results when 
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using only data obtained from the IMU sensors.  Table 17 shows the values for Acc and Ts 

when using data obtained from 3-axial acceleration sensors, and Table 18 when using data 

obtained when fusing measurements from the 3-axial acceleration sensors and IMU devices 

in three experiments.  The type of the experiments and users are such as described in section 

3.1 of [6]. The results obtained by our iterative learning framework are compared with the 

case in which 80% of total of data are used of each user experiment, which is a common 

practice when a k-fold cross-validation process is performed, with k=5. In this case, the 

samples are randomly selected from the input domain without the selection of best training 

candidates.   

 
 Experiments 

Experiment 1 

(Acc% /TS %) 

Experiment 2 

(Acc% / TS %) 

Experiment 3 

(Acc% / TS %) 

Experiment 1 

(Acc% / 80%) 

Experiment 2 

(Acc% / 80%) 

Experiment 3 

(Acc% / 80%) 

User 1 80 / 4.47 75.36 / 1.19 81 / 3.31 83.92 74.76 80.55 

User 2 71.56 / 4.97 47.43 / 11.96 65.23 / 10.18 77.53 77.17 78.31 

User 3 70,64 / 5.70 57 / 7.70 73.28 / 0.16 71.46 69.43 75.19 

User 4 66.19 / 2.8 61.27 / 2.70 78 /1.86 77.2 74.46 79.88 

 

Table 16.  Classification performance for IMU sensors data 

 

 Experiments 

Experiment 1 

(Acc%/ TS%) 

Experiment 2 

(Acc% / TS %) 

Experiment 3 

(Acc% / TS 

%) 

Experiment 1 

(Acc% / 80%) 

Experiment 2 

(Acc% / 80%) 

Experiment 3 

(Acc% / 80%) 

User 1 82./3.03 79.23 / 11.38 83.71 / 9.11 83.12 79.12 80.56 

User 2 52.42 / 2.96 50.86/12 57.84 / 1.89 69.9 75 73.56 

User 3 69 / 13.16 67.86 / 0.60 76.62 / 3.37 72.09 65.21 77.51 

User 4 66 / 1.63 64 / 10.4 77.53 / 3.45 71.59 76.15 87.55 

 

Table 17. Classification performance for 3-axial acceleration sensors data 
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 Experiments 

Experiment 1 

(Acc%/ TS %) 

Experiment 2 

(Acc% / TS %) 

Experiment 3 

(Acc% / TS %) 

Experiment 1 

(Acc% / 80%) 

Experiment 2 

(Acc% / 80%) 

Experiment 3 

(Acc% / 80%) 

User 1 80.62 / 7.15 77.21 / 8.3 84.77 / 8.17 81.11 75.92 80.85 

User 2 65.85 / 8.78 45.16 / 12.49 66.25/ 0.90 71.54 76.68 74.56 

User 3 58.49 /13.93 67.62 / 1.42 70.35 / 2.97 72.30 65.18 77.08 

User 4 66.48 / 0.70 66.64 / 11.41 71.54 / 4.14 73.43 75.80 87.38 

 

Table 18.  Classification performance for IMU and 3-axial acceleration sensors data 

These results are compared graphically in Figure 42  that shows the average accuracy when 

using two training dataset selection strategies: iterative with a limited number of training 

samples (in blue) and supervised one with a large number of training samples (in red). One 

can observe that using on average 7.33% of the dataset for training (Figure 43), the 

performance achieved is only 7.28% under the performance obtained when the classifier 

processes a much higher number of training samples.     

(a) (b) 

 

 

Figure 42. Accuracy comparison: (a) accuracy generated by SVM multi-class classifier on each user; and 

(b) average accuracy for iterative versus supervised methods 
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Figure 43. Training size comparison (Iterative only uses on average 7.33% of the input data size)   

 

The use of a smaller training set leads as well to an important decrease in the computation 

time. The average processing time per user is roughly 35 minutes when using the training 

with 80% of the dataset (Matlab on a single processor Intel 7, 6 Gb RAM memory). The 

use of the iterative process leads to a reduction in the average time for processing an 

experiment to about 5 minutes, which is less than 15% of the time required by the fully 

supervised process.  

 

7.8.2  Results obtained using two-stage consecutive filtering. 

In this section, we present the experimental results when the bandpass FIR filter and 

subsequently wavelet de-noising are applied on the data collected from IMU sensors, 3-

axial acceleration sensors and when fusing measurements from the IMU and 3-axial 

acceleration sensors (Tables 19 through 21).  These values are compared with results 

obtained in section 8.2.1.  As detailed in section 7.3 and 7.4 , it is expected that performance 

will increase as a result of this two-stage consecutive filtering.  

 

 Experiments 

Two-stage consecutive filtering Wavelet filtering 

Experiment 1 

(Acc% / TS %) 

Experiment 2 

(Acc% / TS %) 

Experiment 3 

(Acc% / TS %) 

Experiment 1 

(Acc% / TS %) 

Experiment 2 

(Acc% / TS %) 

Experiment 3 

(Acc% / TS %) 

User 1 80.23/5.5 79.5/6.05 80/5.9 80 / 4.47 75.36 / 1.19 81 / 3.31 

User 2 76/8.19 50.23/13.8 76.91/6.18 71.56 / 4.97 47.43 / 11.96 65.23 / 10.18 

User 3 73.55/5.8 68.22/5.68 76/6,01 70,64 / 5.70 57 / 7.70 73.28 / 0.16 

User 4 75.62/4.23 67.71/5.11 72.85/13.79 66.19 / 2.8 61.27 / 2.70 78 /1.86 

 

Table 19.  Classification performance for IMU sensors data: filtering comparison 
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 Experiments 

Two-stage consecutive filtering Wavelet filtering 

Experiment 1 

(Acc% / TS %) 

Experiment 2 

(Acc% / TS %) 

Experiment 3 

(Acc% / TS %) 

Experiment 1 

(Acc% / TS 

%) 

Experiment 2 

(Acc% / TS 

%) 

Experiment 3 

(Acc% / TS %) 

User 1 81.93/6.05 73.5/6.05 81.48/5.9 82.82 / 3.03 79.23 / 11.38 83.71 / 9.11 

User 2 63.25/5 66.53/14 72.50/12.72 52.42 / 2.96 50.86/12 57.84 / 1.89 

User 3 68.38/7.4 71.60/5.29 78.44/5.46 69 / 13.16 67.86 / 0.60 76.62 / 3.37 

User 4 73.63/6.67 72.07/6.33 79.80/6.03 66 / 1.63 64 / 10.4 77.53 / 3.45 

       

 

Table 20.  Classification performance for 3-axial acceleration sensors data: filtering comparison 

 

 Experiments 

Two-stage consecutive filtering Wavelet filtering 

Experiment 1 

(Acc% / TS %) 

Experiment 2 

(Acc% / TS %) 

Experiment 3 

(Acc% / TS %) 

Experiment 1 

(Acc% / TS %) 

Experiment 2 

(Acc% / TS %) 

Experiment 3 

(Acc% / TS %) 

User 1 87.26/6.28 78/5.47 82.30/6.39 80.62 / 7.15 77.21 / 8.3 84.77 / 8.17 

User 2 67.5/7.2 71.50/6.40 75/7.46 65.85 / 8.78 45.16 / 12.49 66.25/ 0.90 

User 3 74.45/5.12 70.82/5.40 71.67/5.69 58.49 /13.93 67.62 / 1.42 70.35 / 2.97 

User 4 74.20/7.18 73/7.74 81.41/7 66.48 / 0.70 66.64 / 11.41 71.54 / 4.14 

 

Table 21.  Classification performance for IMU and 3-axial acceleration sensors data: filtering comparison 

  

In general, we noticed a performance improvement when the framework uses a two-stage 

consecutive filtering. Deployment of the extra filtering stage generated an increase in the 

average accuracy. For example, for User 2, an average accuracy of 61.40% is obtained with 

wavelet filtering (Table 19). An average accuracy of 67.71% is obtained with two-stage 

consecutive filtering, which corresponds to an improvement of 6.30%.  

 

Similarly, in Table 20, an average improvement of 12.72% can be noticed. Finally, in Table 

21, for the same user we obtained an improvement of 12.24%.   Results obtained by using 

a training dataset of 80% of total data are summarized in Tables 22 through 24. Better 

results are obtained when classification is performed on fused data coming from IMU and 

3-axial acceleration sensors. 
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 Experiments 

Two-stage consecutive filtering Wavelet filtering 

Experiment 1 

(Acc% / 80 %) 

Experiment 2 

(Acc% / 80 %) 

Experiment 3 

(Acc% / 80 %) 

Experiment 1 

(Acc% / 80 %) 

Experiment 2 

(Acc% / 80 %) 

Experiment 3 

(Acc% / 80 %) 

User 1 89.88 77.33 89.33 83.92 74.76 80.55 

User 2 84.83 82.36 84.17 77.53 77.17 78.31 

User 3 81.79 83.55 85.76 71.46 69.43 75.19 

User 4 86.19 84 89.41 77.2 74.46 79.88 

 

Table 22.  Classification performance for IMU sensors data: filtering comparison 

 

 Experiments 

Two-stage consecutive filtering Wavelet filtering 

Experiment 1 

(Acc% / 80 %) 

Experiment 2 

(Acc% / 80 %) 

Experiment 3 

(Acc% / 80 

%) 

Experiment 1  

(Acc% / 80 %) 

Experiment 2 

(Acc% / 80 %) 

Experiment 3 

(Acc% / 80 %) 

User 1 83.42 79.85 82.36 83.12 79.12 80.56 

User 2 69.68 76.05 77.90 69.9 75 73.56 

User 3 72.30 69.41 82.33 72.09 65.21 77.51 

User 4 76.90 74.36 82.21 71.59 76.15 87.55 

 

Table 23.  Classification performance for 3-axial acceleration sensors data: filtering comparison 

 

 Experiments 

Two-stage consecutive filtering Wavelet filtering 

Experiment 1 

(Acc% / 80 %) 

Experiment 2 

(Acc% / 80 %) 

Experiment 3 

(Acc% / 80 %) 

Experiment 1 

(Acc% / 80 %) 

Experiment 2 

(Acc% / 80 %) 

Experiment 3 

(Acc% / 80 %) 

User 1 91.43 79.64 88.32 81.11 75.92 80.85 

User 2 74.51 79.93 79.98 71.54 76.68 74.56  

User 3 78.97 68.91 82.92 72.30  65.18 77.08 

User 4 82.97 78.66 86.85 73.43  75.80 87.38 

 

Table 24. Classification performance for IMU and 3-axial acceleration sensors data: filtering comparison 

 

Figure 44 presents an accuracy comparison between the single-stage approach and the two-

stage filtering process.  
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Figure 44.  Average accuracy comparison between single-stage and two-stage filtering. (a) Average 

accuracy when using two-stage filtering and the iterative methodology (in blue) and when using the 

supervised method (in red); and (b) average accuracy comparison when using a single filtering and the 

iterative methodology (light yellow); and when using the supervised method (in light purple)  

 

 
 

Figure 45.  Average accuracy. Bars in blue represent average accuracy when two-stage filtering is used. 

Bars in red represent the results for single-stage wavelet filtering. 

 

 

The approach with two-stage filtering, as compared with the wavelet filtering only, 

generated an accuracy improvement in those experiments where only a fraction of samples 

was used for training. Overall, the second filtering produced an average accuracy of 

74.08% versus 68.76% produced by the single filtering approach, an equivalent of 5.32% 

of improvement. The model accuracy for user 2 was improved by 6.11% for readings 

obtained from 3-axial acceleration sensors and by 3.88% when IMU and 3-axial 

acceleration sensors were fused. The performance was improved by 5.03% for the case of 

the training size of 80% of the total amount of the input data as shown in Figure 45.  
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In previous experiments, we presented the results based on how effective the algorithm 

was in predicting the true values of a label. In this section, we quantify the classification 

results using the 𝐹1 measure, which takes into account recall and precision metrics (See 

Chapter III, section 3.3)  By applying the F1 measure to each class, we have [153]:  

 

F1 = ∑ 2 ∗
Precisioni∗recalli

Precisioni+recalli
i ×wi     (53) 

 

where 𝑖 is the class index, wi =
ni

N
, N is the total number of samples, and 𝑛i - the number 

of samples of the 𝑖th class.  The results are presented in Table 25.  

  

 Experiments 

Experiment 1 

(𝐹1 / TS %) 

Experiment 2 

(𝐹1 / TS %) 

Experiment 3 

(𝐹1 / TS %) 

Experiment 1 

(𝑭𝟏 / 80%) 

Experiment 2  

(𝑭𝟏 / 80%) 

Experiment 3  

(𝑭𝟏 / 80%) 

User 1 0.8506/6.28 0.7669/5.47 0.79/6.39 0.9103 0.7701 0.8786 

User 2 0.62/7.22 0.6809/6.40 0.695/7.46 0.7324 0.7821 0.7545 

User 3 0. 7283/5.12 0.6756/5.40 0.6346/5.69 0.7835 0.5805 0.8104 

User 4 0.6847/7.18 0.6665/7.74 0.7627/7 0.8297 0.7691 0.8234 

 

Table 25.  𝐹1 measure for data fused from IMU and 3-axial acceleration sensors. 

Figure 46 presents the 𝐹1 measure for both learning schemes. One can notice a total average 

difference of 0.075 between the two methods, as compared to 0.0532 in Table 25.  

 
(a) (b) 

 

Figure 46.  𝐹1 measure comparison for IMU and 3-axial acceleration sensors fused data. a) Results for each 

user and b) average 𝐹1 measure. 
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Finally, the performance of our algorithm was evaluated for each class. Figure 47 shows 

the average accuracy obtained for each user. One can notice a marked separation between 

the sit and lie activities versus walk and stand. The difficulty in distinguishing walk from 

stand stems from the overlapping of data for these two classes. The iterative method 

produced an average accuracy of 75.4% for the walk movement, compared with 82.1% 

obtained by the supervised method. Similarly, for the stand activity, the iterative method 

produced an average accuracy of 77.06%, which makes a difference of 6.57% with respect 

of the value obtained by the supervised method (83.63%). However, the classification 

difference is reduced for the lie activity - an average accuracy of 97.57% for the iterative 

method and 99.18% for the supervised one. When classifying the sit activity, the iterative 

process produced an average accuracy of 91.46% while the supervised method produced 

97.27%.  

 

 

 
 

Figure 47.  Classification model accuracy comparison between iterative and supervised methods. 

 

Table 26 compares the locomotion classification performance results obtained in [6] with 

the ones obtained using our method. The results were quantified using the 𝐹1 measure.  We 

focused on those values obtained via SVM classifier, coded as SStar (SVM) and CStar 

(SVM + 1 NN) in that paper.  We also present and compare the results obtained by the 
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method with the highest classification performance, the 3- Nearest Neighbors (3 NN), 

reported in the same paper.  The results are observed for three users, denoted in [6] by S1, 

S2 and S3.   

Method User 1 (S1) User  2 (S2) User 3 (S3) 

SStar [6] - 0,61 0,68 

CStar [6] - 0,60 0,65 

 (3NN) [6] 0,85 0,86 0,83 

Iterative 0,802 0,66 0,68 

Supervised 0,85 0,75 0,72 
 

Table 26 Locomotion classification performance results obtained by [6] and our framework.  The results 

are quantified using the 𝐹1 measure 

 

Reviewing results of User 1, our framework demonstrated that using only 6% of the input 

data, the classification performance was close to 3NN, but higher than those obtained via 

the SStar and CStar methods.  In contrast with Users 2 and 3, our method, using 7% and 

5.40% of the input data respectively, shows a higher variance as compared to 3NN, but it 

is slightly better than SStar and CStar.           

 

7.9  Conclusions 

In this section, we have presented the results of the application of our method in the context 

of recognition of human locomotion using data extracted from 3-axial accelerometers and 

inertial measurement units (IMU).  Our framework takes into account the importance of 

efficient feature extraction in multimodal sensor data fusion.  The deployment of a two-

stage filtering process reduced the noise, while providing the classifier with a training set 

more consistent in terms of the quality of the data. 

 

The algorithm arranges features in pairs to generate the best classification model based on 

the best feature combination.   

 

The approach, a data-driven iterative learning process reduces the number of samples 

required for the classification of low-intensity human locomotion activities such as 

walking, standing, lying and standing, by employing information derived from the 



123 

 

distribution of samples, i.e., data clusters and centroid selection referred in step 5 and 6 of 

the process presented in section 7.5.   

 

The problem of class overlapping was addressed by the selection of proper values of the 

parameter C and 𝛾 (adopting a kernel RBF) in the SVM classifier in combination with a 

cross-validation process, i.e., finding a trade-off between bias and variance.  Since the 

classification depends only on training samples near the decision boundary, which is 

controlled by parameter C (cost), the stronger class membership of each sample in the 

training set, the more optimal the separation margin (as presented in Chapter V, section 

5.4). 

  

The deployment of the extra filtering stage has generated an increase in the average 

accuracy registered, for example, in the classification models for User 2.  Observing the 

accuracy results in Table 21, we obtained an average accuracy of 61.40%, when we used 

wavelet filtering.  In contrast, we obtained an average accuracy of 67.71%, when we used 

the two-stage consecutive filtering over the same user -a difference of 6.30%.  Similarly, 

in Table 22 for User2, we obtained an improvement of 12.72%.  Finally, in Table 23 for 

the same user, we obtained an improvement of 12.24%.  

 

Our framework has a potential for extensive application in human locomotion recognition, 

and particularly in monitoring the elderly, with limited range of motion, or athletes to 

follow-up their physical performance. This is possible because our framework offers user-

dependent data modeling- a valid option for clinical treatment, where diagnostics are 

customized according to user’s needs. 

 

It is worth to mention the superior performance of our method in the recognition of modes 

of locomotion (𝐹1) as compared to the values reported in [6], especially taking into account 

that we used only a fraction of the total input domain.  This demonstrates the robustness of 

our proposed method in terms of the quality of the input data and the effectiveness of the 

strategy of the training dataset extraction.   
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CHAPTER VIII: CONCLUSIONS AND 

FUTURE WORK 

 

A multispectral information collected by the remote sensing equipment with different 

spatial, temporal, spectral and radiometric characteristics is a typical example when there 

is a high probability of the occurrence of data multimodality that could be difficult to be 

modeled by traditional methods.  A similar modeling limitation is found in the problem of 

human locomotion recognition.  Indeed, the use of readings obtained from multiple 

wireless wearable sensors is subject to various issues, such as sensor data alignment, 

sampling error, data losses, and noise.   The method proposed in the thesis aims to automate 

the process of modeling multimodal systems using an iterative learning machine approach.  

Our framework focuses on generating datasets associated with each statistical modality of 

the given dataset, spanning the entire instance space for each modality, while deploying a 

training dataset extraction process that ensures a high level of robustness to variations in 

the quality of input data, and consequently leads to an improvement in the data model 

accuracy. 

 

In regression problems, the proposed data-driven architecture combines unsupervised and 

supervised learning techniques with classical regression analysis. With a focus on 

developing precise and robust regression models in regression-type problems, this 

approach was verified by solving the problem of measuring chl-a concentration in inland 

waters using remote sensing data. Our method also deals effectively with two practical 

issues often present in the task of generating accurate and robust models in environment 

modeling: the scarcity of ground truth information and the absence of a suitable reference 

label set.   

 

In the problem of using readings obtained from wireless wearable sensors and their 

application in human locomotion recognition, a two-stage consecutive filtering approach 

was used to enhance the precision of the acceleration signals.  This mechanism provides 

an effective way to deal with the high data density and non-separable data (overlapping) 
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because the classification depends only on training samples near to decision boundary, 

which is controlled by parameter cost (C).  We improved classification results by including 

an incremental training dataset, which must be as far as possible to the decision boundary 

produced by the SVM classifier. 

 

In both problems, the novelty of the proposed method consists in the association of selected 

data with statistical modality by deploying a process of a consecutive selection of the best 

candidate samples.  In both problems, the multimodality phenomenon occurred as a result 

of multiple complex interactions between the target variables and their surrounding 

environments. This required developing a method to work on a multimodal hypothesis 

instead on focusing in a single hypothesis.  

 

The challenges related to the large percentage of missing data and the noise affecting the 

measurements were successfully exceeded when applying data fusion with a robust two 

stage filtering mechanism combined with an iterative learning process. The need for 

significantly less data entails much shorter computation times. The minimization of the 

number of samples is an important contribution that allows the user to deal efficiently with 

an ever-growing number of large datasets. Our framework has demonstrated that 

introducing a sample selection mechanism it is possible to improve the model accuracy 

with a two-fold benefit: speed up the training process minimizing the problem of overfitting 

and reduce complexity of the classifier.   

 

From the practical application perspective, the proposed iterative learning framework 

offers a powerful solution of a wide spectrum of applications focused on robust modeling 

of multimodal systems, especially where the model should span the entire input space, 

instead of providing a piecewise model solution.  From the methodological perspective, 

further work is needed on the process of automating the number of iterations required in 

both regression and classification problems.  The adaptability and flexibility of our solution 

will be explored in more detail by using benchmark data to compare the SVM classifier, 

as the optimal sample separation mechanism, with other classifiers.    
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PUBLICATIONS 

 

Below is a summary of refereed papers published in scientific journals and high-quality 

international conferences. 

 

1. Wearable Sensor Data Classification for Human Activity Recognition Based on 

an Iterative Learning Framework.  Juan Davila, Ana-Maria Cretu, Marek Zaremba 

Sensors, Vol 17(6), 1287, 2017 

 

The design of multiple applications in human activity recognition, in areas such as 

healthcare, sports and safety, relies on wearable sensor technologies. However, when 

making decisions based on the data acquired by such sensors in practical situations, several 

factors related to sensor data alignment, data losses, and noise among other experimental 

constrains, deteriorate data quality and model accuracy. To address these issues, this paper 

presents a data-driven iterative learning framework to classify human locomotion activities 

such as walk, stand, lie, and sit, extracted from the Opportunity dataset. Data acquired by 

twelve 3-axial acceleration sensors and seven inertial measurement units are initially de-

noised using a two-stage consecutive filtering approach combining a band-pass Finite 

Impulse Response (FIR) and a wavelet filter. A series of statistical parameters are extracted 

from the kinematical features, including the principal components and singular value 

decomposition of roll, pitch, yaw and the norm of the axial components. The novel 

interactive learning procedure is then applied in order to minimize the number of samples 

required to classify human locomotion activities. Only those samples that are most distant 

from the centroids of data clusters, according to a measure presented in the paper, are 

selected as candidates for the training dataset. The newly built dataset is then used to train 

an SVM multi-class classifier. The latter will produce the lowest prediction error. The 

proposed learning framework ensures a high level of robustness to variations in the quality 

of input data, while only using a much lower number of training samples and therefore a 

much shorter training time, which is an important consideration given the large size of the 

dataset. 
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2. Iterative Learning for Human Activity Recognition from Wearable Sensor Data 

Juan Davila, Ana-Maria Cretu, Marek Zaremba. Proceedings of the 3rd Int. Electronic 

Conference Sensors Applications, 15–30 November 2016, Sciforum Electronic 

Conference Series, Vol. 3, S2002, 2016.    ECSA-3 Best Paper Award in 2016. 

 

Wearable sensor technologies are a key component in the design of applications for human 

activity recognition, in areas like healthcare, sports and safety. In this paper, we present an 

iterative learning method to classify human locomotion activities extracted from the 

Opportunity dataset by implementing a data-driven architecture. Data collected by 12 3D 

acceleration sensors and 7 inertial measurement units are de-noised using a wavelet filter, 

prior to the extraction of statistical parameters of kinematical features, such as Principal 

Components Analysis and Singular Value Decomposition of roll, pitch, yaw and the norm 

of the axial components. A novel approach is proposed to minimize the number of samples 

required to classify walk, stand, lie and sit human locomotion activities based on these 

features. The methodology consists in an iterative extraction of the best candidates for 

building the training dataset. The best training candidates are selected when the Euclidean 

distance between an input data and its cluster’s centroid is larger than the mean plus the 

standard deviation of all Euclidean distances between all input data and their corresponding 

clusters. The resulting datasets are then used to train an SVM multi-class classifier that 

produces the lowest prediction error. The learning method presented in this paper ensures 

a high level of robustness to variations in the quality of input data while only using a much 

lower number of training samples and therefore a much shorter training time, which is an 

important aspect given the large size of the dataset. 

 

3. An Iterative Learning Framework for Multimodal Chlorophyll-a Estimation.  

Juan Davila and Marek Zaremba, IEEE Transactions on Geoscience and Remote 

Sensing, Volume 54, Issue: 12, Dec. 2016.  

 

Precise monitoring of the chlorophyll type “a” (chl-a) concentration is critical in 

determining the level of production of oxygen and, consequently, the health conditions of 

inland aquatic ecosystems. This paper addresses two important issues in building precise 

and robust regression models for chl-a concentration from remote sensing (RS) data: the 

presence of multimodality in the sensor data distribution, and the scarcity of information 

available to properly label the data. In order to effectively deal with the above issues, we 
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propose an iterative learning framework (ITEMS – Iterative Transductive Environmental 

Modeling System) based on the principles of transductive learning that combines data-

driven regression-based modeling with an iterative non-linear classification process. The 

classification procedure, contingent on the maximum margin principle, generates datasets 

associated with each statistical modality. The classified data are labeled through a process 

of consecutive selection of the best candidate samples. Different selection mechanisms are 

discussed. The proposed method was applied in the empirical assessment of chl-a 

concentration from MERIS and MODIS satellite data and validated by in-situ 

measurements in Lake Winnipeg in Manitoba, Canada.   

 

4. Automated modeling of multimodal data processes in remote sensing.  Juan Davila 

and Marek Zaremba, 15th IFAC/IEEE/IFIP/IFORS Symposium on Information 

Control Problems in Manufacturing.  ISSN 2405-8963, Vol. 48, Issue 3, p 1918-1923, 

Ottawa, May 2015.  Candidate paper for best student paper award, INCOM 2015 

 

Automated monitoring of bio-geophysical phenomena, especially those occurring in large 

areas, requires the use of models obtained from remote sensing data. The interaction of 

multiple components in the optical data flow and the non-ergodicity of the acquisition 

process can seriously affect the precision of the models.  In order to effectively deal with 

this situation, we are proposing an iterative semi-supervised learning framework that 

combines regression analysis leading to the final set of models with an iterative 

classification process, based on support vector machines (SVM) that generates datasets 

associated with each statistical modality. This paper presents an application of the proposed 

method in modeling the concentration of water pollutants, particularly chlorophyll-a, in 

inland waters using multimodal satellite datasets. 

 

5. An Integrated Framework for Scarce Data Environment Modeling. Juan Davila, 

15th IFAC/IEEE/IFIP/IFORS Symposium on Information Control Problems in 

manufacturing, Ottawa, May 2015. 

 

The interaction of multiple variables and their non-ergodicity can seriously affect the 

precision of models obtained through a data acquisition process. What exacerbates the 

model development process in practice is the scarcity of both empirical data and the 

ground-truth information required for statistical learning procedures. In order to effectively 
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deal with this situation, this article investigates an approach based on an iterative learning 

framework. This framework employs an iterative classification process, based on support 

vector machines (SVM) that generates datasets associated with each statistical modality in 

order to improve the final theoretical model precision. 
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