Système adaptatif multicritère d’avertissements véhiculaires basé sur le comportement des conducteurs

Mémoire en informatique

Présentée par

Nora Belghazi

Directrice: Dr. Ilham Benyahia

Codirecteur: Dr. Stéphane Bouchard

Juin 2015
Table des matières

Remerciements... iii
Liste de Figures.. iv
Liste de Tableaux.. vi
Résumé... vii
Abréviations.. ix

Chapitre 1: Introduction... 10
1.1. Introduction... 10
1.2. Définition de la problématique... 11
1.3. Hypothèses ... 12
1.4. Objectif principal... 12
1.5. Contribution ... 13
1.6. Organisation du mémoire .. 13

Chapitre 2: Analyse de la problématique et expérimentation.................................. 15
2.1. Introduction... 15
2.2. Position du problème... 17
2.3. Analyse théorique.. 18
2.4. Expérimentation préalable à la définition de la problématique...................... 20
 2.4.1. Environnement d’expérimentation de conduite virtuelle........................... 20
 2.4.2. Prétraitement de données ... 23
 2.4.3. Traitement de données .. 24
2.5. Analyse et conclusion... 29

Chapitre 3: État de l’art... 32
3.1. Introduction... 32
3.2. Systèmes d’avertissement ... 32
3.3. Paramètres d’entrées/sorties des systèmes d’avertissement............................ 34
 3.3.1. Les données d’entrée basées sur des paramètres véhiculaires............... 35
 3.3.2. Des entrées basées sur les paramètres humains 36
3.4. PDMC en ITS.. 42
 3.4.1. Aperçu général sur les méthodes de PDMC ... 42
 3.4.2. PDMC pour les SA ... 43
3.5. Architecture des systèmes d’avertissement ... 49
3.6. Analyse de la revue de la littérature ... 53

Chapitre 4: Méthodologie ... 56
4.1. Introduction .. 56
4.2. Architecture du Système adaptatif d’Avertissement pour la Détection et la Prévention de Collisions (ADPC) ... 57
 4.2.1. Les données d’entrées: critères humains et véhiculaires 58
 4.2.2. Traitement de données: détection et prévention 59
 4.2.3. Données de sorties du système ... 64
4.3. Conception UML de l’ADPC ... 64
4.4. Environnement et outils de développement .. 64

Chapitre 5: Expérimentation et analyse ... 66
5.1. Algorithme de l’architecture .. 66
5.2. L’interface Homme-Machine (IHM) ... 67
5.3. Prédiction du temps de réaction et architecture des réseaux de neurones 68
 5.3.1. Prétraitement de données ... 68
 5.3.2. Développement du modèle des RN ... 68
 5.3.3. Performance des réseaux des neurones ... 70
5.4. Évaluation de la performance du ADPC .. 72
 5.4.1. Résultats .. 72
 5.4.2. Scénarios ... 74
5.5. Résultat de fonctionnement des architectures ADPC et RECAM 76
 5.5.1. Présentation de l’architecture RECAM ... 77
 5.5.2. Comparaison fonctionnelle des deux architectures 78
 5.5.3. Validation de l’architecture ADPC ... 79
 5.5.4. Comparaison expérimentale ... 81

Chapitre 6: Conclusion et travaux futurs ... 84
Annexe 1 .. 86
Références .. 93
Remerciements

Le présent travail est le fruit des efforts consentis par différentes personnes. Sincèrement, il m'est impossible d'exprimer à sa juste valeur ma reconnaissance et mes remerciements à toute personne qui a apporté sa contribution et sa collaboration dans la réalisation de ce travail.

Je tiens d'abord à remercier ma directrice, la professeure. Ilham Benyahia et mon co-directeur le Professeur. Stéphane Bouchard. Ils m’ont encadré pour réaliser ce travail et m'ont fait profiter de leur vaste culture, de leurs conseils et de leurs directives qui m'ont servi pour mener à bien ce projet.

Je remercie également tous les membres du laboratoire de cyber psychologie de l’UQO où j'ai pu avoir de l’expérience avec l’environnement virtuel de conduite ainsi que les membres du département d’informatique et ingénierie qui m’ont accueillie pour réaliser mon projet.

Enfin je tiens à dire combien les soutiens quotidiens de ma famille et mes amis ont été importants tout au long de ces quelques années, je leur dois beaucoup.
Liste de Figures

Figure 1 Voiture équipée: les capteurs embarqués et des actionneurs [5] 16
Figure 2 Schéma du scénario étudié .. 19
Figure 3 Représentation des critères sous forme d’arbre.. 20
Figure 4 Illustration de la scène initiant l’événement critique [7] 22
Figure 5 Illustration de l’interface de création de l’environnement virtuel de conduite [7] .. 22
Figure 6 Image de l’interface de WEKA .. 25
Figure 7 Photo instantanée des segments .. 28
Figure 8 Répartition des segments .. 29
Figure 9 Facteurs influençant la performance de conduite [6] 35
Figure 10 La structure typique d’un contrôleur à logique floue 44
Figure 11 Principaux composants d’un réseau de neurones artificiels 46
Figure 12 L’organigramme de l’architecture d’un SA de voie de départ inattendue 50
Figure 13 L’organigramme de l’architecture d’un système d’avertissement d’évitement de collision par l’arrière ... 51
Figure 14 Architecture d’un système d’avertissement de collision par l’arrière [54] 52
Figure 15 L’organigramme de l’architecture du FVCWS ... 53
Figure 16 Architecture globale du système d’avertissement adaptatif 58
Figure 17 Représentation graphique des zones d’avertissements 61
Figure 18 Schéma explicatif du taux d’augmentation d’alerte et des distances considérées .. 63
Figure 19 Diagramme de classe UML de l’ADPC ... 64
Figure 20 L’interface homme-machine ... 67
Figure 21 Erreur quadratique entre l'estimateur de référence et l'estimateur après nombre d’itérations. ... 69
Figure 22 Affichage des sorties du réseau par les parcelles de régression à des cibles pour les ensembles de formation, de validation et de test. .. 71
Figure 23 L'histogramme d’erreur ... 72
Figure 24 Résultat représentant la relation entre l’âge, l’anxiété et le temps de réaction 73
Figure 25 Relation entre différentes distances et l’alerte 74
Figure 26 Représentation de la distance relative, la vitesse relative et la valeur d’avertissement par rapport au temps (RECAM) ... 77
Figure 27 Comparaison des valeurs d’alertes provenant des deux architectures........ 81
Liste de Tableaux

Tableau 1 Résumé des éléments contextuels du scénario .. 18
Tableau 2 Critères humain et véhiculaires ... 24
Tableau 3 Intrants de la segmentation .. 26
Tableau 4 Répartition des segments .. 27
Tableau 5 Base de connaissance fournie par un expert* .. 62
Tableau 6 Scénarios de conducteurs .. 75
Tableau 7 Comparaison fonctionnelle des deux architectures .. 79
Tableau 8 Résultats de comparaison des deux architectures .. 80
Tableau 9 Différence de résultats entre l’ADPC et le RECAM à une vitesse et une distance constantes .. 82
Résumé

Les Systèmes de Transports Intelligents (STI) se caractérisent par l’application des technologies émergentes de l’information et de la communication au domaine des transports dans le but d’optimiser les opérations d’un réseau de transport. Parmi les applications de pointe en STI, nous considérons la sécurité routière basée sur les véhicules connectés et équipés par des composantes électroniques avec des capacités de communications.

Au niveau du système de la sécurité routière, un accent important est mis sur le comportement du conducteur au volant, et ce, en développant des systèmes d’avertissement dédiés spécialement à l’alerter en cas d’exposition à une situation à risque. Ceci est concrétisé à travers l’émission des avertissements afin de l’aider à réagir pour éviter une collision probable ou au moins minimiser l’impact d’une collision inévitable.

La prise en compte de la psychologie du conducteur lors du développement des systèmes d’avertissements peut avoir un effet notoire sur l’atteinte des résultats escomptés, à savoir, la maximisation de la sécurité routière. En effet, une revue littéraire nous a permis de constater que l’état psychologique du conducteur impacte directement son comportement, et plus précisément, sa réaction au volant. Néanmoins, cette composante n’a jamais été intégrée dans les systèmes d’avertissement déjà réalisés.

Plusieurs travaux de recherche ont été réalisés et ont démontré que le trait d’anxiété est un problème psychologique négatif sur le comportement du conducteur au volant, et il provoque des troubles dans la suite des décisions prises par le conducteur (34) (35) (36) (37). En effet, l’anxiété est un trait d’anxiété qui constitue une émotion complexe, et exprime un état affectif composé principalement d’un effet négatif élevé associé à un sentiment de manque de contrôle et une orientation de l’attention vers un danger potentiel. L’anxiété diminue la mémoire du travail, l’attention et la concentration et augmente les actions sous optimales des conducteurs.
Eu égard aux éléments susmentionnés, nous proposons, sur le présent travail, la conception d’un système d’avertissement qui incorpore l’anxiété comme un principal facteur psychologique variable. Il s’agit de développer un système adaptatif d’avertissement pour la Détection et la Prévention de Collisions (ADPC). Ce système de prise de décision multicritère (PDMC) permet d’avertir le conducteur selon différents critères dont les facteurs liés au trait d’anxiété en plus d’autres facteurs humains et véhiculaires.

La principale valeur ajoutée de ce travail ne se limite pas à l’intégration du facteur de l’anxiété dans le système d’avertissement, mais elle va au-delà pour combler la limitation des travaux déjà réalisés qui considère le temps de réaction du conducteur comme une constante. À cet égard, cette recherche a pour ambition de considérer la variabilité de l’état du conducteur, du temps de réaction, du taux de l’avertissement ainsi que de toutes les fonctionnalités de l’architecture du système d’avertissement développé.

Pour se faire, on s’est basé sur des données réelles. En effet, on a procédé à l’élaboration d’une base de données dont les éléments ont été extraits de la simulation de conduite virtuelle d’un véhicule connecté faite au laboratoire de cyber psychologie où on a créé une situation de prise de décision rapide d’évitement de collision potentielle.

Après la conception de l’architecture du système adaptatif multicritère d’avertissement, on a procédé à la réalisation des différents tests afférents, en vue de vérifier le fonctionnement des deux sous-systèmes. Par la suite, une étude comparative a été effectuée avec le système RECAM, dans l’objectif de valider notre architecture en considérant dans un premier temps le facteur humain comme étant constant.

Finalement le processus d’intégration de la variabilité du facteur humain nous a permis de constater l’atteinte de l’objectif principal de ce travail de recherche, qui est, entre autres, l’adaptation de la manière d’avertissement à l’état psychologique du conducteur ainsi qu’à d’autres données variables telles que la vitesse du véhicule.
Abréviations

<table>
<thead>
<tr>
<th>Expression</th>
<th>Abbréviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbres de Décisions</td>
<td>AD</td>
</tr>
<tr>
<td>Avertissement pour la Détection et la Prévention de Collisions</td>
<td>ADPC</td>
</tr>
<tr>
<td>Charge-Coupled Device</td>
<td>CCD</td>
</tr>
<tr>
<td>Communication Inter-Véhiculaire</td>
<td>V2V</td>
</tr>
<tr>
<td>Cooperative Forward Collision Warning</td>
<td>CFCW</td>
</tr>
<tr>
<td>Domaine Pertinent pour la Conduite</td>
<td>DPC</td>
</tr>
<tr>
<td>Driver Behavior Questionnaire</td>
<td>DBQ</td>
</tr>
<tr>
<td>Durée de la Fermeture des Yeux</td>
<td>DPE</td>
</tr>
<tr>
<td>Intelligence Artificielle</td>
<td>IA</td>
</tr>
<tr>
<td>Lane Change Assistance</td>
<td>LCA</td>
</tr>
<tr>
<td>Lateral Offset</td>
<td>LO</td>
</tr>
<tr>
<td>Logique Floue</td>
<td>LF</td>
</tr>
<tr>
<td>Pourcentage du Centre de Route</td>
<td>RPC</td>
</tr>
<tr>
<td>Prise de Décision Multi-Critère</td>
<td>PDMC</td>
</tr>
<tr>
<td>Réalité Virtuelle</td>
<td>RV</td>
</tr>
<tr>
<td>Réseaux de Neurones Artificiels</td>
<td>RNA</td>
</tr>
<tr>
<td>Slow Vehicle Warning</td>
<td>SVW</td>
</tr>
<tr>
<td>Systèmes d’Avertissements</td>
<td>SA</td>
</tr>
<tr>
<td>Systèmes de Transports Intelligents</td>
<td>STI</td>
</tr>
<tr>
<td>Trait d’Anxiété</td>
<td>TA</td>
</tr>
<tr>
<td>Wrong Way Driving Warning</td>
<td>WWDW</td>
</tr>
</tbody>
</table>
Chapitre 1: Introduction

1.1. Introduction

Les Systèmes de Transports Intelligents (STI) sont l’une des réponses techniques au défi des transports du XXIe siècle. Les STI ont été développés depuis plusieurs décennies dans le monde. Ils devraient permettre à une population de plus en plus nombreuse de se déplacer de plus en plus souvent, dans les meilleures conditions. Les STI sont définis comme le point culminant de plusieurs services aux utilisateurs qui sont activés par les dernières améliorations en matière d'informatique, des technologies de détection et de communication véhiculaire afin de résoudre les problèmes de transports complexes.

Au Québec, depuis 1978, le nombre de véhicules a doublé passant de 2.9 millions en 1978 à 5.9 millions de véhicules en 2010. Pourtant, la population n’a augmenté que de 22.7 % au cours de la même période passant de 6.4 à 7.9 millions d’habitants [1]. Le nombre de véhicules a donc augmenté 4.5 fois plus vite que la population [2]. Cette augmentation de la production en masse des véhicules influence sur le bon déroulement du trafic et mène à des problèmes critiques tels que l’augmentation de la congestion et la perturbation de circulation.

Les problèmes de circulation et le besoin d’offrir plus de sécurité aux conducteurs mènent les chercheurs à intégrer de nouvelles technologies intelligentes dans le domaine du transport. Une nouvelle génération de STI a été lancée pour répondre à l'exigence d'un développement rapide des transports. Cette nouvelle génération vise à améliorer la sécurité routière, réduire les émissions à effets de serres des véhicules et économiser de l'énergie. Plusieurs grands projets de recherche ont été abordés tels que le comportement des conducteurs, la gestion de la sécurité du trafic, les véhicules intelligents sur la chaussée, les technologies de collecte de l'information, les systèmes de simulation d'accidents, les alertes de sécurité et d'urgence, les systèmes d’assistance au conducteur et d’aide à la prise de décision, etc.

1.2. Définition de la problématique

En plus de l’accroissement continu du parc automobile à travers le monde, plusieurs autres facteurs liés au conducteur, à son véhicule et à son environnement peuvent affecter la sécurité routière et peuvent causer des accidents.

Les facteurs intrinsèques liés au conducteur sont relatifs non seulement à ses données personnelles tels que l’âge, le sexe…etc., mais se rapportent également à ses traits psychologiques.

La composante de l’état psychologique du conducteur et plus précisément de son trait d’anxiété a fait l’objet de plusieurs études qui ont démontré que l’anxiété peut présenter un facteur déclenchant d’un danger au volant. Toutefois, les STI existants ne considèrent pas ce facteur et ne prévoient pas la différence qui peut être entre les conducteurs à ce niveau. De ce fait, la manière de l’alerte qui est émise au conducteur n’est pas adaptée à son état, d’où la raison d’être de ce travail de recherche.

En effet, et dans l’optique d’améliorer l’assistance au conducteur à travers une prise de décision adaptée, on aspire la mise sur pied d’une solution permettant d’accroître les connaissances qu’a le conducteur de son environnement et l’aider dans sa prise de décision face à un danger au volant.
Les questions auxquelles ce travail voudrait répondre se présentent comme suit : Comment le trait d’anxiété du conducteur peut impacter la réaction de ce dernier face à un danger? Comment considérer la variabilité pour adapter la manière de l’alerte au conducteur dépendamment des facteurs humains qui le caractérisent, des facteurs véhiculaires, et de l’environnement externe du véhicule?

Le chapitre 2 est dédié, en partie, à une analyse détaillée de la problématique.

1.3. Hypothèses

Les hypothèses suivantes sont proposées pour la réalisation du système d’avertissement:

- L’utilisation des méthodes non conventionnelles de PDMC permettra de prédire le temps de réaction au niveau du système d’avertissement.
- L’intégration du facteur psychologique va permettre au SA qui va être réalisé de produire des avertissements prenant en considération l’état du conducteur.
- La considération de la variabilité va influencer la manière de l’avertissement, notamment, en matière de temps, fréquence et volume;

1.4. Objectif principal

L’objectif principal considéré dans ce projet est de réaliser un système adaptatif basé sur la PDMC donnant des avertissements aux conducteurs et permettant d’interagir avec eux en tenant compte de leurs profils de conduite. Ces avertissements sont basés sur l’évaluation de l’état du conducteur ainsi que les conditions routières. Ce système d’avertissement à base de connaissance pour les véhicules équipés non autonomes va produire des alertes dépendantes de l’état du conducteur et du véhicule. Il s’agit, dans un premier temps, d’avertir le conducteur pour réagir en cas de danger en lui donnant des avertissements afin de l’aider à faire une réaction qui évite une collision probable ou au moins minimise les dégâts d’une collision inévitable. Dans un deuxième temps, nous allons nous intéresser à la manière avec laquelle les alertes sont émises. Il est à noter que ces alertes vont changer en fonction de l’état de chaque conducteur et de l’état du milieu de
conduite. Les objectifs spécifiques du système proposé sont discutés plus en détail dans les chapitres suivants.

1.5. Contribution

La contribution de ce mémoire est principalement l’intégration de l’état psychologique des conducteurs anxieux et non anxieux dans la conception d’un système d’avertissement. À ce jour, c'est le premier effort de recherche dans ce domaine. Une autre caractéristique unique de l’architecture proposée est la considération de la variabilité du temps de réaction du conducteur en fonction de plusieurs facteurs véhiculaires et humains (à la fois personnels et psychologique). Autre contribution de la présente recherche est le développement d'un nouveau système à base de règles qui détermine le temps, la fréquence et le volume les plus appropriés d'avertissement.

1.6. Organisation du mémoire

Le présent travail est structuré comme suit:

Chapitre 1: Introduction

Le chapitre 1 introduit le sujet de mémoire, définit la problématique, détermine les hypothèses et présente l’objectif principal et la contribution de cette recherche.

Chapitre 2: Analyse de la problématique et expérimentation

Ce chapitre présente une analyse de la problématique inspirée de l’expérimentation faite au laboratoire de cyber psychologie, suivie par l’analyse de données qui nous a permis l’élaboration de la base de données sur laquelle le travail actuel a été bâti.
Chapitre 3: État de l’art

Dans ce chapitre, l’état de l’art porte sur les SA, la PDMC et spécifiquement l’intégration du facteur humain aux SA ainsi que les critères physiologiques et psychologiques qui ont été étudiés.

Chapitre 4: Méthodologie

Le chapitre de la méthodologie comprend les composantes de l’architecture du système d’avertissement proposé. Les détails de la solution vont être discutés ainsi que le système détaillé.

Chapitre 5: Expérimentation et analyse

Le développement du modèle des réseaux des neurones, l’évaluation de la performance du système ADPC ainsi que les résultats de fonctionnement dudit système sont étudiés au niveau de ce chapitre.
Chapitre 2: Analyse de la problématique et expérimentation

2.1. Introduction

Les véhicules autonomes, dits aussi sans conducteur, font une ou plusieurs tâches d’une manière autonome sans l’intervention des humains. Un véhicule totalement autonome qui fonctionnera sans conducteur avec une technologie automatisée va prendre 10 à 15 années pour voir le jour, et ce, à cause des défis multiples. Il s’agit des défis technologiques, sociaux et aussi des questions juridiques qui doivent être résolues pour permettre aux véhicules autonomes de circuler sur les voies publiques.

Contrairement aux véhicules autonomes, la présence d’un conducteur est obligatoire dans les véhicules non autonomes. Ces derniers intègrent des systèmes d’assistance aux conducteurs en produisant des alertes empêchant l’incidence d’un accident. Les systèmes d’assistance nommés aussi les systèmes d’aide à la décision annoncent la présence d’un danger au conducteur en lui laissant le choix de l’action et de la prise de décision sans effectuer de tâche automatisée.

Les systèmes véhiculaires d’aide à la décision collectent les données provenant du milieu extérieur qui représentent les autres véhicules et les infrastructures offrant des informations générales sur les conditions de routes ou du climat. Les véhicules capables de collecter les données et d’établir une communication sont appelés les véhicules connectés [3]. Ces véhicules connectés sont des véhicules équipés qui permettent au conducteur de communiquer en temps réel avec l’environnement extérieur.

Conscient des aptitudes limitées du conducteur, et en vue de réaliser ce travail, il s’est avéré nécessaire d’utiliser des véhicules connectés comme définis sur le paragraphe ci-après. En effet, un conducteur est incapable de considérer, au moment opportun, la totalité des informations disponibles dans son environnement de conduite [4].
Un véhicule connecté peut être équipé avec un système de navigation, un radar capteur à longue portée, une base de données numérique, un capteur de radar à courte portée, un capteur d'état de la route, une pédale d'accélérateur active, un contrôleur de la lumière adaptive, une communication de véhicule à véhicule, un volant actif, une caméra avec traitement d'image, un système mondial de communications mobiles, des données étendues de voitures flottantes, etc. (Figure 1).

Figure 1 Voiture équipée: les capteurs embarqués et des actionneurs [5]

Ces équipements dotent les véhicules de dispositifs leur permettant d’interagir avec l’environnement extérieur et avec le conducteur. Ces véhicules, dits intelligents, sont en mesure de cueillir les informations nécessaires pour aider le conducteur à éviter un danger éventuel. Les données sont obtenues à partir de différentes sources, elles s’intègrent de manière efficace afin de créer des modèles qui peuvent avertir les conducteurs des dangers,
prévoir des scénarios d’accidents, ou même aider les véhicules à se contrôler en cas d’urgence.

En cas de danger, chaque voiture équipée doit prévenir le conducteur pour éviter une collision probable ou réduire les dégâts d’une collision inévitable. La décision du conducteur est basée sur la connaissance des données relatives à l’environnement interne du véhicule, ainsi que l’environnement externe, à travers les équipements dudit véhicule susmentionnés. Quand les équipements du véhicule prévoient un accident, le système avertit le conducteur en émettant des messages visuels, auditifs et/ou haptiques.

Une base de données a été créée pour une finalité de recherche, et ce, en se basant sur une analyse des données extraites des expérimentations faites au laboratoire de cyber psychologie.

Par la suite, le scénario de conduite longitudinal relatif aux deux véhicules qui sont sujets d’un accident potentiel a été présenté et par la suite analysé, et ce, relativement aux paramètres humains et véhiculaires. Finalement, on a procédé à un traitement de données via le logiciel WEKA dont les outils utilisés et les résultats préliminaires ont été exposés sur le présent chapitre.

2.2. Position du problème

Un système d’avertissement (SA) est responsable d’avertir le conducteur d’un véhicule pour prévenir une collision et aider à anticiper une situation critique, et ce, en prenant des mesures positives pour retrouver et maintenir un contrôle sécuritaire dudit véhicule.

Le système d’avertissement émet des alertes temporaires lorsqu’un évènement critique est déclenché [3]. La décision d’émettre un avertissement ou non est basée sur la connaissance de l’état du conducteur et des informations reçues des véhicules à proximité. Il s’agit d’avertir le conducteur en cas de danger pour qu’il ait une meilleure réaction, et éviter ainsi une collision probable ou réduire les dégâts d’une collision inévitable.
Après l’émission d’un avertissement, le conducteur doit avoir une réaction rapide et parfaite pour éviter une collision détectée. En revanche, l’état psychologique des conducteurs diffère, ce qui affecte directement la manière de réagir et le temps de réaction de chacun des conducteurs.

Pour étudier la réaction des conducteurs et établir une relation entre leurs comportements et les avertissements, un modèle analytique et un autre expérimental ont été établis à cet effet.

2.3. Analyse théorique

Un exemple de scénario où le conducteur aura besoin d’être averti est présenté, tenant en ligne de compte les différents éléments à considérer lors de l’avertissement. Il s’agit de deux catégories : véhiculaires et humains.

Les éléments contextuels considérés dans ce scénario se présentent comme suit :

<table>
<thead>
<tr>
<th>Éléments véhiculaires</th>
<th>Éléments humains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitesse (V)</td>
<td>Anxiété¹</td>
</tr>
<tr>
<td>• Moins 40 Km/h</td>
<td>• Anxieux</td>
</tr>
<tr>
<td>• Entre 40 et 60 Km/h</td>
<td>• Pas anxieux</td>
</tr>
<tr>
<td>• Plus 60 Km/h</td>
<td>Âge</td>
</tr>
<tr>
<td></td>
<td>• Moins de 35 ans</td>
</tr>
<tr>
<td></td>
<td>• Entre 36 et 54 ans</td>
</tr>
<tr>
<td></td>
<td>• Plus de 55 ans</td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
</tr>
<tr>
<td></td>
<td>• Fatigué</td>
</tr>
<tr>
<td></td>
<td>• Pas fatigué</td>
</tr>
</tbody>
</table>

Tableau 1 Résumé des éléments contextuels du scénario

Nous avons choisi un scénario pour analyser l’impact de chaque élément et de l’ensemble sur la décision qui sera prise par chaque type de conducteurs. Dans ce scénario (Figure 2),

deux profils différents (X1, X2) du conducteur X avec les mêmes conditions véhiculaires et différents facteurs humains ont été discutés.

Le conducteur X1 a un véhicule équipé. Il s’agit d’un jeune adulte de 24 ans anxieux et fatigué. Le conducteur X2 a un véhicule équipé et il est âgé de 65 ans, il n’est pas anxieux mais fatigué. Lors de la détection d’une collision probable, il est nécessaire de voir si les deux conducteurs X1 et X2 réagissent de la même manière.

Figure 2 Schéma du scénario étudié

Voici une illustration du processus de décision multicritère pour émettre un avertissement. Au niveau de la Figure 3, on s’est limité à trois facteurs humains, notamment, l’âge, l’anxiété et la fatigue, en plus d’un paramètre véhiculaire (vitesse). Plusieurs facteurs pourraient éventuellement être pris en compte, rendant la décision multicritère plus complexe, surtout si les critères proposent des actions divergentes. La décision multicritère doit donner des avertissements de la meilleure façon par rapport à l’environnement de conduite dynamique et au contexte humain qui change d’un conducteur à un autre.
La présence de différents critères véhiculaires et humains rend la prise de décision multicritère (PDMC) complexe. À cet égard, il s’est avéré indispensable de procéder à une catégorisation des conducteurs selon des critères qu’on va présenter soigneusement dans le paragraphe 2.4.2. Cette catégorisation devrait nous permettre d’avoir des groupes de conducteurs homogènes en considérant tous les critères.

2.4. Expérimentation préalable à la définition de la problématique

Les éléments constitutifs de la base de données exploitée aux fins de réalisation de la présente étude sont issus d’une série d’expérimentations réalisées au laboratoire de cyber psychologie [7].

Cette sous-section est dédiée à la présentation de l’environnement d’expérimentation de conduite virtuelle, suivie d’une définition détaillée de différents travaux de prétraitement et de traitement de données. Il importe de préciser que ledit traitement a été réalisé via le logiciel WEKA.

2.4.1. Environnement d’expérimentation de conduite virtuelle

L’expérience réalisée consiste à identifier les liens d’association existant entre le comportement des conducteurs et leurs réactions aux avertissements. Les réactions des conducteurs ont été modélisées en fonction de différents paramètres tels que la direction,
la vitesse, le temps de freinage et le temps de réaction. Dans cette étude, la conception et le développement d'un environnement de test sont basés sur la réalité virtuelle (RV).

La conduite virtuelle a été réalisée sur un scénario de conduite en ville. Le scénario est un quadrilatère fermé avec un parc dans le centre. Il a été conçu en utilisant la diffusion de l'information entre les conducteurs de véhicules. L'environnement de RV est basé sur les technologies immersives en utilisant un visiocasque (nVisor SX 60 de DVIS), le capteur de localisation (Cube3 de Intersense) et un périphérique Logitech volant et des pédales.

L’architecture des composantes de l’environnement virtuel se divise en deux sous-systèmes principaux: le sous-système de véhicules connectés et le sous-système de l’infrastructure routière. Les principaux éléments qui caractérisent les deux sous-systèmes se présentent comme suit :

Le sous-système des véhicules connectés :

- Le rétroviseur peut cartographier les images de transmission capteur.
- Le rétroviseur peut localiser le véhicule par rapport au trafic actuel.
- Les modèles qui permettent le fonctionnement du véhicule tel que l'accélération, la décélération et la vitesse sont également définis.

Le sous-système de l'infrastructure des routes :

- Le modèle de l'infrastructure du réseau routier est décrit par une carte avec des composants représentant les routes et les intersections.
- Des feux de circulation sont programmables selon les besoins des scénarios.
- Des panneaux d'information représentant de nombreux messages tels que définis dans les scénarios considérés pour nos expériences.
- Diverses manifestations sont également programmées pour déclencher la transmission d'avertissements tels que le freinage brusque du véhicule.
- Un passage piéton.
- Les corrélations d'événements similaires comme illustré sur la figure ci-dessous:
La figure ci-après illustre les composantes virtuelles de l’interface de l’environnement de conduite qui a été conçu avec 3DStudio Max (Autodesk).
L’environnement de conduite virtuelle constitue l’outil utilisé pour spécifier et tester différents scénarios afin d’établir des associations entre le comportement du conducteur et la réaction aux avertissements. Par la suite on va analyser et traiter les données acquises par ces tests.

2.4.2. Prétraitement de données

2.4.2.1. L’élaboration de la base de données

Cette étude est réalisée à partir des données fournies par le laboratoire de cyber psychologie de l’UQO. L’expérimentation consistait à permettre à 49 conducteurs de participer à une conduite virtuelle toujours dans le laboratoire de cyber psychologie de l’UQO. Avant ceci, lesdits conducteurs ont dû remplir un formulaire en vue d’avoir leurs informations personnelles ainsi que leur trait d’anxiété à travers un questionnaire d’évaluation d’anxiété fourni par un expert présenté dans la section (4.2.1). L’expérimentation de conduite virtuelle a permis d’avoir aussi un fichier pour chacun des participants contenant le résultat de sa conduite virtuelle.

L’analyse de données a été faite par l’extraction de données du formulaire et du fichier cité ci-dessus. Lors de l’élaboration de notre base de données on a pris en considération plusieurs paramètres, notamment, les paramètres humains et véhiculaires influençant le conducteur, citant entre autres, l’anxiété et le calcul du temps de réaction.

Il importe de signaler que lors de la réalisation de l’expérimentation susmentionnée, 9 participants n’ont pas réagi à l’avertissement déclenché par le système de conduite virtuelle. De ce fait, la base de données définitive utilisée dans ce travail comporte uniquement 40 conducteurs,
Critères humains
- Âge
- Genre
- Temps de réaction
- Historique d’accident
- Ancienneté permis
- Anxiété

Critères véhicules
- Vitesse

Tableau 2 Critères humain et véhiculaires

2.4.2.2. Calcul du temps de réaction

Le temps de réaction du conducteur est égal au temps passé entre l’activation des freins et l’alerte de collision. Le temps de réaction des conducteurs (T_r) a été calculé comme suit :

$$T_r = T_f - T_a$$

Avec :

- T_a: Temps d’alerte
- T_f: Temps de freinage

2.4.3. Traitement de données

2.4.3.1. Environnement de traitement des données collectées: WEKA

Le programme WEKA est une suite de logiciels d’apprentissage automatiques utilisé dans beaucoup de domaines d’application en particulier dans la recherche [8]. Il supporte plusieurs outils d’exploration de données. Ce logiciel codé en Java permet d’interpréter les résultats des différents algorithmes. En effet, il prend en entrée un fichier ARFF et permet de configurer et d’exécuter l’un des classeurs WEKA sur l’ensemble de données actuelles. Il possède également toute une palette d’outils pour le traitement de données, la sélection d’attributs, la visualisation de distributions, de modèles et de résultats. Il permet de faire plusieurs traitements de données telles que la classification, la régression, le Clustering, la visualisation et des règles d’associations. On peut choisir d’effectuer une validation croisée.
ou de tester sur un ensemble de données distinct [9]. Le résultat de la validation est un pourcentage de réussite (Figure 6).

![Figure 6 Image de l'interface de WEKA](image)

2.4.3.2. Segmentation

La segmentation consiste à découper une population en des groupes d'individus homogènes. Il est à signaler que ces groupes devraient être les plus différents possible. WEKA est un outil qui intègre toutes les fonctionnalités nécessaires à notre expérimentation et répond suffisamment à nos besoins en termes de réalisation de la segmentation et de classification des conducteurs.

La segmentation des données réelles de notre étude a été réalisée via le programme WEKA et a consisté à diviser notre population en deux groupes : « training set » et « testing set ». Par la suite, le Clustering a été réalisé pour le training set.

La définition des données de segmentation est présentée dans le tableau suivant :
La segmentation des données sur WEKA a été réalisée en utilisant la méthode EM afin de regrouper les conducteurs dans des segments. La méthode EM (Expectation Maximisation) génère une description probabiliste des clusters en termes de moyenne et d’écart-type pour les attributs numériques et en termes de nombre pour les attributs nominaux. Une description des segments de conducteurs obtenus va être présentée par la suite.

Résultats et analyses de la segmentation

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Attribute</th>
<th>0 (0.27)</th>
<th>1 (0.15)</th>
<th>2 (0.2)</th>
<th>3 (0.38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>Mean</td>
<td>20.6435</td>
<td>50.8235</td>
<td>34.2053</td>
<td>23.1041</td>
</tr>
<tr>
<td></td>
<td>std.dev.</td>
<td>0.9976</td>
<td>3.854</td>
<td>6.0131</td>
<td>1.5146</td>
</tr>
<tr>
<td>ANCIENNETE PERMIS</td>
<td>mean</td>
<td>3.1223</td>
<td>33.3242</td>
<td>17.4514</td>
<td>5.8849</td>
</tr>
<tr>
<td></td>
<td>std.dev.</td>
<td>1.1149</td>
<td>3.4514</td>
<td>5.9222</td>
<td>1.4392</td>
</tr>
<tr>
<td>SEXE</td>
<td>F</td>
<td>4.1507</td>
<td>3.0085</td>
<td>7.0216</td>
<td>12.8192</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>8.7079</td>
<td>4.9995</td>
<td>2.9969</td>
<td>4.2956</td>
</tr>
<tr>
<td></td>
<td>[Total]</td>
<td>12.8586</td>
<td>8.008</td>
<td>10.0186</td>
<td>17.1148</td>
</tr>
<tr>
<td>TEMPS DE REACTION</td>
<td>mean</td>
<td>1.3922</td>
<td>1.0014</td>
<td>0.8784</td>
<td>0.5608</td>
</tr>
<tr>
<td></td>
<td>std. dev.</td>
<td>0.6931</td>
<td>0.3907</td>
<td>0.7674</td>
<td>0.3105</td>
</tr>
<tr>
<td>ACCIDENT</td>
<td>OUI</td>
<td>9.868</td>
<td>5.0081</td>
<td>9.0183</td>
<td>15.1056</td>
</tr>
<tr>
<td></td>
<td>NON</td>
<td>2.9906</td>
<td>2.9999</td>
<td>1.0002</td>
<td>2.0093</td>
</tr>
<tr>
<td></td>
<td>[Total]</td>
<td>12.8586</td>
<td>8.008</td>
<td>10.0186</td>
<td>17.1148</td>
</tr>
<tr>
<td>VITESSE</td>
<td>mean</td>
<td>13.5877</td>
<td>8.1751</td>
<td>12.7489</td>
<td>15.2904</td>
</tr>
<tr>
<td></td>
<td>std. dev.</td>
<td>3.6276</td>
<td>2.9172</td>
<td>4.3495</td>
<td>4.9934</td>
</tr>
<tr>
<td>ANXIÉTÉ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RÉSULTATS

<table>
<thead>
<tr>
<th></th>
<th>NON</th>
<th>OUI</th>
<th>[Total]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>7.0116</td>
<td>5.9994</td>
<td>1.009</td>
<td>8.9799</td>
</tr>
<tr>
<td>Écart Type</td>
<td>5.847</td>
<td>2.0086</td>
<td>9.0095</td>
<td>8.1349</td>
</tr>
<tr>
<td>[Total]</td>
<td>12.8586</td>
<td>8.008</td>
<td>10.0186</td>
<td>17.1148</td>
</tr>
</tbody>
</table>

Tableau 4 Répartition des segments

<table>
<thead>
<tr>
<th>Numéro du segment</th>
<th>Nom du segment</th>
<th>N° d’instances dans chaque segment</th>
<th>Pourcentage par rapport à la population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Groupe jeunes-adultes</td>
<td>11</td>
<td>28%</td>
</tr>
<tr>
<td>2</td>
<td>Groupe des âgés</td>
<td>6</td>
<td>15%</td>
</tr>
<tr>
<td>3</td>
<td>Groupe des anxieux</td>
<td>8</td>
<td>20%</td>
</tr>
<tr>
<td>4</td>
<td>Groupe des prudents</td>
<td>15</td>
<td>38%</td>
</tr>
</tbody>
</table>

La segmentation nous montre chaque segment avec son centroïde et la déviation standard qui nous permettent de mieux comprendre la structure des clusters. Par la suite, on va présenter une description des clusters obtenus.
Les segments obtenus sont décrits comme suit :

Segment 1 : Groupe des jeunes-adultes

C’est un groupe de jeunes entre 19 et 21 ans. Leur ancienneté de permis ne dépasse pas 4 ans. Le temps de réaction en moyenne est grand. La plupart sont des hommes non anxieux et ont eu des accidents auparavant. Ils roulent avec une vitesse élevée. Ils ont plus de mauvaises réactions que de bonnes.

Segment 2 : Groupe des âgés

C’est un groupe de conducteur mixte âgé entre 46 et 55 ans. Ils ont une grande expérience de conduite et roulent avec une basse vitesse. La plupart ne sont pas anxieux. 78% ont des réactions acceptables ou bonnes. Leur temps de réaction est relativement élevé.

Segment 3 : Groupe des anxieux âgé

Âgé entre 28 et 40 ans. La majorité de ce groupe sont des femmes ont déjà eu un accident. Elles roulent avec une vitesse moyenne. 90% des conducteurs de ce groupe ont un temps de réaction moyen. Leur expérience de conduite qui est entre 11 ans et 23 ans n’empêche pas que leurs réactions soient mauvaises ou acceptables.

Segment 4 : Groupe des prudents
75% de ce groupe sont des femmes. L’ancienneté de permis de ce groupe de jeunes est entre 4 et 7 ans. Ils roulent doucement et ont un très bon temps de réaction. 88% de conducteurs de ce groupe ont une réaction acceptable ou bonne même s’ils n’ont pas une grande expérience de conduite.

2.5. Analyse et conclusion

L’hypothèse:

Objectif et but

Comment fournir la meilleure décision au conducteur en tenant compte de l’environnement dynamique de la route et des conditions routières qui influencent les conducteurs et aussi de l’état du conducteur lui-même. Le facteur humain est un critère majeur dans notre étude. Le conducteur est-il âgé ? Est-il fatigué ? Est-il anxieux?... Le contexte du conducteur représente une contrainte primordiale dans la PDMC et que le conducteur lui-même ne peut pas la prendre en considération. En tenant compte que la nature du comportement change d’un conducteur à un autre, la manière avec laquelle on lui donne des avertissements doit
aussi changer. Peut-être que lui donner plusieurs avertissements vont le perturber alors il vaut mieux lui en donner qu’un seul ou ne pas lui signaler d’avertissements du tout. Le tout dépendra de son état et de son environnement. On est donc amené à nous pencher sur la manière dont nous pourrions intégrer le contexte humain dans notre PDMC. Doit-on fournir au conducteur un ou plusieurs avertissements à la fois ? Est-ce que le conducteur est en bon état pour recevoir les avertissements et prendre la bonne décision? Est-ce que lui donner des avertissements va améliorer sa réaction ou au contraire cela va-t-il aggraver la situation?

Considérer différents critères rend la prise de décision de plus en plus complexe et critique surtout quand la vie humaine est mise en question. La présence de plusieurs critères humains et environnementaux produit un système complexe multicritère. Alors comment choisir la meilleure méthode de PDMC pour avoir des avertissements dans un environnement de conduite dynamique?

But

Le but de ce travail est de réaliser un système d’avertissement adaptatif donnant des avertissements aux conducteurs afin d’éviter un danger. Ce SA aux conducteurs pour les véhicules équipés non autonomes va produire une décision multicritère basée sur les critères d’entrées véhiculaires et humains. Une base de données a été réalisée et va être utilisée comme base de connaissances dans la conception du SA.

L’**objectif principal** de cette recherche est de concevoir une architecture du système d’avertissement adaptatif basée sur la PDMC qui permettra d’avertir les conducteurs d’un danger qui les menace selon plusieurs critères dont les facteurs liés à son état psychologique en plus d’autres facteurs humains et véhiculaires. Les **sous objectifs** sont:

- Prise de décision multicritères:
 - Prendre en considération plusieurs critères pour donner des avertissements aux conducteurs.
o Prédir le temps de réaction d’un nouveau conducteur en se basant sur la base de données réalisée.

o Choisir une méthode efficace de PDMC par rapport au besoin du système.

- Comportement humain:

o Considérer l’anxiété comme facteur psychologique va permettre au SA qui va être réalisé de produire des avertissements prenant en considération l’état du conducteur qui a un grand impact sur le modèle réalisé.

o Décider la fréquence et le volume des avertissements changeant en fonction des paramètres humains et véhiculaires.
Chapitre 3: État de l’art

3.1. Introduction

Dans les systèmes véhiculaires non autonomes, l’unité embarquée de conduite installée dans un véhicule est en mesure de fournir des avertissements au conducteur en fonction des données qui lui sont fournies. Tel que souligné dans le chapitre précédent, l’état du conducteur s’avère être un facteur important à prendre en considération pour prendre une décision de réaction à l’avertissement. Il est important de souligner que cette décision doit être prise dans un environnement dynamique et que le résultat doit être optimal.

Ce chapitre présentera un état de l’art des recherches relatives à la problématique d’avertissement véhiculaire et les techniques utilisées pour prendre des décisions selon les contraintes d’un système d’avertissement. Nous présentons en premier lieu une revue de la littérature relative aux Systèmes d’Avertissement (SA) pour les véhicules connectés non autonomes qui se distinguent par différents critères tels que la manière de répondre aux situations critiques du trafic. Ensuite nous présentons les paramètres d’entrées sorties de certaine CA et les techniques de résolutions existantes pour les prises de décision dans des contextes similaires au nôtre. Nous allons discuter plus particulièrement les techniques de prise de décision multicritères (PDMC) que nous situons également relativement à notre contexte. Finalement, nous présentons quelques exemples d’architectures des systèmes d’avertissement similaires dans l’optique de choisir un SA qui va nous servir à effectuer les comparaisons nécessaires à la validation ou non de notre Architecture du Système d’Avertissement (ASA).

3.2. Systèmes d’avertissement

Dans la présente section, on va présenter cinq (05) SA qui ont été développés pour des véhicules connectés non autonomes. Le CFCW (Cooperative Forward Collision Warning) est un système qui avertit le conducteur dans l’éventualité où une collision avec le véhicule
qui précède pourrait se produire [3]. L’information de prévenir le conducteur que la voiture devant va s’arrêter devient primordial si le véhicule en question est un grand camion qui aura besoin de plus de temps pour s’arrêter puisque le pouvoir du freinage diffère d’un véhicule à un autre. Cet avertissement fournit au conducteur une assistance afin d’éviter une collision par l'arrière avec d’autres véhicules.

Le SVW (Slow Vehicle Warning) est un système qui concerne plutôt des véhicules lents qui envoient des alertes d'avertissement à d'autres véhicules environnants qui leurs précèdent pour leur signaler leur faible vitesse afin d'éviter des collisions.

Pour les véhicules immobiles qui perturbent ou empêchent la circulation, le système PCW (Post-Crash Warning) envoie des messages d'avertissement pour éviter les collisions [3].

Contrairement aux travaux précédents où les deux véhicules en question roulent dans le même sens, le système WWDW (Wrong Way Driving Warning) identifie si un autre véhicule conduit dans le mauvais sens et avertit le conducteur d'une collision possible.

Ces systèmes présentent un concept qui consiste à donner des avertissements longitudinaux, et il est identique au système d’avertissement qui va être réalisé dans le présent travail.

Par ailleurs, il existe des systèmes appelés latéraux, tels que le LCA (Lane Change Assistance) et le LO (Lateral Offset). Le LCA (Lane Change Assistance) [10] avertit le conducteur dans le cas où il voudrait changer de voie et où d’autres véhicules se rapprocheraient de cette voie voisine. Le système prévient les accidents latéraux y compris les angles morts, les sorties de voies, et assiste le conducteur dans des conditions de mauvaise visibilité aussi.

Le LO (Lateral Offset) est aussi un SA latéral de départ de voie basée sur la vision. Ce système détermine si le véhicule s'est écarté de sa position de la voie normale. Le test de terrain a révélé une précision acceptable. Cependant, l’approche n'a pas eu un module fort afin de distinguer spécifiquement le changement de voie qui demeure inattendu [11].
Les différents systèmes d’avertissements latéraux et longitudinaux, présentés ci-dessus, ne considèrent pas l’état psychologique et physiologique du conducteur dans leurs conceptions.

Nous présentons dans les sous-sections suivantes des éléments qui permettent de caractériser ses systèmes au niveau de leurs fonctionnalités dans le but d’identifier ceux qui peuvent être plus proches du système que nous définissons pour notre étude. Par la suite, les données d’entrées humaines et véhiculaires disponibles au niveau de la littérature et relatives aux systèmes d’avertissements précités vont être exposées.

3.3. Paramètres d’entrées/sorties des systèmes d’avertissement

Les SA définis dans la littérature sont souvent présentés en fonction de leurs informations d’entrées / sorties. Les informations d’entrées sont celles relatives aux paramètres véhiculaires et au facteur humain (Figure 9).
Nous présentons et analysons ci-dessous, quelques exemples de données d’entrées des SA, et ce, relativement aux paramètres véhiculaires et aux facteurs humains physiques et psychologiques.

3.3.1. Les données d’entrée basées sur des paramètres véhiculaires

Les paramètres véhiculaires permettent de décrire l’état du véhicule en mouvement tels que sa vitesse relative, son accélération, etc. Ces paramètres sont présentés soit individuellement soit en combinaison dans les SA élaborés.

3.3.2. Des entrées basées sur les paramètres humains

Tel que résumé dans le chapitre 2 relativement à notre étude analytique et expérimentale, le comportement du conducteur et la manière avec laquelle il réagit influencent beaucoup

2 Le temps de collision se définit par le temps restant au véhicule avant que la collision ne se produise
le résultat des situations de risque de collision. Ainsi, un SA qui ne prend pas en considération les facteurs humains peut causer des situations problématiques selon le profil du conducteur. Le comportement humain dans ce contexte est défini selon l’état physique ou l’état psychologique du conducteur. Dans la littérature, une attention a été portée particulièrement sur les mesures des paramètres physiques des conducteurs comme par exemple la fatigue, l’inattention et la distraction, etc., ainsi que leurs intégration aux SA. Contrairement aux paramètres physiques, les paramètres psychologiques sont plus difficiles à mesurer. Il s’en suit qu’il existe peu de travaux dans le contexte des SA qui traitent de manière détaillée le paramètre psychologique. Dans les deux sous-sections qui suivent, les travaux qui considèrent les paramètres physiques du conducteur vont être présentés, puis les travaux concernant les paramètres psychologiques du conducteur.

3.3.2.1. Paramètres physiques du conducteur

La **fatigue**, l’**inattention** et la **distraction** représentent des paramètres physiques qui ont fait l’objet de plusieurs études dans le contexte de notre recherche. Nous présentons dans cette sous-section un aperçu général sur la considération de ces paramètres.

Plusieurs travaux ont réussi à mesurer la **fatigue** de différentes manières. La fatigue baisse progressivement la vigilance physique et mentale du conducteur ce qui peut aussi mener au sommeil. Cet état compromet la capacité d’un conducteur à exécuter des tâches qui nécessitent de l’attention, du jugement et de bons réflexes [18]. Eriksson et Papanikolopoulos [19] ont développé une approche basée sur la vision pour le diagnostic de la fatigue en contrôlant les yeux d’un conducteur. L’approche émet un avertissement lorsqu’il détecte une fermeture irrégulière des yeux. La surveillance est bonne, mais il est difficile de promouvoir la commercialisation puisque de nombreux conducteurs n’aiment pas être constamment surveillés avec une caméra CCD. Bergasa et al. [20] ont détecté la fatigue comme suit : la durée de la fermeture des yeux (DPE) et le regard fixe ont été normalisés et utilisés comme entrées du système pour la détection de la fatigue. En les fusionnant avec un système basé sur la logique flou (expliqué par la suite), une précision finale de détection de fatigue de 98% a été atteinte. Par contre la lumière du soleil et les
reflets de lunettes pourraient causer une baisse considérable de la performance de 30%. Indépendamment de la façon dont le matériel est réglé, l'image lumineuse de la pupille (effet produit par la lumière infrarouge) n'est pas robuste, en particulier dans la journée [20] ou en portant des lunettes [21]. Vural et al. [22] ont employé une machine d'apprentissage pour découvrir les configurations faciales pour la détection de la fatigue, avec 31 actions faciales utilisées pour prédire la somnolence. Ce système prétend prédire les épisodes de sommeil et d'accidents.

Il existe plusieurs types de distractions pour le conducteur, notamment manger, boire, voir les piétons, des objets ou des événements à l’extérieur du véhicule, régler la radio / la température ambiante / le GPS, les autres passagers, fumer, utiliser des appareils portatifs et les conditions routières et météorologiques [26]. Kircher et al. [27] ont décrit deux différentes méthodes pour détecter la distraction au volant en fonction du regard sur la base de la surveillance des yeux obtenue dans une étude de terrain. La première méthode basée sur la direction du regard (Pourcentage du Centre de Route, (RPC)). La seconde méthode a été basée sur un modèle 3-D World avec différentes zones intérieures telles que le pare-brise, le compteur de vitesse, les miroirs, et le tableau de bord et sur le temps que le
conducteur passe en regardant ces zones. Pohl et al. [28] ont utilisé la position de la tête et les informations du regard des yeux pour modéliser le niveau de distraction visuelle. La distraction visuelle augmente avec le temps lorsque le conducteur regarde ailleurs la scène de la route et diminue instantanément lorsque le conducteur se re-concentre sur la scène de la route. Bergasa et al. [29] ont essayé de détecter la distraction visuelle avec la position de la tête et l’évaluation de la fatigue avec des bâillements, la sensibilisation des sourcils, et le PERCLOS qui est le pourcentage de temps où l'œil est fermé à plus de 80% [30].

Ces mesures physiques de fatigue, d’inattention et de distraction ne considèrent pas la variabilité des caractéristiques qui diffèrent d’un conducteur à un autre. Par exemple, le clignotement de yeux change d’une personne à une autre c.-à-d., il n’y a pas de mesure standard. D’un autre côté, la majorité des méthodes de mesures des paramètres physiques humains sont basés sur des algorithmes de traitement d’image qui s’influencent par les conditions de conduite telles que la nuit, le brouillard, la pluie, etc. Les systèmes qui considèrent les modèles biomathématiques (des modèles qui exigent des informations d’entrée, comme l’historique de conduite et de collision, pour identifier les caractéristiques individuelles du conducteur) ainsi que les mesures collectées améliorent l’exactitude et la précision des systèmes. Le système à réaliser dans ce présent travail va incorporer un modèle biomathématique pour déterminer l’état du conducteur [31].

3.3.2.2. Paramètres psychologiques

Les paramètres psychologiques sont moins considérés dans la littérature malgré leur importance et influence sur le conducteur d’une manière critique. La colère, l’anxiété et la personnalité sont des exemples d’aspects humains psychologiques. L’émotion de conduire est un état psychologique qui influence la connaissance du conducteur. Par exemple, les accidents de la circulation sont susceptibles d’apparaître chez les conducteurs en colère. Les méthodes et les technologies ont été explorées pour améliorer la sensibilisation de la sécurité routière comme la technologie multimédia et la conduite simulée, etc. Lei et al. [32] ont étudié les caractéristiques de la colère au volant et le processus d'identification de niveau de colère. D’un autre côté Zhang et al. [33] ont réalisé un questionnaire de test de
personnalité de l'automobiliste qui a été conçu pour classer la compatibilité du conducteur automobile. Ainsi, dans le cadre de cette étude, la relation entre la personnalité du conducteur et de la sécurité de la circulation a été discutée. Cinq types de personnalité (discret, dédié, les risques, de ressources et la stabilité) ont une forte corrélation avec les accidents de la circulation. Le trait d’anxiété est un trait de personnalité où le sentiment de peur, l'inquiétude et le stress sont accompagnés par des réactions de déplacement ou par des réactions physiologiques. Les troubles anxieux causent des déficiences fonctionnelles représentées par des phobies, des troubles de panique et des troubles de stress post-traumatique. Les troubles anxieux peuvent représenter un handicap pour les compétences de conduite et peuvent exister chez les conducteurs novices et expérimentés [6]. Les patients qui se présentent avec une peur de la conduite peuvent être diagnostiqués avec une phobie spécifique ou un trouble de panique. Bien que certaines personnes puissent être principalement préoccupées d'avoir une collision et sur les conséquences d'un accident, d'autres peuvent craindre d'être soudainement frappées d'incapacité par l'anxiété pendant la conduite. Selon Bouchard *et al.* [6], les personnes souffrant de troubles anxieux ont généralement des symptômes neurocognitifs touchant la capacité de conduire, y compris:

- Diminution de la mémoire de travail;
- Distractibilité accrue; et
- Diminution de la réserve cognitive et la capacité attentionnelle.

Une étude dont l’objectif était d’analyser les effets et les taux du Trait d’Anxiété (TA) réalisé avec le questionnaire (DBQ: Driver Behavior Questionnaire) a mené à la conclusion que le TA et l’état d’anxiété ont un effet destructeur sur le comportement du conducteur [34]. Alors, il existe une relation claire entre l’anxiété et la conduite dangereuse. Dans des études récentes telles que celle menée par Shahar en 2009 sur le TA déterminé que l’anxiété de haut niveau produisait des comportements de conducteurs à haut risque, ils ont interprété de ce fait que l’anxiété perturbait les processus et les fonctions mentales [35, 36]. L’étude présentée dans [37] montre que l’anxiété est un problème psychologique négatif sur le comportement des conducteurs; en particulier l’effet destructeur de l’anxiété sur les
fonctions mentales et psychologiques appropriées aux conducteurs provoqueraient des troubles dans la suite des décisions prises.

La littérature montre bien qu’il existe un rapport entre l’état psychologique du conducteur et son comportement au volant. L’état psychologique d’un conducteur affecte sa réaction à un événement dangereux qui se produit devant lui. Il existe peu de travaux de recherche qui prennent en considération les facteurs psychologiques. Plus particulièrement l’anxiété n’est pas considérée dans la littérature relativement à notre contexte d’étude bien que celle-ci affecte grandement le comportement des conducteurs.

3.3.2.3. Autre paramètre humain : Temps de réaction du conducteur

Le temps de réaction du conducteur (Tᵣ) présente un critère majeur dans le présent travail. Lorsque le conducteur est averti de la possibilité d’occurrence d’un incident inattendu, le Tᵣ est le temps entre l’émission de l’avertissement et la réaction du conducteur. Burgett et al. [38] ont supposé un temps de réaction constant de conducteur de 1.5 sec entre l’alerte de collision et de l’activation du frein. Chang et Wang [39] ont défini le Tr dans trois étapes: 1) entendre la tonalité d'avertissement, 2) comprendre la situation, et 3) avoir des réactions appropriées; ils ont considéré le Tᵣ du conducteur constant d’une valeur de 0.5 sec incluant seulement les étapes (1) et (2) [40]. D’autres travaux de recherches ont considéré le Tᵣ du conducteur constant entre 0.66 et 1.5 sec [41],[42]. La plupart des expériences menées dans ce domaine d’étude calculent le Tᵣ par le délai entre le signal d’avertissement jusqu’à ce que le conducteur comprenne l’incident. Par contre, le Tᵣ du conducteur doit être calculé à partir de l’émission de l’avertissement jusqu’à ce que le conducteur effectue sa réaction. Les conducteurs anxieux font l’objet de ce présent travail; ils réalisent en moins de temps les étapes (1) et (2) comparativement aux conducteurs non anxieux, mais l’étape (3) leur prend beaucoup plus de temps.

La majorité des recherches considèrent le Tᵣ comme une valeur constante. Un des objectifs important de notre travail est d’étudier les adaptations potentielles des avertissements selon des critères liés aux conducteurs. En outre, le Tᵣ dans le système proposé va dépendre de divers paramètres véhiculaires (ex: la vitesse) et humains (ex : l’âge).
3.4. PDMC en ITS

Le processus de décision consiste en la confrontation des contextes requis avec les contraintes demandées par l’utilisateur. L’incorporation du concept de la PDMC est nécessaire dans la présence des critères multiples et contradictoires et avec le besoin d’une décision optimale. Une introduction sur la prise de décision multicritère en général sera présentée, puis plus particulièrement les méthodes de la PDMC pour les STI et les SA.

3.4.1. Aperçu général sur les méthodes de PDMC

La PDMC est un processus qui permet de prendre des décisions en la présence de multiples critères pouvant être contradictoires. Bien que la PDMC en tant que discipline ne dispose que d'un historique relativement court soit d'environ 40 ans, plus de 70 techniques PDMC ont été développées pour faciliter le processus décisionnel. Les méthodes de PDMC vont de la programmation mathématique aux nouvelles technologies de l’intelligence artificielle (IA) le tout en fonction des besoins et des ressources disponibles. Elles s’avèrent très utiles lorsque le processus de décision est difficile. La PDMC stipule qu’aucune solution ne peut optimiser tous les critères en même temps. Néanmoins, elle permet d’identifier des solutions de compromis pour arriver à la meilleure décision par rapport aux critères. Dans la littérature, à travers divers travaux, un grand nombre d’approches existe pour résoudre les problèmes de prise de décision multicritère [43]. Ces approches permettent d'offrir une aide à la prise de décision et de fournir à un décideur la possibilité d’avoir une vue d’ensemble de l’activité traitée afin de choisir la meilleure solution parmi tout un ensemble de solutions en considérant plusieurs critères de décision.

De nombreuses analyses statistiques et méthodes d’optimisation telles que les méthodes d’agrégation [44], les méthodes élémentaires [45], les méthodes de surclassement [46], etc. sont largement utilisées comme méthodes de PDMC. Bien que ces méthodes puissent être utilisées pour évaluer des problèmes de prise de décisions importantes, la capacité d’arriver à une meilleure solution optimale constitue toujours un problème en termes de délai et de complexité. Ces méthodes existantes ont leurs limites inhérentes et peuvent encore être
améliorées. Aujourd'hui, de nouvelles approches de PDMC profitent des applications de technologies de l'information avancées pour résoudre les problèmes de décision théoriques et appliquées telles que celles rencontrées dans les STI. Des travaux récents sur PDMC dans le domaine des transports ont mis l'accent sur la recherche de solution dans de grands espaces de solutions réalisables et impliquent l'application des métaheuristiques comme la programmation génétique. D’autres techniques issues de l’intelligence artificielle sont également considérées telles que la Logique Floue (LF), les Réseaux de Neurones Artificiels (RNA), les Arbres de Décisions (AD), etc. Plusieurs travaux existants ont considéré ces méthodes dans le contexte des SA de notre étude.

3.4.2. PDMC pour les SA

Les travaux dans la littérature utilisant différentes méthodes de PDMC en IA généralement dans le domaine des STI vont être abordés et plus précisément dans les SA. Nous allons présenter par la suite les travaux qui ont traité des problèmes semblables à la problématique de ce mémoire. La logique floue, les arbres de décisions et les réseaux de neurones sont parmi les méthodes de PDMC les plus utilisées dans le domaine des STI. Ces trois méthodes vont être discutées par la suite.

3.4.2.1. La logique floue

La logique floue (LF) est une méthode de traitement des informations dans des environnements incertains. Elle consiste à remplacer les formules mathématiques en des règles IF-THEN (si-alors) représentant le comportement d’un système. Il s’agit d’une approche calquée sur le raisonnement probabiliste plutôt que sur des calculs rigides. Cette méthode permet aux concepteurs de mieux appréhender les phénomènes imprecis et difficilement modélisables en s’appuyant sur la définition de règles. La structure de base de la LF est illustrée dans la Figure 10. Les composants typiques comprennent: (1) unité de fuzzification, (2) base de données, (3) base de règles, (4) moteur d'inférence floue, et (5) unité de défuzzification.
Figure 10 La structure typique d'un contrôleur à logique floue

Tout d'abord, les variables d'entrées mesurées entrent dans l'unité de fuzzification où les valeurs d'entrées numériques sont converties en termes linguistiques (nommées aussi floues) de manière à les rendre compatible avec la représentation des règles floues. La base de données, montrée dans la Figure 10 contient toutes les fonctions converties numériques-floues définies pour chaque variable d'entrée ou de sortie. Ensuite, un moteur d'inférence reçoit les valeurs d'entrées floues et génère des valeurs de sorties floues. Ce procédé utilise la base de règles qui se compose d'un certain nombre de règles logiques qui définissent le comportement du système modélisé. Les règles énoncées sous forme de IF-THEN décrivent la sortie floue prévue correspondant à différentes entrées floues. Le moteur d'inférence traite les entrées floues sur la base de leurs règles pertinentes et détermine la sortie floue. Finalement, l'unité de défuzzification calcule une valeur numérique unique pour chaque sortie.

La logique floue a été utilisée avec succès dans la prise de décision multicritère des systèmes d’avertissements à temps réel. Zhou et al. [47] proposent un système d'alerte de franchissement de voie LDWS. La prise de décision du système prend comme entrée la construction de routes, la courbure, l'écart type de la position latérale, et produit comme sortie la largeur de la limite de voie virtuelle. Cette approche est basée sur un système fondé sur des règles et guidé par le besoin d'exprimer une heuristique et d'intégrer l'expertise humaine utilisée pendant la conduite. Ainsi, 27 règles de logique floue sont développées. Lors de la comparaison de ce système avec un autre système traditionnel, la LF a donné beaucoup moins de mauvaises alertes. Dans une autre étude, Sharma et Banga [48] un modèle de détection du degré de somnolence basé sur la LF est développé. Les données
d’entrée sont la déviation standard et moyenne du clignotement des yeux, et les données de sortie représentent l’état physique des yeux. Neuf bases de règles de la LF ont été définies. Cependant, les chercheurs ont considéré juste deux données d’entrées et n’ont pas intégré d’autres facteurs important comme les conditions de l’environnement de conduite.

La LF peut être aussi utilisé avec de multiples données d’entrées pour prédire plusieurs données de sorties. AlGhamdi *et al.* [49] ont réalisé un modèle de contrôle qui montre la position du véhicule par rapport aux autres véhicules. Ce modèle flou proposé est basé sur six entrées et trois sorties. Les entrées sont: 1) les conditions de la route, 2) les quatre distances entre le véhicule et l’objet adjacent sur le côté gauche, droit, en avant et à l’arrière, et 3) la vitesse du véhicule. Les sorties sont: l'intensité de l’accélérateur, le sens de braquage des roues et l'application des freins. En utilisant la logique floue cinq règles ont été programmées. Le modèle de LF a été modifié par une fonction modèle maximum pour augmenter la sécurité des décisions prédites. Cependant, ce modèle n’a pas été validé avec des données expérimentales réelles. Additionnellement, la logique floue a été utilisée dans divers scénarios comme: (1) un système intelligent d’avertissement embarqué de marche arrière avec 27 règles de LF, trois données d’entrées et deux données de sorties [50], et (2) un système adaptatif régulateur de vitesse avec neuf règles de FL, deux données d’entrées et une donnée de sorties [51].

Les modèles mathématiques décrivant la conduite d'un véhicule peuvent être très complexes et non linéaires. Pour simplifier ce type de modèle, la théorie de la LF a été proposée pour un certain nombre de raisons telles que: 1) la simplicité, la flexibilité, et la capacité de faire face à la non-linéarité, 2) la LF a été testée pour faire face à ce type de systèmes et pour fournir des résultats significatifs et faciles à comprendre, 3) il peut intégrer les connaissances humaines, l'expérience et le comportement dans les algorithmes de contrôle, et 4) il peut permettre au système d'imiter le comportement de conduite humaine. Il est à supposer que les avantages de la logique floue permettront au système adaptatif intégrant le facteur humain proposé de produire de bons résultats avec un taux d’erreur minimal.
3.4.2.2. Les réseaux des neurones artificiels

Les Réseaux de Neurones Artificiels (RNA) sont des outils de calcul utilisés pour émuler la capacité du cerveau à apprendre par des exemples. Ils aident à prendre des décisions et de tirer des conclusions lorsqu'ils sont présentés avec des informations complexes, bruyantes ou incomplètes. Le réseau est représenté par une abondance de «neurones» interconnectés. Partir d'une entrée donnée, les neurones sont capables d'interagir entre eux mathématiquement d'une manière qui est masquée à l'utilisateur, mais qui en fin de compte, vont fournir un signal de sortie sur la base de la donnée d’entrée. Un réseau neuronal artificiel peut être vu comme une boîte noire représentée dans la Figure 11.

![Figure 11 Principaux composants d'un réseau de neurones artificiels](image)

Les différentes couches notamment la couche d’entrée, la/les couche(s) cachée(s) et la couche de sortie, correspondent à des parties du système qui reçoivent respectivement des informations, les traitent et fournissent des résultats sur la base de cette dernière.

Il existe plusieurs avantages en utilisant un RNA: (1) l'excellent traitement de données bruitées, incomplètes et incohérentes, (2) la convivialité inhérente de l'abstraction automatisée, (3) une large diffusion de l'information sur un champ de nœuds, (4) une grande flexibilité et capacité du réseau à apprendre, et (5) la capacité de correction d'erreur,
indexation étendue des connaissances pour assurer le stockage d’une grande quantité d’information qui est facilement et rapidement accessible. Cependant, bien que les nombreux avantages puissent rendre les RNA pratiques, il faut aussi prendre note des inconvénients soient le long temps de formation, de grandes quantités de données de formation et aucune garantie de résultats optimaux exacts et fiables [52]-[53].

Zhang et al. [52] ont utilisé la technique des RNA à rétro propagation du gradient pour modéliser le comportement du conducteur lors du scénario de voitures successives. Pour prédire l’accélération longitudinale, l’inverse du temps de collision et le temps du headway ont été considérés comme données d’entrées. L’algorithme des RNA est représenté par 2 couches cachées contenant 50 neurones; après 5 époques l'erreur de somme au carré tombe sous 0.005. Les RNA ont donné de bons résultats dans la réalisation de ce système sachant qu’ils ont considéré un simple état stationnaire. Wei et al. [54] ont développé un algorithme adaptif d’avertissement de collision arrière basé sur les RNA. L’algorithme utilise deux leviers de RNA, le premier levier est constitué de deux sous-RNA qui ont comme entrée les informations véhiculaires et comme sortie la fatigue du conducteur et les performances du freinage. L’entrée du deuxième levier est la sortie du premier levier et d'autres variables telles que le coefficient de frottement de la roue, la vitesse relative et la distance. La sortie du deuxième levier est le niveau d’avertissement. Chang et Wang [39] ont développé un système d’avertissement véhiculaire. Cette étude applique un procédé de RNA composé de quatre couches et basé sur des techniques statistiques de probabilité pour examiner l’itinéraire du véhicule pour voir si le véhicule a dépassé la voie et afin de prendre une décision d’accélérer ou de freiner. Le temps de réaction du conducteur, le temps et la distance de collision sont les données d’entrées du système, la sortie du système est un avertissement émis. Les complications qui ont été rencontrées dans la réalisation de ce système étaient principalement reliées avec la qualité du traitement d’image.

Colombaroni et Fusco [53] proposent différentes formulations de l’algorithme d'apprentissage pour les voitures successives en utilisant les RNA. Ils ont utilisé une nouvelle méthode de calibration permettant au système de s’adapter avec chacun des conducteurs afin de remplacer le manque d’intégration du facteur humain. Les variables
d'entrée des RNA sont: la vitesse relative, l'espacement, l'accélération et des combinaisons des deux. Le signal de sortie est l'accélération du successeur. Les chercheurs ont étudié la relation entre la complexité et l’efficacité des RNA. Ils ont testé deux structures d’algorithmes: (1) deux neurones d'entrée, cinq neurones dans la couche cachée, et un neurone de sortie, et (2) six neurones d'entrée, cinq neurones dans la couche cachée, et un neurone de sortie. Les résultats ont prouvé que la structure la plus simple (c.à.d. #1) était la plus efficace. La comparaison entre les neurones de la couche cachée n’a pas été étudiée. Un facteur critique dans la performance des RNA est la taille du réseau (le nombre des neurones et des couches); une grande taille de RNA peut entraîner un sur-apprentissage et une petite taille de RNA peut entraîner une fausse prédiction. Trouver la taille optimale des RNA est l’un des points importants à considérer dans ce présent travail.

Pareillement pour la logique floue, les RNA sont une méthode avantageuse dans le projet en question car le comportement humain est non-déterministe et non linéaire et donc il y a rarement des principes disponibles régissant à de tels comportements. Une limitation majeure dans la majorité des travaux présentés est la contradiction entre les résultats expérimentaux et les résultats de simulation à raison des délais impartis à la réaction du conducteur. Ces recherches ont soit négligé le temps de réaction du conducteur soit l’ont pris en constante considération.

3.4.2.3. Les arbres de décisions

Les arbres de décision (AD) sont des outils d’aide à la décision et à l’exploration des données. Ils permettent de modéliser simplement graphiquement et rapidement un phénomène mesuré plus ou moins complexe. Les AD permettent de produire des procédures de classification compréhensibles par l’utilisateur. Ils représentent graphiquement un ensemble de règles qui sont aisément interprétables. Les algorithmes d'apprentissage par AD sont efficaces, disponibles dans la plupart des environnements de fouille de données. La taille d'un arbre est le facteur clé dans le développement du modèle d'AD. Si la taille d'un arbre est trop petite, les résultats ont des taux de classification erronés. D'autre part, si un arbre devient trop grand, il pourrait produire un cas de sur-
ajustement des données. Les applications des AD sont du même type que celles des réseaux de neurones et de la logique floue. Cette technique est populaire en apprentissage automatique et à plusieurs caractéristiques: (1) la lisibilité du modèle : contrairement aux réseaux de neurones et à la logique floue, un arbre de décision est particulièrement simple à comprendre et à lire, (2) le nombre de tests est limité par le nombre d’attributs, (3) la construction efficace à l’aide d’apprentissage par optimisation, et (4) algorithmes très rapides en phase de construction des arbres et lors de la classification de nouveaux cas. D’autre part, les AD deviennent rapidement complexes et il faut se garder de cette complexité.

Edara et Sun [55] ont conçu un modèle qui prédit les décisions d’un conducteur pour décider s’il faut fusionner ou non dans une voie. Cinq facteurs véhiculaires ont été considérés comme variables d'entrées. Un AD avec 62 nœuds terminaux a été construit en utilisant le training set. La validation a donné une précision d’environ 87% sur une grande base de données réelle, ce qui peut être considéré comme un pourcentage de précision. Aussi, Thianniwet et al. [56] ont appliqué la technique des arbres de décisions pour faire la PDMC et ils ont choisi l'algorithme J48 sur les capteurs mobiles. Leur travail a porté sur l'interprétation de la vitesse du véhicule afin de déterminer les niveaux de congestion avec un ensemble minimal de paramètres. La taille de l’arbre de décision est de 107 nœuds dont 54 sont des nœuds feuilles. Le temps nécessaire pour construire le modèle était d'environ 0,09 secondes. Puis ils ont comparé entre les deux algorithmes d'apprentissage artificiel les RNA et les AD (J48) [57]. La comparaison a donné que le modèle J48 montre un meilleur résultat dans cette étude de cas qui atteint une précision aussi élevée que 91.3%.

3.5. Architecture des systèmes d’avertissement

La revue de littérature a présenté jusqu’à ce point, les composantes principales des Systèmes d’avertissements (Sections 3.2, 3.3 et 3.4). Alors, il est très important d’illustrer les diverses architectures qui précisent comment employer ses composantes pour réaliser un (des) objectif(s) spécifique(s). Des architectures ont été présentées dans la littérature avec différentes données d’entrées et de sorties et diverses méthodes de traitement de
données qui s’étendent des simples fonctions logiques jusqu’aux méthodes avancées et complexes. Quelques architectures des SA pertinentes vont être présentées par la suite.

Chang et al. [16] ont proposé un organigramme de décision qui représente l’architecture d’un module de voie de départ inattendue d’avertissement illustré dans la Figure 12. Les auteurs ont observé le comportement du véhicule (autrement dit la trajectoire du véhicule) pour différencier entre un changement de voie du véhicule normal et une déviation de trajectoire inattendue du a un comportement du conducteur irrégulier. Les entrées du système sont le déplacement latéral et la vitesse latérale, deux paramètres véhiculaires extraites du traitement d’images, et la sortie est l’émisision d’un avertissement ou non (alarme / pas alarme). Cette architecture a considéré des zones de danger constantes et prédéterminées et un système de décision basé sur une simple logique conditionnelle.

Figure 12 L’organigramme de l’architecture d’un SA de voie de départ inattendue

Une autre architecture a été développée par Chang et al. [16] pour l’évitement de collision par l’arrière (Figure 13). Cette architecture a comme paramètres d’entrée la distance de collision et le temps de collision. En utilisant les réseaux des neurones l’architecture précise la valeur d’avertissement et détermine la zone d’alerte.
Plusieurs facteurs influencent le comportement du conducteur pour qu’il puisse maintenir la sécurité routière, alors le seuil d’avertissement doit être variable. Une série de seuils de comparaison sont générés par des fonctions d’apparence floue. Les auteurs dans cette étude ont considéré la pluie, la distance relative et le nombre de véhicules précédant comme critères variables pour calculer les seuils de comparaison, autrement dit, influencent la détermination des zones d’avertissement. Dans cette étude le temps de réaction du conducteur est considéré constant (1.195s). Ce système de décision a comme sortie l’émission d’un avertissement ou non.

Figure 13 L’organigramme de l’architecture d’un système d’avertissement d’évitement de collision par l’arrière

Un autre exemple d’une architecture a été présenté par Wei et al. [54]. Cette architecture adaptive basée sur les réseaux des neurones a été conçue pour un SA de collision par l’arrière (Figure 14). Les entrées du système sont des paramètres physiques des conducteurs, environnementaux et véhiculaires. L’architecture met en œuvre deux leviers des réseaux de neurones, le premier levier se compose de deux réseaux de sous-neuronaux,
les entrées sont les informations détectées par le capteur de bord et la sortie sont les coefficients d’ajustement exprimant la fatigue du conducteur et les performances de freinage du véhicule. L’entrée du deuxième levier est la sortie du premier levier ainsi que d'autres variables telles que le coefficient de frottement de la route, la vitesse relative et la distance. La sortie du deuxième levier est l'avertissement de prudence et l'avertissement de danger.[54]

Figure 14 Architecture d’un système d’avertissement de collision par l'arrière [54]

Les auteurs [39] ont présenté une architecture de système d’avertissement avec différentes fonctionnalités tel que la détection de position, les zones d’avertissement et la comparaison de la valeur d’avertissement pour émettre l’alerte. Cette étude applique un procédé de RNA composé de quatre couches et basé sur des techniques statistiques de probabilité pour examiner l’itinéraire du véhicule pour voir si le véhicule a dépassé la voie et afin de prendre une décision d'accélérer ou de freiner. Le temps de réaction du conducteur, le temps et la distance de collision sont les données d’entrées du système, la sortie du système est un avertissement émis. Les complications qui ont été rencontrées dans la réalisation de ce système étaient principalement reliées avec la qualité du traitement d’image.
Figure 15 L’organigramme de l’architecture du FVCWS

Basé sur les exemples d’architectures présentées ci-dessus, il a été montré qu’il y a différentes configurations d’architectures des SA. La plus importante est la maintenance d’une bonne performance ainsi que l’équilibre entre la complexité et la simplicité pour avoir un système efficace.

Des éléments additionnels peuvent améliorer ces architectures et imiter les scénarios réels. Par exemple, l’état psychologique du conducteur n’a pas été intégré auparavant ainsi que les zones d’avertissements variables dépendamment du temps de réaction du conducteur.

3.6. Analyse de la revue de la littérature

La revue documentaire a porté dans un premier temps sur les SA au niveau des véhicules connectés non autonomes. Ensuite, les données d’entrée/sortie pour différents SA ont été abordées. La littérature vient appuyer notre hypothèse relativement au lien entre l’état
psychologique du conducteur et son comportement au volant. En effet, son état psychologique affecte sa réaction à un événement dangereux inattendu.

Plusieurs travaux de recherche ont étudié et prouvé l’influence des facteurs psychologiques sur le comportement des conducteurs, notamment, l’anxiété. Au fait, les conducteurs anxieux réalisent moins de temps pour détecter le danger mais ils prennent beaucoup plus de temps pour réagir en comparaison aux conducteurs non anxieux. Néanmoins, aucun travail portant sur la réalisation d’un système d’avertissement basé sur le trait d’anxiété des conducteurs n’a été effectué.

À la lumière de notre revue littéraire, la majorité des recherches considèrent le temps de réaction du conducteur (T_r) comme une valeur constante. Ceci dit, la variation de l’état psychologique du conducteur et son impact sur la variabilité du temps de réaction n’est pas pris en considération lors de la réalisation des SA. De ce fait, on constate que ces travaux présentent une limitation qu’on a jugée nécessaire de combler.

À cet égard, l’objet du présent travail est de considérer le facteur de l’anxiété comme étant une variable, de ce fait, on va observer le comportement des conducteurs anxieux et non anxieux face à une même situation au volant. Ceci étant, une des contributions principales de cette recherche est la considération du T_r du conducteur comme une valeur variable, adaptative et dépendante de l’état psychologique de chaque conducteur.

Par la suite, le travail à faire consiste à proposer une nouvelle architecture d’un système d’avertissement qui répond aux besoins du projet. L’architecture d’un système d’avertissement d’évitement de collision par l’arrière RECAM [16] a été choisie pour la comparer avec notre architecture. La validation des apports du nouveau système sera alors basée sur la comparaison des résultats de fonctionnement des deux systèmes d’avertissement. La ressemblance des capacités fonctionnelles entre les deux architectures nous a permis d’avoir des composantes communes et par la suite pouvoir établir la comparaison.
Notre architecture du CA prévoit la mise en place de la composante « prise de décision multicritère » (PDMC) dans l’objectif de faire la prédiction de la réaction du conducteur dans chaque nouvelle expérience de conduite.

Les réseaux des neurones, la logique floue et les arbres de décisions sont des méthodes de PDMC fiables pour ce type d’applications dans le domaine des ITS. Parmi ces méthodes, les réseaux des neurones (RN) a été sélectionnée pour diverses raisons; à savoir :

- Une méthode simple qui permet de répondre au besoin de notre projet en termes de traitements multicritères efficaces avec une bonne capacité d’apprentissage et de prédiction,
- Cette méthode permet un bon traitement de données indépendamment de la taille de la base de données.
- Les réseaux des neurones est une méthode qui n’est pas exigeante en matière d’expertise;

In fine, il nous importe de préciser que l’architecture du Système d’Avertissement proposée dans ce travail se veut être une importante contribution dans le domaine des systèmes d’avertissements. En effet, ledit système présente les caractéristiques suivantes :

- Il est adaptatif;
- C’est un système qui prône la prise de décision multicritère (PDMC) permettant de prédire le temps de réaction du conducteur ;
- Il tient compte de l’état psychologique du conducteur et plus précisément l’anxiété.
Chapitre 4: Méthodologie

4.1. Introduction

Tel que souligné dans le Chapitre 2, l’objectif principal de cette recherche est de concevoir une architecture d’un système d’avertissement adaptatif basé sur la Prise de Décision Multicritère (PDMC) qui permettra d’avertir les conducteurs d’un danger éventuel, et ce, selon plusieurs critères humains et véhiculaires. L’atteinte de cet objectif passe par la réalisation des objectifs secondaires mentionnés également dans le même chapitre.

Les fonctionnalités de l’architecture du système d’avertissement se présentent comme suit:

- **Interface Homme-Machine (IHM):** En plus d’intégrer toutes les données d’entrées relatives au conducteur, L’IHM permet de l’avertir à travers une alerte à la fois visuelle et auditive.

- **Prédiction du temps de réaction:** La base de connaissance permet d’utiliser les apprentissages antérieurs dans la prédiction du temps de réaction du conducteur.

- **Zones d’avertissements:** la définition des zones d’avertissement est intimement liée à la vitesse du véhicule, sa position relative par rapport à l’obstacle, le trait d’anxiété du conducteur, ainsi que ses données personnelles. De ce fait, les paramètres précisés constituent des variables déterminantes dans la définition du degré du danger auquel le conducteur est confronté et de la fixation des zones d’avertissement.

- **Système à base de règle:** ayant comme référence une base de données fournie par un expert, le système à base de règle permettra de définir un coefficient d’alerte qui nous permettra de décider la fréquence et le volume des avertissements en fonction de l’âge du conducteur, son trait d’anxiété et la vitesse enregistrée du véhicule.

- **Calcul du taux d’avertissement:** Après avoir identifié les zones d’avertissement et défini le coefficient d’alerte, le système permettra, sur cette base, le calcul du taux d’avertissement qui nous communique des informations relatives aux temps,
fréquence et volume de l’alerte dépendamment des paramètres humains et véhiculaires.

Ce chapitre comprend les composantes de l’architecture du système d’avertissement réalisée, notamment, les données d’entrées, le processus de traitement de données et les données de sortie. Par la suite, on va mettre l’accent sur de l’algorithme, nous présenterons l’approche de résolution pour atteindre l’objectif principal via les objectifs secondaires également présentés dans le Chapitre 2.

4.2. Architecture du Système adaptatif d’Avertissement pour la Détection et la Prévention de Collisions (ADPC)

La section suivante met l’accent sur les composantes du système ADPC. Elle retrace la chaîne de production de l’avertissement depuis l’introduction des données d’entrées humaines et véhiculaires, passant par le traitement de données qui se fait en deux étapes : la détection de la collision et la prévention de la collision, jusqu’à la production de l’avertissement qui constitue la donnée de sortie du système et qui se produit en moyen d’une interface homme-machine. Les composantes avancées du système ADPC sont illustrée dans la figure ci-après.
Dans ce qui suit, nous présentons plus en détail les fonctionnalités de ces composantes.

4.2.1. Les données d’entrées: critères humains et véhiculaires
4.2.1.1. Critères humains
L’âge, l’historique d’accident, l’expérience de conduite et le trait d’anxiété sont les critères humains intégrés dans cette étude. En utilisant une Interface Homme-Machine (IHM), le conducteur renseigne ses propres données grâce à un écran de saisie qui se déclenche à sa demande, et répond également au questionnaire de l’anxiété.

Évaluation de l’anxiété au volant
Le critère principal dans cette étude est l’anxiété. L’évaluation des facteurs psychologiques est difficile à réaliser. De ce fait, l’évaluation de l’anxiété dans cette étude va se faire à l’aide d’un questionnaire qui est fournis par un expert en psychologie. Si le conducteur présente un ou plusieurs de ces signes, il doit cocher OUI à la question et le système va le considérer comme étant anxieux. Ci-dessous le questionnaire utilisé pour indiquer si une personne est anxieuse ou non:

- Je ressens habituellement de la peur quand je conduis une voiture;
- J’ai habituellement le cœur qui palpite quand je conduis une voiture;
- J’évite de conduire une voiture;
- Si je conduis une voiture, je suis très tendu;
- Si je conduis une voiture, je pense à toutes sortes d’accidents qui peuvent m’arriver; et
- Si je dois conduire une voiture, je perds mes moyens et devient très stressé.

4.2.1.2. Paramètres véhiculaires
Au moyen de la communication inter-véhiculaire (V2V), différents paramètres comme la distance, la localisation relative et la vitesse sont mesurés et utilisés dans notre système.

4.2.2. Traitement de données: détection et prévention
Le système ADPC est divisé en deux sous-systèmes consécutifs: détection de collision et prévention de collision. Le système entier sera basé sur le temps de réaction du conducteur qui va changer en fonction des critères humains et véhiculaires. Après la prédiction du
temps de réaction, le système délimite les zones de sécurité, d'avertissement et de danger, ainsi que la disposition du véhicule par rapport à cette zone. Et ensuite, le système à base de règle fournira le coefficient nécessaire au calcul de la fréquence et du volume des avertissements.

4.2.2.1. Sous-système I: détection de collision

Prédiction du Tr du conducteur

Comme précisé précédemment, la prédiction du temps de réaction du conducteur se fera à travers la méthode des réseaux de neurones. Cette méthode consiste à définir, dans un premier temps le nombre des neurones optimal, ceci a été fait par le moyen d’un algorithme développé spécialement pour cette fin. Ensuite, on a procédé à la définition du nombre des itérations optimal, et ce, via le calcul de l’erreur quadratique moyenne.

Finalement, une étude de performance des réseaux de neurones a été réalisée en utilisant les parcelles de régression afin de valider le modèle des réseaux de neurones utilisé pour la prédiction du temps de réaction. Ce processus nous a permis de développer un modèle des réseaux de neurones spécifique à la réalisation de la présente étude. Pour se faire, on a programmé et utilisé le logiciel MATLAB en vue de valider la performance du modèle des réseaux de neurones, définir le meilleur nombre des itérations, et d'effectuer les tests de toutes les combinaisons possibles pour obtenir un nombre de neurones optimal.

Zones d’avertissements proposées

Dans l’état de l’art, les travaux [16] et [54] donnent des avertissements longitudinaux en se basant sur des zones d’avertissement. Pareil, le système ADPC proposé donne aussi des avertissements longitudinaux et propose différentes zones comme montré dans la Figure 17; il d’agit de : la zone d’avertissement, la zone de danger et la zone de sécurité.

Chaque zone s'étend sur une distance précisée. La valeur D_t représente la distance actuelle entre les véhicules en question à l’instant t, D_a est la distance d’alerte où le système doit commencer à avertir le conducteur, D_d est la distance entre le véhicule et la zone de danger et D_f est la distance de freinage.
La distance actuelle (D_t) et la distance de freinage (D_f) vont être collectées. La distance de danger (D_d) et la distance d’alerte (D_a) vont être calculées avec les équations (1) et (2). Une comparaison sera établie entre (D_t et D_d) et (D_t et D_a) afin de décider dans quelles zones est situé le conducteur (Figure 16). Si $D_t > D_a$ alors le conducteur est en sécurité. Sinon, le sous-système II va se déclencher pour un avertissement.

Figure 17 Représentation graphique des zones d’avertissements

Basé sur la Figure 17 les zones peuvent être précisées comme suit:

$$Zones = \begin{cases}
D_t > D_a & \rightarrow \text{Zone de sécurité} \\
D_d < D_t < D_a & \rightarrow \text{Zone d’avertissement} \\
D_t < D_d & \rightarrow \text{Zone de danger}
\end{cases}$$

Afin d’intégrer les facteurs humains dans la détermination des distances, D_d et D_a vont être calculées comme la somme de la distance du freinage et une fonction du temps de réaction du conducteur (T_r):

$$D_d = D_f + f (T_r) \quad (1)$$

$$D_a = D_f + g (T_r) \quad (2)$$

La distance de danger est calculée comme l’addition de la distance du freinage ainsi qu’une fonction $f ()$ constante du Tr. La distance d’avertissement est calculée comme l’addition de la distance du freinage ainsi qu’une fonction $g ()$ constante du Tr.
4.2.2.2. Sous-système II: prévention de collision

Système à base de règles

Le présent travail prend en considération des facteurs humains et véhiculaires et les intègre dans le Système d’Avertissement élaboré. En effet, Le déclenchement de l’avertissement par le système prend en ligne de compte l’état psychologique du conducteur, son âge et la vitesse du véhicule.

La base de règles fournie par un expert en psychologie nous permet d’extraire le coefficient d’alerte pour identifier le temps, la fréquence et le volume de l’alerte, dépendamment des facteurs susmentionnés. Le Tableau 5 représente la base de connaissance utilisée dans ce travail et défini les coefficients d’alerte selon les critères considérés. Par exemple, un conducteur âgé de « 30 ans », « anxieux » et roule à une vitesse de « 50 Km/h » à un coefficient égal à 60.

<table>
<thead>
<tr>
<th>Anxieux</th>
<th>Non Anxieux</th>
<th>Age (ans)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20 → 35</td>
</tr>
<tr>
<td>< 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 → 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5 Base de connaissance fournie par un expert*

Calcul du niveau d’avertissement

Le sous-système II calcule le niveau d’avertissement avant d’émettre l’alerte au conducteur. Il existe trois (03) scénarios d’alerte selon la zone où se situe le véhicule : zone
sécuritaire, zone d’avertissement et zone de danger. La Figure 18 explique la variation du taux d’alerte selon la zone. Quand le véhicule est dans la zone sécuritaire \(D_t > D_a \), le système ne fournit pas d’alerte. Une fois le véhicule intègre la zone d’avertissement \(D_t < D_a < D_d \), le taux d’avertissement augmentera progressivement; la fréquence et le volume de l’alerte augmenteront aussi. Le taux d’avertissement dans la zone de danger \(D_t < D_d \) représente sa valeur maximale.

![Figure 18 Schéma explicatif du taux d’augmentation d’alerte et des distances considérées]

La fréquence et le volume de l’avertissement dépendent du taux d’avertissement \(T \) et du moment de l’émission de l’alerte \(A_t \) qui ont été conçus via les équations (3) et (4). Le taux d’avertissement \(T \) est calculé comme suit :

\[
T = \frac{A_{\text{MAX}} - A_{\text{MIN}}}{D_a - D_d} \tag{3}
\]

Avec \(A_{\text{MAX}} \) l’alerte maximale et \(A_{\text{MIN}} \) l’alerte minimale alors l’émission de l’alerte \(A_t \) est :

\[
A_t = A_{\text{MIN}} + T (D_a - D_t) \tag{4}
\]
4.2.3. Données de sorties du système

Comme sortie du système, un avertissement va être produit pour prévenir le conducteur avec une alerte sonore et visuelle avec différents niveaux de volume et différentes fréquences d’affichage en utilisant une Interface Humain-Machine qui va être présentée par la suite.

4.3. Conception UML de l’ADPC

Une conception UML a été faite afin de pouvoir réaliser l’architecture de l’ADPC. Le diagramme de classe UML précise les classes permettant la construction algorithmique du système réalisé comme présenté dans la Figure 19.

Figure 19 Diagramme de classe UML de l’ADPC

4.4. Environnement et outils de développement

Le langage utilisé pour l’implémentation de l’algorithme est le langage JAVA. Aussi Matlab et son environnement sont utilisés pour prédire le temps de réaction. Matlab dispose
de plusieurs boîtes à outils, en particulier celle des réseaux de neurones « Neurone Network ToolBox » qui propose un ensemble d’algorithme et d’outils graphiques de référence pour le traitement, l’analyse, la visualisation et le développement d’algorithmes de traitement d’images.
Chapitre 5: Expérimentation et analyse

5.1. Algorithme de l’architecture

Les données d’entrées de l’algorithme ADPC sont un ensemble de valeurs des paramètres humains et véhiculaires. Les paramètres humains sont renseignés par le conducteur via une Interface Homme-Machine (IHM), et les paramètres véhiculaires sont collectés via un GPS, la connexion V2V et les senseurs. La vitesse et la distance relative sont des valeurs dynamiques, et les données relatives au facteur sont statiques. L’algorithme de l’architecture de l’APDC a été rédigé en JAVA. Le code sera présenté dans l’Annexe 1.

Dans cette présente étude, on a considéré pour réaliser le modèle de réseaux de neurones 7 données d’entrée (Age, sexe, anxiété, ancienneté de permis, historique d’accidents, vitesse et temps de réaction) et une donnée de sortie qui est le temps de réaction d’un nouveau conducteur. Par la suite les données d’entrée du système ADPC seront 6 données d’entrée (Age, sexe, anxiété, ancienneté de permis, historique d’accidents et la vitesse) et une donnée de sortie.
5.2. L’interface Homme-Machine (IHM)

La Figure 20 montre l’interface implémentée qui permet au conducteur de s’identifier et de renseigner ses données telles que l’âge, le sexe, l’historique d’accident, les années d’expérience, et aussi le questionnaire qui évaluera son trait d’anxiété. Une réponse oui de l’une des étapes du questionnaire veut dire que le conducteur est anxieux.

Figure 20 L’interface homme-machine du système ADPC
5.3. Prédiction du temps de réaction et architecture des réseaux de neurones

5.3.1. Prétraitement de données

La base de données utilisée (présenté dans le chapitre 2) a été normalisée. Au niveau de tous les paramètres d'entrées nous avons 2 types de données (entier, booléen). Bien que les types de données entiers ont été normalisés, le type de données booléen n’a pas à l’être, vu que les valeurs y afférentes sont déjà dans l'intervalle [0,1] (il est 0 ou 1). Les valeurs entières ont été normalisées en divisant chaque valeur par la valeur maximale.

5.3.2. Développement du modèle des RN

Comme indiqué précédemment, les réseaux de neurones (RN) ont été développés et testés avec Matlab. Les données ont été divisées en trois (03) ensembles : de formation 70%, de test 15% et de validation15%. Les données ont été divisées avec une fonction aléatoire Dividerand. La formation (training) est faite avec l'algorithme Levenberg-Marquardt. L’objectif était d’obtenir le minimum de neurones et le minimum d’itération avec un fonctionnement optimal.

5.3.2.1. Le nombre optimal des neurones

Pour éviter le sur-apprentissage dans les réseaux de neurones, on a veillé à utiliser un nombre adéquat de neurones et de couches cachées. Pour évaluer la performance des réseaux des neurones, une fonction a été développée afin de trouver toutes les combinaisons possibles, de 3 neurones jusqu’à 12 neurones. Certaines règles ont été utilisées pour la détermination du nombre de neurones :

- Le nombre de neurones de la couche cachée devrait constituer les deux tiers de la taille de la couche d'entrée (70% à 90%).
- Le nombre de neurones de la couche cachée doit être inférieur à deux fois le nombre de neurones de la couche d'entrée.
- La taille des neurones de la couche cachée est comprise entre la taille de la couche d'entrée et la taille de la couche de sortie.
Dans notre cas, 6 neurones étaient le nombre minimum qui a donné une performance optimale.

5.3.2.2. Le nombre optimal d’itérations

Pour évaluer l’efficacité de la prédiction, l’erreur quadratique moyenne (EQM, Mean Squared Error) appelée aussi risque quadratique a été utilisée comme mesure de l’erreur moyenne, pondérée par le carré de l’erreur. Elle a permis de répondre à la question, « quelle est la magnitude de l’erreur de la prévision », sans pour autant indiquer la direction des erreurs. L’EQM est influencée plus par les grandes erreurs que par les petites erreurs, sa portée est de 0 à l’infini, un score de 0 étant un score parfait.

La corrélation entre l’erreur quadratique moyenne et le nombre d’itérations nous permet d’obtenir le meilleur indice de performance des données de validation. Cette figure indique qu’un nombre d’itérations égal à 18 est suffisant pour assurer une estimation correcte de la moyenne empirique.

![Figure 21 Erreur quadratique entre l'estimateur de référence et l'estimateur après nombre d'itérations.](image)
Comme précisé sur la Figure 21, on a eu besoin de 18 itérations pour avoir une bonne performance. Les tests de configuration utilisent les données de validation pour arrêter les itérations de formation, et ce, pour ne pas avoir un sur apprentissage des données. Après l’itération 18, l’erreur de l’ensemble de formation diminue mais l’erreur de l’ensemble de validation et de test augmente. Par conséquent, la performance du système diminue pour n’importe quelle nouvelle donnée.

Après l’étude analytique, la structure choisie est un réseau de neurones avec 6 neurones et 18 itérations. Six paramètres sont considérés comme données d’entrée et un paramètre comme donnée de sortie. Les personnes considérées à ce niveau sont 39 : 31 pour l’ensemble de formation, 4 pour l’ensemble de test et 4 pour l’ensemble de la validation.

5.3.3. Performance des réseaux des neurones

La Figure 22 montre les différents résultats des différentes parcelles de régression. Si le coefficient de corrélation R est à 0,8, il est généralement décrit comme solide, tandis qu’un coefficient de corrélation inférieure à 0,5, il est décrit comme faible. Ces valeurs peuvent varier en fonction du "type" des données en cours d'examen.

Les parcelles de régression affichent les sorties du réseau par rapport à des cibles pour des ensembles de formation, de validation et de test. Pour un ajustement parfait, les données doivent tomber le long d'une ligne de 45 degrés, où les sorties du réseau sont égales aux objectifs.

Dans notre cas, les ensembles de formation ont un R=0.98 et les ensembles de validation et de test ont un R≈0.75. Des résultats encore plus précis et un réseau amélioré pouvaient être produits si la base de données était plus grande. La parcelle de régression total R (All) est égale à 0.86 ce qui est une bonne valeur.
Figure 22 Affichage des sorties du réseau par les parcelles de régression à des cibles pour les ensembles de formation, de validation et de test.

Dans la Figure 23, les barres bleues représentent les données de formation, les barres vertes représentent les données de validation, et les barres rouges représentent les données de test. On peut observer que la plupart des erreurs se situent entre -0.4 et 0.4, il y a un point de validation avec une erreur de 0.8 et des points de test avec des erreurs de 0.64 et 0.8.
Figure 23 Distribution de l’erreur à travers les données de formation, de validation et de test

5.4. Évaluation de la performance du ADPC

Afin d’effectuer des tests de l’architecture du système d’avertissement pour la détection et la prévention des collisions (ADPC), on a procédé dans un premier temps à l’observation de l’ensemble de notre population en vue d’étudier dans un premier temps les trois paramètres suivants : l’anxiété, le temps de réaction (Tr) et l’âge. Par la suite on a étudié les différentes distances (actuelle, alerte, danger) et la valeur de l’alerte.

Finalement, notre observation a porté sur un échantillon de huit conducteurs en vue d’analyser le rapport âge, anxiété, vitesse, temps de réaction, alerte et taux de bip.

5.4.1. Résultats

Les résultats de l’architecture du système ADPC sont présentés dans deux différents graphes. La Figure 24 représente les résultats démontrant la relation entre l’âge, l’anxiété et le temps de réaction (Tr). Le graphe montre que les conducteurs âgés anxieux produisent un Tr élevé. Tandis que les conducteurs âgés non anxieux, ont un Tr relativement moins...
élevé en moyenne. Les jeunes conducteurs non anxieux ont un Tr bas sauf quelques exceptions dues probablement à l’inattention. Tandis que les jeunes conducteurs anxieux ont un Tr généralement moyen.

Figure 24 Résultat représentant la relation entre l’âge, l’anxiété et le temps de réaction

Les résultats montrant la relation entre l’émission de l’alerte et les différentes distances (actuelle, de danger, de l’alerte) sont représentés dans la Figure 25. La ligne «Distance» représente la distance actuelle de valeur constante de 100m. On remarque que l’alerte est émise dès que la distance actuelle est située entre la distance de l’alerte et la distance du danger. Aussi, la valeur de l’alerte augmente lorsque le véhicule s’approche de la zone du danger. Il est à noter que la manière de l’émission de l’alerte diffère dépendamment des six paramètres d’entrées humaines et véhiculaires.
5.4.2. Scénarios

Une étude de cas portant sur 8 scénarios relatifs à 8 profils différents de conducteurs a été réalisée pour effectuer les tests de l’architecture du système ADPC. Au niveau du choix des profils, on a couvert les facteurs de l’âge (jeune, âgé), le trait d’anxiété (anxieux, non anxieux) et la vitesse du véhicule (élevée, basse). Le tableau ci-dessous définit les résultats obtenus, notamment, le temps de réaction, la valeur de l’alerte et le taux de bip, et ce, pour chaque profil.

Il importe de préciser que le taux de bip est l’élément responsable d’adapter l’avertissement à chaque type de conducteur, c’est sur la base dudit taux qu’on peut calculer la fréquence et le volume de l’alerte émise à chaque conducteur. Le taux de bip est défini dans la section 4.2.2.2.
<table>
<thead>
<tr>
<th>Conducteurs</th>
<th>Âgé*</th>
<th>Anxiété</th>
<th>Vitesse**</th>
<th>Tr (s)</th>
<th>Valeur de l’Alerte ADPC</th>
<th>Taux Bip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Âgé</td>
<td>Anxieux</td>
<td>Élevée</td>
<td>3.0</td>
<td>0.733</td>
<td>1.53</td>
</tr>
<tr>
<td>2</td>
<td>Jeune</td>
<td>Anxieux</td>
<td>Élevée</td>
<td>1.6</td>
<td>0.593</td>
<td>1.28</td>
</tr>
<tr>
<td>3</td>
<td>Âgé</td>
<td>Non Anxieux</td>
<td>Élevée</td>
<td>1.2</td>
<td>0.786</td>
<td>1.62</td>
</tr>
<tr>
<td>4</td>
<td>Jeune</td>
<td>Non Anxieux</td>
<td>Élevée</td>
<td>1.0</td>
<td>0.672</td>
<td>1.42</td>
</tr>
<tr>
<td>5</td>
<td>Âgé</td>
<td>Anxieux</td>
<td>Basse</td>
<td>2.2</td>
<td>0.618</td>
<td>1.32</td>
</tr>
<tr>
<td>6</td>
<td>Jeune</td>
<td>Anxieux</td>
<td>Basse</td>
<td>0.7</td>
<td>0.211</td>
<td>0.60</td>
</tr>
<tr>
<td>7</td>
<td>Âgé</td>
<td>Non Anxieux</td>
<td>Basse</td>
<td>0.8</td>
<td>0.358</td>
<td>0.86</td>
</tr>
<tr>
<td>8</td>
<td>Jeune</td>
<td>Non Anxieux</td>
<td>Basse</td>
<td>1.3</td>
<td>0.549</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Tableau 6 Scénarios de conducteurs

* Âgé = 50, Jeune = 20; ** la vitesse élevée = 20, Vitesse basse = 10

Une analyse hypothétique des résultats obtenus nous permet de faire les constats suivants :

- De prime abord, on constate que les conducteurs qui roulent à vitesse élevée ont un temps de réaction et une valeur de l’alerte également élevée et vice-versa. Toutefois, le conducteur n° 8 présente une exception à cette règle, et ce, en ayant un temps de réaction élevé même s’il conduisait à basse vitesse.

- Quant aux conducteurs jeunes, ils ont un temps de réaction (Tr) et une valeur de l’alerte inférieurs par rapport aux conducteurs âgés, quelle que soit la vitesse enregistrée. Cependant, le conducteur n°8 présente un comportement différent par rapport à la tendance générale de l’effet du facteur « âge » sur le Tr et la valeur de l’alerte. En effet, même s’il est « jeune », le Tr du sujet n°8 est supérieur à celui du sujet n°7 qui est « âgé ».

- Pour ce qui est du facteur de « l’anxiété », il impacte également le Tr des conducteurs. En effet, quand celui-ci est « anxieux », son Tr est supérieure à celui qui est « non anxieux », sauf pour le profil n°8 « jeune » et « non anxieux », qui,
comparé au n°6 qui est aussi « jeune » mais « anxieux », il a un Tr élevé. Néanmoins, chez les « anxieux », la valeur de l’alerte ADPC a une tendance baissière relativement aux « non anxieux ». Ceci est expliqué par le fait que notre système d’avertissement prend en considération la nature complexe des personnes anxieuses qui peuvent mal réagir à une forte alerte.

En conclusion, on peut avancer que notre analyse hypothétique nous permet de faire des constats généraux, sauf que, des exceptions peuvent se présenter tel est le cas du conducteur n° 8. Au fait, il s’agit d’un conducteur « jeune » « non anxieux » qui roule à une « vitesse basse » mais, tenant compte de ces trois facteurs, son temps de réaction à l’avertissement est élevé en comparaison avec les autres profils. Ceci peut être dû à l’effet d’autres facteurs externes ou données personnelles non pris en compte par notre étude.

5.5. Résultat de fonctionnement des architectures ADPC et RECAM

Dans l’objectif de valider l’architecture ADPC, un processus de comparaison a été effectué entre cette dernière et l’architecture de l’évitement de collision par l’arrière (RECAM). Ce choix est motivé par le fait que cette architecture abrite les mêmes fonctionnalités que la nôtre. Cette section est dédiée à la présentation de l’architecture RECAM suivie d’une comparaison fonctionnelle qui consiste à établir un listage des fonctionnalités des deux architectures et à en comparer le contenu. Par la suite, on a procédé à la validation de notre système sur la base d’une série de tests qu’on a réalisé au niveau des deux architectures avec les mêmes données d’entrées et avec des paramètres humains fixes et des paramètres véhiculaires variables.

In fine, on a établi une comparaison expérimentale des architectures ADPC et RECAM, en réintégrant la variation du facteur humain et en fixant le facteur véhiculaire pour observer le changement qui aura lieu si le même conducteur utilise les deux systèmes d’avertissement.
5.5.1. Présentation de l’architecture RECAM

Le choix a été porté sur l’architecture de l’évitement de collision par l’arrière (RECAM). Pour réaliser les comparaisons nécessaires à la validation de notre architecture. L’architecture RECAM a comme données d’entrée les paramètres véhiculaires et environnementaux et comme données de sortie l’émission d’un avertissement ou non. Cette architecture a aussi diverses composantes qui sont identifiées comme suit : la détection de la position, la détermination et la comparaison des zones d’avertissement, et l’émission de l’alerte. Plus de détails relatifs à cette architecture ont été présentés au niveau du chapitre 3 « État de l’art » (3.5 et 3.6).

La figure ci-dessous représente les résultats de l’architecture RECAM sous forme de trois graphes. Il s’agit de la vitesse relative, la distance relative et la valeur d’avertissement par rapport à la composante « temps ».

![Diagramme](image)

Figure 26 Représentation de la distance relative, la vitesse relative et la valeur d’avertissement par rapport au temps (RECAM)
5.5.2. Comparaison fonctionnelle des deux architectures

La comparaison fonctionnelle des architectures RECAM et ADPC a porté sur les paramètres, fonctionnalités et algorithmes, et elle se présente comme suit:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de paramètres</td>
<td>Paramètres véhiculaires</td>
<td>Paramètres véhiculaires</td>
</tr>
<tr>
<td></td>
<td>Paramètres environnementaux</td>
<td>Paramètres humains</td>
</tr>
<tr>
<td>Nombre de paramètres</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Fonctionnalités</td>
<td>Détection position relative</td>
<td>Prédiction Tr</td>
</tr>
<tr>
<td></td>
<td>Zones d’avertissement</td>
<td>Détection position relative</td>
</tr>
<tr>
<td></td>
<td>Comparaison</td>
<td>Zones d’avertissement</td>
</tr>
<tr>
<td></td>
<td>Avertissement</td>
<td>Comparaison</td>
</tr>
<tr>
<td>Données d’entrées</td>
<td>Vitesse relative</td>
<td>Vitesse relative</td>
</tr>
<tr>
<td></td>
<td>Vitesse absolue</td>
<td>Distance relative</td>
</tr>
<tr>
<td></td>
<td>Distance relative</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td>Ndr de véhicule</td>
<td>Anxiété</td>
</tr>
<tr>
<td></td>
<td>Climat</td>
<td>Historique d’accidents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expérience de conduite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Genre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temps de réaction</td>
</tr>
<tr>
<td>Paramètres communs</td>
<td>Vitesse absolue</td>
<td>Vitesse absolue</td>
</tr>
<tr>
<td></td>
<td>Distance relative</td>
<td>Distance relative</td>
</tr>
<tr>
<td></td>
<td>Différentes distances</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td>Valeurs d’avertissement</td>
<td>Anxiété</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Historique d’accidents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expérience de conduite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Genre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temps de réaction</td>
</tr>
<tr>
<td>N.B : Les paramètres non communs ne seront pas considérés.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramètres constants</td>
<td>Freins</td>
<td>Les réseaux de neurones</td>
</tr>
<tr>
<td></td>
<td>Longueur de voiture</td>
<td>Les réseaux de neurones</td>
</tr>
<tr>
<td>Algorithmes utilisés</td>
<td>Les réseaux de neurones</td>
<td>Les fonctions de logique flou</td>
</tr>
<tr>
<td></td>
<td>Les fonctions de logique flou</td>
<td>Systèmes à base de règles</td>
</tr>
</tbody>
</table>

Tableau 6 : Comparaison entre le RECAM et l’ADPC
La comparaison entre les fonctionnalités des deux architectures a été établie pour montrer les nouveautés apportées par l’architecture ADPC particulièrement par rapport à l’architecture RECAM, et de manière générale, par rapport aux autres systèmes déjà en place et avancés au niveau du chapitre « État de l’art » (Tableau 7).

<table>
<thead>
<tr>
<th>Prédiction Tr</th>
<th>Architecture 1: RECAM</th>
<th>Architecture 2 : ADPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Détect. position relative</td>
<td>Même fonctionnalité</td>
<td>Même fonctionnalité</td>
</tr>
<tr>
<td>Zones avertissement</td>
<td>Même fonctionnalité</td>
<td>Même fonctionnalité</td>
</tr>
<tr>
<td>Comparaison</td>
<td>Même fonctionnalité</td>
<td>Même fonctionnalité</td>
</tr>
<tr>
<td>Système à base de règles</td>
<td>Nouvelle fonctionnalité</td>
<td>Nouvelle fonctionnalité</td>
</tr>
<tr>
<td>Niveau d’avertissement</td>
<td>Nouvelle fonctionnalité</td>
<td>Nouvelle fonctionnalité</td>
</tr>
<tr>
<td>Avertissement</td>
<td>Avertissement prédéfini</td>
<td>Avertissement adaptatif</td>
</tr>
</tbody>
</table>

Tableau 7 Comparaison fonctionnelle des deux architectures

La comparaison fonctionnelle réalisée nous permet de déduire qu’on est en mesure d’effectuer une comparaison expérimentale pour des fins de validation de l’architecture ADPC. En effet, cette dernière est dotée, en plus des fonctionnalités communes avec l’architecture RECAM, de plusieurs fonctionnalités et composantes supplémentaires à même d’apporter une valeur ajoutée au domaine de la sécurité routière.

5.5.3. Validation de l’architecture ADPC

Le processus de validation de l’architecture ADPC consiste à tester les deux architectures sur une même base de données. En effet, les avertissements émis par les deux architectures ont été comparés en se basant sur les paramètres communs qui correspondent aux besoins de ce projet, notamment, la distance relative, la vitesse, différentes distances et le temps d’avertissement produit.

En vue d’avoir des résultats comparables, il fallait alimenter les deux architectures avec les mêmes données d’entrée. C’est pour cette raison qu’on a procédé dans une première étape à l’extraction des données d’entrée véhiculaires de l’architecture RECAM et à leur
intégration dans l’architecture ADPC afin d’avoir les mêmes intrants et une même base de comparaison. Également, on a considéré les facteurs non véhiculaires comme étant constants vu qu’ils ne sont pas communs. En effet, pour ce qui du facteur humain au niveau de l’architecture de l’ADPC, on a considéré le conducteur comme étant : un jeune âgé de 30 ans, non anxieux avec un temps de réaction de 1.2s, et ce, pour tous les scénarios étudiés.

On observe sur le tableau ci-après les résultats de la valeur de l’alerte obtenus pour cinq scénarios différents avec une même distance et vitesse relative. La colonne grise affiche les résultats de la valeur de l’alerte de l’architecture du système RECAM. Quant aux autres colonnes, elles présentent les résultats de notre système.

Le comportement des deux architectures est approximatif, la corrélation est égale à 0.97 et l’erreur quadratique moyenne est égale 0.003, autrement dit, on est en mesure de confirmer la validation de l’architecture ADPC.

Il importe de rappeler à ce stade qu’une normalisation a été faite pour pouvoir comparer les valeurs d’alertes des deux architectures (voir chapitre 4).

<table>
<thead>
<tr>
<th>Distance</th>
<th>Vitesse</th>
<th>Distance freinage</th>
<th>Temps freinage</th>
<th>Distance danger</th>
<th>Distance alerte</th>
<th>Taux</th>
<th>Taux ajusté*</th>
<th>Valeur d’Alerte</th>
<th>Valeur d’Alerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M km/h</td>
<td>M S m m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADPC</td>
<td>RECAM</td>
</tr>
<tr>
<td>21.1 22.1</td>
<td>6 0.17 0.20 12.96 57.27 0.020 0.014 0.614 0.623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.3 19.7</td>
<td>10 0.47 0.32 21.47 94.29 0.012 0.009 0.749 0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.5 17.9</td>
<td>12 0.59 0.36 24.22 106.10 0.011 0.008 0.782 0.808</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 12.9</td>
<td>14 0.89 0.44 29.84 130.19 0.009 0.006 0.839 0.885</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.8 14.2</td>
<td>16 1.08 0.49 33.04 143.83 0.008 0.006 0.839 0.797</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Le taux ajusté est égale au taux multiplié par le coefficient résultant du système à base de règles (4.2.2.2)

Tableau 8 Résultats de comparaison des deux architectures

La Figure 27i-dessous illustre les résultats de la comparaison des valeurs d’alertes provenant des deux architectures.
5.5.4. Comparaison expérimentale

Rendu à cette étape, nous avons analysé les résultats qui ont été émis par les deux architectures en considérant le même scénario pour ce qui est du paramètre véticulaire, et en considérant différentes catégories de conducteurs.

Le * Tr = Temps de réaction

Tableau 9 présente la comparaison expérimentale entre les résultats de l’architecture RECAM et l’architecture ADPC pour un scénario où on considère des paramètres véticulaires constants (la vitesse relative est de 10km/h et la distance relative de 18m) avec différents profils de conducteurs. On a classé les conducteurs, sujets de notre expérimentation, dans les groupes qu’on a créé dans une étape précédente, à savoir, la segmentation des données de l’expérimentation faite au laboratoire du cyber psychologie (voir chapitre 2 pour plus de détails).

À titre de rappel, on possède quatre segments : groupe des prudents ; groupe des anxieux ; groupe des jeunes ; groupe des âgés.
On tient à préciser que, à l’encontre de l’architecture RECAM, notre architecture nous a permis d’avoir une valeur de l’alerte qui change dépendamment du Tr du conducteur, autrement dit, dépendamment du profil de ce dernier. En d’autres termes, les valeurs d’alerte produites par l’architecture du système RECAM sont constantes, vu que les avertissements sont produits sans prendre en compte les changements au niveau du profil des conducteurs.

<table>
<thead>
<tr>
<th>Groupe (Segments)</th>
<th>Moyenne du Tr ADPC (s)</th>
<th>Valeur d’alerte ADPC</th>
<th>Moyenne du Tr RECAM (s)</th>
<th>Valeur d’alerte RECAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxieux</td>
<td>1.9</td>
<td>0.69</td>
<td>1.2</td>
<td>0.71</td>
</tr>
<tr>
<td>Prudents</td>
<td>0.9</td>
<td>0.45</td>
<td>1.2</td>
<td>0.71</td>
</tr>
<tr>
<td>Jeunes-adultes</td>
<td>1.2</td>
<td>0.71</td>
<td>1.2</td>
<td>0.71</td>
</tr>
<tr>
<td>Âgé</td>
<td>1.8</td>
<td>0.73</td>
<td>1.2</td>
<td>0.71</td>
</tr>
</tbody>
</table>

* Tr = Temps de réaction

Tableau 9 Différence de résultats entre l’ADPC et le RECAM à une vitesse et une distance constantes

Les résultats obtenus suite à tests de l’architecture ADPC réalisés après l’intégration du paramètre variabilité de l’état physique et psychologique du conducteur, nous concluons que notre système réagit aux différents changements effectués au niveau des données d’entrée humaines. En effet, le temps de réaction le plus élevé est du groupe des conducteurs « anxieux » ; le temps de réaction le moins élevé est celui qui appartient au groupe des « prudents » ; et le groupe des conducteurs « âgés » a un temps de réaction élevé en comparaison avec le groupe des conducteurs « jeunes ».

En conclusion, l’étude de comparaison fonctionnelle et expérimentale des architectures ADPC et RECAM effectuée, le processus de validation qu’on a exécuté afin de valider notre architecture, ainsi que les différents tests réalisés nous ont permis de confirmer une grande partie de nos hypothèses, en effet :

- L’utilisation de la méthode des réseaux des neurones nous a permis de prédire le temps de réaction du conducteur au volant;
- L’intégration du facteur psychologique a permis à l’architecture du système ADPC de produire des avertissements adaptés à le trait d’anxiété du conducteur, et ce, en terme de valeur d’alerte et de taux de bip;

- La considération de la variabilité au niveau des données personnelles et véhiculaires a influencé nettement la manière de l’avertissement, notamment, en matière de temps, fréquence et volume.
Chapitre 6: Conclusion et travaux futurs

L’objectif principal de cette recherche est de concevoir un système adaptatif d’Avertissement pour la Détection et la Prévention de Collisions (ADPC) qui avertit le conducteur en cas de danger, selon différents critères dont les facteurs liés à l’état psychologique en plus d’autres facteurs humains et véhiculaires. Il importe de signaler que la principale valeur ajoutée du présent travail consiste en la conjugaison de deux composantes indispensables à notre travail, il s’agit notamment de la variabilité du temps de réaction qui caractérise notre recherche combinée aux paramètres humains et véhiculaires pris en ligne de compte dans cette étude. Les recherches dans les domaines des systèmes d’avertissement pour les conducteurs anxieux sont limitées, par conséquent, ce présent travail sera un début pour réaliser de nouveaux projets plus détaillé dans le futur.

Dans le cadre de ce travail, la méthode des réseaux de neurones pour laquelle on a opté a prouvé son succès comme méthode de PDMC pour la prédiction du temps de réaction du conducteur. La nouvelle architecture contient deux sous-systèmes constituant le système ADPC d’avertissement: (1) sous-système I – détection de collision, et (2) sous-système II – prévention de collision. Notre architecture a réussi à produire des taux d’alertes variables pour identifier la fréquence et le niveau du volume de l’alerte. L’Interface Homme-Machine (IHM) a été intégrée avec le reste du système comportant le questionnaire d’évaluation de l’anxiété ainsi que d’autres critères collectés et utilisés comme critères d’entrées du système réalisé.

Les résultats de l'algorithme de l’architecture ADPC montrent qu’il est possible d'obtenir des solutions de qualité équivalente à celles obtenues par l'algorithme RECAM, tout en intégrant la considération de l’aspect humain. Ainsi, notre architecture a pu produire des avertissements de façon efficace pour différents genres de conducteurs.

Eu égard aux éléments précités, il importe de rappeler que l’architecture ADPC réalisée dans le cadre de ce travail de recherche, en comparaison avec d'autres solutions existantes et étudiées lors de la revue littéraire, présente plusieurs spécificités en matière de
fonctionnalités et une grande valeur ajoutée en termes d’atteinte des résultats escomptés sur le plan de la sécurité routière.

Les travaux futurs et suggestions

Les travaux futurs nécessitent une base de données plus large pour des conclusions plus significatives. Au niveau expérimental, il serait judicieux de les renforcer dans un laboratoire et procéder par la suite à des tests réels.

On suggère de validation de la grille de cotation du questionnaire de l’anxiété afin de : (a) trouver la meilleure façon d’obtenir un score global d’anxiété, et (b) développer des données normatives pour caractériser comment un individu se situe par rapport à la population en général.
import java.awt.Toolkit;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.DataInputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import javax.swing.JOptionPane;
import javafx.stage.Window;

public class SystemeDePrediction {

 Client client1;
 Client client2;

 int debutdeIntervalldaDistanceInitiale;
 public int getDebutdeIntervalldaDistanceInitiale() {
 return debutdeIntervalldaDistanceInitiale;
 }
 public void setDebutdeIntervalldaDistanceInitiale(int debutdeIntervalldaDistanceInitiale) {
 this.debutdeIntervalldaDistanceInitiale = debutdeIntervalldaDistanceInitiale;
 }

 int findeIntervalldaDistanceInitiale;
 public int getFindeIntervalldaDistanceInitiale() {
 return findeIntervalldaDistanceInitiale;
 }
 public void setFindeIntervalldaDistanceInitiale(int findeIntervalldaDistanceInitiale) {
 this.findeIntervalldaDistanceInitiale = findeIntervalldaDistanceInitiale;
 }

 public Client getClient1() {
 return client1;
 }
 public Client getClient2() {
 return client2;
 }
 public void setClient1(Client client1) {
 this.client1 = client1;
 }
 public void setClient2(Client client2) {
 this.client2 = client2;
 }

 public void predire() {

 }
}
//C:\Users\User\Documents\MATLAB>matlab -nodisplay -nosplash -nodesktop -r getReac
//tionTime(10,10,10,true,'male',10);exit; -logfile output1.txt

try {

OutilListerFichier outilListerFichier = new OutilListerFichier();

 long dernierModifierAvant = -1;
 try{
 dernierModifierAvant = outilListerFichier.obtenirFichierOrodatage("C:\\Users\\User\\Documents\\MATLAB","output1.txt");
 System.out.println("dernierModifierAvant:" + Long.toString(dernierModifierAvant));
 }catch(Exception ex){
 dernierModifierAvant = -1;
 }

 long derniermodifierApres = -1;

 String commande = "cmd /c start C:\\Users\\User\\workspace\\ADPC\\src\\runTempsDeReaction.bat "
 + "" + String.valueOf(client1.getCar().getSpeed()) + " " + String.valueOf(client1.getDriver().getDrivingHistory().drivingExpe
 rience)+ " " +String.valueOf((client1.getDriver().getDrivingHistory().accidentStatus)?1:0)+ " " +String.valueOf(client1.getDriver().getPerson().anxious)+ " " +client1.getDriver().getPerson().getGender() + " " +String.valueOf(client1.getDriver().getPerson().getAge());

 @SuppressWarnings("unused")
 Process p = Runtime.getRuntime().exec(commande);
 Thread.sleep(50000);
derniermodifierApres =
outilListerFichier.obtenirFichierOrodatage("C:\\Users\\User\\Documents\\MATLAB","output1.txt");
System.out.println("derniermodifierApres:");
Long.toString(derniermodifierApres));

for(int i=0;i<5;i++){
 if(dernierModifierAvant<derniermodifierApres){
 break;
 }else{
 Thread.sleep(3000);
 derniermodifierApres =
outilListerFichier.obtenirFichierOrodatage("C:\\Users\\User\\Documents\\MATLAB","output1.txt");
 }
}

String nomFichier =
"C:\\Users\\User\\Documents\\MATLAB\\output1.txt";

//Create object of FileReader
FileReader inputFichier = new FileReader(nomFichier);

//Instantiate the BufferedReader Class
BufferedReader bufferReader = new BufferedReader(inputFichier);

//Variable to hold the one line data
String ligne;

int tempsDeReaction = -1;
String tempsDeReactionString = null;
// Read file line by line and print on the console
while ((ligne = bufferReader.readLine()) != null) {
 System.out.println(ligne);
 if(ligne.contains("le temps de reaction est:")){
 String ligne2 = bufferReader.readLine();
 System.out.println(ligne2);
 int tempsDeReactionIndex = ligne.indexOf("le temps de reaction est");
 String lecteurDuTempsDereactionString = ligne2;
 lecteurDuTempsDereactionString.trim();
 int indexOfReactionTime = 0;
 String lecteurString =null;
 for(int v=0;v<lecteurDuTempsDereactionString.length();v++){
 char testChar =
 lecteurDuTempsDereactionString.charAt(indexOfReactionTime++);
 int testInt =
 Character.getNumericValue(testChar);
if (tempsDeReactionString == null) {
 tempsDeReactionString = String.valueOf(lecteurDuTempsDereactionString.charAt(indexOfReactionTime-1));
 lecteurString = tempsDeReactionString;
} else {
 tempsDeReactionString += String.valueOf(lecteurDuTempsDereactionString.charAt(indexOfReactionTime-1));
 lecteurString = String.valueOf(lecteurDuTempsDereactionString.charAt(indexOfReactionTime-1));
 if (testInt==-1 && !(lecteurString.equals(".")) && !(lecteurString.equals("-"))){
 break;
 }
}
}
System.out.println("le temps de reaction est" + tempsDeReactionString);

Double tempsDeReactionDouble = Double.parseDouble(tempsDeReactionString);
// int DF dependent on the deaccelaeration

double tempsDeReactionVitesse = (double)client1.getCar().getSpeed();
double KmParHeureAMeterParSeconde = 1000.00/3600.00;

tempsDeReactionVitesse = KmParHeureAMeterParSeconde * tempsDeReactionVitesse;
double tempsDeReactionDistance = tempsDeReactionVitesse*tempsDeReactionDouble; //reactionTimeInteger;
double premiereFonctionTempsDeReaction = tempsDeReactionDistance*6;
double deuxiemeFonctionTempsDeReaction = tempsDeReactionDistance*27;

double deacceleration = 9; // m/s^2 * conversion factor unit

double facteurVitesseAuCarreDeConversionAuMetrePaeSeconde = 100.00/1296.00;
double distanceDeFreinage = (float)(client1.getCar().getSpeed() * client1.getCar().getSpeed()/(float)(2*deacceleration));
distanceDeFreinage = facteurVitesseAuCarreDeConversionAuMetrePaeSeconde * distanceDeFreinage;
double distanceDeDanger = distanceDeFreinage +
pemiereFonctionTempsDeReaction;
double distanceDAverte = distanceDeFreinage +
deuxiemeFonctionTempsDeReaction;

double distanceActuel = (int)(Math.random() *
findeIntervalolveDistanceInitiale)
+ debutdeIntervalolveDistanceInitiale;

System.out.println("distance de freinage: " +
Double.toString(distanceDeFreinage));
System.out.println("distance de danger: " +
Double.toString(distanceDeDanger));
System.out.println("distance d'alerte: " +
Double.toString(distanceDAverte));
System.out.println("distance actuelle: " +
Double.toString(distanceActuel));

while(distanceActuel > distanceDAverte)
{
 System.out.println("Distance actuelle est egal a zero:");
 System.out.println("Distance actualle > Distance d'alerte");
 Thread.sleep(5000);
 distanceActuel = (int)(Math.random() *
findeIntervalolveDistanceInitiale) +
deutdeIntervalolveDistanceInitiale;
 System.out.println("La nouvelle distance actuelle est:" + distanceActuel);
}
if(distanceDeDanger > distanceActuel)
{
 System.out.println("Alerte(t) est au maximum");
 System.out.println("Distance de danger > Distance actual");
}
else{
 double tauxDuFacteurDAnxiete =
(double)getTauxDAntiete();
 int Amax =1;
 double Amin =0.1;
 double tau = (Amax-Amin)/(distanceDAverte-
distanceDeDanger);
 tauxDuFacteurDAnxiete = (tauxDuFacteurDAnxiete/100) * tau;
System.out.println("taux: "+Double.toString(taux));
System.out.println("Facteur du taux d’anxiété: "+Double.toString(tauxDuFacteurDanxiete));

double alerteTemps = Amin + (tauxDuFacteurDanxiete * (distanceDAlerthe - distanceActuel));
System.out.println("Alerte actuelle est:" +Double.toString(alerteTemps));

for(int i=0;i<10;i++){
 Toolkit.getDefaultToolkit().beep();
 Thread.sleep((long)(500/(alerteTemps+0.1)));
}

int y=5;
y++;

}catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
} catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
}

private int getTauxDAntiete() {

 int âge = client1.getDriver().getPerson().getAge();
 int speed = client1.getCar().getSpeed();
 boolean anxious = client1.getDriver().getPerson().isAnxious();
 int tauxFActor = -1;

 if(speed<40){
 if(âge>=20 && âge<35){
 if(anxious){
 tauxFActor =50;
 }else{
 tauxFActor=70;
 }
 }
 else if(âge>=36 && âge<45){
 if(anxious){
 tauxFActor =55;
 }else{
 tauxFActor=75;
 }
 }
 }
}
```c
} else if (âge >= 46 && âge < 60) {
  if (anxious) {
    tauxFActor = 60;
  } else {
    tauxFActor = 80;
  }
}
} else if (speed >= 40 && speed <= 60) {
  if (âge >= 20 && âge < 35) {
    if (anxious) {
      tauxFActor = 60;
    } else {
      tauxFActor = 80;
    }
  } else if (âge >= 36 && âge < 45) {
    if (anxious) {
      tauxFActor = 65;
    } else {
      tauxFActor = 85;
    }
  } else if (âge >= 46 && âge <= 60) {
    if (anxious) {
      tauxFActor = 70;
    } else {
      tauxFActor = 90;
    }
  }
} else if (speed > 60) {
  if (âge >= 20 && âge < 35) {
    if (anxious) {
      tauxFActor = 70;
    } else {
      tauxFActor = 90;
    }
  } else if (âge >= 36 && âge < 45) {
    if (anxious) {
      tauxFActor = 75;
    } else {
      tauxFActor = 95;
    }
  } else if (âge >= 46 && âge < 60) {
    if (anxious) {
      tauxFActor = 80;
    } else {
      tauxFActor = 100;
    }
  }
}
return tauxFActor;
```
Références

1. Canada, S. *Tableau 051-0005 - Estimations de la population, Canada, provinces et territoires, trimestriel (personnes), CANSIM (base de données).* [cited 2013-12-07].

30. PERCLOS, a valid psychophysiological measure of alertness as assessed by psychomotor vigilance. 1998, Washington, DC :: Federal Highway Administration, Office of Motor Carriers, Office of Motor Carrier Research and Standards.

34. Pourabdian, S. and H. Azmoon, The Relationship between Trait Anxiety and Driving Behavior with Regard to Self-reported Iranian Accident Involving Drivers. (2008-7802 (Print)).

35. Reason, J., et al., Errors and violations on the roads: a real distinction? (0014-0139 (Print)).

36. Shahar, A., Self-reported driving behaviors as a function of trait anxiety. (1879-2057 (Electronic)).

