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Abstract

Emails can be considered as the most popular means of communication in the last

decades. However, email popularity comes with a major problem related to the reception

of unsolicited or unwanted emails, commonly known as spam, which represent a major

threat for individuals and organizations.

Even though the proposed solutions for spam detection in the literature have come a

long way, spam emails still represent a real problem for IT infrastructure security. The

most recent spam detection methods use content-based approaches which have shown

promising results. These methods usually use text representations in the form of fea-

ture spaces allowing spam/legitimate emails discrimination using classification algorithms.

However, most of these methods use holistic and high-dimensional spaces that do not

consider high-level semantical aspects of the text and ignore spam specificity in different

thematic domains.

Our work tackles this problem by proposing an original approach for spam detection

that interprets email content on two distinct semantic levels. In the first level, we catego-

rize emails by specific thematic domains (e.g., Health, Education, Finance, etc.) to enable

a separate conceptual view for spam in each domain. In the second level, we automati-

cally extract in each domain a set of semantic features from labeled emails, represented in

the form of rules, for spam detection. These features are meant to summarize the email

content into topics forming compact feature spaces that efficiently discriminate spam from

legitimate emails.

Experiments on a large corpus of emails have shown that the proposed method provides

an efficient representation of the internal semantic structure of email content, which allows

for more precise spam detection results compared to existing methods. They have also

demonstrated that having a specialized classifier to target the spam of each domain can

enhance the within domain spam/legitimate email discrimination, and boost the overall

spam detection performance.
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Sommaire

L’utilisation du courriel est considérée comme le moyen de communication le plus

populaire depuis des décennies. Cependant, sa popularité a engendré un problème majeur

lié à la réception de courriels non sollicités et indésirables. Ces courriels, communément

appelés spam, représentent une menace majeure pour les individus et les organisations.

Même si, dans la littérature, beaucoup de travaux ont été consacrés à la détection de

spam, ce dernier représente toujours un réel problème pour la sécurité des infrastructures

informatiques.

La plupart des travaux de recherche pour la détection de spam utilisent des approches

basées sur le contenu, qui ont montré des résultats prometteurs. Ces dernières utilisent

habituellement des représentations textuelles, sous forme d’espaces de caractéristiques,

permettant la discrimination courriel spam/courriel légitime à l’aide des algorithmes de

classification. Cependant, la plupart de ces méthodes utilisent des espaces holistiques et

de grandes dimensions qui ne considèrent pas les aspects sémantiques de haut niveau du

texte et ignorent la spécificité du spam dans différents domaines thématiques.

Cette thèse traite ce problème en proposant une approche originale pour la détection de

spam qui interprète le contenu des courriels sur deux niveaux sémantiques différents. Dans

le premier niveau, nous catégorisons les courriels par domaines thématiques spécifiques

(ex., Santé, Education, Finance, etc.) pour permettre une vue conceptuelle distincte

pour les courriels spam dans chaque domaine. Dans le second niveau, nous extrayons

automatiquement dans chaque domaine un ensemble de caractéristiques sémantiques à

partir de courriels étiquetés, que nous représentons sous forme de règles permettant la

détection de spam. Ces caractéristiques résument le contenu des courriels en un ensemble

de sujets formant des espaces de caractéristiques compacts qui distinguent efficacement

les courriels spam des courriels légitimes.

Des expériences sur un large corpus de courriels ont montré que la méthode proposée

fournit une représentation efficace de la structure sémantique interne du contenu des
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courriels, ce qui permet d’obtenir des résultats de filtrage anti-spam plus précis et plus

efficaces par rapport aux méthodes existantes. Ils ont également démontré que le fait de

disposer d’un classificateur spécialisé pour cibler les messages spam de chaque domaine

peut améliorer la discrimination spam/courriels légitimes au sein du domaine et améliorer

les performances globales de détection de spam.

iii



Remerciements

Ce travail de thèse est réalisé au Laboratoire de Recherche en Sécurité Informatique

(LRSI) de l’Université de Québec en Outaouais sous la direction bienveillante du Pro-

fesseur Kamel Adi et de l’accompagnement éclairé du Professeur Mohand Saïd Allili. Son

achèvement, après plusieurs années de recherche, me procure aujourd’hui fierté et satis-

faction, et là, justement, c’est l’occasion de se remémorer toutes les étapes accomplies,

les nombreuses difficultés qu’il a fallu surmonter, mais surtout les personnes qui m’ont

permis d’en arriver à la soutenance d’une thèse tant attendue par ma famille.

Je voudrais tout d’abord présenter mes remerciements les plus vifs à Monsieur Kamel

Adi, professeur au Département d’informatique de l’Université de Québec en Outaouais,

pour avoir accepté de m’accueillir dans son équipe et de diriger en toute rigueur ce travail

de recherche. Je lui exprime également ma reconnaissance pour la confiance qu’il m’a

constamment témoignée, pour les connaissances qu’il m’a prodiguées et pour ses conseils

et remarques aussi pertinentes que constructives; qu’il soit assuré de mon profond respect

et de ma totale gratitude.

Le long de la préparation de ma thèse, j’ai eu aussi le privilège et l’opportunité de

travailler avec Monsieur Mohand Saïd Allili, professeur au Département d’informatique

de l’Université de Québec en Outaouais. L’occasion m’est donnée pour exprimer mes

remerciements les plus sincères pour m’avoir fait bénéficier de ses compétences et pour

avoir été constamment présent et à l’écoute.

Je tiens à témoigner ma profonde reconnaissance à Monsieur Luigi Logrippo, professeur

au Département d’informatique de l’Université de Québec en Outaouais pour avoir accepté

de présider mon jury de thèse et de sacrifier une partie de son temps dans l’évaluation

scientifique du présent travail. Je le remercie très chaleureusement.

J’adresse ma profonde gratitude à Monsieur Marc Frappier, professeur au Département

d’informatique de l’Université de Sherbrooke et à Monsieur Alan Davoust, professeur

au Département d’informatique de l’Université de Québec en Outaouais pour l’honneur

iv



qu’ils m’ont fait en acceptant d’être rapporteurs du présent travail. Leurs remarques et

suggestions vont me permettre certainement d’ouvrir de nouvelles perspectives dans mes

recherches.

J’adresse mes remerciements les plus chers à mon mari qui m’a fortement soutenu tout

au long de cette thèse et qui a été à la fois tendre et patient pour partager la joie de ma

soutenance, après avoir vécu ensemble le bonheur de la naissance de notre fille Celena.

Je voudrais particulièrement souligner le soutien de ma famille et de celle de ma belle-

famille qui a été permanent et sans faille. Je les remercie, un par un du fond de mon cœur

et leur dire combien je les aime.

v



To my beloved parents Noura et Boualem

To my sweet daughter Celena



Contents

Abstract i

Sommaire ii

Remerciments iv

Contents vii

List of Tables xi

List of Figures xiii

List of Abbreviations xv

1 Introduction 1

1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background on text classification algorithms 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Machine learning types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

vii



2.3.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Text classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Text feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Text feature selection . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Topic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Supervised machine learning algorithms . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Support vector machine . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.3 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.4 Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.5 K-nearest neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.6 Adaboost (Adaptative Boosting): . . . . . . . . . . . . . . . . . . . 32

2.5.7 Random forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.8 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Classification evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Literature review 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Non-content based approaches . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 List-based filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Temporal features analysis . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 SMTP path analysis . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.4 Behavior analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.5 Social network analysis . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Content-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Rule-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Vector-space-based approaches . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Semantic-based approaches . . . . . . . . . . . . . . . . . . . . . . . 50

viii



3.4 Hybrid approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Spam detection using automatic semantic feature extraction 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 General model of automatic semantic feature extraction . . . . . . . . . . . 59

4.3 Email categorization by domains . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Email semantic features extraction . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Subgroup discovery algorithm . . . . . . . . . . . . . . . . . . . . . 66

4.4.2 CN2 rule induction algorithm . . . . . . . . . . . . . . . . . . . . . 67

4.4.3 CN2-SD algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Generation of domain-specific classifiers . . . . . . . . . . . . . . . . . . . . 71

4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Hybrid approach for spam detection 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 General model of hybrid extraction of semantic features . . . . . . . . . . . 79

5.3 Email categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Domain-specific semantic feature extraction . . . . . . . . . . . . . . . . . 81

5.4.1 Manual extraction of semantic features . . . . . . . . . . . . . . . . 81

5.4.2 Automatic extraction of semantic features . . . . . . . . . . . . . . 84

5.5 Semantic feature combination . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 Merging redundant rules . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.2 Conflict resolution between rules . . . . . . . . . . . . . . . . . . . 86

5.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6.1 Soft vs. hard classification . . . . . . . . . . . . . . . . . . . . . . . 95

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

ix



6 Deep learning based approach for spam detection 98

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Email categorization by domains using word embeddings . . . . . . . . . . 99

6.2.1 Text preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.2 Word2Vec word embedding . . . . . . . . . . . . . . . . . . . . . . 100

6.2.3 Email categorization using Word2Vec representation . . . . . . . . . 102

6.3 Domain-specific semantic feature extraction . . . . . . . . . . . . . . . . . 105

6.3.1 eTVSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.2 CN2-SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Overall comparison of our contributions . . . . . . . . . . . . . . . . . . . . 108

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Conclusion and future work 112

References 114

x



List of Tables

2.1 Confusion matrix of a binary classification. . . . . . . . . . . . . . . . . . . 35

4.1 Quantitative evaluation of machine-learning classifiers for email categoriza-

tion by domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Quantitative evaluation of machine-learning classifiers using our semantic

approach for spam detection. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Results for spam detection without categorization by domains. . . . . . . . 75

4.4 Comparative evaluation with other methods. . . . . . . . . . . . . . . . . . 76

5.1 Syntax for manually-specified rules. . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Statistics of our collected dataset. . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Quantitative evaluation of machine-learning classifiers for email categoriza-

tion by domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Quantitative evaluation of machine-learning classifiers using our semantic

approach for spam detection. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Results for spam detection without categorization by domain. . . . . . . . 92

5.6 Comparative evaluation with other methods using our collected dataset. . . 93

5.7 Comparative evaluation with other methods using CSDMC2010 SPAM

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8 Results evaluation of our approach using CSDMC2010 SPAM dataset. . . . 95

xi



5.9 Comparative evaluation Soft/Hard spam classification using our collected

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.10 Comparative evaluation Soft/Hard spam classification using CSDMC2010

SPAM dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Quantitative evaluation of machine-learning classifiers for email categoriza-

tion by domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Quantitative evaluation of machine-learning classifiers using eTVSM for

spam detection in specific domains. . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Comparative evaluation with other methods. . . . . . . . . . . . . . . . . . 109

6.4 Comparative evaluation of our three contributions. . . . . . . . . . . . . . 110

xii



List of Figures

1.1 Number of sent and received emails per day, 2017-2024. . . . . . . . . . . . 2

1.2 Proportion of spam in email traffic, 2014-2020. . . . . . . . . . . . . . . . . 3

1.3 The most common categories of spam content sent in 2019. . . . . . . . . . 6

2.1 Machine learning process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Machine learning techniques include both unsupervised and supervised

learning [111]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 (a) Regression, (b) Classification and (c) Clustering techniques in machine

learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Text classification process [64]. . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 The Continuous Bag-Of-Words (CBOW) and the Skip Gram (SG) models

[59]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 SVD applied to term-document matrix X . . . . . . . . . . . . . . . . . . . 22

2.7 Reduced-rank SVD performed on term-document matrix X. . . . . . . . . 23

2.8 Classification of data by Support Vector Machine (SVM). . . . . . . . . . . 27

2.9 k-Nearest Neighbor classification. . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Random forest classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.11 Artificial Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 A simple rule-based spam filter coded as a Thunderbird mail client rule. . . 45

3.2 A part of SpamAssassin rule list. . . . . . . . . . . . . . . . . . . . . . . . 46

xiii



3.3 Representation of several WordNet semantic relations using standardized

OWL methodology [46]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 General model of our approach. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 An outline of the different steps used for email categorization by domain. . 62

4.3 Difference between classification model (a) and subgroup discovery model

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 CN2 ordered rules algorithm [21]. . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 An example of ordered set of rules [21]. . . . . . . . . . . . . . . . . . . . . 68

4.6 An example of unordered set of rules [21]. . . . . . . . . . . . . . . . . . . 69

4.7 CN2 unordered rules algorithm [21]. . . . . . . . . . . . . . . . . . . . . . . 70

4.8 An outline of the approach for spam detection using domain-specific clas-

sifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Layout of steps composing our approach. . . . . . . . . . . . . . . . . . . . 80

5.2 Outline of the different steps used for email categorization by domain. . . . 81

6.1 Architecture of CBOW and Skip-gram models. . . . . . . . . . . . . . . . . 101

6.2 Outline of the different steps used for email categorization by domain. . . . 104

xiv



List of Abbreviations

AUC Area Under Curve

BoW Bag-of-Words

CBOW Continuous Bag-Of-words

CSBC Conceptual Similarity Based on Corpus

DL Deep Learning

EGPA Email Geographic Path Analysis

eTV SM enhanced Topic-based Vector Space Model

FERC Federal Energy Regulatory Commission

GA Genetic Algorithm

GloV e Global Vectors for word representation

HMM Hidden Markov Models

IG Information Gain

IT Information Technology

KNN K-Nearest Neighbor

K −NNC K-Nearest Neighbor Classifier

LDA Latent Dirichlet Allocation

LSA Latent Semantic Analysis

LSI Latent Semantic Indexing

MI Mutual Information

ML Machine Learning

MMA−MF Multi-Modal Architecture based on Model Fusion

MRMR Minimum Redundancy Maximum Relevance

NB Naive Bayes

NLP Natural Language Processing

NNC Nearest Neighbor Classifier

OCFS Orthogonal Centroid Feature Selection

xv



OMFS Orthogonal Minimum Feature Selection

OR Odds Ratio

pLSA probabilistic Latent Semantic Analysis

REP Reduced Error Pruning

SD Subgroup Discovery

SG Skip Gram

SSBWL Semantic Similarity Based on the Wikipedia Links

SNARE Spatio-temporal Network-level Automatic Reputation Engine

SV D Singular Value Decomposition

SVM Support Vector Machine

TBSR− SD Text-Based Semantic Representation for Spam Detection

tf term frequency

tf − idf term frequency-inverse document frequency

TV SM Topic-based Vector Space Model

V SM Vector Space Model

WRAcc Weighted Relative Accuracy

xvi



1
Introduction

1.1 Context and motivation

Electronic mail or email is one of the most used services on the Internet given the advan-

tages it offers in terms of transmission speed, the ability to handle multimedia documents,

and broadcasting messages at a very low cost. As can be seen in Figure 1.1, around 306.4

billion emails were exchanged per day in 2020. This number is supposed to reach 361.6

billion by the end of 2024. However, email’s popularity comes with a major problem re-

lated to the reception of unsolicited or unwanted emails. These emails, commonly known

as spam, represent a major threat for individuals and organizations. Indeed, spam over-

load mailboxes with unwanted messages, causing a loss in network bandwidth and storage

space. It also favors a fast distribution of false information and the spreading of malicious

codes. As shown in Figure 1.2 [23], spam represented over 55% of the total email traffic

1



in January 2020.

Figure 1.1: Number of sent and received emails per day, 2017-2024.

Spam is at the origin of a drastic decrease in productivity within organizations, causing

a loss of billions of dollars [11]. According to scientific researchers, M. Rao of Microsoft

Research and H. David of Google, spam costs US businesses and consumers about $20

billion per year, while spammers and spam-advertised merchants make about $200 million

a year in profit [13]. For instance, the Nigerian Prince scams gross over $700,000 a year

[74].

In the literature, several definitions have been used for spam. For instance, Cranor et

al. [28] defined spam as "unsolicited bulk email". However, this definition seems to be

very narrow, as it means that unsolicited emails that are not sent in bulk do not have a

negative impact on systems which is not always true in practice. A more precise definition

was provided by Cormack et al. [27] and say that "spam is unsolicited and unwanted

email that was sent indiscriminately, directly or indirectly, by a sender having no current

relationship with the recipient". In [26], Cormack provided a more general definition of
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Figure 1.2: Proportion of spam in email traffic, 2014-2020.

spam based on the adversarial nature of spam and spam filters. He defined spam as

"unwanted communication intended to be delivered to an indiscriminate target, directly

or indirectly, notwithstanding measures to prevent its delivery". In addition, he defined

spam filters as "an automated technique to identify spam for the purpose of preventing its

delivery". Other definitions of spam can be found in [106]. Ham emails are the opposite

of spam: they represent all the legitimate emails that are accepted by the recipients.

To deal with the problem of spam, several detection methods have been proposed in

the literature [11, 17, 30, 124]. These methods generally use two types of information con-

tained in emails, namely non-content and content-based information [11]. Non-content

information refers to email headers and related sender information such as the email

sender address domain (IP address), his reputation, his writing style and sending time.

List-based approaches are among the earliest proposed solutions for spam detection [10].

Commonly used techniques in list-based filters are Whitelist and Blacklist [26, 54]. The

Whitelist method allows the recognition of trusted sender addresses while the Black-
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list method can block unsolicited emails based on fake sender addresses [115], known as

spammer addresses. However, mailing lists must be continually updated to maintain the

effectiveness of these methods, which limits their applicability with a highly evolving spam

content.

Content-based information refers to textual information contained within email bod-

ies and subjects. Recently, machine learning techniques have shown tremendous success

for content-based spam detection [10, 17], after their indisputable success in text cat-

egorization [49]. In fact, spam filtering can be seen as a two-class (spam, ham) text

categorization and, therefore, several automatic classification methods were applied, such

as Support Vector Machines (SVM) [112], Naive Bayes (NB) [116], Artificial Neural Net-

works (ANN) [93], etc. These methods mainly consist of building classification models by

learning from email features (e.g., email text words, n-grams, etc.). Email features can

usually be extracted manually using hand-crafted rules, also called knowledge engineer-

ing, or inferred automatically using text mining techniques [10, 30]. For manual feature

extraction, rules are built by experts and regularly updated to maintain the efficiency of

spam detection systems. They are generally coded using compact regular expressions to

specify complex text patterns [86]. This technique has been used, for instance, in the

SpamAssassin system [110] and by some other researchers such as Sahami et al. [95] and

Schleimer et al. [101]. In automatic features extraction, a corpus of annotated emails is

automatically analyzed using text mining algorithms to extract useful information such as

words, characters, HTML markup and various document statistics [10]. Our work focuses

on content-based approaches for spam detection.

1.2 Problem statement

Since content-based spam filtering uses mainly text classification, text representation con-

stitutes a cornerstone for this type of methods. Among the most popular methods for text

representation, we can find the Bag-of-Words (BoW) model [4] where an unstructured set

of word tokens are used to discriminate between spam and legitimate messages. More

precisely, the BoW model describes the text of an email as a vector of words where each
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word represents an individual feature of the email. Unfortunately, this representation is

very high-dimensional, as each word is treated as an attribute in the feature space. In

addition, this model may incur an important loss in the email semantics since words are

taken independently. Indeed, individual word tokens can be plagued with polysemy and

sometimes intentionally modified by spammers to prevent their detection by spam filters

[99]. To alleviate this issue, researchers have used n-gram models [14] where emails are

represented by sequences of words which carry more semantical content than mere words,

which in turn leads to more refined models. However, this approach increases exponen-

tially the size of the vocabulary, which leads to highly sparse spaces for representing email

documents.

Inspired by natural language processing (NLP) techniques, several other researchers

have used semantic features for spam detection [94]. For example, methods have used

word synonyms created from WordNet Ontology [99] or word sense disambiguation [65]

to identify the appropriate meaning of polysemous words in specific contexts. These

methods have reported a better performance compared to the BoW and n-gram models.

However, these methods do not consider the different writing styles between legitimate

users and spammers. In other words, semantic approaches project the email text contents

into semantic space without considering whether the email is spam or ham. Moreover,

they do not capture all the semantic subtleties discriminating ham/spam as the lexicon

used by spammers is greater than that of natural language.

Due to the increasing sophistication of content obfuscation techniques, spammers have

been able to generate emails with content close to the natural language, which makes

their discrimination with legitimate emails very difficult [117]. Hence, having a richer

semantic representation close to the natural language is required to depict and capture,

in an explicit way, the information conveyed by emails which can enable discrimination

between legitimate and spam emails [17]. A major problem then is the extraction of

high-level semantic meanings from the content of emails and using these as features to

build vector spaces that could decrease the dimension of vectors and, at the same time,

enhance the spam classification accuracy.

On the other hand, spam content can drastically vary between different domains (cat-
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Figure 1.3: The most common categories of spam content sent in 2019.

egories) targeted by spammers. For instance, in spam campaigns related to the subject

of health, spam content is mainly oriented to medicine or false therapy campaigns ad-

vertisement, whereas in finance, spam carry advertisements for dubious financial services

and products. Figure 1.3 shows the most targeted domains by spammers in 2019. Given

the variety of semantics carried by different domains, trying to have a general and uni-

fied semantic representation for all domains can be a hard or even counter-productive

pursuit. Several research works have proved that complex representations of texts do

not always improve the efficiency of spam classification [26]. Therefore, we argue that

using domain-specific spam representation can be more advantageous for spam discrim-

ination than using a general-purpose one. In other words, having a specialized classifier

to target the spam of each domain can enhance the within domain spam/legitimate email

discrimination, and therefore enhance the overall spam detection task.
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1.3 Contributions

The main goal of this thesis is to propose a new approach for efficient and accurate spam

filtering using semantic representation learning. To achieve this goal, we propose:

• a method for automatic extraction of semantic features for domain-specific email

spam detection. Our approach analyses email contents at two semantic levels.

The first level broadly categorizes the subject of emails in order to define a domain-

specific spam characterization using NLP and machine learning techniques. To

categorize emails by domain, five most targeted categories by spammers are consid-

ered: Computer, Adult, Education, Finance, and Health. The second level uses an

approach inspired by the CN2-SD algorithm [22] to automatically extract semantic

rules for spam detection. Each rule has a binary class outcome (spam/ham) and acts

by itself as a weak classifier for discriminating spam. The combination of these rules

produces a strong classifier enabling robust and accurate spam detection compared

to existing methods [98]. This work resulted in the following publication :

– Nadjate Saidani, Kamel Adi, and Mouhand Said Allili. A supervised approach

for spam detection using text-based semantic representation. In Int’l Confer-

ence on E-Technologies, pages 136-148. Springer, 2017.

• to extend our method using a hybrid scheme composed of manually-specified and

automatically-extracted semantic rules for spam detection. Automatic rules extrac-

tion allow an efficient extraction of basic semantics, while manually-specified rules

allow semantics tuning by incorporating domain-specific knowledge of experts and

end-users. Moreover, to allow optimal integration of the two types of rules, we pro-

pose an algorithm for eliminating redundancy and conflicts between rules. Finally,

we validate our approach using extensive experiments on a large corpus of emails

composed of six different domains: Computer, Adult, Education, Finance, Health

and Others. The category "Others" is used to ensure the completeness of the cat-

egories. We compared our approach to a method based on the BoW model and
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some existing semantic models, and demonstrate that our approach yields a higher

performance for spam detection compared to the other methods [97]. This work

resulted in the following publication:

– Nadjate Saidani, Kamel Adi, and Mohand Said Allili. A semantic-based clas-

sification approach for an enhanced spam detection. Computers & Security,

94:101716, 2020.

• to explore the use of more elaborated semantic features based on deep learning and

semantic ontology to spam filtering. For this purpose, we use the Word2Vec model

[78] to categorize email documents by domains at the first level. In the second level,

we use an approach integrating eTVSM semantic ontology [99] and CN2-SD [22]

to generate semantic rules. Finally, we compare our approach with the previously

obtained results and some other recent proposed approaches [96]. This work resulted

in the following publication :

– Nadjate Saidani, Kamel Adi, and Mohand Said Allili. Semantic representation

based on deep learning for spam detection. In Int’l Symposium on Foundations

and Practice of Security, pages 72–81. Springer, 2019

1.4 Thesis outline

The rest of this thesis is structured as follows:

In chapter 2, we present an overview of text classification algorithms. We introduce

the general framework of machine learning and define different machine learning types.

We also provide a background on text mining and outline the most common machine

learning algorithms, especially those used in the classification of text documents. Finally,

we describe some popular evaluation methods for text classification algorithms. In chapter

3, we provide an overview of the state-of-the-art related to spam filtering techniques based

on content and non-content features. As our work focuses on semantic methods, we pay

particular attention to techniques based on semantic content analysis. In chapter 4, we
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propose a two-level semantic analysis of emails to enable domain-specific spam detection.

In chapter 5, we propose a hybrid approach which is an extension of the semantic features

introduced in chapter 4. In chapter 6, we explore the use of the embedding words approach

based on deep learning for spam detection. Finally, in chapter 7, we summarize the

main contributions of the present thesis and we suggest some possible avenues for further

research.
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2
Background on text classification algorithms

2.1 Introduction

Automatic text classification is one of the most important tasks of Machine Learning

(ML), it automatically assigns one or more predefined categories to a text document. To

further elaborate the text classification process using machine learning techniques, we

have divided this chapter into five main parts. The first part summarizes the different

paradigms of machine learning. The second part includes the different types of machine

learning algorithms. The third and the fourth parts provide background on text mining

and text classification algorithms, respectively. Finally, the fifth part presents a synthesis

of different methods used to evaluate machine learning systems.
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2.2 Machine learning

Machine learning is one of the fields of artificial intelligence [32]. This field refers to

development, analysis and implementation of methods that allow a machine to improve

its current performance based on learning from data. A general scheme of automatic

learning process is given in Figure 2.1.

Figure 2.1: Machine learning process.

Machine learning systems use datasets containing pre-collected examples, known as

training or learning data (e,g. emails, images, etc.), of the problem to be addressed in or-

der to make decisions (predictions). More specifically, in the learning phase, the training

data is used to extract knowledge in order to build a model that hopefully generalizes to

all possible examples of the treated problem. Afterward, this model is used as a reference

to classify new examples not observed during learning stage. In other words, the main

task of machine learning is to create a model with good prediction performance on the

test data that contains new examples. The algorithms derived from machine learning

can be applied to various situations and are particularly suited to the problem of auto-

mated decision-making. These include Natural Language Processing (NLP), such as text

categorization and spam detection, video analysis, image classification, voice recognition,

pattern identification, web research, medical diagnosis, fault control, etc. [16, 44, 103].
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2.3 Machine learning types

Any machine learning algorithm works using a set of training data. Depending on the

input data used by the algorithm, machine learning can be categorized into two main

types: supervised learning and unsupervised learning. Each category contains several

algorithms tailored for different problems. These types of learning can also be combined

in the same system to increase its accuracy. Figure 2.2 shows the common groupings

of machine learning algorithms. In this chapter, we will mainly talk about supervised

learning algorithms as our contributions are based on this method and we will briefly

discuss unsupervised learning.

2.3.1 Supervised learning

Supervised learning algorithms are widely used in various research problems, such as

intrusion detection, spam filtering, speech recognition, text categorization [32]. In this

type of learning, the actual output values (labels) of all examples in input data (training

data) are known and defined in advance. The goal of these algorithms is to bring out,

from a known set of input data and known responses (output values) to the data, a model

allowing to assign right predictions for the response to new data. Supervised learning is

typically done in the context of classification or regression to develop predictive models

(see Figures 2.2 and 2.3 (a,b)).

In supervised learning, there are two main techniques: classification and regression.

Mainly, the classification technique predicts discrete responses, usually called classes, la-

bels or categories. For example, in the case of spam filtering problem, predict whether the

received email belongs to spam or ham class. The regression technique predicts continu-

ous responses such as predicting the stock prices using historical data. Commonly used

algorithms in supervised learning include logistic regression, naive Bayes, Support vector

machines, Artificial neural networks and Random forests.
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Figure 2.2: Machine learning techniques include both unsupervised and supervised learn-

ing [111].

2.3.2 Unsupervised learning

In this type of learning, unlike supervised learning, only the information relating to input

examples is known and the desired output values are unknown. Unsupervised learning

method looks to group examples of input data into homogeneous spectral output val-

ues. Therefore, the algorithm must determine its output values itself according to the

similarities detected between examples of input data using metrics such as Euclidean or

probabilistic distance. Clustering is the most common unsupervised learning method, it

seeks to group examples so that those within the same group are sufficiently similar, and
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Figure 2.3: (a) Regression, (b) Classification and (c) Clustering techniques in machine

learning.

those within different groups are sufficiently different (Figure 2.3). Commonly used algo-

rithms in clustering include k-means clustering, Hierarchical clustering, Hidden Markov

models and Gaussian mixture models.

2.4 Text classification

Text classification uses machine learning and NLP techniques to automatically classify

text documents into one or more predefined categories according to their content. Over

the last few decades, text classification techniques have been applied in many applica-

tions, such as sentiment analysis, spam detection, news-article topic labeling, etc. Text

classification based on ML comprises four main components: feature extraction, feature

selection or dimension reduction, model learning and evaluation. Figure 2.4 illustrates

an overview of the text classification process. The two first components, feature extrac-

tion and dimension reduction are detailed in the following subsections, while classification

algorithms and evaluation methods are presented in the further sections.

2.4.1 Text feature extraction

Text feature extraction is the process of taking out a list of terms (terms could be words, n-

grams, characters, phrases, part of speech, topics, etc.) from the text documents (corpus)
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Figure 2.4: Text classification process [64].

and converting them into feature space. Usually, the text documents are both highly

dimensional and unstructured data. However, to make this data easy to handle by ML

algorithms, it is transformed from a raw text data to numerical data using mathematical

modeling. Before this transformation, a text preprocessing phase is needed to clean up

noisy and unnecessary text data to reduce feature dimensionality and improve classifier

performance. Text preprocessing includes four main steps, namely: Tokenization, Noise

and Stop-word removal, Stemming and Lemmatization. Tokenization permits segmenting

email content into a set of words, phrases, etc. Noise and Stop-word removal deletes

unnecessary characters such as punctuation and special characters and most common

words in a text such as articles, prepositions, etc. Stemming allows transforming words

into their roots, for example the stem of "studying" is "study". Lemmatization groups

together the different inflected forms of a word to its meaningful base form, for example,

the lemma of gone, going and went is go. This section discusses two common techniques

of text feature extraction: term (word) weighting and word embedding techniques.

1) Term weighting

Term or word weighting schemes require that all documents in the dataset are first

converted to feature vectors. Then, assign appropriate weights to each item in the

feature vector. The weight of each term in a document indicates its importance in

representing the content of that document. Below, we discuss the most commonly

used weighting schemes.
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• Binary weighting:

Binary weighting is the simplest scheme of feature extraction methods. The

scheme uses binary feature values, it assigns "1" to any term present in the

document and "0" otherwise.

• Term frequency:

Term frequency (tf) measure calculates ft,d, the number of occurrences of

each term t in a document d and assigns it to feature space. To avoid bias for

long documents (overweighting), this measure can be normalized by
∑

t′∈d ft′,d,

the total number of occurrences of all terms in a document. The tf can be

formulated as follows:

tf(t, d) =
ft,d∑
t′∈d ft′,d

. (2.1)

There are several other variants of the tf , the most common one is the logarith-

mic term frequency. This variant uses a logarithmic function to dampen the

importance of high-frequency terms that can affect rare but important terms.

The logarithmic tf scheme is calculated as follows:

tf(t, d) = log(1 + ft,d). (2.2)

By adding one to the log function, we keep weight equal to 0 on absent terms.

• Term frequency-inverse document frequency:

Term frequency-inverse document frequency (tf−idf) is among the most suc-

cessful term weighting scheme. The tf−idf was proposed to resolve the prob-

lem of common terms (words) in a document. Its principle is to determine

the importance of a word in the document and the entire dataset (corpus).

Two statistical methods are used by tf−idf : term frequency (tf) and inverse

document frequency (idf). The tf refers to the normalized term frequency

as described above. The idf computes the logarithm of the total number of
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documents |D| in the dataset divided by the number of documents where the

word t appears. The idf method increases the weight of important words and

decreases the weight of insignificant words. Thus, given a set of training data

D, where a document d ∈ D and a term t ∈ d, the idf equation can be given

as:

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}|
. (2.3)

By multiplying the tf method and the idf method, we can obtain high-frequency

terms that provide a particularly important context for a single document in a

set of documents. The formal representation of the tf − idf is given as follow:

tf−idf(t, d,D) = tf(t, d) · idf(t,D). (2.4)

As described previously, several weighting methods are used to determine the value

of a term in the feature space. The weighting methods can also be viewed as a

form of Bag of Word (BoW) models. However, these methods suffer from some

limitations. Firstly, they don’t take into account context and synonyms of terms in

a document. In addition, the resulting matrices of these methods are usually huge

and sparse which induces a problem of high dimensionality. For more details about

the advantages and drawbacks of different feature extraction techniques see [64].

2) Word embedding

Word embedding is NLP technique that involves deep learning. This technique maps

the document words to high-dimensional vectors of real numbers using a neural

network. This technique aims to capture the contexts and semantics of a word in a

document using low-dimensional vectors. The principle is to group together vector

representations of words with similar meaning in the vector space. In other words,

all words with similar meaning have a similar vector representation. Various word

embedding models have been proposed such as word2vec and Global Vectors for
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Figure 2.5: The Continuous Bag-Of-Words (CBOW) and the Skip Gram (SG) models

[59].

word representation (GloVe). We review both of these models in the following of

this section.

• Word2Vec:

Word2vec method has been developed by Mikolov et al. [80] in 2013 at Google.

This method uses shallow neural networks with three layers: an input layer,

a hidden layer and an output layer, to learn the word representations based

on their context. Two distinct models are used by Word2vec to learn word

embeddings: Continuous Bag-Of-words (CBOW) and Skip Gram (SG) mod-

els. The CBOW model learns the representations by predicting the current

word based on its surrounding context words, whereas the SG model learns

the representations by predicting the surrounding context words based on the

current word. A general framework of both models are represented in Figure

2.5. The Word2Vec model is described in more detail in chapter 6.

• Global vectors for word representation:

Another well-known word embedding method proposed by Pennington et al.

[85], is the Global Vectors for word representation (GloVe). The method lever-

ages the global contexts in the form of global co-occurrence statistics for learn-
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ing word embeddings. More specifically, the method combines the advantages

of two commonly used models to learn word vector representations: the global

matrix factorization model such as Latent Semantic Analysis (LSA) [43] and

the local context window model such as Word2Vec [80]. The author claims that

LSA (Latent Semantic Analysis) performs well in capturing significant statis-

tical information using global statistics of word co-occurrence, but relatively

fails in analogy tasks such as capturing semantic similarity between words. In

contrast, word2vec performs better on analogy task, but fails to capture the

corpus’ global statistics. For example, Word2Vec doesn’t recognize if two words

occur together because one of them is very frequent, such as "the", or because

there is a real semantic connection between the words.

Both popular models Word2vec and Glove have improved their performance in learn-

ing word embedding. However, these models perform better if they are trained from

a huge dataset (corpus), the reason why researchers often opt for choosing pre-

trained word embedding vectors [64]. Hence, these models tend to ignore all words

that are outside their vocabulary (words that are missing from the trained model).

2.4.2 Text feature selection

Feature selection technique is an important task for vector dimensionality reduction in text

classification [34]. The basic idea is to identify the most relevant text features and discard

the redundant and the irrelevant ones. Consequently, feature selection often improves the

accuracy of the classifiers which reduces the computation time.

In this section, we describe the most commonly used feature selection techniques in

text classification. We use the following notations for the used formulas: for a set D of

training data, |D| is the number of documents in the training set. P (t) is the probability

that the term t occurs in a document, t̄ represents the absence of the term t. P (c) is the

probability that a document belongs to the class c, c̄ represents the non-membership in c.

P (t, c) is the probability of observing the term t in a document belonging to the class c.
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• Mutual information:

Mutual Information (MI) calculates the mutual dependency between two random

variables. Formally, the MI between a term t and a class c is calculated as follows:

MI(t, c) =
∑
t,c

P (t, c) log
P (t, c)

P (t)P (c)
. (2.5)

• Chi-square:

Chi-square, noted also χ2, is one of the most common method in text classification,

it is a statistical metric that measures the lack of independence between a term t and

a class c. In the case where a term t and a class c are completely independent, the

Chi-square value is equal to zero, i.e., the number of documents containing a term

t in predefined classes is equal. The expression for calculating Chi-square static is

given as:

χ2(t, c) =
|D| (P (t, c)P (t̄, c̄)− P (t, c̄)P (t̄, c))2

P (t)P (t̄)P (c)P (c̄)
. (2.6)

• Odds ratio:

Odds Ratio (OR) is a feature selection method, initially proposed by [82] for binary

text classification using naive Bayes algorithm. The method measures the ratio

between the odds of a term occurring in one class and the odds of it occurring in

another class. The OR is calculated as:

OR (t, c) =
P (t, c) (1− P (t, c̄))

(1− P (t, c))P (t, c̄)
. (2.7)

OR gives a score greater than zero for terms that are more probable in c, and a

score less than zero for those who are less probable in c. The zero score is given for

terms that are equally probable in all classes.
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2.4.3 Topic modeling

Topic modeling is a statistical technique that can automatically extract latent topics or

concepts from a given set of documents. The basic idea of this technique is that each

document is considered as a mixture of topics and each topic as a distribution of terms

[127]. More specifically, a topic is a set of terms that frequently co-occur in the documents.

In other words, terms that are semantically related are mapped to the same topic [13, 83].

For example, the words: "patient", "doctor", "disease", "cancer" and "health" can be

mapped to the topic "healthcare". Hence, terms or words with similar meaning will occur

in similar text documents. Here, we describe the most popular topic modeling methods:

latent semantic analysis [33], probabilistic latent semantic analysis [55] and latent dirichlet

allocation [13].

• Latent semantic analysis:

The first topic model was introduced by Deerwester et al. [33] in 1990, called

Latent Semantic Analysis (LSA) or Latent Semantic Indexing (LSI). The LSA model

consists of three main steps: the first step preprocesses the raw text data and

converts it into a term-document matrix. In practice, the term-document matrix

can be implemented using a term-weighting scheme like tf , tf−idf , etc. The second

step performs matrix decomposition on the term-document matrix X to learn latent

topics. More specifically, the LSA applies an algebraic method called Singular Value

Decomposition (SVD) to project documents to a lower-dimensional semantic space.

The final step generates a matrix that maps the documents according to their topics

that came out of the SVD technique. As shown in Figure 2.6, the SVD of a |V | × c

matrix X, where |V | is the number of terms and c is the number of documents, is

the product of three different matrices: W , Σ and a transpose of matrix C:

X = WΣC>, (2.8)

where W and C are orthogonal matrices W TW = CTC = I. The matrix Σ is a

diagonal matrix of singular values which are sorted in decreasing order, σ1 ≥ σ2 ≥
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· · · ≥ σm, where m is the number of linearly independent rows of the matrix X

called the rank.

Figure 2.6: SVD applied to term-document matrix X .

For discovering latent themes, a truncated SVD method is used to generate a

reduced-rank matrix approximation of X by selecting only the k biggest singu-

lar values in Σ, where k ≤ m. In other words, the k most significant (biggest)

singular values are kept, and the remaining (smallest) singular values are ignored

(set to zero). Figure 2.7 shows a visualization of such a process. The matrix X̂ of

rank k that best approximates the term-document matrix X is given as:

X̂ = WkΣkC
>
k ≈ X. (2.9)

This dimensionality reduction enables the reduction of noise in the latent space by

removing irrelevant dimensions. In addition, by limiting the number of dimensions

to k, this allows to strengthen correspondence between words and contexts in order

to improve the measure of similarity between documents[113].

• Probabilistic latent semantic analysis:

Probabilistic Latent Semantic Analysis (pLSA) model, also called aspect model,

was proposed by Hofmann [55] which tries to improve the LSA model by using a

probabilistic method. Unlike the LSA, which applies the SVD method to the term-

document co-occurrence matrix, the pLSA performs probabilistic mixture decom-

position on the co-occurrence matrix using a generative latent class model (latent

topics). Mainely, pLSA model associates an unobserved class variable (a latent
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Figure 2.7: Reduced-rank SVD performed on term-document matrix X.

topic variable) z ∈ Z = {z1, . . . , zK} with each observation, i.e., the occurrence of

each term t in a document d. Thus, the pLSA model for the term-document co-

occurrence matrix can be expressed as a joint probability p(d, w) between a term t

and a document t:

P (d, t) = P (d)
∑
z∈Z

P (t | z)P (z | d), (2.10)

where P (d) represents the probability of a term t occurring in a given document d,

P (t | z) denotes the probability of a term t conditioned on latent topic variable z,

P (z | d) is the probability distribution of a document d over the latent topics.

In the pLSA model, the conditional probabilities P (t | z) and P (z | d) are deter-

mined using the Expectation Maximization (EM) algorithm to maximize the fol-

lowing likelihood function:

L =
∑
d

∑
t

n(d, t) log p(d, t), (2.11)

where n(d, w) denotes the number of occurrence of t in d.

The EM algorithm alternates between two steps: an Expectation step, denoted by

E-Step, and a maximization step, denoted by M-step. The E-Step computes the

posterior probabilities of the latent variables, i.e., the probability of topic z given

the observed document d and term t ∈ d, according to the following equation:

P (z | t, d) =
P (t | z)P (z | d)∑
z′ P (t | z′)P (z′ | d)

. (2.12)
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The M-step updates the conditional probabilities P (t|z) and P (z|d) to maximize

the likelihood function L.

P (t | z) =

∑
d n(d, t)P (z | t, d)∑

t′
∑

d n (d, t′)P (z | t′, d)
. (2.13)

P (z | d) =

∑
t n(d, t)P (z | t, d)∑

z′
∑

t n(d, t)P (z′ | t, d)
. (2.14)

• Latent Dirichlet allocation:

Latent Dirichlet Allocation (LDA) [13] extends the pLSA generative model to ad-

dress some of its shortcomings. Like pLSA, LDA assumes that each document is a

mixture of different topics. However, the authors have shown that pLSA suffers from

overfitting [5] where the number of parameters increases linearly with the number of

documents in the collection (training data). Another shortcoming that the authors

have underlined is that pLSA model is not a generative model for new documents

as the topic distribution is learned directly from the original data (training data).

To address these issues, LDA model uses the Dirichlet distribution to model topics

and words. In LDA model, the joint distribution of a topic mixture is given by:

P (θ, z,w | α, β) = P (θ | α)
N∏
n=1

P (zn | θ)P (wn | zn, β) , (2.15)

where t is a term of a given document d and z is the topic assignment to the term

t, θ is the topic distribution for a document d. The two parameters α and β are

the parameters of Dirichlet prior on the per-document topic distributions and the

per-topic word distribution, respectively. Finally, N denotes the number of words

or terms in a document.

2.5 Supervised machine learning algorithms

Formally, a supervised machine learning algorithm receives as input a set of data D =

{(x(i), y(i))|(x(i), y(i)) ∈ X × Y}ni=1 and produces as result a hypothesis h : X → Y . In
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this case, D corresponds to a set of n pairs of inputs x(i) and associated targets y(i).

The elements of X = {x(1), · · · , x(n)} are the n representations of examples we wish

to study where each example x ∈ X is described by a vector of m attributes (features)

x = (x1, · · · , xm) and the elements of Y = {y(1), · · · , y(n)} are values that we can associate

with each example x. The hypothesis h built by a learning algorithm allows to associate

an element ŷ of the set Y with an element x of the set X absent in the set of learning

examples:

ŷ = h(x). (2.16)

The nature of the set Y depends on the type of problem to be solved. When the

prediction values of Y belong to the set R, it is a regression application, otherwise it is

a classification application. For example, in spam filtering problem, the training data D

consists of a certain number of pairs (x, y), where x ∈ X is an email document represented

by a vector of word occurrences or frequencies and y ∈ Y is a response value assigned

to email such as spam or ham class. In the case of classification, the system seeks for

a function h able to automatically assign the right class spam or ham to a new email

document. We would like this new classification to be most often identical to what we

could have done manually. In the case of regression, the system can for example use score

or weight to assign a spam ranking for a new email document. If the score exceeds a

certain threshold, the email will likely end up in the spam folder. Thus, the input data is

always discrete but the function sought is with real values.

In the rest of this chapter, we will limit ourselves to the problems of two-class dis-

crimination y ∈ {−1,+1}, where one of the possible classes is represented by -1 and the

other by +1. Much of the literature focuses on the binary case because the classifications

involving more than 2 categories (multi-class) can always be re-expressed in the form of

binary classifications. Indeed, if we consider a multi-class classification, we can always

carry out an independent binary classification for each category and then look for which

category the membership has manifested.
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2.5.1 Naive Bayes

Bayesian classifier is a simple and effective probabilistic model based on Bayes’ theorem.

The theorem provides a way of calculating a conditional probability p(y|x) (shown in

Equation 2.17), called a posterior probability. More specifically, the Bayesian classifier

assigns the most likely class y ∈ Y to a given example x ∈ X described by its feature

vector x = (x1, · · · , xm). The probability that an example x belongs to a class y is given

as follows:

p(y|x) =
p(y)p(x|y)

p(x)
. (2.17)

• p(x|y) is the probability of generating example x given class y.

• p(y) is the probability of occurrence of class y.

• p(x) is the probability of occurrence of example x.

The naive hypothesis of Bayes’ theorem comes into play when we assume the inde-

pendence of features. Therefore, this hypothesis allows to write:

p(x|y) = p(x1, · · · , xm|y) =
m∏
i=1

p(xi|y). (2.18)

The probability p(xi|y) is the ratio between the number of times the attribute xi

appears in class y and the total number of examples that include class y. In practice, it

is possible to simplify the naive Bayes formula by ignoring p(x) because this parameter

remains the same for each class. This gives us the following formulation:

p(y|x) ∝ p(y)
m∏
i=1

p(xi|y). (2.19)

This calculation is done for each class y ∈ Y, and we consider the highest probability

to select the class of the example that we want to classify. Therefore, the decision rule

that maximizes this probability is given by the following equation:

ŷ ∝ argmax
y∈Y

p(y)
m∏
i=1

p(xi|y). (2.20)
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2.5.2 Support vector machine

The Support Vector Machine (SVM) is an efficient machine learning algorithm based on

geometric interpretations. The algorithm uses three main concepts, namely: optimal hy-

perplane, maximum margin and support vectors. The examples closest to the separation

boundary of the two classes y = −1 and y = +1 shown in the scheme of Figure 2.8 are

called support vectors. The margin is the distance between the support vectors on either

side of the separation boundary. The main objective of SVM is to look for the maximum

margin to find an optimal hyperplane which gives a better separation of the learning

examples.

Figure 2.8: Classification of data by Support Vector Machine (SVM).

In the case of linear SVM, for a set of n training data (examples) labelled into two

classes y ∈ {+1,−1}. The problem consists of finding a hyperplane w · x + b = 0 which

separates the classes with the largest margin, where w ∈ Rm, b ∈ R and w ·x is the scalar

product of the two vectors w and x. The search for the maximum margin for determining
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the w and b parameters of the hyperplane leads to a quadratic optimization problem. We

are looking for a point that minimizes or maximizes a certain function subject to certain

constraints. The discriminant function h is obtained by a linear combination of an input

vector x and it is written as follows:

h(x) = w · x+ b. (2.21)

The class being given by the sign of h(x):

ŷ = sign(h(x)) =

 +1 if h(x) ≥ 0,

−1 if h(x) < 0
(2.22)

The separating hyperplane is then defined by the equation: w ·x+b = 0. Let (x(i), y(i))

be one of the n couples of the learning set D, the goal is to find the classifier h such that:

y(i)(w · x(i) + b) ≥ 0. (2.23)

As we mentioned earlier, the SVM approach seeks to find the optimal hyperplane

among the set of possible hyperplanes, thus allowing to correctly classify the data. Re-

ferring to Figure 2.8, we note that on the two hyperplanes H1 and H2 parallel to the

optimal hyperplane w ·x+ b = 0, we have the support vectors whose respective equations

are w ·x+b = −1 and w ·x+b = +1. Thus, in this case, we cannot find training examples

located in the margin because they should satisfy the following constraints:

w · x(i) + b ≥ +1 if y(i) = +1 (2.24)

w · x(i) + b ≤ −1 if y(i) = −1 (2.25)

It is possible to combine the two constraints 2.24 and 2.25 into a single inequality as

follows:

y(i)(w · x(i) + b)− 1 ≥ 0 (2.26)

In vector geometry, the margin is equal to 1
‖w‖ To find the optimal hyperplane which

maximizes the margin, we must determine the vector w which has the minimum Euclidean

norm min‖w‖ equivalent to min 1
2
‖w‖2 which checks the constraint of equation 2.26
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of good classification of training examples. The optimal separator hyperplane can be

obtained by solving the equation:
min 1

2
‖w‖2

y(i)(w · x(i) + b)− 1 ≥ 0 ∀i=1,··· ,n

(2.27)

In this type of problem, to calculate the variables w and b, we could use suitable

optimization methods like the principle of duality and the Lagrange multipliers to show

that the vector w∗, which achieves the optimum, can be written in the form:

w∗ =
n∑
i=1

α∗i y
(i)x(i), (2.28)

where α∗i are the Lagrange multipliers, they are non-zero only for the examples x(i)

lying exactly on the border of the margin, that is to say the support vectors. Let vs =

{j ∈ {1, · · · , l}| α∗j 6= 0} be the set of indices of the support vectors. The decision rule

for a new observation x based on the hyperplane with maximum margin is given by:

ŷ = sign(
∑
j∈vs

α∗jy
(j)x · x(j) + b∗). (2.29)

The calculation of b∗ can be performed from any support vector by the equation:

b∗ = y(i) − w · x(i). (2.30)

In terms of precision, we can use the average over all the support vectors to have a

robust value of b∗.

The SVM classifier presented above assumes that the data of the two classes are

linearly separable, which is not always the case in practice. The extension of SVM to the

non-linear case uses the kernel trick that projects the data into a new higher-dimensional

space called a representation space or feature space and then applies a linear SVM in this

new space.

2.5.3 Logistic regression

As with Bayesian classifier, Logistic regression is based on a probabilistic interpretation

since its final decision is based on the posterior probability of class y. In general, the
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algorithm assumes that the logarithm of the posterior probability can be described as a

linear function of the feature vector x = (x1, · · · , xm). Thus, the posterior probability

p(y|x) is represented by sigmoid function acting on the feature vector x.

p(y|x) =
1

1 + e−(w·x+b)
, (2.31)

where, w ·x+ b = w1x1 + · · ·+wmxm + b. This implies that (b, w1, · · · , wm) represents

the vector which defines a hyperplane that separates the two classes −1 and +1. The

result sign indicating the class to be assigned to a new observation is represented as

follows:

ŷ = sign(w · x+ b) =

 +1 si w · x+ b ≥ 0,

−1 si w · x+ b < 0
(2.32)

This hypothesis formulation avoids the simulation of the generation process of the

example x as would the Bayes algorithm and allows a direct evaluation of the posterior

probability of the class y. The training of this algorithm consists of determining the

parameters w and b which are estimated from the training data.

2.5.4 Decision trees

Classifier algorithm based on decision tree such as ID3 [89], C4.5 [90], RIPPER [24] and

CART [71] are made up of a set of rules making it possible to classify a set of data into

homogeneous groups. Each rule associates a conjunction of tests on descriptive variables.

The top of a decision tree represents the root, the variables corresponding to non-terminal

nodes (tests on features) are classification variables, each branch corresponds to a modality

of the variable (response to a test) considered at this level of the tree and leaves (terminal

nodes) represent labeling classes. For example, in the case of binary tests, one of the

branches corresponds to a positive response to the test and the other branch to a negative

response. This process is repeated on each node of the tree, the nodes which are not pure

are segmented until pure leaves are obtained.

Decision trees construction requires:

1. a good choice of the classification variable on a node.
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2. a stop criterion for the learning algorithm. This requires:

• predefine a proportion threshold of examples of a class in a node to avoid over-

fitting;

• set a homogeneity threshold below which we refuse to split a vertex;

• reach a pure node.

3. an optimal decision rule when a leaf is not pure: generally, we label the current

node by the majority class.

In a given node, the measure used to select the best attribute to be tested should

allow us to search among the different attributes of the learning examples, which one has

the greatest factor of discrimination for class distribution. Three popular measures for

choosing the best attribute are: Information gain [89, 90], Gain ratio [71], Gini index [118]

and Chi-square criterion [72].

Once a decision tree is built, its size can be very important, which can deplete com-

puting and storage resources. In addition, the tree may have a high error rate due to

over-fitting; that is, an ability to perfectly describe training examples while having weak

capacities for generalizing or predicting new examples. Generally, over-fitting can occur

when the learning set contains noisy data, too little data, or too specific data. To over-

come these problems, pruning operations involve removing branches from the tree that

reduce error rates.

Several pruning techniques [81] have been proposed to avoid over-fitting in a decision

tree. These can be categorized into two main approaches: Pre-pruning and post-pruning.

The pre-pruning approach controls the growth of a decision tree during its development

(i.e., we decide to stop the building of our tree before it is fully grown). The post-pruning

approach involves growing an entire decision tree in its entirety, then pruning the tree’s

nodes in a bottom-up fashion.
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2.5.5 K-nearest neighbor

K-Nearest Neighbors (KNN) classifier is a simple but a powerful supervised machine

learning algorithm, it assumes that similar examples are near each other. The kNN

principle consists of determining for each new example to be classified, the list of k nearest

neighbors among the examples already classified (where k is an integer). The new example

is assigned to the class among its k nearest neighbors. A particular case is when k=1, the

new example, in this case, is assigned to the class of its single nearest neighbor.

When we speak about neighbor it implies the notion of distance or dissimilarity. The

most commonly used distance measure is Euclidean distance. Let dis(x(1), x(2)) be the

Euclidean distance between two vectors x(1) = (x
(1)
1 , · · · , x(1)

m ) and x(2) = (x
(2)
1 , · · · , x(2)

m ),

which is computed as follows:

dis(x(1), x(2)) =

√∑m
i=1(x

(1)
i −x

(2)
i )2 . (2.33)

The algorithm calculates the distance between each train and test data (new example)

point and then select the top nearest according to the value of k. For KNN, the choice

of the number of neighbors k is very crucial because the classification results change

according to this value. For example, in Figure 2.9, we can see the effect of the choice

of k on the final classification result. The new example to predict (noted "?" In green

circle) could be classified either in the class of blue squares or the class of red triangles.

Indeed, if k = 3, it is assigned to the class of red triangles because there are two triangles

and only one square in the circle indicated in a continuous line. If k = 5, it is assigned

to the first class because there are more squares than triangles in the circle indicated in

a dotted line.

2.5.6 Adaboost (Adaptative Boosting):

Adaboost or Adaptative Boosting is a type of "Ensemble Learning" where multiple learn-

ers (known as "weak learners") are employed to build a stronger learning algorithm. Ad-

aBoost works by choosing a base algorithm (e.g., decision trees) and iteratively improving

it by accounting for the incorrectly classified examples in the training set. Initially, the

32



Figure 2.9: k-Nearest Neighbor classification.

algorithm assigns equal weights to all the training examples and chooses a base algorithm.

At each step of iteration, it applies the base algorithm to the training set and increases

the weights of the incorrectly classified examples. It iterates n times, each time applying

base learner on the training set with updated weights. The final model is the weighted

sum of the n learners.

2.5.7 Random forests

Random forests are machine learning algorithms based on decision trees. When given a

set of class-labeled data, random forests build a set of classification trees. Each tree is

developed from a bootstrap sample from the training data. When developing individual

trees, an arbitrary subset of attributes is drawn (hence the term "random"), from which

the best attribute for the split is selected. Classification is based on the majority vote

from individually developed tree classifiers in the forest. Figure 2.10 shows a general

random forest architecture [77].

The bootstrap method generates n training samples. These samples learn a set of

weak classifiers (C trees). The majority vote on the learned classifier outputs represents

the classifier’s final prediction [39].

2.5.8 Artificial Neural Networks

Artificial Neural Networks (ANN) are inspired by the human brain to build classification

models. The goal is to have a network of artificial neurons (represented by nodes) able to
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Figure 2.10: Random forest classifier.

learn over time and identify different features using knowledge obtained from historical

data. Basically, the ANN contains three connected layers, including the input layer, one

or more hidden layer(s), and the output layer, as shown in Figure 2.11. The output of

the input layer is the input of the hidden layer and the output of the last layer is the

result. The connections between the layers are represented by specific weights adjusted

over time to get more accurate results. In other words, the weights are adjusted if the

evaluated output is different from the desired output. This process is repeated until the

desired results are obtained. ANN nodes apply an active function such as sigmoid or the

hyperbolic tangent functions to get the result.

2.6 Classification evaluation metrics

Given the large number of classification algorithms proposed in the literature, it is neces-

sary to compare them and see which one responds best to a specific task. There are many
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Figure 2.11: Artificial Neural Networks.

evaluation metrics used to test the performance of the classification algorithms [40]. Some

of the most common metrics are: accuracy, precision, recall and F1-measure. In general,

all of these measures are built from a confusion matrix (contingency table). Table 2.1

illustrates the confusion matrix of a binary classification. The row of the matrix states

the actual class, while the column states the predicted class.

Predicted class

Actual class Spam Ham

Spam TP FN

Ham FP TN

Table 2.1: Confusion matrix of a binary classification.

Here, we consider the case of email filtering with two classes spam (the positive class)

and ham (the negative class). The ham and spam labels in the rows of the table represent

the emails’ actual classes, and those in the columns represent the classifier’s decision

classes. The meaning of the types of boxes in the contingency table are represented as

follows:

• TP (True Positive): it represents the number of emails whose actual class is spam

and predicted class is spam.
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• TN (True Negative): it represents the number of emails whose actual class is ham

and predicted class is ham.

• FP (False Positive): it represents the number of emails whose actual class is ham

and predicted class is spam.

• FN (False Negative): it represents the number of emails whose actual class is spam

and predicted class is ham.

From the statistics of the confusion matrix resulting from a classification task, the

evaluation measures: accuracy, precision, recall and F1-measure are defined and calculated

as follows:

• Accuracy: it measures the proportion of correct predictions over the total evaluated

documents(emails).

Accuracy =
TP + TN

TP + TN + FP + FN
(2.34)

• Precision: it measures the proportion of correctly predicted positive documents

over the total predicted documents in a positive class.

Precision =
TP

TP + FP
(2.35)

• Recall / Sensitivity: it measures the proportion of correctly predicted positive

documents over the total positive documents.

Recall/Sensitivity =
TP

TP + FN
(2.36)

• F1-measure: it measures the harmonic mean between recall and precision.

F1-measure =
2 · Precision ·Recall
Precision+Recall

(2.37)
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2.7 Conclusion

The task of text classification, also known as text categorization, is considered as one of

the most popular tasks in NLP. The purpose of text classification is to use the labeled

or unlabeled training data (corpus) to build models that can automatically predict the

relevant label (class or category) of new data. The process of structuring textual data

into one or more class labels is based on the following steps: feature extraction, feature

selection, machine learning algorithms and evaluation measures. Feature extraction is the

process of converting text documents into a feature space, such as term weighting (e.g.,

tf−idf , tf , etc.) and word-embedding models (e.g., Word2Vec, GloVe, etc.). Feature

selection is the process of reducing the feature vector dimensionality, such as MI, Chi-

square, Odds ratio, etc. Another type of dimensionality reduction technique is the topic

modeling which maps document keywords into a small number of topics, such as LSA,

pLSA, LDA, etc. Machine learning algorithms are used to create text classification models,

such as the logistic regression, naive Bayes, KNN, SVM, etc. Finally, evaluation measures

are used to test the performance of the classifiers, such as accuracy, precision, recall, etc.

Text classification techniques have been adopted in spam filtering systems to distinguish

between spam and ham emails. The following chapter reviews the different spam filtering

methods based on automatic text classification methods.
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3
Literature review

3.1 Introduction

Various spam filtering methods have been proposed in the literature to deal with the

problem of spam [10, 17, 61]. Most of these methods have some success for filtering specific

spam, but fail to solve the problem efficiently. This issue is due to the fact that spammers

are using increasingly sophisticated attack techniques. In this chapter, we review some

well-known work in the field of spam detection. We also compare the strengths and

drawbacks of existing methods in spam filtering. These methods are generally categorized

into two main approaches, namely non-content and content-based features. There are

also combined methods that take advantage of both techniques to improve the accuracy

of spam filters. Such methods are usually called hybrid approaches. In the following

sections, we provide a description of each approach and its related work.
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3.2 Non-content based approaches

Non-content-based features, also called header-based features, refer to the use of email

headers, related sender information, and general characteristics of the message for detect-

ing spam. For instance, all information related to sender address domain (IP address),

sender reputation, writing style, sending time, type of attachment, message size, etc., are

explored in spam detection problem. This part briefly reviews the important contributions

done by the researchers using non-content based spam filtering approaches.

3.2.1 List-based filters

Filters based on list analysis block or allow the delivery of emails sent from specific senders.

The emails are then blocked and considered as spam if the senders are categorized as

spammers and they are allowed and considered as ham if the senders are categorized as

trusted users. Commonly used techniques within this category are: Whitelist, Blacklist

and Greylist, which can be considered as signatures for spam identification [26, 54, 61].

• Whitelist: the Whitelist method is a list of trusted senders, domains or IP ad-

dresses from which users tend to receive emails, and all other addresses out of this

list are considered as spam. This method is very strict and may introduce a high

false-positive rate. It can be useful for some internal company addresses or extremely

private email addresses, but it needs to be updated regularly. Furthermore, spam-

mers may easily use spoofed addresses if they can identify or guess the Whitelisted

addresses to fool spam filters [15, 26]. The user can maintain his Whitelist using his

mailbox tools or automated tools such as auto-whitelisting of SpamAssassin [110].

The automated tools can deduce the Whitelist from email traffic based on the his-

tory of legitimate emails. The false-positive rate of the Whitelist technique can be

significantly reduced if it cooperates with other anti-spam techniques [15].

• Blacklist: unlike methods based on the Whitelist, the Blacklist methods can block

and reject unsolicited emails based on senders, domains or IP addresses, known as

spammer addresses [115]. Some of the existing popular Blacklist methods include:
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auto-blacklisting of SpamAssassin[110], SpamHaus [1], etc. However, this method

can misidentify legitimate senders and increase the false-positive rate if a spammer

sends spam from an IP address that legitimate email users also use. In addition,

as the Whitelist, Blacklist filters also need to be updated frequently, which can be

costly in terms of resources and time for email servers. For example, spammers use

botnets by examining a large number of IP addresses before putting them on the

Blacklist. According to the authors in [115], the effectiveness of a Blacklist method

depends on its completeness, accuracy, and spammer inability to spoof addresses

that are not on the Blacklist.

• Greylist: the Greylist method initially rejects emails received from unknown

senders, domains or IP addresses and returns temporary error messages to the

senders that invite them to resend the emails. The error messages indicate to the

sender servers to wait and try again to send later. This method assumes that legiti-

mate senders are more likely to resend the emails after delay, while many spammers

usually send once and would not retry. This technique has the advantage of being

very easy to implement and low-costly in terms of human and physical resources.

However, the process of the Greylist method can be very annoying to users as it

may delay mail delivery. Currently, the evolution of Web technology has reduced

the effectiveness of this method as spammers can use "zombie computers" to resend

the spam email [15, 61].

3.2.2 Temporal features analysis

The basic idea is to extract useful features from the temporal information usually present

in the header part of the emails. Hao et al. [51] built the Spatio-temporal Network-level

Automatic Reputation Engine (SNARE) system to analyze the email sender reputation

based on statistical features at network-level. The authors combine various spatial and

temporal features of email senders. Temporal features such as the time of a day when

the message was sent are considered. Spatial features can be the geographical distance

between the sender and the receiver. The authors demonstrate that the SNARE system
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can achieve comparable accuracy to existing static IP blacklists. They also showed that

the system can cooperate with other filtering systems to yields a higher performance for

spam detection.

Qian Xu et al. [125] proposed a method based on three types of features namely,

static, temporal and network features and incorporated these features into an SVM clas-

sification algorithm. The static features include the number of messages and message size.

Temporal features such as the size of messages during a day and on each day of the week.

Finally, network features include the number of recipients and clustering coefficient. The

evaluation results using AUC (Area Under Curve) metric showed that the methods based

on temporal features and network features can be effective compared to those that are

only based on conventional static features.

In general, systems based on temporal information analysis for email spam detection

cannot replace content-based analysis systems. However, they can be useful as an inter-

mediate filter like Blacklist and Whitelist methods to enhance the classification accuracy

[51].

3.2.3 SMTP path analysis

SMTP path analysis is a filtering method based on the reputation of IP addresses. The

method learns if IP addresses are spam or not by analyzing the history of emails sent

using that IP address [67].

Leiba et al. [68] presented an algorithm to learn the reputation of IP addresses and

email domains by analyzing the paths used to transmit known spam or ham emails. This

method considers only the IP addresses contained in the "received" lines of the email

headers to train the used classification algorithm. The basic idea of this technique is that

an email from the same or similar IP addresses is likely to share the same classification.

The authors demonstrated that the combination of the SMTP path analysis method with

a Bayesian filter increases the accuracy of the spam filter.

Yu Jiang et al. [57] developed Email Geographic Path Analysis (EGPA) technique

for spam filtering. In this method, the authors first build an email path using route
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information and then determine the geographic location of each node in the path. To

detect spam, the filter checks the geographic information deviation of nodes in the path.

The performance of the EGPA method has been tested using email traffics captured from

one backbone link that crosses the geographic boundary of China. Experimental results

show a reduction of 13.9% in spam email traffic.

3.2.4 Behavior analysis

Spammers have typical behaviors that distinguish them from legitimate senders. For

example, spam email can be sent with an anonymous username, transmitted without

permission, sent with illegal accounts, delivered in bulk repeatedly without authorization

and to different recipients, etc. Wu et al. [122] claim that such behavior can be analyzed

to identify spam emails. They built a spam filtering model by observing the transactions

of sending messages and identifying different behaviors applied to send a message. The

behavior features are obtained by analyzing header and syslog parts of messages. On

the header part, they analyzed 6 fields: Received, Return-Path, From, Delivered-To,

To and Date. On the syslog part, they analyzed 3 fields: from, to, nrcpts and date.

A total of 26 features extracted from these fields are used for learning neural network

classifiers to discriminate between typical spam behavior and legitimate messages. Thus,

the performance of the system is compared with some existing content-based methods, it

achieves best results in terms of false positive and false negative rates.

Qaroush et al. [88] studied the information contained in the email header and pro-

posed a method based on statistical header features and sender behavior to detect spam

email. The statistical information represents a total of 48 features extracted from the

most appearance fields in email header which are: From, To, CC, Received, Return-Path,

Date, Reply-To, Error-To, Sender, References, In-Reply-To and Message-ID. The sender

behavior uses a "Trust" feature obtained by analyzing From field of email header. This

feature can take one of the following values: strongly spam, weakly spam, weakly ham,

or strongly ham. The value of the trust feature depends on the sender’s reputation which

can be achieved based on his historical behavior. The idea is to check if a sender sent
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a significant amount of spam emails in the past, then the sender is more likely to be a

spammer. In contrast, if most of the sent messages were ham, then the sender is more

likely to be a legitimate email user rather than a spammer. Finally, by combining the

statistical header features and trust value together, the experimental results show that

among different used machine learning techniques, random forest has achieved the best

performance.

3.2.5 Social network analysis

Social network analysis method is a strategy for investigating social structures using

networks and graph theory [84]. The method is considered very useful for discovering

the relationships among a group of people and judging the trustworthiness of outsiders.

Hence, various anti-spam filters have adopted this technique to exploit the knowledge

embedded in the social network interactions to distinguish between spam and ham.

Hu et al. [56] introduced new metrics found to be efficient to detect the compromised

email accounts from the perspective of graph topology. More specifically, the authors

adapted the widely used social network analysis metrics to detect compromised email

accounts. The used metrics are as follows: Success Outdegree Proportion, Reverse Pager-

ank, Recipient Clustering Coefficient and Legitimate Recipient Proportion. The authors

used and adapted these metrics according to the features of mail log analysis. For the

social network graph construction, the authors built a directed multigraph where each

node corresponds to email account and each edge corresponds to entry in the mail logs.

Each mail log entry contains the following metadata: date, time, from, to, rcpttype, result.

The "from" field is considered as source node and the "to" field as target node. Evalua-

tion results demonstrate that the approach can detect identity spoofing on email accounts

with false-positive rates between 20-40%. However, in reality many organizations receive

a considerable amount of emails each day, so a false positive rate of 20% would result in

a big number of false alerts every day.
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3.3 Content-based approaches

Content-based spam filtering approaches are among the most popular filters for spam

email detection[31]. These approaches analyze the email content and extract a set of

features from the email’s subject and body parts. This kind of filter can be manually

built using a set of hand-made rules, often called heuristic filters. It can also be built by

using machine learning algorithms applied to a set of categorized messages spam or ham.

In this section, we cover the most relevant approaches to content-based spam filtering.

3.3.1 Rule-based approaches

Heuristic or rule-based spam Filtering approaches are among the earliest proposed so-

lutions for spam detection [10, 26]. Filters based on these approaches are also called

Hand-Crafted rules or Knowledge Engineering. The principle of these techniques consists

of using a set of hand-coded rules. These methods use a set of logical rules to detect emails

containing specific keywords, sentences or suspicious patterns such as words containing

punctuation symbols (e.g., Money back!, f*r*e*e, etc.) [26]. The rules are usually encoded

using compact regular expressions to specify complex text patterns [86]. Commonly, the

set of rules is maintained by a community of expert users and administrators [100]. These

techniques have been used, for example, in the SpamAssassin system [110] and by some

other researchers such as Sahami et al. [95] and Schleimer et al. [101]. These types

of approaches are direct and require no learning. However, the set of rules needs to be

regularly updated to maintain the effectiveness of the approaches.

The simplest method of rule-based spam filtering uses only a list of blacklisted key-

words or phrases such as: "Viagra", "BILLIONS OF DOLLARS!!", "MAKE MONEY!!!",

etc. Most modern mailboxes allow writing user rules through simple forms to adapt them

to their needs. For instance, a Thunderbird straightforward spam filter illustrated in Fig-

ure 3.1 shows that the user has created a filter named "spam" to delete all messages (sent

to trash) in which the word "**spam** " occurs in the Subject part of a message. How-

ever, these filters are not very effective and poorly designed. They are not very effective

as they have weak robustness to masked words such as the word "Vi@gr@" and they are
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Figure 3.1: A simple rule-based spam filter coded as a Thunderbird mail client rule.

poorly designed as they cannot deal with the Scunthorpe problem such as detecting the

word "cialis" in the word "specialist".

Shortly afterward, keyword-based filters became a little more relevant with the use

of regular expressions. These filters use a set of patterns applied to a character chain

to determine the different variations of keywords (e.g., free!, f r e e, f*r*e*e, etc.) often

used by spammers. Meanwhile, spammers have continued to invent increasingly sophisti-

cated techniques to escape the filters. Therefore, system administrators saw the need to

integrate other heuristic rules to improve the classification error rate such as: length of

words and sentences, presence of HTML code (Hypertext Markup Language), presence

of images, etc. Usually, these rules are designed and modified in response to threats and

specific user needs [100].

A few years later, in 1999, the open-source SpamAssassin, currently maintained by the

Apache foundation, has emerged. SpamAssassin is considered as one of the best examples

of rule-based spam filters. The rules of SpamAssassin (also named "tests") are used to
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Figure 3.2: A part of SpamAssassin rule list.

check several parameters on email headers and body text to identify spam signatures.

The current list of tests (rules) of the version 3.x has over 1000 tests. Figure 3.2 shows

a small part of the list of tests as they are illustrated in the project Web page. Each

individual rule is scored, typically between ±0.01 and ±0.5. The filter assigns a total

score to the incoming email which is the sum scores of all rules satisfied by that email.

The email is labeled as spam if the total score reaches or exceeds the spam threshold set

by the administrator or the user (the standard score is set at 5.0). The initial associated

score to each rule is defined using a neural network trained with error backpropagation.

One of the major problems with rule-based spam filtering is the divulgation and the

sharing of these rules on open source sites. Consequently, spammers are always able to

check whether their messages can avoid these types of filters [26]. This problem leads to

the production of false positives and the rejection of legitimate messages, while most users

prefer to receive spam rather than losing legitimate email. Furthermore, as mentioned

above, the set of rules needs to be updated regularly to maintain the effectiveness of
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the filters. Unfortunately, this limits the applicability of the method in the context of

dynamically evolving spam content, which requires developing techniques for automatic

rule generation.

3.3.2 Vector-space-based approaches

With recent advances in machine learning, a significant effort has been made for devel-

oping automatic approaches for spam detection [10, 12, 17, 30]. In this context, several

classification-based methods have demonstrated their effectiveness for spam detection us-

ing techniques such as naive Bayes [58, 104, 116], Decision trees [86] and Support Vector

Machines (SVM) [104, 112]. These methods cast spam filtering as a classical text catego-

rization problem [17], where a set of relevant features (e.g., words, sentences) are extracted

from email messages using Natural Language Processing (NLP) techniques. The infor-

mation extracted from email content is typically represented as a feature vector and used

as input data for machine learning algorithms. Generally, vector-space-based approaches

perform two main steps: feature extraction and feature selection. In feature extraction,

as mentioned earlier, the information contained in the email content is extracted and dis-

played in a unified form. In feature selection, only the relevant information is chosen to

improve the performance of machine learning algorithms. Several models have been pro-

posed in the literature to represent the email content as a vector of features. We present

below the most popular models.

• Bag of Words (BoW): the BoW is considered as the most common model for

feature representation in spam filtering area [17, 95]. This model is the simplest

representation of text documents, it describes the text as a set of unstructured and

independent terms (words) where each term represents a separate dimension in the

vector space used for email classification. For example, the authors in [42] proposed

a method based on the BoW model to classify emails to spam or ham. The proposed

method is based on four steps including: data pre-processing, Vector Space Model

(VSM) for email representation, feature selection, and email classification.

In the preprocessing step, the features are first extracted from email content using
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subject and body parts. This is followed by applying a stop-word list and a stemming

procedure to remove the irrelevant and redundant features to reduce the vocabulary

size. In the vector space model step, the approach uses the BoW model to represent

each email as a vector of words (terms). The authors used term frequency (tf)

for assigning weights to the terms, it is equal to the number of occurrences of the

terms in each document. In the feature selection step, each term in the vector space

model is evaluated using the Mutual Information (MI) measure. This measure

has the ability to measure the degree of association between the feature and the

corresponding class. In the classification step, six different classifiers are evaluated in

the experimentation, namely: Naive Bayes, Bagging, Logistic Regression, Decision

Tree, J4.8, and Adaboost.

M. Basavaraju et al. [9] proposed a text clustering technique based on the VSM for

spam detection. The authors used the BoW model to extract features from the text

of email documents. First, Porters stemming and stopping algorithms are used in

this work for text preprocessing to reduce vocabulary size and help in information

retrieval and classification. Next, tf−idf (term frequency-inverse document fre-

quency) model is chosen as weighting scheme to evaluate the importance of words

in email documents. Then, the algorithms: Balanced Iterative Reducing and Clus-

tering using Hierarchies (BIRCH) or K-means are used to cluster email documents.

Finally, the Nearest Neighbor Classifier (NNC) or K-Nearest Neighbor Classifier

(K-NNC) algorithms are used to classify test documents.

Several other works based on the BoW model for spam detection have been proposed

in the literature [6, 18, 35, 63, 76, 108]. Feature selection methods such as infor-

mation gain [18], term frequency variance [63] and Chi Square[35] are some metrics

used in these works to determine more significant features that enable learning clas-

sifiers to identify spam emails. According to the literature review, the Information

Gain is the most widely used and the most effective feature selection metric in spam

filtering domain [49, 76]. For more detail about the feature selection strategies in

VSM refer to [76, 107, 108].
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The BoW model representation has proven good efficiency compared to other meth-

ods relying only on network analysis or Blacklists [109]. However, this model has also

its limitations since textual features that are extracted independently can usually

miss features correlation and semantic content description of the email. In addition,

this representation often yields to a high-dimensional sparse matrix and may cause

a waste of computational and storage resources because each word in the document

is treated as an attribute in the feature space.

• N-Gram: to mitigate the issue of semantic representation in the BoW model, the

use of n-grams extends this model by considering sequences of n words occurring

in the text as basic tokens to discriminate between spam and ham. For example,

in the case of 2-grams, the tokens of the expression "machine learning techniques"

are: "machine learning" and "learning techniques". In this way, the textual feature

extracted from the email contents could carry more semantic information in compar-

ison to the BoW model. Hence, many works have used n-gram representation to deal

with the problem of spam [8, 14, 20, 73]. Although such representation attempts to

take advantage of contextual phrasal information (e.g., ’Additional income’, ’Call

free’, etc.), the size of the vocabulary increases exponentially which leads to highly

sparse spaces for representing email documents. In addition, they do not carry

high-level semantic information since n-grams are extracted independently. Several

works have proved that complex representations of texts do not always improve the

efficiency of the classification and sometimes may even deteriorate it [26].

Other studies in the n-gram model have attempted to use a character level to rep-

resent the email contents [60, 102]. Unlike the word n-gram model, the character

n-gram model represents the sequence of n adjacent characters instead of words to

represent the messages. For instance, in the case of 5-gram, the expression "Hello

world" would be mapped to the tokens: "Hello", "ello ", "llo w", "lo wo", etc.

The current technique is robust to grammatical errors (e.g., the word "income" and

"incame" share the majority of character n-gram) and strange usage of abbrevia-

tions, punctuation marks, etc. in addition, the model does not require any text

49



preprocessing (lemmatization, stemming, etc.) [60]. However, this method suffers

from the problem of polysemy and fails to capture the meaning of the words from

the text.

3.3.3 Semantic-based approaches

Given the above-cited limitations, some researchers have recently introduced semantic-

based approaches for improving spam detection [17]. The major drawbacks of the pre-

viously cited methods (content-based approaches) lie in the features’ independence and

redundancy. For example, the words "pill", "tablet", and "Cialis" are considered inde-

pendent features,but in reality, they are all related to the word "drug". This problem

could affect the performance of some ML classifiers, such as naive Bayes. To address this

issue, researchers studied the benefits of discovering the relationship between words to

reduce the feature vector dimensionality by grouping words according to their semantics

[46]. The authors in [17] define the semantic information extracted from spam emails as

follows: "semantics are related to the ability to portray and understand the meaning of

information in an expressive way and their combination allows to define and understand

spam in a more formal and explicit way".

Ontologies are considered as one of the basic concepts of the semantic Web, they

are widely explored in spam filtering. Generally, Ontologies are defined as a formal ex-

plicit specification of a shared conceptualization of a domain of interest [46]. One of the

most popular examples of ontologies is the WordNet database (i.e. an English dictio-

nary designed for natural language processing.). The ontology groups synonymous words

that express the same concept by hierarchic levels into synsets. WordNet also provides

information about word definitions, word usage examples, and different semantic rela-

tions between synsets. Various semantic relations can be distinguished in the WordNet

database. For instance, hyponym (X is a kind of Y), hypernym (X includes the notion

of Y among others), meronym (X is a part of Y), holonym (X contains Y among others).

Below, Figure 3.3 gives an example of each semantic relation using the standardized OWL

ontology representation. Usually, each relation is defined by the type of semantic relation
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and the sense number for the referenced synset, noted by #.

In spam detection area, the researchers have adopted ontologies to ensure a consistent

textual interpretation of spam contents. For example, Méndez et al.[75] introduced a

new semantic-based feature selection method to detect spam email by taking advantage

of WordNet ontology. The basic idea of this approach is to group words into topics

(e.g., the words "viagra", "cialis", "tadalafil" or "xanax" could be related to the topic

"drug" or "chemical_substance") and used them to generate feature vectors to train ML

algorithms. The proposed method is mainly based on four steps: 1) loading the corpus,

2) email parsing process, 3) email topic extractor and guesser, 4) compute the topic-

related significance of each feature. The first step consists of loading emails into memory.

The second step extracts each email’s header and body parts and pre-processes them to

transform the text content into valuable information. The third step guesses the topics

that best match each email using WordNet Lexical Database. The authors only considered

the hyponym and hypernym relations to obtain the subject corresponding to each word.

Finally, the fourth step uses ML techniques to represent the extracted knowledge. The

proposed method is compared against the Information Gain and the Dirichlet Latent

Distribution. Topic Guessing’ technique showed a significant increase in performance.

However, the root topic’s manual specification is not the best way of operating, and the

authors are aware that this gap requires more attention.

In addition to the semantic representation of textual information in the email contents,

ontologies are also used to represent user preferences in order to ensure a more consistent

interpretation of spam filters [17]. For example, Kim et al. [62] built their ontology-based

on user preferences and their reaction to new received emails such as sports, news, etc.,

personal information such as age, gender, etc. The authors classified the user reaction

into four types: Reply, Delete, Store, and Spam. Here, the receiving action is taken into

account because it is a kind of real connection between the email recipients and the way

of treating these emails.

There is another type of email called Gray Email that does not provide enough fea-

tures to establish a degree of confidence to determine whether the email is spam or ham.

Hempelmann et al. [52] presented a method called "a meaning based method" to dis-
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Figure 3.3: Representation of several WordNet semantic relations using standardized

OWL methodology [46].

tinguish text without or with little semantic content. The idea is to apply a semantic

analyzer and with the help of a semantic ontology a threshold "meaning density" is ap-

plied, if the text content is below this threshold the email is classified as spam if not is

classified as ham. The results showed better accuracy in categorizing emails by adding

semantic information to classifiers.

We have seen a few separate initiatives that tend to develop independent ontologies in
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the area of spam filtering. This can create difficult situations with regard to ontological in-

terpretability requirements. With the increasing access to several independent ontologies,

the problem of discrepancy between ontologies becomes more and more complex. The

ontologies must be linked and cooperated with each other while ensuring global coherence

to make possible the tasks of: integration, sharing information, seeking information from

several sources, etc. So far, no work has addressed this kind of problem in the area of

spam detection and no standard ontology for spam filtering has been established [17].

In [43, 94], authors studied the effectiveness of a spam classifier using the Latent

Semantic Indexing (LSI) method. This method uses singular value decomposition to

build a latent space in which the hidden semantics of documents are better represented.

A similar model has been proposed called probabilistic Latent Semantic Analysis (pLSA)

[91]. These models (LSI and pLSA) represent documents as a set of topic distributions

and the topics as a set of word distributions. Other popular models such as the Latent

Dirichlet Allocation (LDA) [70] and labeled-LDA [105] have been used for building latent

semantic spaces for spam detection. In [99], the authors introduced the eTVSM (enhanced

Topic-based Vector Space Model) method using a semantic ontology to extract the most

dominant topics in a text message. The eTVSM uses the database WordNet to create

a vectors of word synonyms for computing document similarity. The authors evaluated

several machine learning classifiers: NB (Naive Bayes), KNN, SVM and decision tree

and showed that the representation of eTVSM model provides high percentages of spam

detection. These methods have generally yielded a better performance than the BoW and

n-gram models.

Recently, Venkatraman et al. [114] proposed a spam detection approach based on con-

ceptual and semantic similarity to enhance the naive Bayesian classifier. The approach

is suggested to overcome the ambiguity raised by the polysemy of spam email contents.

The authors assume that in the naive Bayesian classifier, the problem of ambiguity is

raised when a set of terms are related to the same concept. For this reason, they propose

integrating the naive Bayesian classifier with the Conceptual Similarity Based on Cor-

pus (CSBC) approach and Semantic Similarity Based on the Wikipedia Links (SSBWL)

approach to combat the problem of ambiguity in spam emails. The CSBC approach
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calculates the relationship between two terms based on their co-occurrence in a body of

spam email dataset, while The SSBWL approach uses hyperlinks that exist in Wikipedia

representative articles of spam terms. The proposed method has good performance in

detecting spam emails. However, this method performs the conceptual and semantic sim-

ilarity techniques only on spam emails and ham emails are only analyzed by NB classifier

to optimize the time and space complexity.

In [65], the authors explored the use of word semantics by introducing a word sense

disambiguation procedure to enhance spam detection. In [36], the authors used sentiment

analysis to improve the efficiency of spam detection. They demonstrated that the polarity

of the message (i.e., identification of the positive or negative nature of a message) is a

useful feature for spam classification. In their work, the authors assume that the semantics

of a spam message should be shaped with a positive meaning. Other studies [69, 92]

explored the use of NLP for deceptive opinion spam detection in different web pages.

These methods had some success in narrowing the semantic meaning of words with regard

to the message content to enhance the spam detection accuracy. However, they are unable

to extract high-level semantic concepts of emails which can be helpful for discriminating

between legitimate and spam emails.

With the advent of Deep Learning (DL) methods, several DL-based methods for spam

detection have been proposed. For example, Yang et al. [126] described a Multi-Modal

Architecture based on Model Fusion (MMA-MF) to classify email. This model’s primary

concern is to separately process the email’s text and image information using the LSTM

(Long Short-Term Memory) model and the CNN (Convolutional Neural Network) model

to detect spam. The LSTM model is used to extract semantic information hidden in the

email text content and get the text part’s classification probability value as spam, whereas

the CNN model is used to obtain the classification probability of the attached image part.

Then, the two classification probability values are combined into a fusion model using

the logistic regression method to identify whether the email is spam or ham. As a result,

the study showed that the proposed model could archive classification accuracy in the

range of 92.64–98.48%. However, the approaches based on deep learning such as LSTM

and CNN usually require big data compared to traditional ML algorithms. Moreover,
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the output results of these methods are hard to interpret as they are a kind of black-

box models. Besides, these methods result in high computational complexity during the

training stage.

Further work based on deep learning approach in [123] where the authors used the

Doc2Vec model for training spam classifier on twitter messages. In the same vein, the

authors in [58] used the Word2Vec word embedding to overcome the drawback of fea-

ture independence in the naive Bayes algorithm. The basic idea of the word embedding

technique is that words occurring in a similar context tend to be closer in the generated

vector space. Thanks to this property, these methods have increased the performance of

spam detection. However, given that the spam language is generally much larger than

the natural language vocabulary used to train the Doc2Vec and Word2Vec models, some

discrimination information can be lost during the encoding process.

3.4 Hybrid approaches

A spam filter can combine several learning methods at the same time to help improve its

accuracy. These approaches are generally aimed at minimizing the rate of false positives.

Feng et al. [38] proposed a hybrid method called OMFS (Orthogonal Minimum Feature

Selection). The OMFS method includes two main stages, namely: the OCFS (Orthogonal

Centroid Feature Selection) and MRMR (Minimum Redundancy Maximum Relevance).

The first stage consists of using the OCFS algorithm for feature selection on the training

data space. The second stage applies the MRMR algorithm to reduce the redundant

features. Three machine learning algorithms were tested by the authors to evaluate the

performance of the proposed method which are: naive Bayes, KNN and SVM algorithms.

Gordillo et al. [45] adapted the Hidden Markov Models (HMM) to the problem of

misspelled words. The authors considered a blacklist of words frequently used by spam-

mers and a list of their variants to train one model for each forbidden word. Thereafter,

to determine if a word extracted from email content represents a variant of the forbidden

word, a correspondence threshold is returned by the model. This work combines the HMM

model, ANN and the Genetic Algorithm (GA) which leads to a new learning algorithm
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in order to detect any new form of masked words. The results showed that the method is

able to identify more than 95% of the variants of a word. However, no email classification

results were presented by the authors.

In spam detection problem, decision tree tends to have over-sensitivity to noise and

overfitting. To tackle this issue, the authors proposed hybrid combination logistic regres-

sion and decision tree for email spam detection. Logistic regression is used with certain

false negative threshold to reduce noisy data before being fed by a decision tree. Evalu-

ating the system on Spambase dataset, the results of experiments revealed that accuracy

recorded 91.67% without using any feature engineering methods.

Another predictive hybrid algorithm proposed by Chitra et al. [19] which combines

three algorithms: fuzzy logic, GA and SVM. The principle of the algorithm is to detect

malicious behavior using fuzzy rules and GA. Various other methods based on hybrid

algorithms have been proposed in the literature to design effective spam filters for more

works see [61].

3.5 Conclusion

In this chapter, we have reviewed some of the main techniques for email spam detection.

Most of the proposed methods are based on non-content and content information. Non-

content-based approaches analyze the information contained in the email header, such as

IP addresses and sending time. Content-based approaches analyze the email body to ex-

tract textual information, such as words, and build feature vectors to learn ML algorithms.

The content approaches are widely explored in the literature due to their effectiveness. To

further improve ML classifiers’ performance, content approaches introduced new feature

extraction techniques able to take advantage of semantic information to group words into

topics or concepts. These methods have showed their efficiency compared to traditional

models. However, most of these methods use holistic and general-purpose semantic fea-

tures that are extracted regardless of the email content type (domain). Therefore, since

semantic features are extracted independently of domains, they do not guarantee optimal

spam detection performance within each domain.

56



4
Spam detection using automatic semantic

feature extraction

4.1 Introduction

Several spam detection methods have been proposed in the literature [17] (see chapter 2

for more details). Among recent approaches, learning-based methods using text mining

have gained more and more popularity [49]. Text mining techniques are based on an

automatic extraction of knowledge from the content of pre-collected messages (emails).

These methods generally represent email content using text features such as words, n-

grams, etc., which aim to distinguish between spam and legitimate emails (ham). Other

methods based on text semantic analysis have been proposed to improve the accuracy of

spam detection [6] such as eTVSM, pLSA and LDA. However, most of these methods use
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holistic and general-purpose semantic features which are agnostic of the subject of email

content (email domain). Indeed, spam content can be very dependent on the domain and

the targeted users. For example, in health subject, spam can be targeted to medicine or

false therapy campaigns advertisement, whereas in finance, spam can carry advertisement

for dubious financial services and products. Therefore, using a specific spam discrimina-

tion for each domain can be more efficient than a general-purpose spam filter. Moreover,

using more semantic cues for each domain in addition to raw text features can offer bet-

ter discrimination between legitimate and spam emails. For example, emails advertising

health products can be of interest if they are only informative and not targeting money

extortion.

In this chapter, we propose a general approach for incorporating semantic analysis for

spam detection. Semantic analysis of email content is carried out at two levels. These

levels consist respectively on first categorizing emails by domains and then extracting

explicit semantic features within each domain to classify emails into spam and ham cat-

egories. For email domain categorization, without loss of generality, we have considered

five domains: 1) Computer, 2) Adult, 3) Education, 4) Finance, and 5) Health. These

categories are among the most targeted by spam [47, 48, 119]. To assign emails to these

domains, we train a supervised classifier on labeled data after operating feature selection

on the vocabulary of email text content using information gain. Semantic features are

then extracted automatically for each domain using CN2-SD method [66], which will serve

as weak spam classifiers with outputs combined in a more general and robust classifier

for discriminating spam from legitimate emails. Experiments on a large corpus of emails

have shown that our approach yields very good spam classification results compared to

recent text-based filtering techniques.

The rest of the chapter is organized as follows: in section 4.2 we give a general model of

our first contribution to spam detection using automatic extraction of semantic features.

In section 4.3 we discuss the process of email categorization by domains. In section 4.4 we

describe the used method to extract the semantic features from the email data. In section

4.5 we present how to generate domain specific classifiers. We report our evaluation results

in section 4.6. Finally, in section 4.7 we present the conclusion of this first contribution.
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4.2 General model of automatic semantic feature ex-

traction

In our approach for spam detection, a fundamental step is the semantic characterization

of the considered specific domains (computer, adult, education, finance and health), each

described by a set of semantic features. Each set of semantic features is then used to pro-

vide basic attributes for building a domain-specific classifier for spam detection. Figure

4.1 summarizes our overall approach. As we can see in figure 4.1, we proceed by two levels

of semantic analysis. In the first level, we use a classification algorithm to automatically

partition a global training dataset (emails) into the considered five domains. In the sec-

ond level, we automatically extract a set of semantic features from the dataset in each

domain. The semantic features are then used to build specialized classifiers for detecting

domain-specific spam.

  

Email dataset

Email categorization by domain

Email semantic-features 

extraction

Generation of domain-speci�c 

                    classi�ers                       

1st semantic level

2nd semantic level

Figure 4.1: General model of our approach.
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4.3 Email categorization by domains

Spammers usually target domains that may interest users to promote products and ser-

vices (e.g., Health, Education, Finance, etc.). According to the annual reports by Kasper-

sky [47, 48] and Symantec [119], nearly half of all spam is categorized as health, computer,

finance, education and adult content. The reports contain a thorough analysis of the new

targeted domains with the different techniques used to send spam emails. Without loss

of generality, we limited our study in this chapter to these five domains. The following

describes each of these most common spam domains.

– Health care: in the Health domain, spam may contain ads for health services or

miraculous medication products that offer amazing results. Typical spam messages

include advertisements for weight loss, improved posture, nutritional supplements,

etc.

– Finance: in the Finance domain, spam may contain offers for debt consolidation

services, low-interest loans, insurance, etc. Spammers target people desperate for

money who need a loan or get out of debt fast and easily. These emails also target

those who wish to lower their mortgage rate or have their student loans forgiven.

This is a dangerous category as it can lead people to give up their personal financial

information and open themselves to identity theft.

– Computer : in the Computer domain, typical spam messages involve special offers

of bargain-priced hardware or software and services for website hosting, domain

registration, website optimization, etc. Ironically, this type of spam may also falsely

advertise how to eliminate computer threats and report spam. The unsuspecting

victim clicks on a false link to remove their email from the spam list only to find

their mailbox filled with even more spam the next day.

– Adult : in the Adult domain, spam messages include offers for supplements designed

to increase sexual ability, pornographic sites and other adult products. Regardless

if someone has ever searched for porn, these emails will still show up in a mailbox.
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This type of spam almost always includes offers from dating sites and pornographic

sites.

– Education: in the Education domain, spam may contain offers from fake online

universities or training sites. These emails often include phone numbers to find out

more about a degree and may also include a false number to call to opt-out of future

correspondence. This category, like all others, also attempts to scam victims into

giving out personal information. This type of spam can lead victims to a fake degree

or education fraud.

For email categorization by domain, we assign a category to each email of the global

training dataset. Notice that an appropriate email preprocessing steps are required before

we can efficiently exploit the information contained in the subject and the body of emails

for the categorization. We present in Figure 4.2 the global process for email categorization.

Let D = {d1, · · · , dn} be the set of email documents, C = {c1, · · · , cp}

be the set of categories and T = {t1, · · · , tm} be the set of characteristics called

terms. Note that in the present work, we consider five categories (p = 5) C =

{Health, F inance, Computer, Adult, Education} and each document d ∈ D is associ-

ated to a unique category c(d) ∈ C. For the categorization process, we consider three

main steps. The first step allows text preprocessing on documents in D, where each

document is represented by a vector of terms. The second step is used to extract the

relevant features. A special attention is paid for the reduction of data dimensionality to

avoid deterioration of classification accuracy in the presence of noisy data. The third step

consists of learning a classifier to build a better classification model for categorizing email

documents by domain.

4.3.1 Preprocessing

The preprocessing phase includes the following steps:

– Keywords recognition: is tasked with the automatic identification of keywords and

abbreviations from predefined categories. For this, we used a list of regular expres-
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Figure 4.2: An outline of the different steps used for email categorization by domain.

sions to recognize keywords and their variants used by spammers. For instance, in

the computer science category, we identified the abbreviations VLC, CD, PDF, etc.;

in the adult category, we spot the taboo words, etc. Keywords are coded by using

regular expressions.

– Word with separate letters recognition: is involved to locate words containing letters

separated by blank spaces, and recognize their corresponding in a dictionary of nat-

ural language. For this, we implemented a tree search algorithm of the longest word

on segments of text strings separated by empty spaces (see Example 1). This step is

used to avoid alphabet letters in the feature vectors at the end of the preprocessing

process. This step is important for text segmentation phase (tokenization), which

is the next phase of our process.

Example 1:

Here is an example of email spam document: "Howdy There C E R T I F I E D

U N I V E R S I T Y D I P L O M A S and d e g r e e s Wouldn’t it be
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great to get a Masters degree".

The chain segments with blank spaces are: "C E R T I F I E D U N I V E R S

I T Y D I P L O M A S" and "d e g r e e s". The words recognized by our

algorithm on these segments are: "certified", "university", "diplomas", and

"degrees".

– Tokenization: is the step of text segmentation to extract the words or the terms

of the email. Our algorithm performs a text division into tokens by using white

space as a separator. So each email is coded as a vector of tokens representing the

vocabulary used in the email.

– Stop-word removal : is the process of removing most common words in a text, such as

articles, prepositions, pronouns, etc. These words often do not carry much meaning

(e.g., "to", "a", "for", etc.).

– Stemming : is used to perform the process of reducing variant word forms to a single

"stem" form. For instance, the words: user, users, used, using all can be stemmed

to the word "use". For this, we used the tool PorterStemmer [2] known as the most

common algorithm for English stemming.

– Spell checking : is applied to check a word spelling. The extracted words are checked

using the function "Spellcheck" [37]. This function checks automatically misspelled

words and returns suggestions of correct words. In our work, each misspelled words

is replaced with the first suggestion given by the function. This step enhances the

recognition of key words in each category.

The removal of the stop words and the standardization (stemming) are very useful as

they allow the dimensionality reduction of the feature vector. However, this still remain

insufficient. Hence, to reduce further the dimensionality we use a statistical method for

the selection of relevant features.
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4.3.2 Feature selection

Feature selection is an important step and aims to reduce the number of features for

improving classifier performance. To select the most representative terms we, used the

Information Gain (IG) which is widely used in text categorization and spam detection

[10, 49, 128]. It measures the discriminating power of a word, i.e.: the information amount

provided by the knowledge of the appearance or not of a term in the decision process.

Given the set T containing all email’s terms obtained during the preprocessing phase from

D and a set of categories C, the IG provided by a term t ∈ T for a category c ∈ C is

defined as follows:

IG(t, c) =
∑
ć∈{c,c̄}

∑
t́∈{t,t̄}

p(t́, ć)log

(
p(t́, ć)

p(t́)p(ć)

)
, (4.1)

with:

– p(t, c) (resp. p(t, c̄)) is the probability of observing the term t in a document be-

longing to the category c (resp. one of the other categories);

– p(t̄, c) (resp. p(t̄, c̄)) is the probability of not observing the term t in a document

belonging to the category c (resp. one of the other categories);

– p(t) (resp. P (t̄)) is the probability of observing the term t in a document (resp. not

observing the term t in a document);

– p(c) (resp. P (c̄)) is the probability of the category c (resp. one of the other cate-

gories).

An IG is determined for each term t in the training collection D, and all terms are

sorted according to the highest IG. The first q terms with the highest score are retained

while the rest of the terms are ignored. Thus, the selected terms represent the relevant

features (vocabulary) of the training data D. In our experimentation, we chose q = 500,

the terms having the highest information gain for each category.
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4.3.3 Categorization

The final step in the framework of email categorization by domain is to learn classification

algorithms using the selected features in the previous step. The learned models are used

to classify the new email documents (test data) into one of the predefined categories:

Health, Education, Finance, Adult or Computer. In the experimental part of this chapter,

we compared the following classification algorithms: naive Bayes, KNN and decision tree

to categorize emails by specific domains. The used algorithms are briefly described below.

See chapter 2 for more details.

– Bayesian classifier: is based on Bayes’ theorem. For a set of training data D,

the classifier calculates for each category, the probability that a document d ∈ D

represented as a vector of m terms d = (t1, · · · , tm), belongs to a category c ∈ C.

This calculation is done for each category, and we consider the highest probability

to select the category of an email.

– K-Nearest Neighbor (KNN): is one of the most popular used methods for text clas-

sification. The approach looks at the K email documents in the training dataset

that are the closest to the email under classification: it is classified according to the

class to which the majority of the K-nearest neighbors belong.

– Decision tree: is a structure that includes a root node, branch with internal nodes

and leaf nodes. Each internal node denotes a test on an attribute, each branch

denotes the outcome of a test, and each leaf node holds a class label.

4.4 Email semantic features extraction

This step aims at extracting semantic meanings for email text. As semantics of emails, we

mean a set of hidden concepts describing the email’s content. The final goal is to create

a very precise semantic representation for an efficient detection of spam. In this regard,

we applied CN2-SD algorithm [66] for automatic extraction of semantic features. In our

case, these features are represented in the form of rules which are a conjunction of a set
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of terms. Each rule describes some semantic meaning in the text and its output takes on

binary values (1 if the rule is satisfied and 0 otherwise).

The CN2-SD algorithm is built on top of two algorithms: the classification rule learner

CN2 [21, 22] and the Subgroup Discovery (SD) [53]. In this algorithm, SD is used to dis-

cover interesting patterns in the training data and CN2 is used to induce classification

rules to predict the class labels. The main difference between a classification and sub-

group discovery is that classification is a predictive task, while discovering subgroups is a

descriptive task. Finally, the reasons behind our choice of the CN2-SD algorithm are as

follows:

– it allows an efficient and automatic induction of rules.

– it allows an automatic generation of population description. This is particularly

useful for the extraction of the semantic features.

– it ensures precise discrimination between populations.

In the rest of this section, we first introduce the two algorithms, SD and CN2 , then

we describe the CN2-SD algorithm.

4.4.1 Subgroup discovery algorithm

The subgroup discovery algorithm allows a descriptive induction that seeks to discover

patterns that best describe the data. This algorithm is used in our work to describe

semantic concepts of email contents. Semantic concept description is an important task

in data mining; its goal is to summarize in a concise and understandable manner the

properties of a target population (domain) in the form of a set of patterns. According to

[53, 121], the SD can be defined as a data mining technique for discovering the relations

among different objects (emails) with respect to certain properties of a target variable

(class). These relations are encoded by rules of the form:

r : cond→ y, (4.2)

where, cond is a conjunction of features of the form <attribute> <operator> <value>

and y is the target variable (in our case spam or ham). As already mentioned in Section
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4.4, SD does not aim to generate global models. Instead, it allows to identify individual

patterns of interest in order to extract understandable and interpretable knowledge for

descriptive purposes. Figure 4.3 shows the difference between subgroup discovery and

classification tasks. Generally, in classification, a good model should be able to assign the

correct class value to a new document, while in SD, the main goal is to find interesting

descriptive patterns in the learning data.

Figure 4.3: Difference between classification model (a) and subgroup discovery model (b).

4.4.2 CN2 rule induction algorithm

CN2 algorithm is one of the classical rule-based learning algorithms for inducing proposi-

tional classification rules. The algorithm consists of two main parts: a low-level part and

a high-level part. A low-level part (also called a search procedure) performs the search

for a single rule that covers a number of examples. A high-level part (also called control

procedure) repeatedly executes the lower level to induce a set of rules. Several heuristic

metrics are used in the literature to assess the quality of an induced rule at the low level.

One of the most used metrics is accuracy, and it is described as follows:

Acc(r : cond→ y) =
n(y.cond)

n(cond)
, (4.3)

where, n(cond) represents the number of examples (emails) covered by the rule r :

cond→ y and n(y.cond) is the number of correctly classified examples (true positives).
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Figure 4.4: CN2 ordered rules algorithm [21].

Figure 4.5: An example of ordered set of rules [21].

CN2 algorithm can use two different high-level control procedures: a procedure for

inducing an ordered list of rules (see Figure 4.4 and 4.5) and a procedure for inducing

an unordered list of rules (see Figure 4.6 and 4.7). For inducing an ordered list of rules,

the low-level part searches for the best rule in the training data using heuristic metrics.

At each search iteration, the high-level part deletes all examples covered by the induced

(learned) rule until all examples in the training data are covered. In an unordered list

of rules, the control procedure (high-level) is reiterated to learn rules for each class indi-

vidually. For each learned rule, instead of deleting all the covered examples, which is the

case for an ordered list, only the covered examples belonging to the rule class are deleted.

CN2 removes the examples covered by learned rules to avoid the induction of the same

rule in the next iterations.
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Figure 4.6: An example of unordered set of rules [21].

4.4.3 CN2-SD algorithm

The CN2-SD algorithm is an adaptation of the classifier CN2 to the task of subgroup

discovery. The main modifications of the CN2 algorithm, making it appropriate for SD,

involve the implementation of the weighted covering algorithm by incorporating example

weights into the Weighted Relative Accuracy (WRAcc) heuristic. Algorithm 1 describes

the main steps of the CN2-SD. In the first iteration of the algorithm, all examples are

assigned to the same weight: w(di, 0) = 1, which means the email di have not been

covered by any rule. In the following iterations, the weights of emails covered by one or

more rules will decrease according to a weighting scheme. Two weighting schemes can

be used in CN2-SD, the additive weights and the multiplicative weights. In our spam

detection framework, we used the additive weighting scheme because of its simplicity and

efficiency [66]. The equation of this scheme is defined as follows:

w(di, j) =
1

j + 1
. (4.4)

The CN2-SD uses a general-to-specific (top-down) search strategy to learn a set of

rules. For each of these rules, the algorithm starts with the most general form having a

condition part made of one (attribute, value) pair, which is extended iteratively by adding

conjunctions of (attribute, value) pairs to the conditions part of the rule. The attributes

are chosen so as to decrease the weight value of the covered examples by the rule, and

therefore decrease the classification error. To evaluate and compare the induced rules,

the algorithm uses the heuristic function WRAcc as a quality measure, which is defined

as follows:
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Figure 4.7: CN2 unordered rules algorithm [21].

WRAcc(r : cond→ y) =
s(r ↓ D)

S

(
s(r ↓∗ D)

s(r ↓ D)
− s(y)

S

)
, (4.5)

where S is the sum of the weights of all examples in D, s(r ↓ D) is the sum of the weights

of all covered examples by r, s(r ↓∗ D) is the sum of the weights of all correctly-covered

examples by r and s(y) is the sum of the weights of all examples of class y.

The algorithm CN2-SD uses the metric WRAcc to select rule candidates. It also

yields unordered sets of rules but combines them in terms of a uniform weighting scheme.

Furthermore, covered examples at each iteration are not removed but only re-weighted.
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Input: learning dataset D.

Output: set of rules R.

Assign all examples in D to the same weight: w(di, 0) = 1;

R← ∅;

while there are examples in D having a weight 1 do
r ← LearnRule(D);
R← R ∪ {r};
Decrease the weight of the covered examples by r;

End.

return R.
Algorithm 1: CN2-SD

4.5 Generation of domain-specific classifiers

For each specific domain, the set of semantic features extracted from the previous step

is used as learning attributes to build a domain-specific classifier. To this end, we use a

labeled training set of emails in each domain and perform supervised learning of candidate

classifiers such as naive Bayes, decision trees, and KNN.

Once domain-specific classifiers are generated, a newly coming email should be first

automatically assigned to one of the considered domains. The domain-specific classifier

is, then, used to classify the email as legitimate or spam. See figure 4.8 for the process of

spam detection.

4.6 Experimental results

To evaluate our approach, we have built a test dataset using messages collected from

several public sources: Enron [25], Ling-spam [3] and some specialized forums. Ling-

spam corpus contains messages collected from a mailing list on the science and profession

of linguistics. The corpus comprises 2893 messages, of which 2412 are legitimate and

481 are spam. Enron corpus is a large dataset of more than 600, 000 real emails, owned

by Enron’s 158 employees and acquired by the Federal Energy Regulatory Commission
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Figure 4.8: An outline of the approach for spam detection using domain-specific classifiers.

(FERC) during its investigation of the Enron collapse. The corpus contains a variety of

topics, mainly in business such as energy trading and considerable number of personal

messages representing private communication of the employees.

In our collection, spam emails come from the two datasets, Enron and Ling-spam.

The ham emails come from specialized discussion forums and the two datasets Enron

and Ling-spam. We resorted to the choice of forums to populate our ham dataset due

to the lack of specialized open datasets containing all the domain categories addressed

by our approach. For example, In Ling-spam and Enron datasets, most of the emails

belong to Education and Finance domains, respectively. Therefore, we collected ham

messages in specialized forums to cover the other domains (e.g., health, computer, etc.).

For example, for Health, we collected messages in Question/Answering virtual clinic sites.

We chosed the raw folders of the used datasets without prior preprocessing. We labeled

manually the selected emails according to their domain. We used a total of 6679 emails

distributed according to their content in the five pre-selected categories. The overall

collection includes 3475 ham emails and 3204 spam emails.
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We compared three classifiers: KNN, naive Bayes and decision tree to categorize

emails by domains. Then we applied the same classifiers to separate spam from legitimate

emails in each of the considered domains. In order to evaluate the performance of the

machine learning classifiers, we apply the k-fold cross-validation model with k = 10, which

randomly divides the dataset into k subsets. Each classifier is trained on k − 1 sets and

evaluated on the remaining set. The final estimation of the classifier is the average of

the k results from the subsets. Various metrics have been considered in our experiments

to evaluate the performance of the classifiers, namely Precision, Recall, Accuracy and

F1-measure which are computed as follows:

Precision =
TP

TP + FP
(4.6)

Recall =
TP

TP + FN
(4.7)

Accuracy =
TP + TN

TP + TN + FP + FN
(4.8)

F1−measure =
2.P recision.Recall

Precision+Recall
(4.9)

where TP , TN , FP and FN are the obtained true positives, true negatives, false

positives and false negatives after classification.

Table 4.1: Quantitative evaluation of machine-learning classifiers for email categorization

by domains.

Classifier Accuracy Recall Precision F1-measure

KNN

Naive Bayes

Decision tree

0.8182

0.9684

0.9416

0.8758

0.9684

0.8994

0.5482

0.9745

0.9718

0.6743

0.9714

0.9342

Table 4.1 shows the obtained evaluation results for email categorization by domains.

KNN, Decision tree and naive Bayes classifiers were capable of achieving more than 80 %

of good prediction. Naive Bayes gives the best results with an accuracy of 0.9684, a recall

of 0.9684 and a precision of 0.9745.

Table 4.2 summarizes the results for spam detection on each considered domain. We

can see that naive Bayes almost achieved a higher accuracy, recall and precision in all
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the specified domains (computer, adult, education, finance, health). The last row of the

table "Average" represents the overall evaluation results of our approach which are given

by computing the average of the obtained results in the five domains. According to the

results, naive Bayes classifier clearly outperforms the other algorithms. This achieved an

accuracy of 0.9772, a recall of 0.9771 and a considerably high precision of 0.9705.

Table 4.2: Quantitative evaluation of machine-learning classifiers using our semantic ap-

proach for spam detection.

Classifier Accuracy Recall Precision F1-measure

Computer

KNN

Naive Bayes

Decision tree

0.9424

0.9633

0.9677

0.9448

0.9611

0.9725

0.9278

0.9722

0.9692

0.9362

0.9666

0.9708

Adult

KNN

Naive Bayes

Decision tree

0.9782

0.9759

0.8763

0.9710

0.9745

0.8613

0.9678

0.9736

0.8042

0.9694

0.9740

0.8318

Education

KNN

Naive Bayes

Decision tree

0.9565

0.9779

0.9786

0.9696

0.9954

0.9963

0.9759

0.9774

0.9774

0.9727

0.9863

0.9868

Finance

KNN

Naive Bayes

Decision tree

0.9669

0.9707

0.9698

0.9888

0.9888

0.9856

0.9566

0.9626

0.9639

0.9724

0.9755

0.9746

Health

KNN

Naive Bayes

Decision tree

0.9729

0.9718

0.9751

0.9735

0.9655

0.9655

0.9620

0.9668

0.9746

0.9677

0.9661

0.9700

Average

KNN

Naive Bayes

Decision tree

0.9634

0.9772

0.9554

0.9695

0.9771

0.9562

0.9580

0.9705

0.9378

0.9637

0.9738

0.9469

To prove that domain-based detection allows better prediction of spam, we used a

direct approach, where the semantic attributes of all the domains are used to detect spam
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without going through specific domains. The obtained results are shown in Table 4.3. We

can see clearly that the spam detection after categorization by domain outperforms the

direct approach.

Table 4.3: Results for spam detection without categorization by domains.

Classifier Accuracy Recall Precision F1-measure

KNN

Naive Bayes

Decision tree

0.9070

0.8534

0.9175

0.9301

0.9494

0.9197

0.8953

0.8043

0.9216

0.9124

0.8708

0.9206

We compare the filtering capabilities of our approach with two different approaches,

eTVSM [99] and BoW-SF [6]. The approach eTVSM uses semantic relationships between

terms and the approach VSM uses terms as a bag of words. In Table 4.4 we show the

comparative results and we can notice that our approach outperforms the other methods.

The Bag-of words (BoW) model, in general, does not carry high-level semantic information

since words are taken independently. To enhance their semantic representation, BoW

methods usually use n-grams instead of individual words. However, the space dimension

increases exponentially, resulting in a very sparse email representation and decreases in an

efficiency. The compared methods BoW-SF and eTVSM have this problem, which makes

them computationally/memory expensive and less efficient for spam classification. Our

approach extracts a set of semantic features per domain in the form of rules of varying

lengths term sequences, that are characteristic of spam/ham in the domain. Compared to

BoW-SF and eTVSM, our semantic feature space for email representation is significantly

lower, yet ensuring the best discrimination between spam and ham in each specific domain.

Finally, our results show that using semantic features for each specific domain is more

efficient for spam detection than using holistic and general-purpose semantic features

which are agnostic of the email general topic.
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Table 4.4: Comparative evaluation with other methods.

Model Classifier Accuracy Recall Precision F1-measure

eTVSM [99]

KNN

Naive Bayes

Decision tree

0.9355

0.9739

0.9657

0.9067

0.9650

0.9683

0.9565

0.9674

0.9658

0.9309

0.9662

0.9670

BoW-SF [6]

KNN

Naive Bayes

Decision tree

0.8512

0.9361

0.9088

0.7709

0.9784

0.9102

0.9312

0.9062

0.9142

0.8435

0.9409

0.9122

Our approach

KNN

Naive Bayes

Decision tree

0.9634

0.9772

0.9554

0.9695

0.9771

0.9562

0.9580

0.9705

0.9378

0.9637

0.9738

0.9469

4.7 Conclusion

We have proposed a new approach for exploiting semantic information for spam detec-

tion. This is achieved by extracting semantic features specific to email domains. For this

purpose, we first assign emails to their domains by training a supervised classifier. Next,

we apply the algorithm CN2-SD on each domain to extract semantic features to form a

more general and robust spam classifier specific to each domain. Conducted experiments

have shown that our approach yields better results in terms of spam detection in com-

parison with approaches based on bag-of-words and/or extracting word-based semantic

information (eTVSM).
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5
Hybrid approach for spam detection

5.1 Introduction

In the previous chapter, we used automatically generated rules for domain-specific email

spam detection. In this chapter, we consider a hybrid approach by combining manually

specified and automatically generated rules for domain-specific email spam filtering. More

specifically, we propose a method based on two semantic level analysis. In the first level,

we categorize emails by specific domains (e.g., Health, Education, Finance, etc.). In the

second level, we combine a set of manually-specified and automatically-extracted semantic

features for spam detection in each domain. Furthermore, we designed a procedure for

solving conflicts and reducing redundancies between the two types of rules.

As already mentioned in the previous chapter, the methods based on a semantic anal-

ysis of the email content use holistic and general semantic features which are independent
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of the email domain [97]. Although spam messages can have some common features, their

content in terms of vocabulary and underlying semantics can drastically change from

one domain to another. Our approach addresses this issue by building domain-specific

spam classifiers. Spam emails in each domain tend to have common semantic features

which are not present in ham emails. However, since these features are usually implicit,

they are hard to identify directly from the text [43]. Therefore, we propose to use a

semi-automatic approach based on manually-specified and automatically-extracted rules.

Manually-specified rules enable to inject expert knowledge, while automatically-extracted

rules are generated from labeled data. These two sets of rules reinforce each other during

spam classification. The extracted rules not only carry NLP meaning, but also model some

intended actions by the sender (e.g., invitation to click on a specified link, obfuscation

attempt, etc.).

In the experimental part, we have demonstrated that combining manual and automatic

types of rules offers a richer set of semantic features to enforce spam classification. These

features are meant to summarize the email content into compact topics discriminating

spam from non-spam emails in an efficient way. We have also shown that the proposed

method enables better spam detection compared to existing methods based on Bag-of-

Words (BoW) and semantic content, and leads to more interpretable results.

The rest of this chapter is organized as follows: section 5.2 introduces the general

model of hybrid extraction of semantic features. Section 5.3 presents the used method

to categorize emails by domain. Section 5.4 details the process of manual extraction

and automatic extraction of semantic features. Section 5.5 describes the combination

process of the manual and the automatic semantic features to build domain-specific spam

classifiers. Section 5.6 discusses the evaluation results. Finally, section 5.7 presents the

conclusion.
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5.2 General model of hybrid extraction of semantic fea-

tures

Our approach analyzes emails at two distinct semantic levels. In the first level, emails

are categorized by their domains to enable a separate conceptual view for spam in each

domain. Based on a selected set of features, we categorize emails by specific domains

such as: Health, Finance, Adult, etc. We compared several classification algorithms and

identified the best classifier giving the most precise email categorization. In the second

level, we build a spam classifier for each specific domain using semantic features. These

features combine manually-specified and automatically-generated rules constructed from

labeled emails. Manually-specified rules represent expert knowledge; they are built using

regular expressions. Automatically-generated features are generated using the CN2- SD

method [66]. Each rule has a binary outcome and acts by itself as a weak classifier

for spam detection. The obtained semantic features are then used to build specialized

classifiers for detecting domain-specific spam. Figure 5.1 gives a layout of steps composing

our approach.

5.3 Email categorization

The email data are categorized according to the spammers’ most targeted domains, which

are: Health, Finance, Computer, Adult and Education (see chapter 4 for more details).

It is worth to mention that spammers are constantly seeking to target new domains and

develop new techniques, some sectors are quickly evolving and should be monitored closely

(e.g., politics). Therefore, for the sake of completeness, we have added in this contribution

a new category, called ’Other’, to represent domains that are not covered by our chosen

spam domain types. See figure 5.2 for more description.

After performing the text preprocessing and feature selection steps, as detailed in

chapter 4, various classification algorithms are tested to categorize email documents by

domain, namely: Naive Bayes, KNN, Decision tree, SVM, Adaboost and Random forest.

The choice of these algorithms is motivated by several factors:
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Figure 5.1: Layout of steps composing our approach.

– They can be adapted for both binary and multiclass classification problems.

– They perform well with big training data.

– They proved their performance in text categorization and spam detection problems.

– They use different statistical models that take advantage of different assumptions

for input data (independence or non-independence between features) and constitute

a set of parametric and non-parametric classifiers.
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Figure 5.2: Outline of the different steps used for email categorization by domain.

5.4 Domain-specific semantic feature extraction

This step aims at extracting semantic features for representing email content in each

domain. Our goal is to create a domain-specific semantic representation for an efficient

detection of spam. In this regard, we consider two types of semantic features, manual

and automatic. These features are represented by rules of the form r : cond → y, where

cond = p1 ∧ . . . ∧ pn is a conjunction of features (pairs of attributes-values) and y ∈

{spam, ham} is the class value. We denote by Cond(r) = {p1, . . . , pn} the set of atomic

features of r, by Class(r) = y the class of r and by ̂Cond(r) = cond the conjunction of

these features.

5.4.1 Manual extraction of semantic features

Manually built rules provide expert knowledge on spam classification. At this level, we

were inspired by the open source SpamAssassin software [110] to build our manually-

specified rules for each of the predefined categories. SpamAssassin is considered as the

best example of an anti-spam filter based on rules, manually-defined by experts. Each rule

81



condition contains a pattern that can be applied to the body or the subject of an email.

We distinguish two types of rules: general and domain-specific rules. Domain-specific

rules target individual categories while general rules can be applied to all categories. In

other words, each category ci has its own domain-specific rules noted Rsi and general rules

noted Rgi. For instance, rules such as: lose_weight, medication, etc. (see Example 1)

can be applied only to the category Health and rules such as: presence of links, presence

of specious characters between word’s letters, etc., can be applied to all categories. Note

that we have built a total of 389 manually-specified rules.

Example 1:

Here is an example of two manually-specified rules for the category Health:

lose_weight : lose ∧ weight→ Spam

medication : viagra ∧ cialis ∧ tadalafil→ Spam

Table 5.1 presents the syntax, based on regular expressions, used to describe manually-

specified rules. The purpose of using regular expressions is to capture "sensitive" varia-

tions of words or sequences of words that spammers may use to fool spam filters. According

to Table 5.1, a rule is composed of a set of patterns containing words, numbers, symbols

and spaces.

In NLP, two types of linguistic relationships between words can be defined: morpho-

logical and semantic relations. For example, informs, informing, informed and informa-

tion are all morphologically related to the root word inform. Semantic relation is more

complex and includes synonyms, where two or more words are interchangeable because

of their similar (or identical) meaning (e.g., buy and purchase); hyponyms that define

inclusion relationships between words, considered oriented from most specific to most

general (e.g., Cialis, Viagra and Tadalafil are hyponyms of medication) and others see

[99]. Hence, we define a pattern "Words" by a set of words that are morphologically

and semantically related. For this purpose, we use the Wordnet database [120] for cre-

ating morphologically and semantically related sets of words. We have applied Synset

to the words of the rules to search a set of synonyms that share a common meaning.
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Table 5.1: Syntax for manually-specified rules.

Rule ::= Patterns '→'Class

Patterns ::= Pattern '∧' Patterns | Pattern

Pattern ::= Words | Number | Symbol | Space

Words ::= Word , Words | Word

Word ::= Letters+

Letters ::= A | · · · | Z | Number | Symbol | Space

A ::= 'A'| 'a'| '@'| · · ·

· · ·

Z ::= 'Z'| 'z'| 'ż'| · · ·

Number ::= '0'|'1'|· · · |'9'

Symbol ::= '$'| '%'| '€'| · · ·

Space ::= '_'Space | ε

Class ::= 'Spam' | 'Ham'

For example, the rule r : buy ∧ drug → Spam carries similar semantics with the rule

r′ : buying ∧medicine→ Spam since Cond(r) and Cond(r′) are semantically equivalent.

Spammers usually use a broader language than the natural language. In fact, spam-

mers can include empty space between letters, symbols or numbers to obfuscate some

sensitive words [124]. In general, they use symbols, special characters and numbers to

build forms having the aspect of alphabetical letters which are composed to words that

are readable. For example, \/!AGRĂ instead of VIAGRA. According to [7], there are

over 600 quadrillion ways to spell the word "VIAGRA" using different variations, here

the letters V, I and A were replaced by: \/, ! and Ă.

Example 2:

The following excerpts represent real contents of some medical spam:

– Buy your meds online! Viiiagra, also: X@nax,

valium,xenical,phentermine, sommÀ , celebre><, va|trex, zyban,
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fi0ricet, adIp3x

– Medicati0n purchase

– Rx buying

– Pi||s online

– Buy tablets

All these text contents are a kind of invitation for the reader to purchase drugs. We

notice that in these texts spammers use:

– a derivation for the word ’buy’ which is buying;

– a synonymous for the word ’buy’ which is purchase;

– hyponyms for the word ’medication’ which are Viagra, Xanax, Valium, Xenical,

Phentermine, Soma, Celebrex, Valtrex, Zyban, Fioricet and Adipex.

– metonymies for the word ’medication’ which are: meds, Rx, Pills, and Tablets.

5.4.2 Automatic extraction of semantic features

For automatic extraction of semantic features, we followed the same process of chapter 4

that uses the CN2-SD algorithm [66] for automatic rule induction. The CN2-SD algorithm

is an adaptation of CN2 classification rule learner [21, 22] for Subgroup Discovery (SD)

[53]. It allows to automatically describe a target population in the form of understandable

and interpretable rules. This is particularly useful for extracting hidden semantic concepts

and ensures accurate discrimination between the described populations. We apply the

CN2-SD algorithm on the email training data to induce a set of semantic rules which

enables an automatic description of each domain category ci (see chapter 4 for more

details). In this step, we have generated a total of 134 automatic rules to email spam

detection. We give here an example of rules induced by the CN2-SD in the Health domain.

1. linker ∧¬ howev ∧¬ horribl → Spam
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2. onlin ∧¬ symptom ∧¬ side ∧¬ abdomen ∧¬ coupl ∧¬ yet→ Spam

3. caus ∧¬ linker ∧¬ compani ∧¬ ship ∧¬ satisfi ∧¬ men→ Ham

where ¬ is the negation symbol, which in our case means the absence of a term.

5.5 Semantic feature combination

Once the manually-specified and automatically-generated rules are built, we combine

them to obtain a complete set of rule-based semantic features. This section describes

the combination process to build domain-specific spam classifiers. Note that rules can be

combined by simply taking the union of the manual and automatic rules. However, this

can cause two major problems: redundancy and conflict between rules. We describe in

the following two sections how we resolve these two issues.

5.5.1 Merging redundant rules

This step consists of eliminating redundancy in a set of rules. We consider two rules r

and r′ with the same class y as redundant if one rule is more specific than the other. A

rule r is considered as more specific than a rule r′ if Cond(r′) ⊆ Cond(r). For example,

if r : p1 ∧ p2 ∧ p3 → y and r′ : p1 ∧ p2 → y then r is more specific than r′ and then, r′ is

more generic than r.

To resolve this problem, we use a post-pruning technique which is applied after the

automatic induction of rules. It consists of removing non-meaningful features from the

condition part of the more specific rule, which is a way of maintaining its generalization

capability on new data. The more generic rule in this case will be removed. In our method,

we examine iteratively each pair of rules r and r′ to see if one rule is more specific than

the other. The removal of features in the more specific rule is carried out iteratively as

long as the classification accuracy of the updated rule is increased. To estimate the error

rate of the rule on a validation set V (also called pruning set), we use the REP algorithm

(Reduced Error Pruning) [41].
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More formally, let V be a validation set that corresponds to our test dataset, and r

and r′ be a pair of rules to analyze. Let Prune(r) be a pruning function that removes

iteratively non-meaningful features from r as explained in the previous paragraph. Let

Error(r, V ) (resp. Error(r′, V )) be the error rate of r (resp. r′) on V . The merging of

redundant rules is done by Algorithm 2. Note that for each iteration of the algorithm, we

use a procedure to search for the next pair of rules (r, r′) to be analyzed.

Input: set of rules I; validation set V .

Output: set of rules O.

O ← I;

b← true;

While (b = true) do

b← false;

If ∃{r, r′} ⊆ O where Cond(r′) ⊆ Cond(r) then

e← Error(r, V );

e′ ← Error(r′, V );

While (e > e′)

r ← Prune(r);

e ← Error(r, V );

end

O ← O \ {r′};

b← true;

End

End
Algorithm 2: Merging redundant rules

5.5.2 Conflict resolution between rules

Conflict resolution allows to reduce class overlapping and ensure better spam discrimina-

tion. We say that two rules r : cond→ y and r′ : cond′ → y′, with y 6= y′, are in conflict
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if there exist a non-empty set of emails in the training data that matches both rules. Our

conflict resolution algorithm between rules is inspired from [50] which resolves conflict

problems in the case of combining decision trees learned in parallel.

Given a pre-collected dataset of emails D and a pair of rules r and r′ to analyze, let

A = r ↓ D and A′ = r′ ↓ D, where r ↓ D (resp. r′ ↓ D) is the set of emails in D covered

by r (resp. r′). If A′ ⊆ A then we say that Class(r) is the majority class and Class(r′)

is the minority class. We define InferiorRule(r, r′, D) as a function returning the rule

associated with the minority class. Let B be a set of labeled examples (emails) covered

by both rules r and r’ called "conflicts examples". We define MajorityClassLabel(B) as

the function returning the majority class label among the examples in B.

The conflict resolution between rules is presented in Algorithm 3 which stipulates

that two rules r and r′ are in conflict if they are associated with two different classes

Class(r) 6= Class(r′) and they share in their cover a set of examples (i.e., A ∩ A′ 6= ∅).

For example, the following two rules are in conflict:

r : link ∧ viagra→ Spam

r′ : link ∧ doctor → Ham

Following the instructions of Algorithm 3, L1 = {viagra}, L2 = {doctor} and L3 =

{link}. Each rule is strengthened by adding the complement of the conditions part which

is not in common:

r : link ∧ viagra ∧¬ doctor → Spam

r′ : link ∧ doctor ∧¬ viagra→ Ham

Then, a new rule r′′ is created with the condition L1 ∧ L2 ∧ L3. If the common part

between the conditions of r and r′ is empty, then L3 is also empty and not included. If a

majority of the remaining "conflicts" examples are Ham, then the majority class is Ham

and the rule will be :

r′′ : link ∧ viagra ∧ doctor → Ham

In case of conflict, therefore, the algorithm returns three rules r, r′, and r′′, otherwise

it returns the original two rules r and r′. When this resolution step does not find new
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Input: set of rules I; learning dataset D.

Output: set of rules O.

O ← I;

b← true;

While (b = true) do

b← false;

If ∃{r, r′} ⊆ O where (Class(r) 6= Class(r′)) ∧ ((r ↓ D) ∩ (r′ ↓ D) 6= ∅)) then

If Cond(r) = Cond(r′) then

O ← O \ {InferiorRule(r, r′, D)};
Else

If Cond(r′) ⊂ Cond(r) then

L← Cond(r) \ Cond(r′);

r′ ← ( ̂Cond(r′) ∧¬ L̂→ Class(r′));

ElseIf Cond(r) ⊂ Cond(r′)

L← Cond(r′) \ Cond(r);

r ← ( ̂Cond(r) ∧¬ L̂→ Class(r));

Else

D1 ← (r ↓ D) ∩ (r′ ↓ D);

L1 ← Cond(r) \ Cond(r′);

L2 ← Cond(r′) \ Cond(r);

L3 ← Cond(r) ∩ Cond(r′);

r ← ( ̂Cond(r) ∧¬ L̂2 → Class(r));

r′ ← ( ̂Cond(r′) ∧¬ L̂1 → Class(r′));

D2 ← (r ↓ D) ∩ (r′ ↓ D);

r′′ ← (L̂1 ∧ L̂2 ∧ L̂3 →MajorityClassLabel(D1 \D2));

O ← O ∪ {r′′};

End

End

b← true;
End

End
Algorithm 3: Conflict resolution
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conflicts, we go back to Algorithm 2 to remove all redundant rules that might be created

by the conflict elimination process.

5.6 Experimental results

To strengthen the validation of our method, we extended the testing dataset used in the

first contribution of the previous chapter by collecting more examples from the Enron

dataset and the discussion forums. In our current collection, we used a total of 8188

emails distributed according to their content in the six pre-selected categories: Health,

Adult Finance, Education, Computer and Others (see Table 5.2). Each category includes

both spam and ham emails. Further, to extend the evaluation of our work, we tested

another dataset called CSDMC2010 SPAM. The dataset contains a total of 4327 labeled

emails where 1378 are spam and 2949 are Ham.

In this experiment, we presented a comparison to other classification methods such

as Adaboost, Random forest and SVM in addition to Naive Bayes, KNN and Decision

tree classifiers to categorize emails by domain. We also used the same classifiers for spam

detection on each of the considered domains. Moreover, to evaluate the effectiveness of

the classifiers, we applied k-fold cross validation model, with k = 10. In 10-fold cross

validation, the dataset is split randomly into 10 partitions called folds. We then fitted the

classifiers to a dataset consisting of 9 parts of the original 10 parts and used the remaining

portion for validation. The process is then repeated 10 times and the results are averaged.

To address the problem of emails that can belong to multiple domains, we have tested

a soft classification procedure based on the Bayes classifier and decision trees, where a

performance improvement has been noticed. To evaluate the performance of the classifiers,

four metrics have been considered in our experiments, namely Precision, Recall, Accuracy

and F1-measure.

Table 5.3 shows the results of email categorisation by domain using our approach. Our

approach generally provides high performance for domain categorization. We can note

that the naive Bayes and SVM performed better than the other tested classifiers. For

example, SVM classifier generated an Accuracy of 96.66 %, a Recall of 95.33 %, and a
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Table 5.2: Statistics of our collected dataset.

Health Adult Finance Education Computer Others

Ham 753 466 593 1075 808 1011

Spam 1061 563 465 254 861 278

Total 1814 1029 1058 1329 1669 1289

Precision of 97.69 %.

Table 5.3: Quantitative evaluation of machine-learning classifiers for email categorization

by domain.

Classifier Accuracy Recall Precision F1-measure

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

SVM

0.8189

0.9601

0.9584

0.8701

0.9586

0.9666

0.8945

0.9602

0.9456

0.8836

0.9441

0.9533

0.6685

0.9668

0.9765

0.8597

0.9721

0.9769

0.7652

0.9635

0.9661

0.8715

0.9579

0.9650

To demonstrate the advantage of using domain-specific spam classification, we im-

plemented another version of our algorithm where we omit domain categorisation and

concatenate all semantic domain features to train our classifiers. Tables 5.4 and 5.5 show

results obtained using our original approach and its modified version, respectively. These

results show that the categorization by domain contributes significantly to the improve-

ment of spam detection. The best results have been obtained by the classifiers Adaboost,

Random forest and naive Bayes. They achieved an Accuracy of more than 98 % in al-

most all of the predefined domains. The last row of the Table 5.4 gives averages of spam

classification accuracies for all considered domains. The overall evaluation shows that Ad-

aboost outperforms the other classifiers with an Accuracy of 98.53%, a Recall of 98.99%,

F1-measure of 98.80%, and a considerably high Precision of 98.66%.

In a second experiment, we have compared the performance of our approach with
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Table 5.4: Quantitative evaluation of machine-learning classifiers using our semantic ap-

proach for spam detection.

Classifier Accuracy Recall Precision F1-measure

Computer

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

0.9786

0.9671

0.9785

0.9896

0.9823

0.9694

0.9862

0.9723

0.9863

0.9766

0.9740

0.9726

0.9783

0.9807

0.9721

0.9716

0.9793

0.9752

0.9834

0.9743

Adult

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

0.9791

0.9899

0.9426

0.9867

0.9793

0.9794

0.9838

0.9324

0.9868

0.9888

0.9875

0.9792

0.9778

0.9896

0.9781

0.9834

0.9815

0.9546

0.9882

0.9834

Education

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

0.9786

0.9862

0.9816

0.9926

0.9823

0.9854

0.9963

0.9955

0.9974

0.9867

0.9755

0.9893

0.9863

0.9948

0.9871

0.9804

0.9928

0.9909

0.9961

0.9869

Finance

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

0.9580

0.9829

0.9665

0.9773

0.9683

0.9696

0.9887

0.9856

0.9872

0.9700

0.9729

0.9873

0.9728

0.9809

0.9763

0.9712

0.9880

0.9792

0.9840

0.9731

Health

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

0.9616

0.9954

0.9873

0.9939

0.9864

0.9835

0.9855

0.9746

0.9916

0.9839

0.9728

0.9888

0.9825

0.9922

0.9867

0.9781

0.9871

0.9785

0.9905

0.9852

Others

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

0.9524

0.9776

0.9658

0.9717

0.9712

0.9696

0.9869

0.9822

0.9900

0.9771

0.9646

0.9862

0.9741

0.9811

0.9826

0.9671

0.9865

0.9781

0.9855

0.9798

Average

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

0.9681

0.9831

0.9704

0.9853

0.9783

0.9762

0.9879

0.9738

0.9899

0.9805

0.9746

0.9839

0.9786

0.9866

0.9805

0.9753

0.9859

0.9761

0.9880

0.9805
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Table 5.5: Results for spam detection without categorization by domain.

Classifier Accuracy Recall Precision F1-measure

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

SVM

0.9375

0.8912

0.9406

0.9592

0.9426

0.9419

0.9501

0.9454

0.9476

0.9648

0.9424

0.9553

0.9038

0.8387

0.9469

0.9628

0.8813

0.9359

0.9264

0.8889

0.9472

0.9638

0.9108

0.9455

several state-of-the-art methods, namely eTVSM [99], Doc2Vec [123] and BoW-SF [6].

Tables 5.6 and 5.7 show the obtained results for each compared method using our dataset

and CSDMC2010 SPAM dataset, respectively. We can clearly note that our approach

outperforms the other methods for both datasets. This performance can be explained by

several factors. BoW-SF [6] does not carry high-level semantic information since words are

taken independently. Since eTVSM [99] and Doc2Vec [123] are agnostic of email domain

subject, it decreased their performance with regard to our method. Finally, semantic

features used in our approach are elaborated from labeled data using manually-defined

and automatically-generated rules, which gives them a high spam discrimination potential.

Finally, note that the best results achieved by the Doc2vec [123] in term of accuracy

are 85.54% in our dataset and 87.71% in the CSDMC2010 SPAM dataset, which is lesser

than the other methods. This indicates that the Doc2Vec features are not very powerful

for the problem of email spam detection. We believe that one of the main factors causing

this decrease of efficiency is that the spam language is much larger than the natural

language vocabulary used to train the Doc2Vec. In other words, when encoding an email

document using Doc2Vec, much discrimination information can be lost.

Finally, to test the ability of our approach to adapt to new data, we retrained our clas-

sifiers by augmenting our training dataset with 25% of the CSDMC2010 SPAM dataset

emails chosen randomly. Obtained classification results on the CSDMC2010 SPAM dataset

are shown in Table 5.8. We can see that by augmenting the training dataset, our approach
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Table 5.6: Comparative evaluation with other methods using our collected dataset.

Model Classifier Accuracy Recall Precision F1-measure

eTVSM [99]

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

SVM

0.9347

0.9768

0.9684

0.9839

0.9686

0.9723

0.9265

0.9633

0.9659

0.9758

0.9674

0.9689

0.9573

0.9651

0.9672

0.9744

0.9668

0.9752

0.9421

0.9642

0.9665

0.9751

0.9671

0.9742

BoW-SF [6]

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

SVM

0.8709

0.9488

0.9265

0.9511

0.9302

0.9427

0.8261

0.9650

0.9312

0.9783

0.9359

0.9354

0.9255

0.9308

0.9242

0.9673

0.9251

0.9514

0.8728

0.9476

0.9277

0.9727

0.9305

0.9452

Doc2Vec [123]

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

SVM

0.7526

0.6576

0.7953

0.8279

0.8554

0.8464

0.5732

0.8406

0.6993

0.7030

0.7671

0.7682

0.8744

0.2456

0.7947

0.8672

0.8775

0.8557

0.6925

0.3746

0.7440

0.7765

0.8186

0.8096

Our approach

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

SVM

0.9681

0.9831

0.9704

0.9853

0.9783

0.9769

0.9762

0.9879

0.9738

0.9899

0.9805

0.9716

0.9746

0.9839

0.9786

0.9866

0.9805

0.9798

0.9753

0.9859

0.9761

0.9880

0.9805

0.9757
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Table 5.7: Comparative evaluation with other methods using CSDMC2010 SPAM dataset.

Model Classifier Accuracy Recall Precision F1-measure

eTVSM [99]

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

SVM

0.9194

0.9423

0.9288

0.9461

0.9533

0.9486

0.9048

0.9448

0.9156

0.9352

0.9266

0.9381

0.9323

0.9504

0.9425

0.9516

0.9747

0.9567

0.9183

0.9476

0.9289

0.9433

0.9500

0.9473

BoW-SF [6]

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

SVM

0.7825

0.9134

0.8134

0.9107

0.9128

0.9232

0.5301

0.7814

0.8960

0.8700

0.8998

0.8940

0.9215

0.9725

0.8896

0.9512

0.9411

0.9415

0.6809

0.8665

0.8928

0.9088

0.9200

0.9171

Doc2Vec [123]

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

SVM

0.9217

0.7467

0.8916

0.9184

0.9265

0.9293

0.9115

0.5739

0.8382

0.8824

0.8701

0.9064

0.8527

0.7946

0.8244

0.8643

0.8961

0.8771

0.8811

0.6665

0.8312

0.8732

0.8829

0.8915

Our approach

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

SVM

0.9462

0.9464

0.9298

0.9554

0.9500

0.9597

0.9492

0.9476

0.9267

0.9533

0.9482

0.9541

0.9322

0.9340

0.9117

0.9466

0.9409

0.9563

0.9406

0.9408

0.9191

0.9499

0.9445

0.9552
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Table 5.8: Results evaluation of our approach using CSDMC2010 SPAM dataset.

Classifier

Original training

dataset

Original training dataset augmented with

25% from CSDMC2010 SPAM dataset

Accuracy Accuracy

KNN

Naive Bayes

Decision tree

Adaboost

Random forest

SVM

0.9253

0.9419

0.9083

0.9399

0.9345

0.9397

0.9462

0.9464

0.9298

0.9554

0.9500

0.9597

increased its performance for spam classification. This gives us, among other things, an

indication about the potential of our approach to adapt to new email content given a

proper training.

5.6.1 Soft vs. hard classification

In a final test, we deal with the situation where an email may have more than one cor-

rect category. For example, email content could belong to both domains Education and

Finance. To address this issue, we use soft classification in the first semantic level instead

of hard classification. Soft classifiers allow text documents to have variable degrees of

membership to multiple categories and assign a membership probability for a document

between 0 and 1 to each category. Our soft classification is based on the Bayesian proba-

bility theory. For a set of training data D = {d1, · · · , dn} and a set of domain categories

C = {c1, · · · , cp} where p = 6, the classifier calculates for each class spam/ham, the

marginal probability that a document (email) d ∈ D belongs to a class spam (or ham):

P (spam | d) =

p∑
i=1

p(spam, ci | d), (5.1)

P (spam | d) =

p∑
i=1

p(spam | ci) · p(ci | d). (5.2)
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where p(ci | d) is the posterior probability of having domain ci given email document d.

This calculation is done for each class spam/ham, and we consider the highest probability

to select class label for the document. Comparison between a hard classification and soft

classification have been performed to see the effect on spam detection accuracy. Based

Table 5.9: Comparative evaluation Soft/Hard spam classification using our collected

dataset.

Classifier
Hard classification Soft classification

Accuracy Recall Precision F1-measure Accuracy Recall Precision F1-measure

Naive Bayes

Decision tree

0.9831

0.9704

0.9879

0.9738

0.9839

0.9786

0.9859

0.9761

0.9892

0.9767

0.9883

0.9766

0.9897

0.9792

0.9890

0.9779

on the results given in the Tables 5.9 and 5.10, soft classification generally gives better

accuracy rates than hard classification for both datasets. This experiment confirms that

combining email categorization with soft classification gives a powerful tool for spam

detection.

Table 5.10: Comparative evaluation Soft/Hard spam classification using CSDMC2010

SPAM dataset.

Classifier
Hard classification Soft classification

Accuracy Recall Precision F1-measure Accuracy Recall Precision F1-measure

Naive Bayes

Decision tree

0.9464

0.9298

0.9464

0.9298

0.9476

0.9267

0.9340

0.9117

0.9574

0.9281

0.9469

0.9131

0.9598

0.9357

0.9533

0.9243

5.7 Conclusion

We have proposed a new approach using semantic information for spam detection. This

approach is composed of two main stages. The first stage categorizes email contents by

subject domains, whereas the second stage builds domain-specific semantic features on

which spam classification is performed. These features provide a precise description of each

domain spam allowing to better targeting their detection. We have shown that domain
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categorization improves considerably filter performance and promotes good prediction.

Experimental results have also shown that our approach outperforms several state-of-the-

art methods based on BoW and latent semantic analysis.

97



6
Deep learning based approach for spam

detection

6.1 Introduction

This chapter is an extension of our work in chapter 4, called here TBSR-SD (Text-Based

Semantic Representation for Spam Detection). In that work, we considered semantic

information at two levels. In the first level, we used Bag-of-Words (BoW) model to cate-

gorize emails into subject categories (e.g., finance, medicine, etc.), which enables targeting

each domain-specific semantics for spam detection. In the second level, semantic features

are extracted for spam detection in each domain. We applied the CN2-SD algorithm [66]

for an automatic extraction of semantic features. The features are represented in the

form of rules which are a conjunction of words where each rule describes some semantic
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meaning in the text. In this work, we use in both levels more elaborated semantic features

based on deep learning and semantic ontology. In the first level, we use a deep learning

approach based on Word2Vec model [80] to learn word embeddings in order to categorize

email documents by domains. In the second level, we use eTVSM [99], based on semantic

ontology, to extract the most dominant topics in the email content. The resulting topics

are then used as input data of the CN2-SD algorithm for the extraction of the semantic

features. These features, encoded as rules, are conjunctions of topics rather than words.

Each rule has a binary outcome and acts by itself as a weak classifier for spam detection.

Experiments on a large corpus of emails have shown that the combination of the whole

rules produces a strong classifier enabling robust and accurate spam detection.

The rest of this chapter is organized as follows: section 6.2 detail the process of email

categorization by domains using word embeddings. Section 6.3 presents the domain-

specific semantic feature extraction using eTVSM and CN2-SD algorithms. Section 6.4

discusses the evaluation results. Section 6.5 gives the overall comparison of our contribu-

tions. Finally, section 6.6 presents the conclusion.

6.2 Email categorization by domains using word em-

beddings

To build our spam detection model, we start by categorizing email documents into the

most targeted domains by spammers [47, 48, 119]. We have considered six domains:

Computer, Adult, Education, Finance, Health and Others. The category ’Others’ is used

to ensure the completeness of the domain space. To assign emails to these domains,

we train a supervised classifier on labeled data after operating a text preprocessing and

applying Word2Vec word embedding [80] on email contents.

6.2.1 Text preprocessing

The preprocessing step converts an input text document into a vector of words. In this

work, we consider five preprocessing steps to be applied for the input text document:
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keywords recognition, word with separate letters recognition, segmentation, stop-word re-

moval and stemming. Keywords recognition allows automatic identification of keywords

and abbreviations from predefined categories. Word with separate letters recognition

enables to recognize words containing letters separated by blank spaces. Segmentation

permits to segment email content into a set of words. Stop-word removal deletes most

common words in a text (e.g., articles, prepositions, etc.). Stemming allows the transfor-

mation of words into their roots. See chapter 4, section 4.3.1, for more details.

6.2.2 Word2Vec word embedding

Word2Vec is one of the most popular approaches to learn word embedding using neural

networks. The approach converts words into corresponding vectors in such a way that

the semantically similar vectors should be close to each other in N-dimensional space (N

refers to the dimensions of the vector). The powerful concept behind word2vec is that

word vectors that are close to each other in the vector space represent words that are not

only of the same meaning but of the same context as well.

Word2Vec is proposed in [80]. Google’s Word2Vec is trained on Google News Corpus,

which has more than 3 Million running words. The approach comprises two training

models: Continuous Bag OfWords model (CBOW) and Skip-Gram (SG) [79]. The CBOW

predicts the target or the current word based on the surrounding context information,

while the SG predicts surrounding words (context) based on the given current word (noted

by w(t) in Figure 6.1). Both models are represented in Figure 6.1. As we used the SG

model in this study, we briefly discuss the main techniques of this model below.

– Skip Gram Model

The goal of SG model is to train word vector representations to predict their con-

text (the nearby words) within a window of fixed size c. The window represents

the words in the right and the left of the target word. More formally, suppose

a sequence of training words denoted by w1, w2, . . . , wT , the objective function

of the SG model is to maximize the average log probability of a context word
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Figure 6.1: Architecture of CBOW and Skip-gram models.

wt−c, . . . , wt−1, wt+1, . . . , wt+c given its target word wt. The objective function is

defined as follows:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p (wt+j | wt) . (6.1)

The conditional probability p (wt+j | wt) is defined using the Softmax function:

p (wO | wI) =
exp

(
v′wO

>vwI

)∑W
w=1 exp (v′w

>vwI
)
, (6.2)

where vw and v′w are the target (input) and the context (output) vector representa-

tion of w, and W is the size of unique vocabulary in the corpus. The dot product

v′wO

>vwI
compares the similarity of the input and the output candidate word vectors

vwI
and vwO

respectively, normalized over the entire vocabulary to give probability

distribution.
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However, the Softmax function is computationally very expensive in case of big

corpus, as the normalization factor in the denominator requires iterating all words

in the corpus vocabulary, which is equal to W . Therefore, Mikolov et al. [80] in

2013 proposed an alternative called negative sampling which uses sigmoid function

for binary classification instead of softmax function. More specifically, with negative

sampling, the skip-gram model is trained using a binary logistic regression to learn to

discriminate the target context words (positive samples) from k randomly-sampled

words (negative samples) from the noise distribution Pn(w). The resulting objective

function is defined as follows:

log σ
(
v′wO

>vwI

)
+

k∑
i=1

Ewi∼Pn(w)

[
log σ

(
−v′wi

>vwI

)]
, (6.3)

where σ is the sigmoid function:

σ(x) =
1

1 + e−x
. (6.4)

and k is the number of random negative words sampled from the vocabulary W , it

typically has a range of [5,20]. wi is an i-th negative word drawn from a smoothed

unigram probability distribution called noise distribution Pn(w) which it is calcu-

lated as follows:

Pn(w) =

(
U(w)

Z

)α
, (6.5)

where U(w) is the frequency of a word w in the corpus called unigram distribution,

Z is a normalization factor, and α is the distribution smoothing hyper-parameter,

where (0 < α ≤ 1).

6.2.3 Email categorization using Word2Vec representation

We choose to use Word2Vec representation to categorize email documents by domain

because it has several advantages over BoW schemes. Word2Vec retains the semantic

meaning of different words in a document without losing context information. Another
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advantage of using the Word2Vec model is the small size of the embedding vector it

generates. Each dimension in the embedding vector contains information about one aspect

of the word. We do not need huge sparse vectors, unlike the BoW-based approaches.

Figure 6.2 illustrates the steps used to classify email documents by domain. The

model takes as input a set of text documents D = {d1, · · · , dn} where each document

di is represented as a vector of words di = {w1, · · · , wk}. The word vectors are then

mapped into numerical vectors using Word2Vec. For the words not mapped in word2vec

embeddings, spell checking is applied to check the word spelling by using the function

Microsoft Word spell checker. If no suggestion of correction is proposed for a given word,

a lookup for a similar word is executed. This task is performed in WordNet; it returns a

similar word that is semantically related to a given word. Word2vec is again applied to

find the word embedding vector corresponding to a similar word. If no similar word is

found for a given word in WordNet, the word is deleted. The use of spell check software

and WordNet dictionary allows to assign a semantically related vector representation of

an unknown word rather than deleting it or assigning it to a random unrelated word

vector.

Finally, in this step, we used the pre-trained vectors from Google’s Word2Vec em-

bedding model to convert email documents into a vector form. The model contains

300-dimensional vectors for 3 million words and phrases. We choose the SG architecture

in this work because it is considered as an efficient method for learning high-quality word

embeddings from large-scale unstructured text data like email documents [117]. The Pre-

trained Google word2vec model based on SG architecture is available online in [78], but

it is only trained in English.

– Categorization

To evaluate the performance of the obtained word embeddings from the previous

step, various classification algorithms are applied to categorize email documents by

domains. Word embeddings are used to generate the document embeddings ti by

averaging all word embeddings in the given document di as follows:

ti =
1

|di|
∑

w∈di
T (w) (6.6)
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Figure 6.2: Outline of the different steps used for email categorization by domain.
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where T (w) is the Word2Vec embedding of the word w.

The obtained results are then used to train a set of classification algorithms to

categorize email documents by domain. For email categorization by domain, we

compared the following classification algorithms: Naive Bayes, K-Nearest Neighbor

(KNN) and Support Vector Machine (SVM) and identified the best classifier giving

the most precise email categorization.

6.3 Domain-specific semantic feature extraction

This level aims at extracting hidden semantic features for representing email content. Our

final goal is to create a domain-specific semantic representation for an efficient detection

of spam. In this regard, we consider two main models, eTVSM and CN2-SD. The model

eTVSM is used to represent email documents as a vector of topics in each domain. CN2-

SD is applied to represent the returned vectors as a set of rules which are used as input

semantic features to build specialized classifiers for detecting domain-specific spam.

6.3.1 eTVSM

The eTVSM is an extension of the Topic-based Vector Space Model (TVSM). The basic

premise of TVSM is that documents are represented by a vector of topics rather than

terms. Therefore, each term vector is weighted and its direction represents term relevance

according to fundamental topics. However, this model does not allow the expression

of some linguistic phenomena like hyponymy, metonymy, etc. In contrast, the eTVSM

model addresses this problem by using domain ontology to represent different relationships

between various terms of each domain [87]. The use of an ontology provides a richer

natural language retrieval model that is able to accommodate synonyms, homonyms and

other linguistic phenomena [99].

In order to apply eTVSM to our database and represent email documents as opera-

tional vector space, we follow the steps used in [99]. We used the Themis1 implementation
1https://code.google.com/archive/p/ir-themis/
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which is an in-database data-structure. This data-structure is optimized to store email

documents and perform document similarity measurements based on the eTVSM [87]. In

addition, Wordnet ontology is used to enhance the eTVSM model.

6.3.2 CN2-SD

The resultant vector representations of the email documents by eTVSM are used in our

work by CN2-SD using a procedure proposed in chapter 4 to generate a set of semantic

features represented as a set of rules. Each rule has a binary outcome and acts by itself as

a weak classifier for spam detection. The rationale behind applying CN2-SD is to check

if a combination of one or more topics in a single semantic feature can help distinguish

junk mail from legitimate mail. The obtained semantic features are then used to build

specialized classifiers for detecting domain-specific spam such as naive Bayes, KNN and

SVM.

6.4 Experimental results

We used two public datasets of both spam and ham emails and messages from discussion

forums to evaluate our approach. The public datasets are Enron [25] and Ling-spam [3].

The discussion forums were necessary to fill the lack of legitimate messages belonging

to the six chosen domains in the public datasets Enron and Ling-spam. The collected

dataset was categorized manually by domains according to the text content. We used a

total of 8188 emails distributed over the six pre-selected categories: Health, Adult Finance,

Education, Computer and Others. Each category includes both spam and ham emails.

The overall collection includes 4706 ham emails and 3482 spam emails. The evaluation

was carried out by 10-fold cross-validation, with a standard accuracy metric, for both

semantic levels.

Table 6.1 shows the evaluation results for the first semantic level using Word2Vec

model to categorize emails documents by domains. Based on the obtained results from

the used classifiers, we see that Support Vector Machine (SVM) has given the highest
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Table 6.1: Quantitative evaluation of machine-learning classifiers for email categorization

by domains.

Classifier Accuracy

KNN

Naive Bayes

SVM

92.4%

88.2%

96.2%

accuracy value 96.2%. We see also that the KNN classifier is quite effective and gives a

value of 92.4%. In contrast, naive Bayes has the lowest accuracy as compared to other

classifiers with 88.2%.

Table 6.2 shows the results of email spam classification in specific domains using

the semantic model eTVSM. Bayesian Classifier performs better than the other applied

classifiers. It has given almost in all domains an accuracy of more than 97% which allows

an average accuracy of 97.8% for the overall model.

As an overall evaluation of our third proposed approach, we have compared its perfor-

mance with other semantic-based approaches of the literature and we have selected three

methods: eTVSM, Doc2Vec and TBSR-SD (our previous contribution detailed in chapter

4). The obtained results are shown in Table 6.3. As we can see, this approach outper-

forms eTVSM, TBSR-SD and Doc2Vec since we obtained the highest score with 97.8% of

accuracy. It is clear that our proposed approaches gets advantages from specialization of

the semantic-domains and domain oriented classifiers compared to the general-classifiers

approach of eTVSM and Doc2Vec. Moreover, the high performance of this approach com-

pared to the TBSR-SD approach can be explained by the fact that the used Word2Vec

embeddings for domain classification allows to overcome the drawback of feature inde-

pendence of the BoW model used in the TBSR-SD method. Furthermore, in the second

level, TBSR-SD uses independent words as input data for the CN2-SD to generate rules,

whereas this approach uses a set of topics produced to generate the rules which carry

more semantic content than using words.
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Table 6.2: Quantitative evaluation of machine-learning classifiers using eTVSM for spam

detection in specific domains.

Classifier Accuracy

Computer

KNN

Naive Bayes

SVM

90.1%

97.9%

89.3%

Adult

KNN

Naive Bayes

SVM

97.6%

97.8%

90.4%

Education

KNN

Naive Bayes

SVM

96.6%

98.9%

92.3%

Finance

KNN

Naive Bayes

SVM

95.4%

97.8%

91.5%

Health

KNN

Naive Bayes

SVM

97.6%

98.5%

94.9%

Others

KNN

Naive Bayes

SVM

91.6%

95.9%

86.7%

Average

KNN

Naive Bayes

SVM

94.8%

97.8%

90.9%

6.5 Overall comparison of our contributions

Summary table 6.4 compares the performance of our three contributions presented in this

thesis with the same data set to get an overall idea of the obtained results. Note that, this

dataset is large enough to ensure statistically significant result. The best result obtained

by the first contribution using the automatic extraction of semantic features is given by the

Random Forest classifier with an accuracy of 97.84%. This contribution shows that using

semantic features for each specific domain is more efficient for spam detection than using
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Table 6.3: Comparative evaluation with other methods.

Model Classifier Accuracy

eTVSM [99]

KNN

Naive Bayes

SVM

93.4%

97.6%

97.6%

TBSR-SD [98]

KNN

Naive Bayes

SVM

95.5%

97.6%

93.2%

Doc2Vec [123]

KNN

Naive Bayes

SVM

75.3%

65.8%

84.6%

Our approach

KNN

Naive Bayes

SVM

94.8%

97.8%

90.9%

holistic and general-purpose semantic features and provides an efficient representation of

internal semantic structure of email content. In addition, email representations based

on the automatic extraction of intermediate semantic structures allow to better capture

the different subtleties of spam compared to methods based on the word semantics (e.g.,

Word2Vec, eTVSM) or document semantics (e.g., Doc2Vec). However, most antispam

filters based only on automatic extraction of semantic features need to be enriched by

expert knowledge to improve the performance of these filters.

The second contribution addresses this problem by proposing a hybrid method that

combines expert and automatic knowledge. The method outperforms the first contribu-

tion with an accuracy of 98,53% and a precision of 98,66% given by Adaboost. This

experiment demonstrates that combining automatic and expert knowledge allows a richer

set of semantic features and gives a powerful tool for spam detection. However, automatic

features are made up of a set of terms that can sometimes change the meaning of text

data. For example, the feature r : free ∧mouse→ spam can be true if the text content

talks about computers and can be false if the text talks about animals. Therefore, the

third contribution proposes to use more elaborated semantic features to group words with
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similar meanings. This study increases the prediction capacity of the classifiers compared

to the two other contributions where the best result is given by naive Bayes with an

accuracy of 98.89%.

Table 6.4: Comparative evaluation of our three contributions.

Contributions Classifier Accuracy Precision

KNN 0.9600 0.9552

Naive Bayes 0.9792 0.9751

Contribution 1 [98] Decision tree 0.9652 0.9572

Adaboost 0.9735 0.9744

Random forest 0.9784 0.9758

SVM 0.9703 0.9712

KNN 0.9681 0.9746

Naive Bayes 0.9831 0.9839

Contribution 2 [97] Decision tree 0.9704 0.9786

Adaboost 0.9853 0.9866

Random forest 0.9783 0.9805

SVM 0.9769 0.9798

KNN 0.9723 0.9743

Naive Bayes 0.9889 0.9856

Contribution 3 [96] Decision tree 0.9753 0.9766

Adaboost 0.9872 0.9887

Random forest 0.9897 0.9898

SVM 0.9799 0.9814

6.6 Conclusion

We proposed a new approach using semantic-based model to detect spam emails in specific

domains. For this purpose, we use two semantic level analysis. The first level categorizes
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email documents by domains using Word2Vec word embedding. The ultimate goal of

this level is to obtain the global subject of the email content to allow the extraction of

relevant semantic features related to a domain. The second level uses the eTVSM model

to represent the email documents as a vector of topics and the CN2-SD to create seman-

tic features. The semantic features are then used to train machine learning algorithms

for spam detection. The experimental results showed that the application of the topic

extraction model in specific domains allows an efficient detection of spam emails.
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7
Conclusion and future work

This thesis explores how semantic information conveyed by email text contents can be used

more effectively to distinguish between spam and ham emails. Traditional approaches to

spam detection based on text mining are confined to detect spam using mostly lexical

and general-purpose semantic information. However, our approach analyzes the email

contents at two semantic levels to build domain-specific spam classifiers that substantially

yield more effective spam detection. This approach exploits in-depth the information

contained within the text by distinguishing the semantic context within different domains

(categories) targeted by spammers.

Hence, the present research work has given rise to three main contributions. In the

first contribution, we automatically categorize the domain (subject) of the analyzed emails

(e.g., health, education, finance, etc.) to enable a separate conceptual view of spams in

each domain and apply a domain-specific spam detection by using an automatically gen-
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erated set of semantic features represented in the form of logical rules. These semantic

features provide a precise description of each spams domain, allowing better detection.

We show that the proposed method provides an efficient representation of internal se-

mantic structure of email contents and allows for more precise and interpretable spam

filtering results compared to existing methods. In the second contribution, we enhanced

our detection technique by considering a hybrid approach, combining manually specified

and automatically generated rules. The automatically built rules capture efficiently the

basic semantics, while manually specified rules allow semantics tuning by incorporating

domain-specific knowledge of experts and end-users. We have demonstrated that com-

bining manual and automatic types of rules offers a richer set of semantic features to

enforce spam detection. In the third contribution, we wanted to explore how the use of

semantic models based on deep learning and ontologies can affect spam filtering in the

two levels. The experimental study shows promising results in term of the precision of

the spam detection.

In future work, we intend to enhance our approach in several ways. We can explore

the use of new semantic features, such as message polarity, called sentiment feature, to

automatically extract opinions or emotions from email content. An email document’s

polarity is identified using sentiment analysis that attempts to label the given message

into positive, negative, or neutral opinion. Furthermore, to maintain our spam filtering

efficiency in the long term, it will be necessary to create a procedure for online and

efficient updating of the semantic feature sets and classifiers in all domains. This can

be interesting, for example, in the scenario where our system is continuously provided

with user feedback. In other words, by considering a relevant feedback algorithm, we can

obtain a dynamic system that is refined over time and adapted to the user’s needs. In

addition, dealing with streaming evolved data may require an updating of the semantic

rules. This phenomenon is known as concept drift and can be tackled in several ways,

such as the use of rule-based online algorithms or evolutionary rule learning approaches.

The latter allows the adaptation of new data to existing knowledge. Finally, to handle a

large set of rules after the rule combination step, it could be interesting to elaborate an

evaluation step to sort and select the most significant rules by using rule quality measures.
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