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Abstract 

 

Texture analysis is an active research area in image processing and computer vision. 

Analyzing images with powerful feature extraction methods can lead to the successful 

design and implementation of machine intelligence applications such as content-based 

image retrieval, image classification, object detection, image segmentation, face 

recognition, abnormality detection, etc. In this thesis, we address the issue of texture 

analysis and discrimination with a new methodology based on parametric statistical 

modeling of multi-scale image representations. A novel multi-scale image decomposition, 

named RCT-Plus, is proposed. It is a variant of the contourlet transform that is redundant, 

rich in directional information, and applicable to grayscale and color texture images. We 

also propose a hybrid approach for modeling texture data in the multi-scale space by a 

combination of suitable parametric statistical models such as Generalized Gaussian 

Distribution (GGD) and multivariate Gaussian Mixture Model (GMM). This approach 

along with adapted similarity metrics resulted in the development of new feature extraction 

methods that capture relevant texture information, provide highly compact features, allow 

for a joint exploitation of texture and color texture features and enhance texture 

discrimination in applications such as content-based image retrieval (CBIR) in texture 

datasets and abnormality detection in dermoscopic images of human skin tissue. 

Furthermore, supervised machine learning algorithms (KNN and SVM) are integrated into 

the processing system as key techniques of feature learning and multi-class classification 

to infer texture types on the extracted features and achieve improved performance in terms 

of texture discrimination. Various experimental setups are conducted using six well-known 

texture datasets. We successfully increased the image retrieval rate up to 97.10% for the 

Stex dataset while the size of the feature vector is reduced to only 67 elements. In the case 

of abnormality detection, moving from grayscale texture features to joint color texture 

features improved the Precision of detection by up to 21% in the ISIC-42 dataset. A 

comparison with state-of-the-art methods, including deep learning, showed that our 

proposed texture feature extraction methodology yields more successful results. 
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Résumé 

 

L'analyse de texture est un domaine de recherche actif en traitement d'images et en vision 

par ordinateur. L'analyse d'images avec de puissantes méthodes d'extraction de primitives 

peut conduire à la conception et à la mise en œuvre d'applications d'intelligence artificielle 

réussies telles que la récupération d'images basée sur le contenu, la classification d'images, 

la détection d'objets, la segmentation d'images, la reconnaissance faciale, la détection 

d'anomalies, etc. Dans cette thèse, nous abordons la problématique d'analyse et de 

discrimination des textures avec une nouvelle méthodologie basée sur la modélisation 

statistique paramétrique des représentations multi-échelles d’images. Une nouvelle 

décomposition multi-échelles d’images, nommée RCT-Plus, est proposée. C’est une 

variante de la transformée en contourlettes qui est redondante, riche en informations 

directionnelles et applicable aux images de texture en niveaux de gris et en couleur. Nous 

proposons également une approche hybride pour modéliser les données de texture dans 

l'espace multi-échelles par une combinaison de modèles statistiques paramétriques 

appropriés tels que la distribution gaussienne généralisée (GGD) et le mélange de 

gaussiennes multivariées (GMM). Cette approche, associée à des métriques de similarité 

adaptées, a abouti au développement de nouvelles méthodes d'extraction de primitives qui 

capturent des informations de texture pertinentes, fournissent des primitives très 

compactes, permettent une exploitation conjointe des primitives de texture et de texture en 

couleur et améliorent la discrimination de texture dans des applications telles que la 

recherche d'images basée sur le contenu (CBIR) dans des bases de données de textures et 

la détection d'anomalies dans des images dermoscopiques de tissus cutanés humains. De 

plus, des algorithmes d'apprentissage automatique supervisé (KNN et SVM) sont intégrés 

au système de traitement en tant que techniques clés d'apprentissage de primitives et de 

classification multi-classes pour prédire le type de texture des primitives extraites et obtenir 

des performances améliorées en termes de discrimination de texture. Diverses 

expérimentations sont menées en utilisant six bases de données de texture bien connues. 

Nous avons réussi à augmenter le taux de récupération d'images jusqu'à 97,10 % pour la 

base de données Stex, tandis que la taille des primitives est réduite à seulement 

67 éléments. Dans le cas de la détection d'anomalies, l’exploitation conjointe de primitives 

de texture en niveaux de gris et des primitives de textures en couleur a permis d’améliorer 

la Précision de la détection d’un taux de 21 % pour la base de données ISIC-42. Une 

comparaison avec des méthodes de l’état de l’art, y compris l'apprentissage profond, a 

montré que la méthodologie proposée donne de meilleurs résultats.   

 

 



 

17 

 

CHAPTER 1.  Introduction 
 

1. Motivation 

 

In images from the real world, grayscale and color textures are omnipresent 

(as in grasslands, tiles, brick walls, fabrics, biological tissues, etc.) and tend 

to reveal many image properties such as granularity, smoothness, coarseness, 

periodicity, geometric structure and orientation [1]. Therefore, special 

attention is given to texture analysis and texture features have gained more 

significance in many image processing, computer vision and machine 

intelligence applications. Indeed, relevant information from image textures 

emerges through feature extraction to provide useful and precise image 

characterization (image signatures). 

Nowadays, with the great revolution in cloud data storage resources as well 

as the enhancement of the quality of image acquisition devices, the size of 

digital image datasets is increasing very fast. Efficient texture and color 

texture analysis, feature extraction methods and indexation are required for 

different domains, including medicine, industry, architecture, remote sensing, 

fashion, crime prevention, publishing, etc. For this aim, a huge research effort 

continues to be invested in developing methods for texture and color texture 

feature extraction that promote the quality of different applications relying on 

texture discrimination such as image retrieval, image classification, object 

detection, image segmentation, face recognition, abnormality detection, etc. 

Previous works have reported the achievement of remarkable outcomes due 

to the development of a variety of texture and color texture feature extraction 

methods operating on multi-scale image representations in the spatial-

frequency domain (e.g. wavelets). This probably was motivated by two core 

reasons: a) the human visual system adequacy to the spatial-frequency 

representation of image signals, and b) the inherent nature of texture patterns 

in terms of the presence of edges, with changes in scales and directions in 

repetitive structures [1].  

On another side, artificial intelligence has witnessed enormous progress in 

recent decades and has found its way into many different fields including 

image analysis and processing. Consequently, taking advantage of artificial 
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intelligence, and more specifically machine learning (ML) paradigms, is a 

possible approach to enhance the performance of image processing and 

computer vision applications based on texture analysis and feature extraction. 

This work considers two main applications: content-based image retrieval and 

abnormality detection in medical skin lesion images. 

Searching images in large visual media datasets is becoming frequent, but 

remains a challenging task of data retrieval with good accuracy and 

performance. Content-based image retrieval (CBIR) methodology refers to the 

automatic recovery of images from a dataset using similarity measurement 

criteria between the query characteristics and various low-level visual features 

(e.g., color, shape, texture) from the image indexing process [2].  

It is important to mention that the success of content-based image retrieval is 

strongly related to the choice of an efficient similarity metric and the 

development of feature extraction methods that achieve powerful 

characteristic discrimination while providing feature representation with 

reduced dimensionality. Hence, such a system can be trained on previously 

labeled images and then used to classify new dataset images. 

The study and investigation of medical skin lesion images to detect 

abnormalities is, on the one hand, a time-consuming task calling for high level 

of precision. On the other hand, a variety of subtle details in medical images 

may remain invisible to human eye. Computer-aided approaches can be 

advantageously used to help physicians analyze medical 

images. Detecting tumors, micro-calcification, vascular anomalies and skin 

lesions in different parts of the body are some examples where such 

computational approaches have been engaged to detect 

abnormalities. Nowadays, a variety of image feature extraction techniques are 

available, however feature extraction from medical images require further 

exploration due to the high level of sensitivity associated with medical 

images. We mainly focus on dermoscopic images of human skin lesions. Once 

appropriate texture and color texture features are extracted from skin texture 

images, either supervised or unsupervised machine learning techniques can be 

exploited to localize regions of interest and detect abnormality based on the 

extracted features.  
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2. Objectives and contributions 

 

In this thesis, we address the issue of texture analysis and discrimination with 

a new methodology based on parametric statistical modeling of multi-scale 

image representations.  The goal is to develop new methods for the extraction 

of powerful discriminating features from grayscale and color texture images 

and improve texture analysis. First, we develop a new variant of the contourlet 

transform as a contribution to the domain of multi-scale image representation. 

Augmented directional selectivity, redundancy, Gaussian filtering, directional 

filtering and applicability to grayscale and multi-channel color spaces are 

among the ingredients of this new multi-scale decomposition which allows 

the exposure of texture structures through low-frequency sub-bands and high-

frequency directional sub-bands.  

Second, a hybrid approach for modeling texture and color texture data in the 

multi-scale space by a combination of suitable parametric statistical models 

such as Generalized Gaussian Distribution (GGD) and multivariate Gaussian 

Mixture Model (GMM) is another contribution to this work. This approach 

along with adapted similarity metrics are meant to capture relevant 

information, provide highly compact features, allow for a joint exploitation of 

texture and color texture features and enhance texture discrimination in image 

processing and computer vision applications such as 1) content-based image 

retrieval in image texture datasets and 2) detection of abnormal tissues on a 

medical skin lesion image dataset.  

Third, we focus on coupling texture features and color texture feature 

extraction methods with supervised machine learning algorithms and analyze 

the benefits of feature learning and multi-class classification in both CBIR 

and abnormality detection schemes. A trained KNN or SVM learning model 

is used to predict the class label of a given query, speed up the labeling process 

and make it more accurate compared to traditional computations for similarity 

measurement, ranking of images or detection of the region of interest. 
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3. Document outline 

 

The remainder of this document is organized as follows. Chapter 2 describes 

the main characteristics of various types of multi-scale image decompositions 

such as wavelets, standard contourlets, non-subsampled contourlets and 

redundant contourlets. Chapter 3 presents some well-known works dealing 

with feature extraction for texture discrimination, the working principles of 

supervised machine learning (ML) algorithms for classification problems and 

content-based image retrieval schemes. Further details and state-of-the-art 

about CBIR with ML approach, region of interest (RoI) detection and deep 

learning are also provided. Chapter 4 is devoted to the proposed methodology 

for feature extraction and the proposed schemes for content-based image 

retrieval, abnormality detection and segmentation in medical skin lesion 

images. Redundant contourlet decomposition of texture images, parametric 

statistical modeling like GGD and multivariate GMM, KLD-based similarity 

metrics and also supervised machine learning for feature classification are 

among the main components of the proposed frameworks. Chapter 5 presents 

the evaluation and validation of the proposed methodology for texture feature 

extraction and its incorporation into content-based image retrieval and 

abnormality detection schemes. We describe the conducted experimental 

studies on six popular datasets followed by evaluation criteria and provide the 

main experimental results with discussions and drawn conclusions. Finally, a 

summary of contributions, concluding remarks and future work are 

highlighted in chapter 6. 
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CHAPTER 2.  Multi-scale image transforms 
 

Multi-scale image transforms are spatial-frequency representations resulting 

from the decomposition of the image into a set of sub-images or sub-bands 

corresponding to localized frequency partitions of the image spectrum. 

Laplacian pyramids, discrete wavelets, Gabor transforms and contourlets are 

examples of these image representations where various characteristics are 

exhibited such as multiple scales, frequency selectivity, multiple directional 

orientations, spatial redundancy and shift invariance. Multi-scale image 

transforms rely primarily on the use of two processing tools: appropriately 

designed linear filters and sub-sampling operators.  

The redundancy factor is determined by the ratio of the total number of 

transform coefficients to the number of original image samples. In the case of 

critical sub-sampling (maximum possible sub-sampling rate) the redundancy 

factor is one. 

 

1. The Laplacian pyramid 

 

In the classic Laplacian pyramid decomposition [3], a half-band low-pass 

filter is applied on the input image to yield a coarse version called image 

approximation at scale level 1. Since image approximation is a low-resolution 

signal, critical sub-sampling with rates 1:2 horizontally and 1:2 vertically is 

applied to reduce its size. By subtracting from the input image its 

approximation (previously interpolated) the difference information (image 

details) is captured as a Laplacian sub-band at scale level 1 (LP1). 

The whole process is repeated L times on successive image approximations 

in order to form a Laplacian pyramid having L levels in addition to the last 

image approximation at scale level L (see Figure 2.1).  
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Figure 2.1 A block diagram for creating a Laplacian pyramid [3]. 

 

2. The discrete wavelet transform 

 

The two-dimensional discrete wavelet transform (DWT) is an efficient tool 

for analyzing images in a multiresolution framework and capturing localized 

details of images in the spatial and frequency domains. For its implementation 

in decomposition mode, the DWT follows a recursive algorithm and uses low-

pass and high-pass linear filtering with critical sub-sampling operations. The 

principle of this algorithm is to divide the input image into four sub-images at 

each iteration: three sub-bands named HH(high-high), HL(high-low) and 

LH(low-high), holding the oriented details of the image and a fourth sub-band 
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which contains the most important information (the low-frequency sub-band 

or the approximation image (LL)). The approximation sub-band will serve as 

an input image to the next scale level of decomposition which means it will 

be used to create the four sub-bands of the next iteration. Thus, this algorithm 

applies iterative linear filtering. The sub-bands (HH, HL, and LH) are sparse 

sub-images showing image details in horizontal vertical and diagonal 

orientations. 

The DWT provides a highly compact image representation, i.e., the 

transformation is orthogonal, and the applied sub-sampling rates (1:2 

horizontal and 1:2 vertical) result in a total number of wavelet coefficients 

which equals the original image size. Therefore, the redundancy factor of the 

DWT decomposition is always 1. 

Although DWT is one of the most popular transformation in image 

compression field, it is limited in capturing relevant information due to the 

lack of shift invariance (translation sensitivity), the poor frequency selectivity 

(only three sub-bands at each decomposition level) and the low directionality 

(only the horizontal, vertical and diagonal orientations are provided). Figure 

2.2 illustrates the DWT decomposition process with two scale levels resulting 

into seven wavelet sub-bands.  

 

Figure 2.2 Process of decomposing an image into two-level DWT. 
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3. The Gabor transform 

 

Gabor transform is widely used in image processing with the purpose of 

texture analysis and feature extraction. This transform is in fact the Fourier 

transform applied to a windowed version of the signal by a Gaussian which 

will result in representing the signal in time and frequency domain 

simultaneously. As the bandwidth is inversely proportional to the time 

duration, there is always uncertainty between the time and the frequency 

domain and Gabor function is proved to achieve the lowest uncertainty value 

[4] [5]. Based on the fact that Gabor transform is selective to the image 

orientation, sub-band decomposition is applied with four (4) different 

orientations. When Gabor filters are developed with three different scale 

factors, this leads to the generation of twelve Gabor sub-bands (corresponding 

to three scale levels and four orientations). Since no sub-sampling is applied, 

each resulting Gabor sub-band is oversampled and has the same size as the 

original image. Therefore, Gabor pyramids form a redundant multi-scale 

representation of image data [6] and the redundancy factor is equal to the total 

number of directional sub-bands. Figure 2.3 depicts the kernels used to create 

Gabor sub-bands.  
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               Figure 2.3 Gabor kernels corresponding to 3 scale levels and 4 orientations per level. 

 

Figure 2.4 illustrates the Gabor decomposition block diagram. As a first step, 

the number of scales and orientations is selected, and a Gabor kernel is 

calculated. Second, a two-dimensional Gabor filter with impulse response gk 

() is generated for each pair of scale and orientation values. Finally, input 

image is filtered using each gk () to yield Gabor sub-bands Bk respectively. 
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Figure 2.4 Gabor decomposition block diagram. 

 

Figure 2.5 shows a texture image from the VisTex dataset [7] and Figure 2.6 

depicts its decomposition into twelve Gabor sub-bands using Gabor kernels 

(with 3 scale levels and 4 orientations).  
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Figure 2.5 Original Tile1 image [7]. 

 

 

Figure 2.6 Gabor sub-bands corresponding to filtered Tile1 image using multi-scale Gabor 

kernels. 
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4. The standard contourlet transform (SCT) 

 

The discrete contourlet transform has been introduced as an enhancement of 

the two-dimensional discrete wavelet transform [8]. It is designated here as 

the standard contourlet transform (SCT). This transform is inspired from 

human vision capabilities and is able to capture the intrinsic geometrical 

structures and directional information in natural images. Multiple scales, 

multi-directionality, non-separable two-dimensional filtering and small 

amount of redundancy are among the ingredients of this geometric transform.  

The SCT decomposition is performed with high computational efficiency by 

combining two distinct stages. In the first stage, a multi-scale decomposition 

uses a Laplacian pyramid (LP) scheme to transform the image into one coarse 

version plus a set of Laplacian sub-images [3]. In the second stage, a 

directional filter bank (DFB) applies iteratively 2-D non-separable filtering 

and critical sub-sampling to further partition each Laplacian scale level into 

different and flexible numbers of frequency wedge-shaped sub-bands, thus 

capturing geometric structures and directional information in natural images. 

Figure 2.7 illustrates the two stages of the SCT decomposition and Figure 2.8 

shows an example of frequency partition.  

In comparison to discrete wavelets, the SCT with its extra feature of 

directionality is almost critically sampled with a small redundancy factor up 

to 4/3 due to the inherent oversampling of the Laplacian pyramid. SCT leads 

to an efficient representation of smooth object boundaries with a small number 

of local coefficients in the right directional sub-bands. 
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Figure 2.7 The two stages of an SCT decomposition scheme: the multi-scale stage (LP) 

implementing a Laplacian pyramid and the directional filter bank stage (DFB). 

 

 

Figure 2.8 Frequency partition for a two-level SCT decomposition with 8 directional sub-bands at 

scale level 1 and 4 directional sub-bands at scale level 2. 

 

 



 

30 

 

5. The non-subsampled contourlet transform (NSCT) 

 

The non-subsampled contourlet transform (NSCT) is a variant of the SCT [9] 

where all down-sampling operations are discarded from both decomposition 

stages thus eliminating aliasing problems and allowing for full shift-

invariance and substantial redundancy. In other words, the NSCT 

decomposition scheme produces the same frequency partition as in SCT but 

all generated sub-images (sub-bands) are of the same size as the input image. 

As shown in Figure 2.9, the multi-scale stage is supported by a non-

subsampled Laplacian pyramid (NSLP) while the directional stage is handled 

by a non-subsampled directional filter bank (NSDFB). However, it's major 

drawback lies in the rapid increase of computational cost as large number of 

directional sub-bands are generated.  

For example, the NSCT of a K×M image with 3 scale levels and 8 directions 

per level results into one approximation sub-band and 24 directional sub-

bands. Therefore, the total number of NSCT coefficients is equal to 25×K×M 

since each sub-band has a size identical to that of the original image. In 

general, if the total number of NSCT directional sub-bands is D, the resulting 

redundancy factor is D+1. 

 

 

Figure 2.9 NSCT decomposition scheme. An example of the performed frequency partition is 

shown for each stage (NSLP and NSDFB). 
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6. The redundant contourlet transform (RCT) 

 

The redundant contourlet transform (RCT) has been introduced by N. Baaziz 

in [10]. The RCT variant aims at increasing the amount of redundancy in the 

standard contourlet transform (SCT) by removing any sub-sampling operation 

in the multi-scale image representation. RCT decomposition scheme, like in 

SCT, takes two main parts: a multi-scale decomposition followed by a 

directional decomposition. However, main changes made to this scheme are 

as follows:  

1) The multi-scale stage implements a redundant Laplacian pyramid (RLP) 

using low-pass filtering only. All sub-sampling operations are discarded in 

order to eliminate aliasing artefacts and provide additional redundancy 

amount in RLP sub-images. 

2) Linear phase low-pass filters with pseudo-Gaussian properties are used 

to build the redundant Laplacian pyramid. Filter impulse responses ℎ𝑎(𝑛) are 

given by: 

 

ℎ𝑎(𝑛) = 𝑒
−2(

𝑛

𝑎
)

2

− 𝑒−2 {𝑒−2(
𝑛−𝑎

𝑎
)2

+ 𝑒−2(
𝑛+𝑎

𝑎
)2

},                                           (2.1) 

 

where increasing values of the factor a (with a=2, 4, 8, 16…) decrease the 

filter passband.  

3) To build a redundant Laplacian pyramid having L scale levels, L pseudo-

Gaussian filters (with a=2l, l=1… L) are used to generate L+1 equal-size sub-

images: L detail sub-images (RLPl) and one low-pass image approximation 

CL. Therefore, the redundancy factor of this decomposition is L+1. The 

corresponding decomposition diagram is detailed in Fig. 2.10.  

   4) The directional decomposition stage, like in SCT, is a directional filter 

bank (DFB) using two-dimensional linear filtering and critical sub-sampling. 

However, the number of directional sub-bands is fixed and limited to four 

(D=4) in order to ensure equal size sub-images at each scale level. As shown 

in Figure 2.10, a DFB with D=4 orientations and 1:4 critical sub-sampling is 
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applied on each of the RLP sub-images to obtain 4 equal-size directional sub-

bands {Cld; l=1… L; d=1… D with D=4}. 

Therefore, additional redundancy and pseudo-Gaussian filtering in the multi-

scale stage are the main specific ingredients in this contourlet variant 

designated as RCT. For a number L of scale levels, the total number of RCT 

sub-bands is 4×L+1 and the redundancy factor is L+1. Figure 2.11 illustrates 

the frequency partition performed at each stage during the RCT 

decomposition process. Examples of RCT and RLP decompositions of 

various images are given in Figures 2.12 to 2.17.  

 

 

Figure 2.10 RCT decomposition diagram (3 scale levels, 4 directions). Separable Pseudo-

Gaussian filters ha are used in the Redundant Laplacian (RLP) stage (with a=2, 4 and 8). 
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Figure 2.11 A block diagram of the RCT decomposition illustrating an example of frequency 

partition by the RLP stage and the DFB stage.  
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Figure 2.12 Original Tile image [7]. 

 

 

 

Figure 2.13 RCT sub-bands of Tile image for 3 scale levels and 4 directions. 
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Figure 2.14 Original Brick Image [7]. 

 

 

 

Figure 2.15 RCT sub-bands of Brick image for 3 scales and 4 directions per scale level. 
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Figure 2.16 Original Tile image. (128×128) [7]. 

 

 

 

    

 

Figure 2.17 An example of a redundant Laplacian pyramid (RLP) decomposition (3 scale levels).  
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CHAPTER 3.  Texture discrimination and machine 

learning 
 

Texture analysis has been extensively explored in the field of image 

processing and computer vision. Texture analysis targets revealing distinctive 

image properties such as granularity, smoothness, coarseness, periodicity, 

geometric structure, and orientation as a function of the spatial variation in 

image intensity. These features are visible in the intensity values, or grayscale 

levels as well as in different color spaces of the image.  

We are interested in texture discrimination which consists of extracting 

valuable texture information from images that could lead to differentiating 

between various types of images or regions inside one image. Early image 

processing techniques were mainly based on grayscale level features for 

texture discrimination. Later on, the inclusion of color-based features 

provided crucial information that could boost up the performance of texture 

discrimination. 

Nowadays, with the great revolution in cloud data storage resources as well 

as the enhancement of the quality of image acquisition devices, the size of 

digital image datasets is increasing very fast. Efficient texture and color 

texture analysis, feature extraction methods and indexation are required for 

different domains, including medicine, industry, architecture, remote sensing, 

fashion, crime prevention, publishing, etc. For this aim, a huge research effort 

continues to be invested in developing methods for texture and color texture 

feature extraction that promote the quality of different applications relying on 

texture discrimination such as defect detection, image retrieval, face 

recognition, abnormality detection, etc. 

While the quality of the extracted features plays a decisive role in 

discriminating different textures, machine learning techniques can be 

advantageously integrated into the process to facilitate distinguishing among 

different textures. Machine learning algorithms are a group of computational 

techniques aiming to understand and build methods that can learn based on 

available data. Such techniques can be beneficial to discriminate textures 

based on their features. 
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1. Feature extraction for texture discrimination 

 

A variety of feature extraction methods for texture discrimination have been 

explored during the two last decades. These features could be extracted in the 

spatial domain, frequency domain or spatial-frequency domain of grayscale 

and color images. 

Do et al. [11] proposed a feature extraction method using GGD modeling of 

the wavelet decomposition sub-bands for image retrieval. Approximation sub-

band is not included in the modeling. They achieved a retrieval rate of 74.66% 

in the grayscale VisTex [7] dataset. 

Bharati et al. [12] compared different image texture analysis methods of 

several different works from state-of-the-art including traditional statistical 

approaches operating in the spatial domain such as gray level co-occurrence 

matrix (GLCM) methods, multivariate statistical approaches based on 

principal components analysis (PCA) and partial least squares (PLS). They 

further used Gabor and two-dimensional wavelet transform (in spatial-

frequency domain) whose sub-bands were modeled by energy approach. They 

leveraged all these feature extraction methods to classify a set of rolled steel 

sheets based on their quality grades. For the experiments, a total of 35 images 

of steel surfaces were used. In the end, the wavelet texture analysis (WTA) 

method appeared to be the most powerful approach for image texture analysis. 

In [13] and [14] the authors proposed a new framework using finite Mixtures 

of Generalized Gaussian distributions MOGG statistical modeling of 

contourlet sub-bands. They combined low-pass and high-pass coefficients for 

texture description in grayscale images. This method is applied to image 

retrieval, defect detection and other applications. The achieved retrieval rate 

for the grayscale VisTex [7] dataset is 97.41%. Also, they used a binary Bayes 

classifier to classify the defect-free and defective fabrics in TILDA [15] 

dataset. 

The authors of [16], [17] and [18] have experimented with different spatial 

domain grayscale feature extraction methods such as GLCM, LBP and local 

phase quantization (LPQ) using the SVM classifier in CBIR, edge detection 

and defect detection respectively. All three research works concluded that the 

GLCM feature extraction method outperforms other feature extractors on 

medical images and the TILDA [15] dataset. 

In 2019, Alrahhal et al. [19] extracted features from grayscale images by local 

neighbor pattern (LNP) to propose a new CBIR system using supervised 
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machine learning techniques. They compared their achieved results with the 

local tetra pattern (LTrP) method. They used the TDF face dataset [20], Corel 

1k [21] and VisTex [7] grayscale datasets and improved the Recall between 

1.55 to 5.24 percent. 

In 2020, Alpaslan et al. [22] proposed a new hybrid LBP feature extractor 

based on Hessian matrix and attractive center-symmetric LBP. Their approach 

is called Hess-ACS-LBP. The Hessian matrix provides the directional 

derivative information of texture regions. Multi-scale Hessian matrix presents 

the intrinsic local geometry of the texture changes. They extracted texture 

information from eight grayscale datasets. They adopt KNN classifier 

considering only one nearest neighbor (fine KNN) to measure the similarity 

between images and classify them. 

In 2021, [23] Khan et al. presented a novel texture feature descriptor named 

directional magnitude local hexadecimal pattern (DMLHP) and applied it for 

texture retrieval purposes. They used ensemble subspace discriminant (ESD) 

for classification and obtained a 98% retrieval rate in VisTex [7] dataset. 

Also, for color texture images, many researches have been done to improve 

the texture analysis. Vasconcelos et al. [24] worked on embedded 

multiresolution mixtures of Gaussians to model the discrete cosine transform 

(DCT) coefficients of color images in the frequency domain. Notwithstanding 

their feature vector sizes were huge (6208 elements), they achieved a 73.70% 

retrieval rate in Stex [25] and 88.90% retrieval rates on VisTex [7] datasets. 

In the spatial-frequency domain of color texture images, Li et al. [26] have 

studied the dependence structure in Gabor wavelets, and used Gaussian copula 

to model the sub-bands of Gabor wavelets representations. They utilized KLD 

as the similarity measure between two Copula models for retrieval purposes. 

As the result, they achieved 76.4% and 66.1% retrieval rates on Stex [25] and 

VisTex [7] color datasets respectively. Etemad et al. [27], proposed a feature 

extraction method using a Gaussian Copula to model the dependencies 

between different sub-bands of the non-subsampled shearlet transform 

(NSST) and non-Gaussian models are used for marginal modeling of the 

coefficients. In conclusion, they achieved 80.81% and 69.47% retrieval rates 

on Stex-small [25] and VisTex-full [7]datasets. In 2022, the authors in [28] 

proposed a Gabor-GLCM-based color texture feature extraction method. 

Gabor filtering was performed in three RGB layers to enrich the texture 
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features in each direction, and a GLCM was used for feature extraction. The 

statistical values were compressed into eight dimensions by Gaussian 

weighted mean and PCA methods. They used GRU neural network for 

training and testing to predict the Oxygen (O2) content and Nitrogen oxides 

(NOx) from flame color texture images in industrial boilers. Also, they 

collected data from 8 hours of boiler operation and the data were divided into 

two parts: a 6.6 h training set and a 1.6 h test set.  Bai et al. [29] presented a 

K-means-based histogram (KBH) using a combination of color and texture 

features for image retrieval. Multiresolution feature vectors representing color 

and texture features are directly generated from the coefficients of discrete 

wavelet transform (DWT). K-means is exploited to partition the vector space 

to reduce the number of histogram bins. Afterward, a fusion of z-score 

normalized Chi-Square distance between KBHs is adopted as the similarity 

measure. The method was applied successfully with improved retrieval rates 

in VisTex [7], Alot [30] and Stex [25] color datasets. However, they couldn’t 

succeed in feature compactness and computational costs. In [31], Sugamya et 

al. combined three low-level feature extraction techniques for image retrieval 

purposes: color-correlogram for color feature extraction, Gabor wavelet and 

DWT decomposition modeled by energy for texture feature extraction. They 

used the SVM classifier to classify the features of a query image and 

distinguish between relevant and irrelevant images accordingly. This method 

led to a better performance than the traditional image retrieval method. In [32] 

Verdoolaege et al. proposed a new color texture feature extraction method in 

which the coefficients of the DWT transform were modeled by the 

multivariate power exponential. They applied their method for image retrieval 

in Stex [25] and VisTex [7] datasets and achieved 71.30% and 91.20% 

retrieval rates respectively. However, the feature vector in this approach lacks 

compactness (around 430 elements). Choy et al. [33] presented a statistical 

wavelet sub-band characterization based on generalized Gamma density in 

color texture image retrieval and obtained 52.90% and 81% retrieval rates on 

Stex [25] and VisTex [7] datasets. 

As examples of feature extraction methods operating in the spatial domain, 

Kavitha et al. [34] considered the combination of texture and color features in 

feature extraction. GLCM is used to extract the texture features and Color 

histograms of images are used to extract the color features in three color 

spaces namely RGB, HSV and OPP. This method is presented to classify the 
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dermoscopic images into melanoma and non-melanoma by using the SVM 

classifier. The performance of the proposed system is evaluated by the metrics 

sensitivity and specificity. The experimental results suggested that the texture 

combined with RGB color space provides better classification Accuracy. In 

2020, Gupta et al. [35] presented a feature extraction method named local 

directional peak valley binary pattern (LDPVBP) to use in the CBIR schema. 

In their approach, each center pixel has been compared to its 24 nearest 

neighbors by deriving the LBP value of each of the eight nearest neighbors 

and comparing them with the LBP value of the center pixel which is further 

used to derive one peak and one valley pattern. The method has been applied 

to RGB as well as grayscale texture images. They tested their proposed 

pipeline on five different face and texture datasets namely Brodatz [36], 

VisTex [7], Kylberg [37], AT&T [38] and Yale B. They achieved an 83.34% 

retrieval rate in VisTex [7] and 61.45% in the Kylberg [37] dataset. In 2020, 

Vidya et al. [39] used the ABCD rule, combined with GLCM and HOG for 

the early detection of skin lesions. They took advantage of a pre-processing 

step to improve the skin lesion quality and reduce artifacts. Geodesic active 

contour (GAC) method was used to segment the lesion regions. Then, ABCD 

scoring method implemented to extract additional features based on 

symmetry, border, color, and diameter of the lesion. HOG and GLCM were 

applied to extract textural features. Finally, all extracted features are directly 

passed to SVM, KNN and Naïve Bayes classifiers to classify skin lesions in 

their selected ISIC dataset [40]. 

 

2. Supervised machine learning: training and prediction 

 

Machine learning (ML) is part of artificial intelligence area which has 

witnessed an enormous progress in recent decades and has found its way in 

many different fields including image analysis and image processing. 

Machine learning algorithms are organized into several categories, such as 

supervised learning and unsupervised learning. The word supervised here 

means that there is a supervision on the learning process which depends on a 

set of training data with known labels (results) [41]. Indeed, a machine 

learning algorithm is trained on previously known results in order to build a 

mathematical model that correctly maps input data into output values (labels). 

The supervised learning process continues until a model with a desired level 
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of Accuracy is achieved. The obtained ML model is saved and can be used 

later to predict the results for new data (test data) whose output is not known. 

The prediction procedure varies according to the working principle of the 

machine learning model considered. 

 

2.1. Accuracy and cross-validation  

 

To evaluate the efficiency of a supervised machine learning algorithm, one 

popular metric is Accuracy which is based on the prediction results obtained 

from applying the ML model to test data. For example, the prediction results 

of binary classification are formulated as four measures:  true positives tp, 

false positives fp, true negatives tn and false negatives fn. The Accuracy 

measure is then given by the following ratio: 

                             𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 +𝑓𝑛 
 × 100                                    (3.1) 

 

Cross-validation is a statistical approach widely used to determine how well 

a developed machine learning model can generalize the solution to new data. 

During the cross-validation the whole training data set is randomly split into 

a number n of equal folds. The ML model is then trained on n-1 folds while 

the remaining fold is kept for testing purposes. This operation is iteratively 

repeated n times and each iteration deals with a newly selected testing fold. 

Consequently, we have n different values specifying the Accuracy of the ML 

model. The average of the n obtained measures is then considered as the 

overall performance of the ML model. This approach gives a more realistic 

evaluation of the model at expense of higher computational cost. 

In this work, we focus on supervised machine learning applied to 

classification problems. By using ML algorithms, the following benefits are 

expected:   

 Machine learning algorithms can review large capacities of data and 

discover specific trends and patterns that would not be obvious to 

humans. 
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 With machine learning, there is no need to follow a project every step 

of the way, since it gives the learning skill to the machine, allows it to 

make predictions. 

 ML algorithms gain experience. They keep improving in Accuracy and 

efficiency as they are fed with new data. Accordingly, they can make 

better decisions. 

 ML algorithms are good at handling data that is multi-dimensional and 

multivariate. 

Among known supervised machine learning algorithms for classification [42], 

[43], [44], one can find decision trees, discriminant analysis, support vector 

machines (SVM) and K-nearest neighbors (KNN). Decision tree learning 

algorithm is creating a tree structure (as a predictive model) where each non-

leaf node denotes a feature and leaf-nodes signify class labels. The prediction 

process (decision) goes from observations (features on branches) to 

conclusions (class labels on the leaves). This algorithm analysis is simply 

explainable and has low computational complexity, which is an easy and 

practical method in machine learning. Linear discriminant classifiers and 

quadratic discriminant classifiers try to determine linear boundaries and 

quadratic/surface boundaries, respectively, between existing classes. 

Generally, linear discriminant analysis assumes that data in each class belongs 

to a specific Gaussian distribution. During the training process the parameters 

(mean, variance) for the Gaussian distribution associated to each class are 

estimated. In the following sections, two other machine learning algorithms 

are presented, namely, SVM and KNN.  

 

2.2. Support Vector Machine (SVM) 

 

Support vector machine is a supervised machine learning approach where 

training data is represented as a set of feature vectors of size p, viewed as 

points in a p-dimensional space. Each feature vector has a class label. During 

the learning phase, the goal of SVM is to find a set of hyper-planes that 

separate the training data points into distinct classes according to their labeling 

[45]. In the case of two classes, the optimal choice corresponds to the hyper-

plane that exhibits the largest gap (maximum margin) to the nearest data point 

of any class (see Figure 3.1). During the classification or prediction phase, a 
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new data point is simply mapped into the p-space in order to predict its class 

membership. 

A kernel SVM is a version of SVM used for datasets where data is not 

separable as it is. Therefore, using a mapping function known as kernel, data 

points are transformed to a new feature space where the data are separable. 

SVM is known for its efficiency in classifying high-dimensional data. SVM 

has different parameters such as kernel functions (linear, Gaussian, quadratic, 

cubic …), Penalty parameter C and Gamma which can be tuned to change the 

space and so the results. The Gamma parameter is the inverse of the standard 

deviation of the Gaussian kernel, which is used as similarity measure between 

two points. A small Gamma value presents the Gaussian function with a large 

variance. In this condition, two points can be considered similar even if they 

are far from each other. 

 

Figure 3.1 Support Vector Machine (SVM) schema in a two-dimensional space [46]. 

 

2.3. K-Nearest Neighbors (KNN) 

 

KNN is a type of supervised learning method which is known to be very 

efficient in terms of classification capability on small data sets. In a KNN 

classifier, all training data features and corresponding class labels are required 

for classifying new input data. KNN, determines the similarity of the features 

by calculating the distance (such as Euclidean distance) between test data and 

training data features. Then, class membership is predicted by a voting process 

between the K nearest neighbors. A KNN classifier is shown in Figure 3.2 
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where the yellow point is a new testing data point. If we assume K=3, by the 

voting process the new data point is included in class B and if we assume K=7, 

the new data is contained in class A. In KNN algorithm, there are mainly two 

parameters to tune; the value of K which is the number of the neighbors as 

explained above and the choice of distance metric (such as Euclidean, Cosine 

and Manhattan distances). 

 

 

Figure 3.2 KNN classification process [47]. 

 

3. Content-based image retrieval  

 

Content-based image retrieval (CBIR) methodology refers to the automatic 

search and recovery of images from a dataset using similarity measurement 

criteria between the query characteristics and various low-level visual features 

(color, shape, texture …) from the image indexing process [2]. It is important 

to mention that the success of CBIR is strongly related on the choice of an 

efficient similarity metric and the development of feature extraction methods 

that achieve powerful characteristic discrimination while providing feature 

representation with reduced dimensionality. 

In content-based image retrieval systems, the general architecture is organized 

into two separate phases: the offline phase and the online phase (as shown in 
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Figure 3.3. The offline phase is mainly dedicated to feature extraction and 

indexing process of the image dataset. The online phase operates a dataset 

search to find relevant images to the user query. Similarity measurements 

(distance metrics) are first calculated between the query features and the 

image dataset index. Next, The N most similar images to the query are 

presented (in a ranked order) to the user as being the most relevant in the sense 

of the similarity metric considered (TopN retrieved images). 

 

Figure 3.3 CBIR schema, online and offline phases. 

 

3.1. Feature extraction and indexing 

 

Feature extraction is a dimensionality decreasing process which starts from an 

initial set of measured data for human interpretation, supposed to be 

redundant. Then, it is transformed into a decreased set of features usually 

called feature vector. The chosen features are anticipated to possess the 

relevant information from the input data in order to achieve powerful 

characteristic discrimination while ensuring sparse data representation and 

compactness. In image data, relevant features are extracted from low-level 

visual characteristics such as color, shape and texture. 
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Index is the word generally referred to as an indicator or a point of reference. 

For a Given image dataset, a visual index is constructed and stored by 

computing, for each image, its feature vector which will represent the image 

during a search phase of a CBIR system. Indeed, the idea about indexing 

formed at this point is that features in one image can be rapidly associated 

with the most similar features in another image. The indexing process is done 

offline so as not to penalize the user with often lengthy calculations (offline 

phase).  Due to the numerous publications dedicated to the field of content-

based image retrieval, a state of the art is an ambitious undertaking. Many of 

the proposed techniques are dedicated to improve the quality of extracted 

image texture characteristics. Multi-scale approaches to feature extraction are 

discussed in the next chapter.   

 

3.2. Similarity measurement 

 

Between two images, there is always similarity and dissimilarity degree which 

can be measured based on the components of their corresponding feature 

vectors. For this purpose, one or more suitable distance metrics (Manhattan, 

Euclidean, Canberra, Kullback-Leibler ...) are selected. After determining the 

distance or similarity of each pair of feature components, all measures are 

added together and turned into a single similarity degree between the two 

feature vectors considered.  

In CBIR frameworks, retrieving similar images to the user query image is 

done through the calculation of the distance measures between the query 

image feature vector and the dataset visual index features. The N smallest 

distances in a ranked order are then selected as TopN matches and 

corresponding images are retrieved.  
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3.3. Retrieval efficiency  

 

To evaluate CBIR efficiency, the most popular performance metrics are 

Recall and Precision. These two metrics are based on an understanding and 

measure of relevance.   

Recall is the ratio of the number of relevant images retrieved to the total 

number of relevant images in the dataset. It is usually expressed as a 

percentage: 

 

     𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒
× 100                (3.2) 

 

Precision is the ratio of the number of relevant images retrieved to the total 

number of irrelevant and relevant images retrieved (TopN matches). It is 

usually expressed as a percentage: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 
 × 100        (3.3) 

 

Figure 3.4 describes Recall and Precision in terms of selected elements that 

are true positives, true negatives, false positives and false negatives. In Figure 

3.5, one can see how Recall and Precision are inversely related. The two lines 

of the graph may represent the performance of different CBIR systems. While 

the exact slope of the curve may vary between systems, the general inverse 

relationship between Recall and Precision remains. 
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Figure 3.4 Illustration of Precision and Recall metrics [48]. 

 

 

 

Figure 3.5 Recall and Precision metrics are related [48].  
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3.4. Machine learning in CBIR 

 

Taking advantage of supervised machine learning algorithms is a possible 

approach in a CBIR system such that a classification model is trained based 

on previously labeled image features and then used to classify new input 

images. Figure 3.6 shows the flowchart of a CBIR system incorporating a 

supervised machine learning classifier to train the feature dataset (visual 

index). Training the system iteratively and saving the best model (offline 

phase) is expected to improve the efficiency of the image retrieval process. 

Indeed, during the online phase, the trained classifier is used to predict the 

class membership (class label) of any given query image. Then, all images 

from the predicted class are retrieved and ranked according to the similarity 

measure. Finally, the N first images (in ranked order) are considered as the 

TopN matches. 

In 2015, Sandeep et al. [49] developed and put into practice an efficient 

feature extraction technique. They used various visual features that are 

extracted by applying a regression model and calculating feature weight by 

neural network. The next step is training the features with KNN. They applied 

different distances to the framework such as L1, L2, Manhattan, Chebychev, 

Cosine, Correlation, Spearman and Relative Deviation. The results are 

reported as precision and recall graphs according to the content of retrieved 

images from the datasets. 

In 2016, Srinivas et al. [50] proposed a classification method for medical 

image retrieval using online dictionary learning (ODL) approach on edge-

based features. During the learning phase, a dictionary is designed for each 

class of the training images. Classification consists on finding the sparsest 

dictionary for a given test image and assigning its associated class. The 

proposed method gives best classification results in comparison to other 

image classifiers such as linear discriminant analysis, naïve Bayes or kernel 

SVM.  

 

In [31], the proposed CBIR system combines three low-level feature 

extraction techniques: color-correlogram for color feature extraction, wavelet 

transformation for extracting shape features and Gabor wavelet for texture 

feature extraction. Further, a support vector machine classifier (SVM) is 

trained to classify the features of a query image and distinguish between 

relevant and irrelevant images accordingly. This method gives better 
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performance than the traditional method of image retrieval. Achieved results 

are found encouraging in terms of color, shape and texture image 

classification Accuracy.  

 

In [51], Savita et al. have investigated different methods of representing shape 

and texture in content-based image retrieval with machine learning 

technology. They have combined five types of image features in a training 

dataset and these are trained by SVM (support vector machine) algorithm. 

They combined histogram features, texture features (GLCM features), 

wavelet features, Gabor features, and statistical features. The Wang dataset 

[52] containing ten different image classes is used to extract all feature vectors 

for each image and store them in a new dataset so that SVM can use it for the 

training process and to classify the query image. By using these feature sets 

from Wang dataset [52], they reached 97.53% classification Accuracy. 

In 2017, Kaur et al. [53] proposed a CBIR system based on statistical image 

features such as skewness, kurtosis and standard deviation, which are 

extracted from the probability color histogram of dataset images. The training 

phase is performed on Corel-1000 dataset [21] using one of the three 

classifiers:  artificial neural network, naïve Bayes and neuro-fuzzy network. 

These retrieval approaches were compared on the basis of Precision and error 

rates. Neuro-fuzzy classifier outperforms other techniques on the 

experimented dataset. 

Ali et al. [54] took advantage of scale-invariant feature transform (SIFT) for 

feature extraction from images. Subsequently, a neural network is trained 

using the extracted features. They used the optimization technique BFOA 

(bacteria foraging optimization algorithm) to reduce the complexity, cost, 

energy and time consumption. The considered image features are average 

value, minimum value and maximum value. The training is carried out using 

a deep neural network algorithm. This trained system when presented with a 

query image retrieves from the dataset images which are relevant and similar 

to the query. The results show a considerable improvement in terms of 

Accuracy ranging from 50% to 96% for different image classes in Caltech-

101 dataset.                        

In 2018, Luke Toroitich et al. [55] presented their approach in CBIR using the 

combination of color, texture features and KNN. Euclidean distance metric is 

used to determine the nearest objects, thus resulting in the least number of 
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images retrieved by the system. Color and texture features are used to generate 

the feature matrices on which the image comparison is made. For KNN 

algorithm, different K numbers are tested to determine the best value for 

different classes of images. 

In 2019, Al-Qasemy et al. [56] have also used the KNN supervised learning 

to train statistical features (mean, standard deviation and skewness) which are 

extracted from either RGB or grayscale image datasets. Image retrieval 

efficiency is measured by means of precision, recall and f-measure. The 

proposed feature selection method has made CBIR simpler and have resulted 

in high precision retrieval. In [19], Alrahha and Supreeti firstly proposed the 

local neighbor pattern (LNP) method for image feature extraction, which 

yields a better retrieval recall when compared with other methods such as local 

binary pattern (LBP). Secondly, the CBIR system is improved in terms of 

Accuracy using supervised machine learning such as SVM and KNN on three 

different image datasets.   

 

 

Figure 3.6 CBIR scheme with a classification approach. 
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4. Region of interest (RoI) detection 

 

In an image, a certain region with a distinctive characteristic with respect to 

other regions and which is intended to be identified and segmented for a 

specific purpose, is referred to as a Region of Interest (RoI). In medical 

images, tumors and abnormal tissues are examples of RoIs.  

RoI detection in texture images and more specifically abnormality detection 

in images of human tissues has attracted a huge research interest in recent 

years. It includes both segmentation and classification of the abnormal region 

in a medical image. For this purpose, many existing methods take advantage 

of texture feature extraction techniques and machine learning solutions. 

In 2015, Ketan Mashhale et al. [57] proposed a classification system to 

recognize normal and abnormal MRI brain images. They employed standard 

deviation, skewness, kurtosis, entropy, dissimilarity, inverse energy and 

contrast as feature extraction technique followed by a classifier, such as 

Support Vector Machine (SVM) or Hybrid Classifier (SVM-KNN) to classify 

images. They succeeded to improve the results up to an Accuracy of 98%.  

Ning Guo et al. [58] demonstrated the feasibility of performing SVM based 

lung cancer staging using multiple image features in PET/CT images. They 

used SUV mean features for PET images, entropy and uniformity features for 

CT images. Using SVM classifier with a combination of tumor heterogeneity 

and other effective features had great potential to augment diagnostic 

Accuracy. 

In 2017, M.A. Rahman et al. [59] extracted features from images of skin lesion 

using color plane-histogram quality technique in order to classify them. More 

specifically, they used color thresholding method cascaded with interactive 

segmentation tool to segment lesion regions. Color features (RGB, HSV and 

YCbCr histogram features) and image quality analysis parameters are 

subsequently extracted from segmented lesion regions. Finally, KNN, SVM 

and SVM+KNN models were applied for classification. 

In 2019, Ranijitha et al. [60] proposed an algorithm to identify bone malignant 

growth using k-means segmentation and KNN classifier. They evaluated the 

impact of a variety of feature extraction techniques including auto-correlation, 

cluster prominence, cluster shade, sum average, sum entropy, sum of square, 

variance and sum variance on the dataset. They further used the K-means 
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algorithm for segmentation and K-nearest neighbor for classification. They 

succeeded to achieve an Accuracy rate as high as 98.14% in their own selected 

images. 

Tajkia Saima Chy et al. [61] performed a comparative analysis using 

classification with KNN, SVM and ELM (extreme learning machine) 

algorithms in order to detect sickle cell anemia in medical images. They used 

two types of features namely geometrical features and statistical features. In 

geometrical features, metric value and elongation are applied. In the statistical 

part, they took advantage of mean, standard deviation, variance, skewness and 

kurtosis calculations. Comparing the results in terms of precision, sensitivity, 

specificity, Accuracy, f-score and computation time, they concluded that ELM 

outperforms other techniques. 

 

5. Deep learning 

 

Despite the overall success of using classical feature extractors such as 

wavelet decomposition followed by conventional classifiers as showed in 

section 3.4 of this chapter, there exist a list of factors encouraging the 

researchers to exploit deep learning based approaches and more specifically 

convolutional Neural Networks (CNNs) to develop a reliable solution. 

The complex nature of medical images calls for a powerful tool for feature 

extraction, in other words there exist numerous subtle details in a medical 

image that might not be captured by a conventional feature extractor which 

are usually sensitive to specific type of features. Deep learning approaches 

basically train an architecture which learns extracting the appropriate features 

from images and thus achieve a higher performance. 

The fast grow of Graphical Processing Units (GPU) as well as cloud 

computation platforms has eased training a deep architecture on large datasets 

of images. 

Nowadays, pre-trained deep learning-based architectures over enormous 

datasets of images are available which can be adapted as the start point of 

training an abnormality detector. These architectures can be leveraged 

through transfer-learning to create a desired network by excessively reducing 

the computational cost. 
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In 2018 Xi et al. [62], [63] proposed a computer aided detection approach for 

classifying and localizing calcifications and masses in mammogram images. 

To improve on conventional approaches, they applied (CNN) for automatic 

feature learning and classifier building. They leveraged deep CNNs’ 

hierarchical feature extraction capabilities through transfer learning. By using 

CBIS-DDMS dataset to evaluate their methods, the experimental results 

indicate that VGGNet among AlexNet, GoogleNet and ResNet, receives the 

best overall Accuracy at 92.53% in classifications. 

In 2018, Khachnaoui et al [64] analyzed the computer-assisted diagnosis 

(CAD) system based on deep learning and focused on thyroid diagnose. They 

summarized the recent ultrasound thyroid CAD systems based on the deep 

Learning which used on different datasets. 

Ronneberger et al. [65] show results for cell segmentation in light microscopy 

images from the ISBI cell tracking challenge 2015 [66]. They proposed U-net 

convolutional neural network on two datasets (PhC-U373 and DIC-HeLa). In 

training phase, 30 images (512x512 pixels) are collaborated as the input 

images and their corresponding segmentation maps to train the network with 

the stochastic gradient descent implementation of Caffe [67]. The energy 

function is computed by a pixel-wise soft-max over the final feature map 

combined with the cross entropy loss function. The U-net results show higher 

segmentation results compared to other methods (IMCB-SG, KTH-SE, 

HOUS-US). 

U-net is a Fully Convolutional Network developed for the task of sematic 

segmentation. The architecture of U-net is composed of two main parts 

including a decoder module and a decoder module. The encoder module 

includes a stack of convolutional and pooling layers to compute a rich feature 

embedding from the input images. Such an embedding provides essential 

information about the object classes present in the image. The decoder module 

consists of transposed convolutional layers to up sample the feature map into 

the original size. This step is necessary to retrieve the location of objects in 

the original image which is crucial for semantic segmentation as the task aims 

to determine what pixels in the image belong to a certain object. The main 

advantage of a transposed convolution for up-sampling compared to regular 

interpolation techniques is that a transposed convolution consists of learnable 
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parameters which are adjusted during the training and contain the association 

information between the input and output. 
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CHAPTER 4.   Methodology 
 

We are interested in performing color texture analysis by means of developing 

feature extraction methods that achieve powerful characteristic discrimination 

of texture images while providing feature representation with reduced 

dimensionality. The exploitation of multi-scale representations of texture 

images (such as the contourlet transform) together with parametric statistical 

modeling of both grayscale and color spaces in image data is the proposed 

approach for the texture feature extraction process. Consequently, we present 

new feature extraction methods using a new variant of the contourlet 

transform (RCT-Plus) which is rich in directional information and applicable 

to grayscale and multi-channel color spaces. Taking advantage of the 

Generalized Gaussian distribution (GGD), the multivariate Gaussian Mixture 

Model (GMM) and the multi-scale RCT-Plus decomposition reveals an 

improved level of information on texture representation. These choices are 

motivated by the fact that, on one hand, contourlet transform variants (such as 

the RCT-Plus) offer augmented and flexible directional frequency selectivity 

through image scales, which is meant to enhance texture characterization and 

extract richer directional information in both grayscale and color image 

textures. On the other hand, a hybrid approach combining GGD and GMM 

modeling on directional multi-scale image data is meant to be powerful in 

terms of fitting efficiency, flexibility in dealing with multi-channel data, 

feature compactness and easy adaptation of similarity metrics between texture 

features. 

Moreover, the color texture features can be extracted according to two 

strategies: 1) a global region-based feature extraction by considering the entire 

image and 2) a local region-based feature extraction by considering the image 

blocks. These two strategies are justified by the fact that, in certain application 

domains, the global features are not able to capture the main characteristics of 

the entire image because of the presence of a variety of local textures. 

To illustrate texture feature extraction according to these two strategies, two 

main applications are considered. The first application is an improved content-

based image retrieval (CBIR) framework based on multi-scale color texture 

feature extraction and classification. The second application is a new 

abnormality detection method on color textures in medical skin lesion images. 
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In both applications, feature classification by means of supervised machine 

learning algorithms is a key technique that is incorporated into the processing 

system in order to achieve better performance in terms of retrieval or detection 

rates (respectively). 

 

1. The RCT-Plus representation of grayscale textures 

 

RCT-Plus is developed in this work as a new variant of the contourlet 

transform. It is meant to enhance and generalize the redundant contourlet 

transform (RCT).  In addition to redundancy and pseudo-Gaussian filtering 

features inherited from RCT, the RCT-Plus offers augmented and flexible 

directional frequency selectivity which is meant to enhance texture 

characterization and extract richer directional information in the image [68]. 

RCT-Plus decomposition scheme, like in SCT and RCT, takes two main parts: 

a multi-scale decomposition followed by a directional filter bank (DFB). 

However, the main changes made to this scheme are as follows: 

 

1. The multi-scale stage implements a redundant Laplacian pyramid 

(RLP) using low-pass filtering only. All sub-sampling operations are 

discarded in order to eliminate aliasing artefacts and provide additional 

redundancy amount in RLP sub-images. 

 

2. Linear phase low-pass filters with pseudo-Gaussian properties are used 

to build the redundant Laplacian pyramid. Filter impulse responses ha 

are given in equation (3.1). Increasing values of the factor a (with a=2, 

4, 8, 16…) decrease the filter passband, i.e., the filter becomes sharper, 

filtering out higher frequencies. The magnitude of the frequency 

response for pseudo-Gaussian filters is shown in Figure 4.2, Figure 4.3 

and Figure 4.4. One can notice how the filter shape and the filter 

passband change by modifying the value of a. 

 

3. To build a redundant Laplacian pyramid having L scale levels, L 

pseudo-Gaussian filters (with a=2l, l=1… L) are used to generate L+1 

equal-size sub-images: L detail sub-images (RLPl) and one low-pass 

image approximation CL. Therefore, the redundancy factor of this 
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decomposition is L+1. The corresponding decomposition diagram is 

detailed in Figure 4.1.   

 

4. At the DFB stage, all input RLP sub-images are of the same size as the 

original image since the redundant Laplacian pyramid is not down-

sampled. A 2-D filter bank (pkva filters) with Dl orientations and 

critical sub-sampling is applied on each RLP sub-image at scale level l 

to obtain a number Dl of directional sub-bands {Cld; l = 1… L; d = 1… 

Dl}, also designated as detail sub-bands. The allowed values for Dl are 

in the set {2, 4, 8…} and can vary from one scale level to another of the 

RLP pyramid. Due to the critical-subsampling at the DFB stage, the 

total size of the generated directional sub-bands at each scale level l is 

equal to the size of the input RLPl sub-image. The frequency partition 

in both RLP and DFB stages are shown in the diagram of Figure 4.5. 

 

When RCT-Plus is generated with four directional sub-bands (Dl fixed at 4) 

at each scale level, the resulting decomposition is designated as a redundant 

contourlet transform (RCT) [10]. In other words, RCT is a specific case of 

RCT-Plus. Indeed, RCT-Plus and RCT share the properties of Gaussian 

filtering and redundancy in the multi-scale stage. In addition, RCT-Plus has 

augmented directional selectivity. The redundancy factor for both RCT-Plus 

and RCT is L+1. Figure 4.6 illustrates an example of RCT-Plus 

decomposition of a grayscale texture image. 

 

Figure 4.1 Block diagram of RCT-Plus decomposition (with 3 scale levels). 
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Figure 4.2 Frequency response of the 2-D pseudo-Gaussian filter for a=2. 

 

 

Figure 4.3 Frequency response of the 2-D pseudo-Gaussian filter for a=4. 

 

Figure 4.4 Frequency response of the 2-D pseudo-Gaussian filter for a=8. 
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Figure 4.5 A block diagram of the RCT-Plus decomposition illustrating an example of frequency 

partition by the RLP stage and the DFB stage. 

 

Original Texture 

Image 

  

N×N  
 

       

Level 1 

D1 = 4 

 

  
N/2 × N/2 

 
N/2 × N/2 

 
N/2 × N/2 

 
N/2 × N/2 

    

 

Level 2 

D2 = 8 

 

 

 

 
N/4 × N/2 

 

 
N/4 × N/2 

 

 
N/4 × N/2 

 

 
N/4 × N/2  

N/2 × 

N/4 

 
N/2 × 

N/4 

 
N/2 × 

N/4 

 
N/2 × 

N/4 
 

Level 3 

D3 = 4 

 

 
 

N/2 × N/2 
 

N/2 × N/2 
 

N/2 × N/2 
 

N/2 × N/2 

    

Approximation 

sub-band 

 

 

  
N×N 

       

Figure 4.6 RCT-Plus decomposition of a N×N grayscale texture image.  The number of scale 

levels is L=3. The number of directional sub-bands at each scale level l is indicated by Dl, thus 

[D1, D2, D3] = [4, 8, 4]. The total number of RCT-Plus coefficients is 4×N×N and the redundancy 

factor is 4.  
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2. Statistical modeling of the RCT-Plus 

 

Generally speaking, parametric statistical modeling can be defined as the 

process of applying statistical analysis to a dataset to obtain a mathematical 

representation of the data under specific assumptions. The statistical 

representation of the data helps better interpret and understand the 

characteristics of the dataset [69]. Accordingly, many of the texture feature 

extraction techniques in the literature rely on performing parametric statistical 

modeling over the entire image or a subset of information in an image. By 

leveraging parametric statistical modeling techniques, we can compute 

efficient texture image signatures with low dimensions.  

In this section, we take advantage of well-known parametric statistical 

modeling approaches including General Gaussian Density, multivariate 

Mixture of Gaussians as well as energy-based modeling. We then apply them 

to various image data representations such as grayscale, color or sub-band 

data (as computed by multi-scale image decomposition) to analyze image 

textures and extract relevant and compact features. 

 

2.1. General Gaussian density modeling (GGD) 

 

The multi-scale GGD approach for texture feature extraction consists in 

characterizing the statistical distribution of sub-band coefficients through 

multi-scale representations of a grayscale image. According to [11] [10], a 

good probability density function (PDF) approximation for the marginal 

density of coefficients at a particular sub-band produced by various types of 

wavelet transforms may be achieved by adaptively varying two parameters 

(the scale and the shape) of the generalized Gaussian density function (GGD). 

In the case of the contourlet image transform, the main assumption is that a 

single generalized Gaussian density function (GGD) can capture the shape of 

the data distribution in each contourlet sub-band. The PDF of the generalized 

Gaussian distribution is defined as: 

𝑃(𝑥: 𝛼, 𝛽) =
𝛽

2𝛼𝛤(
1

𝛽
)

𝑒−(
|𝑥|

𝛼
)𝛽

 (4.1) 
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where α and β are the scale and shape parameters of the GGD respectively, 

and Γ is the Gamma function defined as: 

 

𝛤(𝑥) = ∫ 𝑒−𝑡∞

0
𝑡𝑥−1𝑑𝑡𝑥 > 0 

The scale parameter α controls the dispersion of the PDF while the shape 

parameter β determines whether it is peaked or flat. This gives the PDF the 

flexibility to fit the shape of heavy-tailed data. 

Given a multi-scale decomposition of an image I, yielding L scale levels and 

Dl directional (detail) sub-bands Cld at each scale level, we have modeled the 

marginal distribution for each sub-band by a GGD function and then a model 

parameter estimator, namely Moment Matching estimator (MM) or Maximum 

Likelihood estimator (ML) is applied to estimate the scale and the shape 

parameters (α and β) of the fitting GGD. Once α and β values for each sub-

band of an image are estimated, they are concatenated to form the image 

feature vector FI: 

𝐹𝐼 = {𝛼(𝑙, 𝑑),  𝛽(𝑙, 𝑑) ;  𝑙 = 1 . . .  𝐿 ;   𝑑 = 1. . . 𝐷𝑙}.

To take into account the GGD modeling of the image approximation, one can 

normalize it (to zero mean and unit variance) and one can consider it as an 

additional sub-band (with l=L+1; DL+1=1), which gives a feature vector 𝐹𝐼 =
{𝛼(𝑙, 𝑑),  𝛽(𝑙, 𝑑) ;  𝑙 = 1 . . .  𝐿 + 1 ;   𝑑 = 1. . . 𝐷𝑙}, thus adding the 

estimated scale α(L+1, 1) and  shape β(L+1, 1).  

 

Kullback-Leibler divergence (KLD) and Euclidean distance are two mostly 

used metrics to evaluate similarity between two GGD feature vectors [11]. 

Indeed, the KLD is a statistical measure of how different two probability 

distributions over the same event space are. The KLD between parameters of 

marginal distributions is used for the similarity measurement among images. 

The closed form for the KLD between two GGDs (P1 and P2) is expressed as 

follows: 

𝐾𝐿𝐷 (𝑃1, 𝑃2) = 𝐿𝑜𝑔 (
𝛽1𝛼2𝛤(

1

𝛽2
)

𝛽2𝛼1𝛤(
1

𝛽1
)
) + (

𝛼1

𝛼2
)

𝛽2

.
𝛤(

(𝛽2+1)

𝛽1
)

𝛤(
1

𝛽1
)

−
1

𝛽1
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Equation (4.4) expresses that the divergence between the GGDs, P1 and P2, 

only depends on α1, α2, β1 and β2 parameter values which yields to easily 

approximate the KLD. Moreover, the KLD of two identical GGDs is zero but 

KLD is not a symmetric measure since KLD(P1, P2) ≠ KLD(P2, P1). Once the 

divergence between all multi-scale sub-band pairs of two images are 

calculated, the summation of all KLD values will be considered as the 

divergence measure between two images.   

Consequently, the similarity measurement between two images T and Q 

requires the computation of KLD measures between GGD probability 

distributions. It is formulated as the overall symmetric divergence 

𝛿𝑇𝑄between all sub-band GGDs: 

𝛿𝑇𝑄 =
1

2
∑ ∑ 𝐾𝐿𝐷

𝐷𝑙
𝑑=1

𝐿
𝑙=1 (𝑃𝑇

𝑙𝑑 , 𝑃𝑄
𝑙𝑑) +

1

2
∑ ∑ 𝐾𝐿𝐷

𝐷𝑙
𝑑=1

𝐿
𝑙=1 (𝑃𝑄

𝑙𝑑 , 𝑃𝑇
𝑙𝑑)      (4.5)                                                                                                 

where 𝑃𝑇
𝑙𝑑 and 𝑃𝑄

𝑙𝑑represent the statistical models estimated in the two images 

T and Q, for the sub-band of the l-th scale level and the d-th direction, 

respectively.  Also, the similarity measure 𝛿𝑇𝑄 has positive values with 𝛿𝑇𝑄 =

𝛿𝑄𝑇  and 𝛿𝑇𝑇 = 0. 

In case where the GGD modeling extends over the image approximation sub-

band, one can consider an additional KLD in (4.5) with l=L+1; DL+1=1, which 

measures the divergence between the two GGDs corresponding to the image 

approximations of T and Q. The criterion 𝛿𝑇𝑄 is then expressed as: 

𝛿𝑇𝑄 =
1

2
∑ ∑ 𝐾𝐿𝐷

𝐷𝑙
𝑑=1

𝐿+1
𝑙=1 (𝑃𝑇

𝑙𝑑 , 𝑃𝑄
𝑙𝑑) +

1

2
∑ ∑ 𝐾𝐿𝐷

𝐷𝑙
𝑑=1

𝐿+1
𝑙=1 (𝑃𝑄

𝑙𝑑 , 𝑃𝑇
𝑙𝑑)      (4.6) 

Note that Euclidean distance (ED) between the feature vectors FQ and FT is 

another alternative for similarity measurement 𝛿𝑇𝑄 =  𝐸𝐷(𝐹𝑇 , 𝐹𝑄) between 

the images T and Q. 

 

2.2. Energy-based modeling 

 

Multi-scale energy-based approach for texture feature extraction includes 

calculating energy (L1 norm, L2 norm or some combination of both) and 

characterizing its distribution through multi-scale sub-band images [6], [70]. 

The energy-based approach assumes that different texture patterns have 
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different energy distribution in the space-frequency domain. This approach is 

very appealing due to its low computational complexity involving mainly the 

calculation of first and second order moments of sub-bands coefficients. 

Given a multi-scale image representation yielding one image approximation, 

L scale levels and Dl directional sub-bands Cld. at each level l, a feature vectors 

E1 (or E2 respectively) is formed as follows: 

𝐸(𝑙, 𝑑) =
1

𝑁𝑀
∑ ∑ |𝐶𝑙𝑑(𝑖, 𝑗)|𝑀

𝑗=1
𝑁
𝑖=1                                                                          

 𝐸′(𝑙, 𝑑) = √
1

𝑁𝑀
∑ ∑ [𝐶𝑙𝑑(𝑖, 𝑗)]2𝑀

𝑗=1
𝑁
𝑖=1                                                                   

𝐸1(𝑙, 𝑑) = (𝐸(𝑙, 𝑑), √𝐸(𝑙, 𝑑)2 + 𝐸′(𝑙, 𝑑)2)                                                     

𝐸2(𝑙, 𝑑) = (𝐸(𝑙, 𝑑),  𝐸′(𝑙, 𝑑))                                                                      

𝐸1 = {𝐸1(𝑙, 𝑑) ;  𝑙 = 1 . . .  𝐿 + 1 ;   𝑑 = 1 . . .  𝐷𝑙}                                    

𝐸2 = {𝐸2(𝑙, 𝑑) ;  𝑙 = 1 . . .  𝐿 + 1 ;   𝑑 = 1 . . .  𝐷𝑙}                                   

Note that × indicates the size of the considered sub-band Cld. The 

approximation sub-band is denoted by l=L+1 and DL+1=1; For similarity 

measurement, the Euclidean distance is computed between two compared 

feature vectors. 

 

2.3. Joint color texture modeling 

 

In addition to texture characteristics in the grayscale space, color information 

is a significant part of the physical properties of an image. Therefore, it is 

commonly exploited to enhance the discriminative power of texture features 

in characterizing natural images. Computation of a standard histogram on 

multi-channel color spaces (RGB, YCbCr, HSV, …) is simple but may result 

into a huge amount of data which is a drawback to the compactness of the 

feature vector. By modeling color information with parametric statistical 

approaches, one can achieve significant improvement in the extraction of 

relevant and compact color features. Then, considering both texture and color 

texture features, there are many different strategies to perform their 
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combination in the multi-scale space (such as the RCT-Plus image 

representation), which can result in a variety of feature extraction methods. 

For instance, a straightforward way consists in applying a multi-scale 

decomposition and GGD modeling (4.3) to the multi-channel color spaces 

(RGB, YCbCr, HSV, …), once to each color channel c separately, and then 

concatenating the resulting Nc feature vectors as follows: 

𝐹𝐼 = {𝛼(𝑙, 𝑑, 𝑐),  𝛽(𝑙, 𝑑, 𝑐);  𝑙 = 1 … 𝐿 + 1;  𝑑 = 1 … 𝐷𝑙; 𝑐 = 1 … 𝑁𝑐}

For similarity measurement between two color images T and Q, the 𝛿 criterion 

defined in (4.6) is first applied to each pair of color channels c to yield 𝛿𝑇𝑄
𝑐 , 

then, the summation is performed to yield the overall symmetric divergence 

between T and Q. 

                                          𝛿𝑇𝑄 =  ∑ 𝛿𝑇𝑄
𝑐𝑁𝑐

𝑐=1                                               

In particular, when the data is multimodal and the number of data channels is 

large (such as in RGB texture images), the multivariate Gaussian mixture 

modeling and representation is powerful in terms of fitting efficiency, model 

compactness and flexibility in adding more data channels. In the following 

section we introduce the basic principles of a multivariate Gaussian Mixture 

Model (GMM) in the color image space and express an approximated 

similarity metric based on the Kullback-Leibler divergence.  

 

2.4. Gaussian Mixture Modeling (GMM) 

 

A multivariate random variable x= (x1, x2, x3, …, xn)
 T follows a Gaussian 

distribution if its probability density function [71] can be expressed as: 
 

 𝒩(𝑥: 𝜇, 𝛴) =
1

√(2𝜋)𝑛|𝛴|
exp (−

1

2
 (𝑥 − μ)𝑇𝛴−1(𝑥 − μ))                       (4.15)                                      

where μ is a mean vector that defines its center and Σ is a covariance matrix 

that defines its width. If the random variable x is n-dimensional then μ is a n-

dimensional vector and Σ is a n×n matrix.    

For modeling multimodal data, a Gaussian Mixture Model (GMM) that 

contains a finite number k of multivariate Gaussians can be expressed as:   
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𝑃(𝑥) = ∑ ω𝑖𝒩(𝑥: 𝜇𝑖 , 𝛴𝑖)𝑘
𝑖=1                                                            (4.16) 

where each Gaussian function is identified by i ∈ {1, …, k} and the prior 

probability ω𝑖 of the ith Gaussian (mixing parameter) must meet the 

conditions ∑ ω𝑖
𝑘
𝑖=1 = 1      and 0 ≤ ω𝑖 ≤ 1.  

To estimate the parameters of a k-component GMM that fits a given set of 

training data I, the iterative Expectation-Maximization (EM) algorithm is 

usually applied to yield a parameter vector (feature vector) FI: 

𝐹𝐼 = {𝜔𝑖 , μ𝑖 ,  Σ𝑖;  𝑖 = 1 . . .  𝑘}

For example, if we apply a GM model with k=2 to an RGB image, we will 

have a 2×3 matrix for the mean and a 3×3×2 covariance matrix, which is 

symmetric (See Table 4.1). Also, we have 2 mixing parameters ω1 and ω2 that 

add to one. By taking into account the repeating values, one can reduce the 

covariance matrix to 12 values and keep only one mixing parameters. 

Therefore, the feature vector size will be 19 (instead of 26 elements). 

In the case of a univariate Gaussian model, the GMM with k=2 results in 5 

elements feature vector; ω, μ, and Σ with 1, 1×2, and 1×1×2 elements 

respectively (see Table 4.1). 

Random 

variable 

Number of 

Gaussians (k) 
Mean (μi) Covariance (Σi) 

Mixing 

parameters  

(ω𝑖) 

Multivariate 

(RGB) 

k=2 

 

𝑅1 𝐺1 𝐵1 

𝑎1 𝑏1 𝑐1
𝑏1 𝑑1 𝑒1
𝑐1 𝑒1 𝑓1

 

Instead of 9, we 

keep 6 values 

ω1 

𝑅2 𝐺2 𝐵2 

𝑎2 𝑏2 𝑐2
𝑏2 𝑑2 𝑒2
𝑐2 𝑒2 𝑓2

 

Instead of 9, we 

keep 6 values 

ω2 

Univariate k=2 

𝐼1 𝑎1 ω1 

𝐼2 𝑎2 ω2 

Table 4.1 Illustration of the estimated parameters for GM model with k=2. 
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As a similarity measure between two Gaussian mixture models, a Kullback-

Leibler divergence (KLD) is commonly approximated because no closed form 

expression exists [72] [73]. Using an approximation method based on nearest 

pairs of Gaussians [74] [75], the symmetrical KLD between two GMM 

distributions 𝑃(𝑥) = ∑ ω𝑝𝑖
 𝒩(𝑥: 𝜇𝑝𝑖

, 𝛴𝑝𝑖
)

𝑘1
𝑖=1  and  

𝑄(𝑥) = ∑  ω𝑞𝑗
 𝒩 (𝑥: 𝜇𝑞𝑗

, 𝛴𝑞𝑗
)

𝑘2
𝑗=1  is formulated as follows:  

𝛿𝑃𝑄 =
1

2
∑ ω𝑝𝑖

𝑘1
𝑖=1 min

𝑗=1..𝑘2

{𝐾𝐿𝐷(𝒩𝑝𝑖
, 𝒩𝑞𝑗

)} +

                           
1

2
∑ ω𝑞𝑖

min
 𝑖=1..𝑘1

{𝐾𝐿𝐷(𝒩𝑞𝑗
, 𝒩𝑝𝑖

)}
𝑘2
𝑗=1                               (4.18) 

where the KLD between two n-dimensional multivariate Gaussians 

𝒩(𝑥: 𝜇𝑝𝑖
, 𝛴𝑝𝑖

) and 𝒩 (𝑥: 𝜇𝑞𝑗
, 𝛴𝑞𝑗

) has a well-known closed form that is 

given by: 

 𝐾𝐿𝐷 (𝒩𝑝𝑖
, 𝒩𝑞𝑗

) =
1

2
𝐿𝑜𝑔

|𝛴𝑞𝑗
|

|𝛴𝑝𝑖
|

+
1

2
𝑇𝑟 ((𝛴𝑞𝑗

)
−1

𝛴𝑝𝑖
) +

                                      
1

2
(𝜇𝑝𝑖

− 𝜇𝑞𝑗
)

𝑇

(𝛴𝑞𝑗
)

−1

(𝜇𝑝𝑖
− 𝜇𝑞𝑗

) −
𝑛

2
                (4.19) 

Equations (4.18) and (4.19) express that the similarity measure between two 

GMMs, P and Q, only depends on model parameter values μ, Σ and ω. Also, 

T is the Transpose operator, Tr is the Trace matrix operator and |. | is the 

Determinant. Moreover, it should be noted that the similarity criterion 𝛿𝑃𝑄 as 

defined in (4.18) is symmetrical (𝛿𝑃𝑄 = 𝛿𝑄𝑃), has positive values and equals 

zero for two identical GMMs  (𝛿𝑃𝑃 = 0).   

For texture analysis purposes, multi-channel spaces in color texture images 

(RGB, YCbCr, HSV, …) are examples of suitable 3-dimensional datasets for 

GMM fitting. Figure 4.7 and Figure 4.8 illustrate the capacity of the k-

component GM model (k=2) to discriminate various RGB textures while 

providing compact representations. 

Figure 4.9 illustrates the comparison between two statistical models (GGD 

and GMM) applied to the modeling of the RCT-Plus approximation sub-

band corresponding to the red color component of RGB images.  (univariate 

random variable). As Figure 4.9 confirms, GMM is a more accurate fit for the 

approximation sub-bands especially in the case 
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of multimodal histograms (having more than one peak). Figure 4.10 shows 

another example of GGD modeling where RCT-Plus is applied to the 

grayscale version of the image with 3 scale levels of decomposition and 8 

directional sub-bands at each level. GGD gives a more appropriate fit for the 

directional sub-bands. 

 

 

Figure 4.7 Three different color texture images in RGB format from the VisTex and Stex datasets 

[7] [25]. The second row illustrates the corresponding Gaussian mixture models with k=2, and 

the third row illustrates their corresponding RGB histogram. 

 

 

Figure 4.8 Three different color texture blocks in skin images from the ISIC dataset [40]. The 

second row illustrates the corresponding Gaussian mixture models with k=2, and the third row 

illustrates their corresponding RGB histogram. 
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Original image 

 

Tile.0001.05 (VisTex-40) 

 

Stone.0028.11 (Stex) 

Approximation 

sub-band 

histogram 

  

Approximation 

sub-band 

histogram and 

it's fitting 

GGD 

 

 

Approximation 

sub-band 

histogram and 

it's fitting 

GMM 

k =2 

  

Figure 4.9 GGD and GMM fitting examples applied on RCT-Plus approximation sub-band of the 

red color image component. The images are selected from VisTex and Stex datasets [7] [25]. 
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Original image 

 
ISIC_0000017_206 

Histogram of sub-band C15 and 

it's fitting GGD 

 

Histogram of sub-band C25 and 

it's fitting GGD 

 

Histogram of sub-band C35 and 

it's fitting GGD 

 

Histogram of the approximation 

sub-band C41 and it's fitting 

GGD 

 

 
Figure 4.10 GGD fitting examples applied on an RCT-Plus decomposition with ( L=3 and D= [8 

8 8] ). The image is selected from ISIC dataset [40]. 
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3. A CBIR system based on color-texture discrimination 

 

CBIR for texture images is essential for several applications such as remote 

sensing, industrial inspection, quality control, medical imaging, to name a 

few. Usually, the performance of CBIR systems depends largely on the way 

the images are represented to facilitate their indexation and the type of 

similarity measurement used to compare images. In fact, a typical image 

retrieval system will be composed of two main steps: 1) feature extraction and 

modeling which transforms an image into a compact feature vector, 2) 

similarity measurement, which is used to compare images and return the 

closest ones to the query image. However, there are remaining challenges for 

achieving accurate and computationally efficient color texture retrieval 

mainly due to the cheer number of texture classes and the variability inside 

each texture class. In this work, we introduce an improved CBIR framework 

for grayscale and color texture images. Building on the new proposed methods 

for texture modeling and feature extraction in Section 2, we propose to extract 

richer discriminative features from texture images and adapt similarity metric 

to the parametric statistical modeling of the contourlet representation for 

grayscale and color textures. Moreover, we introduce a new framework 

integrating a supervised machine learning approach (ML-CBIR). A query is 

then first classified to select the best texture class after which the retained class 

images are ranked to select top ones. This ML-CBIR framework is intended 

to improve the retrieval score and make it computationally efficient by 

avoiding the requirement of comparing a query against all images in the 

dataset.  

 

3.1. The proposed approach for CBIR 

 

As previously discussed, the CBIR system is mainly made up of image feature 

extraction as feature vectors followed by similarity measurement between two 

feature vectors for comparison purposes. Various CBIR schemes are 

proposed. Each of them combines one feature extraction method (as defined 

in Section 2) and a suitable similarity measurement from the following: 

1) E1/E2: Energy-based feature extraction in (4.11) or (4.12) and similarity 

metric using Euclidean distance. 

https://docs.google.com/document/d/11EZPaaXyyIg3PKvUI4cwJXPlPHKmafji/edit#heading=h.3q5sasy
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2) GGD2-ED: GGD modeling (4.3) of all image sub-bands estimated by 

Maximum Likelihood (ML) and similarity measurement using 

Euclidean distance. 

3) GGD1/GGD2: GGD modeling (4.3) of all image sub-bands estimated 

by Moment Matching (MM) or Maximum Likelihood (ML) and 

similarity metric using the symmetric KLD in (4.6). 

4) GGD1/GGD2 for color images: GGD modeling (4.13) of all color 

image sub-bands estimated by either MM or ML and similarity metric 

using the symmetric KLD in (4.14). 

5) GGD1/GGD2+GMapp: GGD modeling (4.13) of the color image 

detail sub-bands estimated by either MM or ML, modeling of the 

approximation sub-bands using GMM (4.17) and the sum of 

symmetric KLDs in (4.5) and (4.18) as a similarity metric. 

6) GGD1/GGD2+GM: GGD modeling (4.13) of the grayscale image 

detail sub-bands estimated by either MM or ML, modeling of the whole 

color image using GMM and the sum of the symmetric KLDs in (4.5) 

and (4.18) as a similarity metric. 

 

It should be noted that the proposed CBIR schemes 4, 5) and 6) are applicable 

to color texture images (RGB, YCbCr, HSV, …). Moreover, each feature 

extraction method can operate on a multi-scale image decomposition such as 

the RCT-Plus or one of the following contourlet variants: 

 

1. RCT: Redundant Contourlet Transform; 

2. SCT: Standard Contourlet Transform; 

3. NSCT: Non-Subsampled Contourlet Transform. 

 

In traditional content-based image retrieval, the general architecture is 

organized into two separate phases: the offline phase and the online phase. 

During the offline phase, a dataset index (feature dataset) is firstly constructed 

by extracting a feature vector FI from each image in the dataset using one of 

the proposed CBIR schemes. All calculations are done offline so as not to 

penalize the user with often lengthy calculations. During the online search 

phase, a query image Q is given to the search system which calculates the 

associated feature vector FQ and evaluates the distance (symmetric KLD or 

ED) between the query feature vector and every feature vector in the dataset 

index. Next, the N smallest distances in ascending order are then selected as 

TopN matches and the corresponding images are retrieved from the dataset 
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and presented to the user as being the most similar images to the query in the 

sense of the considered metric. 

 

3.2. Integrating supervised learning in CBIR  

 

A supervised machine learning algorithm is incorporated into the CBIR 

scheme for classification purposes. Therefore, the main changes to the search 

and retrieval processes in the new ML-CBIR scheme are depicted in Figure 

4.11. 

During the offline phase, the extracted texture feature vectors from the image 

dataset are also labeled to indicate their class membership (image category) 

according to pre-existing texture classes. In addition to feature extraction and 

feature vector labeling (index), a training procedure is conducted on the 

labeled feature vector dataset in order to build a classification model with high 

Accuracy. The considered supervised ML algorithms in this work include K-

Nearest Neighbors (KNN) and Support Vector Machines (SVM).  

During the online phase, the search and retrieval process to any given query 

image is performed through query image classification. Firstly, the trained 

classifier is applied to the given query feature vector in order to predict its 

class membership (class label). Next, all feature vectors from the predicted 

class are compared to the query feature vector using a similarity metric 

(distances such as ED or symmetric KLD). The N smaller similarity indices 

are selected as the TopN matches. The corresponding images are retrieved in 

a ranked order and returned to the user as the most relevant texture images to 

the query (TopN retrieved images). 

It's mentionable that, there is no such thing as the best classifier. It always 

depends on the context; what kind of data or problem is at hand. For example, 

it is known that KNN is slow when having a large-scale dataset, since it does 

not generalize over data in advance, it scans the index dataset each time a 

prediction is needed. 

About the role of kernels in SVM, it is worth mentioning that the SVM 

algorithm can use a set of functions, namely kernels, to tackle the issue of 

inseparability in a dataset. The main idea is to take data as input and transform 

it into a specific feature space where the data points are separable. Linear, 
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nonlinear, polynomial, and radial basis functions (RBF) are some examples 

of common SVM kernels.  

As previously mentioned, the main objective in SVM is to find a hyper-plane 

separating the data space while maximizing the margin (minimizing the error 

band) between the classes. Because the error band in the SVM is independent 

of the dimensionality of the space, the SVM does not require explicitly 

determining the mapping function. 

Similarly, we exploit the KLD distance as the distance metric for the KNN 

classifier. Consequently, as mentioned earlier, in such a version of the KNN 

algorithm, the samples in the test data set are assigned to the class of samples 

with a minimum KLD value. 

 

 

Figure 4.11 ML-CBIR scheme with KNN/SVM classifiers. 

In addition to the incorporated ML approach in the proposed framework, the 

choice of a texture feature extraction method and adapted similarity metric 

play a key role in the efficiency of the texture retrieval process. Therefore, 

various ML-CBIR schemes are proposed. Each of them combines one feature 

extraction method (as defined in Section 2) and a suitable similarity 

measurement from the following: 
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1) GGD1/GGD2: GGD modeling (4.3) of all image sub-bands estimated 

by Moment Matching (MM) or Maximum Likelihood (ML) and 

similarity metric using the symmetric KLD in (4.6). 

2) GGD1/GGD2 for color images: GGD modeling (4.13) of all color image 

sub-bands estimated by either MM or ML and similarity metric using the 

symmetric KLD in (4.14). 

3) GGD1/GGD2+GMapp: GGD modeling (4.13) of the color image detail 

sub-bands estimated by either MM or ML, modeling of the 

approximation sub-bands using GMM (4.17) and the sum of symmetric 

KLDs in (4.5) and (4.18) as a similarity metric. 

4) GGD1/GGD2+GM: GGD modeling (4.13) of the grayscale image detail 

sub-bands estimated by either MM or ML, modeling of the whole color 

image using GMM and the sum of the symmetric KLDs in (4.5) and 

(4.18) as a similarity metric. 

 

The three mentioned methods in 2), 3) and 4) are for color texture retrieval. 

The corresponding ML-CBIR schemes are depicted in Figure 4.12, Figure 

4.13 and Figure 4.14 respectively. The first schema in Figure 4.12 is 

applicable to multi-channel feature extraction. After separating the color 

channels, a multi-scale image decomposition (RCT-Plus) followed by a GGD 

modeling apply to each channel separately and all the extracted features from 

each color space are concatenated to create the main feature vector.  

In the second schema (Figure 4.13), a mix of GGD and GMM modeling is 

used to extract color texture features. Indeed, after decomposing the image in 

each color space with RCT-Plus, each detail sub-band is modeled by GGD 

and the approximation sub-bands are jointly modeled using GMM. At the end, 

all the extracted features from all channels are concatenated to build the main 

feature vector. 

The third schema which is shown in Figure 4.14 indicates a compact and rich 

feature vector operating on both grayscale and color versions of the texture. 

Once RCT-Plus and GGD modeling are applied on grayscale texture image to 

extract the texture features, thereupon for color texture features, the GMM 

modeling applies to the color version of the texture image. 
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Figure 4.12 ML-CBIR using concatenated color texture features. 

 

 

Figure 4.13 ML-CBIR using RCT-Plus grayscale texture features concatenated to color texture 

features which are extracted from the RCT-Plus approximation sub-bands using GM modeling. 
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Figure 4.14 ML-CBIR using RCT-Plus grayscale texture features and a color texture feature 

using GM modeling of the whole image. 

 

4. Abnormality detection in color texture images 

 

Identifying unexpected objects or substances in image datasets that are 

different from normal data content, refers to abnormality detection. It is 

obvious that anomaly instances are significantly different from normal 

instances. To discriminate among normal and abnormal regions in images we 

need to rely on some low-level image characteristics such as texture or color. 

By integrating texture and color texture features together, we aim to improve 

the overall performance of abnormality detection.  

In the second part of this research, we apply the proposed methodology for 

texture and color texture feature extraction to the problem of abnormality 

detection in medical skin lesion images. We consider melanoma and nevus 

lesions in dermoscopic images of human skin as abnormal regions (lesion) 

against a background of healthy skin. Examples of dermoscopic images are 

shown in Figure 4.15. Therefore, the proposed approach for abnormality 

detection is a binary classification of texture and color texture features using 

supervised machine learning (such as SVM or KNN algorithms) followed by 
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a conciliation of detection results. This conciliation operation can be seen as 

a late procedure meant to perform a joint exploitation of texture and color 

texture features at the result level. Due to the fact that a variety of local 

textures may exist in the same image (melanoma lesion, healthy skin, skin 

moles, skin marking, …) a local region-based strategy is adopted for feature 

extraction by considering image blocks that undergo RCT-Plus 

decomposition and parametric statistical modeling (GGD and GMM) as 

proposed in Section 2.1 and Section 2.4. Moreover, proper class labeling of 

image blocks is designed in order to enable efficient learning of image 

features. 

It is worth mentioning that, image subdivision into blocks, in the one hand, 

must be performed with appropriate block size in order to ensure sufficient 

amount of data for contourlet decomposition and parametric statistical 

modeling. On the other hand, image subdivision into blocks with appropriate 

overlapping is a way to enhance the precise localization of the abnormal 

regions detected.  

In Figure 4.16, the shown diagram presents the proposed framework for 

abnormality detection as a two-stage scheme corresponding to offline and 

online phases. Its detailed components are described in the following 

subsections. 

 

4.1. The labeling of local features  

 

We consider a dermoscopic image of human skin exhibiting a lesion 

(melanoma or nevus) as a color image containing three different textures: a) 

the lesion texture (lesion), b) the healthy skin texture (healthy), and c) the 

texture in the transition region between the lesion and the healthy skin 

(border). Indeed, the edge of the lesion is very often diffuse in healthy skin, 

giving rise to a distinct textured region. This texture is particularly well visible 

in a grayscale image where healthy skin and lesion center textures tend to be 

smoother (See Figure 4.15). Therefore, it can be used to characterize and 

detect the border region of the lesion. 

Given that each dermoscopic image is accompanied by a ground truth 

segmentation map that is pixel-based and binary (lesion/healthy), each block 
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resulting from image subdivision is assigned two distinct binary class labels 

(Clabel and Tlabel), one for each feature vector being extracted (texture and color 

texture features respectively). Therefore, two different class labeling methods 

are devised using two disparate thresholding procedures based on the 

following rules:  

a) Labeling method 1: if the ratio of lesion pixels in the corresponding ground 

truth segmentation map is greater than a pre-defined threshold T%, the block 

label is set to 1 (skin lesion class) otherwise it is set to the value 0 (healthy 

skin class). The choice of the threshold value T% is made empirically. The 

resulting class label is denoted as Clabel. 

b) Labeling method 2: if the ratio of lesion pixels in the corresponding ground 

truth segmentation map is between two pre-defined thresholds (T1% - T2%), 

the class label is set to 1 (border of the lesion) otherwise it is set to the value 

0 (non-border region). It should be noted that a non-border region corresponds 

to the lesion center or healthy skin. The choice of the threshold values (T1% 

and T2%) is made empirically. The resulting class label is denoted as Tlabel. 
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Original RGB image Lesion border representation 

  

  
Figure 4.15 Examples of dermoscopic color images from ISIC dataset [40] (on the left side). The 

corresponding grayscale images with lesion border representation using the Labeling method 2 

(on the right side). 

 

4.2. The offline stage 

 

This stage consists mainly of a supervised learning process. The training data 

is composed of two sets of labeled feature vectors (Color index and Texture 

index). Indeed, starting from a set of image blocks (subdivided images with 

pixel overlapping) and their corresponding ground truth, feature extraction 

operates at the block level to derive one feature vector per image block for 

gray texture and another one for color texture using the methods previously 
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defined in Sections 4.2. Using the class labeling methods 1 and 2, two binary 

class labels are assigned to each block: the first label denoted as Clabel indicates 

if the block is a lesion or a healthy skin region (1 or 0 respectively). It is 

associated to the color texture feature vector. The second class label denoted 

as Tlabel indicates if the block is from the border of a lesion region or from a 

non-border region (1 or 0 respectively). It is associated to the gray texture 

feature vector. A learning process using either KNN or SVM algorithm is 

conducted on each of the two sets of labeled feature vectors (Color index and 

Texture index) under the following varying parameters: the type of distance 

metric, the factor K in KNN and the kernel type in SVM.  One learning process 

is applied to the color texture features (with Clabel) and another one is applied 

to the texture features (with Tlabel). These two processes result into two binary 

classification models CLC and CLT (respectively) which are saved for 

detection purposes. The steps of this offline learning phase can be highlighted 

as follows: 

Input: Training datasets containing color texture images (RGB, YCbCr, …)  and their 
corresponding ground truth (Cdataset and Gdataset respectively). 
Output: Two saved classification models (CLC and CLT). 
 

1. Subdivide each image in Cdataset into overlapping blocks Bc(i), with i=1…NB. 
2. Convert each block Bc(i) into a grayscale block B(i).  
3. Subdivide each binary ground truth map in Gdataset into overlapping blocks G(i), 

with i=1…NB. 
 
// RCT-Plus texture feature extraction  

4. Apply RCT-Plus decomposition on each block B(i), assuming L scale levels and Dl 
directions at each scale level l.   

5. Extract the texture feature vector F(i) from image block B(i) by performing a 
GGD modeling (4.3) on contourlet sub-bands using either ML or MM 
estimation: 

F(i) = {𝛼(𝑙, 𝑑),  𝛽(𝑙, 𝑑) ;  𝑙 = 1 . . .  𝐿 ;   𝑑 = 1 . . .  𝐷𝑙} 
 
// GMM color feature extraction 

6.  Perform on each color block Bc(i), a k-component GM modeling (4.17) using all 
available color channels and extract the color feature vector:   

Fc(i) = {𝜔𝑗 ,  μ𝑗 ,  Σ𝑗;  𝑗 = 1 . . .  𝑘} 

 
// Class labeling of blocks  

7. Apply the Labeling method 1 to the ground truth G(i) of each block Bc(i) and 
obtain its binary class label: 
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                                         Clabel(i)={0(′′ℎ𝑒𝑎𝑙𝑡ℎ𝑦′′)/1(′′𝑙𝑒𝑠𝑖𝑜𝑛′′)}. 
Apply the Labeling method 2 to ground truth G(i) of each block B(i) and obtain 
its binary class label: 
                                         Tlabel(i)={1(′′𝑏𝑜𝑟𝑑𝑒𝑟′′)/0(′′𝑛𝑜𝑛 − 𝑏𝑜𝑟𝑑𝑒𝑟′′)}. 

 
//Index construction  

8. Create the Color and Texture indexes to include all color and texture feature 
vectors Fc(i) and F(i) and their corresponding class labels Clabel(i) and Tlabel(i) 
respectively. 
 
// Classifier training 

9.  Use KNN (or SVM) to train a binary classifier once on the color index and once 
on the Texture index (from step 8). Obtain the best classification models CLC 

and CLT using a cross-validation procedure. 
10. Save the two classification models CLT and CLC (for use in the detection phase). 

 

Considering that feature vector components are statistic GGD or GMM 

parameters, a new alternative to the Euclidean distance metric is introduced 

in KNN algorithm. It is based on a symmetric version of the Kullback-Leibler 

divergence as expressed in Equations (4.5) and (4.18) respectively. Also, we 

used these symmetric KLDs as kernel functions in SVM for the GGD and 

GMM statistical features. 

 

4.3. The online stage 

 

This stage is meant to detect skin abnormality in each block of the input test 

image. The trained classifier models CLC and CLT are used to predict and 

assign a binary class label 0 (healthy for CLC and non-border for CLT) or 1 

(lesion for CLC and border for CLT) to each of the two extracted feature 

vectors from the considered test image block. Note that each label prediction 

is accomplished with a probability of confidence denoted as a prediction score 

(Tscore and Cscore respectively). Thereupon, obtaining two sets of labels 

detected by the two different trained classifiers CLC and CLT, a block-based 

label conciliation is implemented as a post processing step, in order to achieve 

the best one label for each block indicating whether it is detected as lesion or 

healthy block. The block-based conciliation rules apply as the following: 
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Input: Predicted labels Clabel(i) and Tlabel(i) for test image blocks Bc(i). 
Output: A unique binary label(i) per test image block Bc(i). 
 

1. For each block Bc(i) of the test image, load the 2 predicted labels Clabel(i) and 
Tlabel(i). 
 

// If the texture label is the same as the color one, the final label is the texture label. 
2. if Tlabel(i)=0 and Clabel(i)=0 then label(i) =0    // healthy  

else if Tlabel(i)=1 and Clabel(i)=1 then label(i) =1    // lesion  
 

// If the texture label is different from the color one,  
// the final label is the one having the highest prediction score.  

else if Tlabel(i)=0 and Clabel(i)=1 then  
      if Tscore > Cscore then label(i) =0    // healthy  
      else   label(i) =1   // lesion 
      endif 
else if Tlabel(i)=1 and Clabel(i)=0 then      
      if Tscore > Cscore then label(i) =1    // lesion  
      else   label(i) =0   // healthy 
      endif 
endif 

3. Save all labels: label(i) = {0(′′ℎ𝑒𝑎𝑙𝑡ℎ𝑦′′)/1(′′𝑙𝑒𝑠𝑖𝑜𝑛′′)}. 
 

 

Mosaicking consists of assembling all detection results into a detection map 

that can be superimposed on the input test image in order to localize and mark 

the abnormal (lesion) skin image areas. The proposed online phase for 

abnormality detection consists of the following steps:  

 
Input: The test color image Ic (RGB, YCbCr, …). 
Output: Color Image with detected abnormal region(s). 
 

1. Subdivide Ic into NB overlapping blocks Bc(i), with i=1…NB 
2. Convert each block Bc(i) into a grayscale block B(i).  

 
// RCT-Plus texture feature extraction and classification 

3. Apply RCT-Plus decomposition on each block B(i) assuming L scale levels and Dl 
directions at each scale level l.   

4. Extract the texture feature vector F(i) from image block B(i) by performing a 
GGD modeling (4.3) on contourlet sub-bands using either ML or MM 
estimation: 

F(i) = {𝛼(𝑙, 𝑑),  𝛽(𝑙, 𝑑) ;  𝑙 = 1 . . .  𝐿 ;   𝑑 = 1 . . .  𝐷𝑙} 
5. Classify each block B(i) using CLT on F(i) and predict its label Tlabel(i). 
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// GMM color feature extraction and classification 

6.  Perform on each color block Bc(i) a k-component GMM modeling (4.17) using 
all available color channels and extract the color feature vector:   

Fc(i) = {𝜔𝑗 ,  μ𝑗 ,  Σ𝑗;  𝑗 = 1 . . .  𝑘} 

7.  Classify each block Bc(i) using CLC on Fc(i) and predict its label Clabel(i). 
8.  Save all labels Clabel(i) and Tlabel(i). 

 
 // Detection of abnormalities 

9.  Apply the block-based Conciliation procedure to get one final label per block:   
 label(i) = {0(′′ℎ𝑒𝑎𝑙𝑡ℎ𝑦′′)/1(′′𝑙𝑒𝑠𝑖𝑜𝑛′′)}. 

10.  Build a Detection map (mosaicking) using all labels label(i). 
11.  Use the Detection map to localize the abnormal region on color image Ic.  
12. Visualize the results. 

 

 

 

Figure 4.16 Abnormality detection scheme using RCT-Plus texture features concatenated with 

GMM color features and KNN/SVM binary classifiers. 
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4.4. Application to segmentation in dermoscopic images 

 

In this section, we propose a segmentation framework to compute accurate 

(pixel-based) boundaries of the lesion against healthy skin tissue in 

dermoscopic images. For this purpose, the interactive foreground extraction 

algorithm using Grabcut, is leveraged to segment the lesion. Grabcut is an 

improved version of Graph-Cut (iterated graph-cut) [76] as implemented in 

the image processing toolbox of Matlab [77]. Also, our proposed abnormality 

detection method (as previously explained) contributes as a marker to 

determine the foreground and background masks that are needed to initiate 

the segmentation process. Figure 4.17 summarizes the proposed segmentation 

framework. 

 

 

Figure 4.17 Abnormality segmentation framework using Graph-Cut. 
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Graph-cut segmentation is a technique used in computer vision to segment a 

region of interest by optimizing the energy function over the segmented region 

[78]. To do this, a given image is firstly transformed into its graph 

representation. In graph representation, each image pixel is considered as a 

node, while two complementary nodes are introduced as Foreground (source) 

and Background (sink) nodes. The graph edges are defined as connections 

between all pixel nodes to both the sink and the source nodes while the 

probability value for each pixel to be a foreground pixel or a background pixel 

determines the edge weights. Furthermore, all pixel nodes are connected to 

their neighboring pixels by edges whose weights are determined using an 

algorithm that would promote the connection of similar pixels.  Subsequently, 

the underlying graph is divided into two graphs by cutting the edges whose 

removal makes the original graph disconnected while minimizing the sum of 

the edge weights which are going to be removed. Using different types of edge 

weighting approaches as well as different optimization techniques, to decide 

which edges to remove, create the wide range of graph-cut algorithm variants 

in the literature.  

As previously mentioned, in this work we take advantage from the iterative 

Graph-cut (Grabcut) variant [76].  

For this purpose, as illustrated in Figure 4.17, and in compliance with the 

instructions in section 4.3. The online stage) an input image is firstly 

subdivided into blocks and then each block is classified using the pre-trained 

classifier for texture-based features (CLT) followed by mosaicking the 

detection results (border/non-border) into a detection map that can be used as 

foreground and background masks.  

Once the foreground and the background masks are marked, the following 

steps are iteratively performed by the Grabcut algorithm to find a boundary 

between the foreground and the background masks [79]: 

1- Use Gaussian Mixture Model to estimate the color distribution of the 

foreground and the background. 

2- Estimate a Markov Random Field for the foreground and background 

pixel labels.  

3- Apply a Graph-cut optimization in order to obtain the accurate final 

segmentation. 
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CHAPTER 5.   Experiments and results 
 

This chapter is mainly devoted to the evaluation and validation of the 

proposed methodology for texture feature extraction and its incorporation into 

content-based image retrieval and abnormality detection schemes. We 

describe the conducted experimental studies on different popular texture 

datasets and provide the main experimental results with discussions and 

drawn conclusions. The implementation of this work is done in the Matlab 

environment [77]. In section 1, we introduce six color and grayscale image 

datasets that are utilized in the experimental setups and give the evaluation 

criteria that are considered for each application domain. Sections 2 and 3 

detail the achieved results corresponding to grayscale texture feature 

extraction and retrieval and show the benefits of using RCT-Plus in 

comparison to other multi-scale transforms. Thereupon, by extending to joint 

color texture feature extraction and analyzing the experimental results in 

conventional CBIR, the most efficient methods are selected and incorporated 

into ML-CBIR schemes to enhance the texture retrieval performance. In the 

last section, we evaluate our proposed abnormality detection scheme, 

applying grayscale and color texture feature extraction methods for block-

based detection and segmentation in medical skin lesion images. Detailed 

results are provided and a comparison to the U-net deep learning approach for 

segmentation is also performed. 

 

1. Data description and evaluation criteria 

 

We used six popular datasets to experiment with our proposed texture and 

joint color texture feature extraction methods. The first four datasets are 

applied to content-based image retrieval while the last two datasets are applied 

to abnormality detection and segmentation applications. 
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1.1. The VisTex-40 dataset 

 

The first well-known texture dataset we used in this work is named MIT 

Vision Texture (VisTex) dataset to conduct the CBIR experimental work and 

assess retrieval effectiveness [7]. To simplify the comparison to state-of-the-

art, we used the same experimental dataset as in [10]. Thus, from the VisTex 

dataset, we selected the forty (40) grayscale texture images shown in Figure 

5.1. These are texture images of daily life taken from different scenes. We 

used the original RGB images (shown in Figure 5.2). Also, we studied the 

converted version of the original RGB images to grayscale and YCbCr format. 

Each of the forty 512×512-pixel size images were divided into 16 non-

overlapping sub-images of size 128×128, constituting a texture class. As a 

result, a dataset with 640 images organized into 40 texture classes was 

constructed and designated as VisTex-40. 

 

Figure 5.1  Texture images selected from the VisTex dataset [7]. From left to right and top to 

bottom: Bark0, Bark6, Bark8, Bark9, Brick1, Brick4, Brick5, Buildings9, Fabric0, Fabric4, 

Fabric7, Fabric9, Fabric11, Fabric14, Fabric15, Fabric17, Fabric18, Flowers5, Food0, Food5, 

Food8, Grass1, Leaves8, Leaves10, Leaves11, Leaves12, Leaves16, Metal0, Metal2, Misc2, 

Sand0, Stone1, Stone4, Terrain10, Tile1, Tile4, Tile7, Water5, Wood1, and Wood2. 
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Figure 5.2 RGB VisTex dataset with 40 classes [7]. Each image, indicates a sample from 16 

images for each class. From left to right and top to bottom: Bark0, Bark6, Bark8, Bark9, Brick1, 

Brick4, Brick5, Buildings9, Fabric0, Fabric4, Fabric7, Fabric9, Fabric11, Fabric14, Fabric15, 

Fabric17, Fabric18, Flowers5, Food0, Food5, Food8, Grass1, Leaves8, Leaves10, Leaves11, 

Leaves12, Leaves16, Metal0, Metal2, Misc2, Sand0, Stone1, Stone4, Terrain10, Tile1, Tile4, 

Tile7, Water5, Wood1, and Wood2. 

 

1.2. The Kylberg-27 dataset 

 

The original Kylberg texture dataset v. 1.0 created by Gustaf Kylberg contains 

a collection of 28 texture classes [37].  Each class was imaged from textured 

surfaces, including fabrics and surfaces of floors, walls, and ceilings in the 

local surroundings. Textured surfaces were also arranged using articles such 

as rice grains, sesame seeds, and lentils.  

Each class includes 160 unique texture patches without rotations. An 

alternative Kylberg dataset comes with 12 rotations per original patch, thus 

creating 160*12=1920 texture patches per class. The texture patch size is 

576×576 pixels in grayscale PNG format. All patches are normalized with a 

mean value of 127 and a standard deviation of 40. 
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The Kylberg-27 dataset is a subset of the Kylberg texture dataset with 27 

distinct texture classes, each class contains 40 grayscale images of size 

512×512. As a result, a dataset with 1080 texture images organized into 27 

texture classes was constructed for our experimentations and designated as 

Kylberg-27 (See Figure 5.3). 

 

Figure 5.3 Kylberg-27 texture dataset [37]. From left to right and top to bottom: blanket1, canvas, 

ceiling1, ceiling2, cushion1, floor1, floor2, grass1, lentils1, linseeds1, oatmeal1, pearlsugar1, 

rice1, rice2, rug1, sand1, scarf1, scarf2, screen1, seat1, seat2, sesameseed1, stone1, stone2, 

stone3, and stoneslab1.  

 

1.3. The Kylberg-28 dataset 

 

In a broader experience, we built the Kylberg-28 dataset, which contains the 

whole non-rotated Kylberg texture dataset. It covers 28 distinct texture 

classes. Each class contains 160 grayscale images cropped to 512×512 size 

images (See Figure 5.4) and creates a dataset of 4480 images. 
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Figure 5.4 Kylberg-28 texture dataset [37]. from left to right and top to bottom: blanket1, 

blanket2, canvas, ceiling1, ceiling2, cushion1, floor1, floor2, grass1, lentils1, linseeds1, oatmeal1, 

pearlsugar1, rice1, rice2, rug1, sand1, scarf1, scarf2, screen1, seat1, seat2, sesameseed1, stone1, 

stone2, stone3, and stoneslab1. 

 

1.4. The Stex dataset 

 

The Salzburg Texture Image Dataset (STex) [25] is an extensive collection of 

476 color texture classes captured in Salzburg, Austria. Stex was originally 

acquired with the aim of use in texture retrieval experiments. With the vast 

number of classes, it is evident that STex is significantly larger than the 

VisTex or other popular texture image datasets. Stex contains 7616 distinct 

color texture images in RGB format, each of size 128×128. A texture class 

contains 16 color images (see 

Figure 5.5). 

In this work, two additional versions are derived from the original STex 

dataset: the converted YCbCr version and the grayscale version. 
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Figure 5.5 A sample of 63 classes of the Salzburg Texture Image Dataset (STex) [25].   

 

1.5. The ISIC-32 dataset 

 

The International Skin Imaging Collaboration (ISIC) is an international 

endeavor to advance melanoma diagnosis, supported by the International 

Society for Digital Imaging of the Skin (ISDIS) [40]. The ISIC 

Archive contains the largest available group of quality controlled 

dermoscopic images of skin lesions.  

Currently, the ISIC Archive includes over 13,000 dermoscopic images of 

melanoma and nevus skin lesions, which have various image sizes and were 

collected from clinical centers internationally and developed from the 

variation of devices within each center. In this work, we created two subsets 

from the ISIC dataset, namely ISIC-32 and ISIC-42. 

http://www.isdis.net/index.php/isic-project
http://ww.isic-archive.com/
http://ww.isic-archive.com/
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For ISIC-32, we selected thirty-two dermoscopic RGB images (6 

melanoma/malignant and 26 nevus/benign) of the same size (1504×1129) and 

their corresponding ground truth segmentation maps (as shown in  

Figure 5.6). Each of the 32 images has been divided into overlapping 128×128 

blocks. The amount of overlap is 64 columns and 64 rows. We have the same 

image sizes in ISIC-32, so each image is divided into 352 blocks.   A similar 

subdivision is performed on the corresponding ground truth segmentation 

map. As a result, a dataset having 11264 RGB sub-images and 11264 ground 

truth segmentation maps was constructed and designated as ISIC-32. Also, we 

studied in this research the RGB images, the converted version of the original 

RGB images in YCbCr format and the grayscale version. 

 

 

 

Figure 5.6  Selected dermoscopic images (ISIC-32) from the ISIC dataset [40]  and their 

corresponding ground truth segmentation maps. 
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1.6. The ISIC-42 dataset  
 

In ISIC-42, we selected forty-two RGB images (7 melanoma/malignant and 

35 nevus/benign) of various sizes and their corresponding ground truth 

segmentation maps (as shown in Figure 5.7). Each of the 42 images has been 

divided into overlapping 128×128 blocks. The amount of overlap is 64 

columns and 64 rows. A similar subdivision is performed on the 

corresponding ground truth segmentation map. As a result, a dataset having 

27648 RGB sub-images and 27648 ground truth segmentation maps was 

constructed and designated as ISIC-42. Furthermore, we studied in this 

research the RGB images, the converted version of the original RGB images 

in YCbCr format and the grayscale version. 
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Figure 5.7 Selected 42 dermoscopic images (ISIC-42) from the ISIC dataset [40]  and their 

corresponding ground truth segmentation maps. 

 



 

97 

 

1.7. Evaluation criteria 

 

To evaluate the efficiency of a retrieval experiment, every image of the 

considered test dataset is presented as a query image to the CBIR system. As 

a matter of fact, the ground truth for each query is known beforehand. 

Retrieval performance for each query is measured in terms of the retrieval rate 

(RR%), which is calculated as the percentage of relevant images found among 

N retrieved images (TopN matches). Here, an image is considered relevant if 

it is part of the ground truth of the query. The RR% is in fact a Recall measure 

(2.2) over TopN retrieved images. All retrieval results presented in this work 

were obtained by averaging the retrieval rates corresponding to all queries 

executed (AR%). 

To evaluate the efficiency of a supervised machine learning algorithm, one 

popular metric is Accuracy which is based on the prediction results obtained 

from applying the classifier to test data. The prediction results are formulated 

as four measures:  true positives tp, false positives fp, true negatives tn and 

false negatives fn. The Accuracy measure is then given by the following ratio: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 +𝑓𝑛 
                                                                           (5.1) 

Cross-validation is a statistical approach widely used to determine how well 

a developed machine learning model can generalize the solution to new data. 

During the cross-validation, the whole training data set is randomly split into 

a number n of equal folds. The classifier model is then trained on n-1 folds 

while the remaining fold is kept for testing purposes. This operation is 

iteratively repeated n times and each iteration deals with a newly selected 

testing fold. Consequently, we have n different values specifying the 

Accuracy. The average of the n obtained measures is then considered as the 

overall performance of the learned classifier model. This approach gives a 

more realistic evaluation of the model at expense of higher computational 

cost. 

Also, in order to evaluate the efficiency of the abnormality detection, we 

firstly compare the predicted labels to the ground truth ones and then calculate 

the Precision, Recall, and detection Accuracy values under the following 

formulations: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝 
                                                                                  (5.2)         

           

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 +𝑓𝑛 
                                                                                         (5.3)     

 

where: 

- 𝑡𝑛 is the number of healthy blocks that are detected as healthy; 

- 𝑡𝑝 is the number of lesion blocks that are detected as lesion; 

- 𝑓𝑝 is the number of healthy blocks that are detected as lesion; 

- 𝑓𝑛 is the number of lesion blocks that are detected as healthy. 

 

The Accuracy is calculated as in equation (5.1). 

 

2. Texture feature extraction methods 
 

In this section, we are verifying and validating the implementations of RCT-

Plus, on grayscale textures to test and find the persuaded number of 

orientations and scales on this transform. Moreover, we compare the results 

to other multi-scale transformations in CBIR using two metric distances. Then 

by moving to color texture feature extraction and the cooperation between 

color and grayscale texture, as we introduced in chapter 4, section 3.1, we can 

see the improvement in conventional content-based image retrieval. 

 

2.1. The multi-scale decomposition in feature extraction methods 
 

For the considered datasets of grayscale texture images, we computed five 

distinct texture feature extraction methods operating on a multi-scale image 

representation such as RCT-Plus. Three of them, are based on GGD modeling 

of image sub-bands and perform similarity measurement using either 

Kullback-Leibler distance or Euclidean distance. The two remaining 

approaches involve energy calculations on image sub-bands and Euclidean 

distance as the similarity metric. Each feature extraction method can operate 

on the RCT-Plus contourlet transform, with pseudo-Gaussian and pkva filters, 

yielding a flexible number D of directional sub-bands at each scale level. 
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Therefore, various CBIR schemes are proposed. Each of them combines RCT-

Plus decomposition with sub-band modeling and a suitable similarity 

measurement from the following: 

1) GGD1: GGD modeling of each detail sub-band (4.3) and the 

approximation sub-band using Moment Matching (MM) estimation 

and similarity metric based on the symmetric KLD (4.6). Two 

parameters (feature vector elements) are estimated for each sub-band. 

2) GGD2: GGD modeling of each detail sub-band (4.3) and the 

approximation sub-band using Maximum Likelihood (ML) estimation 

and similarity metric based on the symmetric KLD (4.6). Two 

parameters (feature vector elements) are estimated for each sub-band. 

3) GGD2-ED: GGD modeling of each detail sub-band (4.3) and the 

approximation sub-band using Maximum Likelihood (ML) estimation 

and similarity measurement based on the Euclidean distance. Two 

parameters (feature vector elements) are estimated for each sub-band. 

4) E1: Energy-based feature extraction in each image sub-band (4.11) and 

similarity measurement based on the Euclidean distance. Two energy 

values (feature vector elements) are calculated for each sub-band. 

5) E2: Energy-based feature extraction in (4.12) and similarity 

measurement based on the Euclidean distance. Two energy values 

(feature vector elements) are calculated for each sub-band. 

 

 

In a first experiment setup, texture feature extraction for image retrieval is 

conducted on VisTex-40 dataset using RCT-Plus decomposition. The number 

of directional sub-bands per scale level is fixed to D = 8 while the number of 

scale levels is 1, 2, or 3. Feature extraction is applied on all contourlet sub-

bands including the approximation sub-band. For each of the CBIR schemes 

(GGD1, GGD2, GGD2-ED, E1 and E2), retrieval performance in terms of 

average retrieval rates (AR%) in the TopN matches are reported in Table 5.1. 

Some interesting observations may be drawn from these experiments:  

 

1) In most test cases, GGD-based methods achieve better retrieval 

results than energy-based methods and GGD1 (using the MM 

estimation) exhibits the best retrieval rates among the five tested 

methods. 

 

2) There is a substantial improvement in retrieval rates when the 

number of contourlet decomposition levels is increased from one 
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to two scales. However, extending contourlet decomposition to 

three scale levels provides very little improvement in retrieval 

performance.   

 

 

TopN 
Number of scale levels 

L 
GGD1 GGD2 GGD2-ED E1 E2 

16 

1 75.19 72.49 65.75 62.67 63.40 

2 77.43 75.13 71.73 69.23 70.15 

3 77.15 75.24 71.78 70.50 71.72 

20 

1 80.30 77.52 69.97 67.22 67.96 

2 81.94 78.74 75.62 73.17 74.29 

3 82.03 79.12 75.77 74.67 75.57 

40 

1 88.43 84.90 81.26 78.06 79.30 

2 88.97 86.18 84.62 83.15 84.43 

3 89.00 86.28 84.54 83.85 84.44 

60 

1 91.74 88.37 86.76 83.45 84.76 

2 92.72 90.14 89.23 88.48 89.24 

3 92.29 89.62 88.35 88.22 88.48 

80 

1 93.30 90.28 90.23 86.90 88.30 

2 94.66 92.14 92.09 91.29 91.96 

3 94.30 91.88 91.10 91.25 91.33 

100 

1 94.53 91.74 92.69 89.43 90.60 

2 95.78 93.39 93.88 93.22 93.59 

3 95.60 93.42 92.82 93.00 92.92 

Table 5.1  Average retrieval rates (AR%) according to the number of top matches considered, 

TopN. The compared CBIR schemes (E1, E2, GGD1, GGD2 and GGD2-ED) operate on RCT-

Plus decomposition with L ranging from 1 to 3 and 8 directional sub-bands per scale level. 

 

Figure 5.8 is another comparison example that clearly shows the superiority 

of the method GGD1 on RCT-Plus. As it can be seen, by varying the number 

of top matches considered (TopN) from 10 to 100, the GGD1 method 

operating on RCT-Plus decomposition outperforms all other CBIR methods 

(namely GGD2, GGD2-ED, E1 and E2) in terms of average retrieval rates 

(AR%). Moreover, almost 96% of relevant images are retrieved when the 

number of top matches considered is 100 images.  
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Figure 5.8  Average retrieval rates (AR%) according to the number of top matches considered, 

TopN. The compared CBIR methods (GGD1, GGD2, GGD2-ED, E1 and E2) are applied on an 

RCT-Plus decomposition with 3 scale levels and 8 directional sub-bands per scale level (L=3, D= 

[8, 8, 8]). 

A second experiment setup was carried out to study the effect of the number 

of RCT-Plus directional orientations per scale level (Dl) on the retrieval 

performance. Let's recall that the number of directional sub-bands is variable 

and flexible in RCT-Plus. Indeed, we can have Dl=2, 4, 8, 16, … directional 

sub-bands and this number can vary across the scale levels l of the same 

decomposition. 

We tested and analyzed many retrieval schemes using RCT-Plus with various 

combinations of scale levels and directional orientations (L and Dl values). A 

sample of results is shown in  Table 5.2. We observe that, for GGD1 method, 

performance retrieval (AR%) is about 3.5 points higher when the number of 

directional sub-bands in RCT-Plus increases from 2 to 8. This improvement 

remains consistent over the number of top matches considered (see Figure 

5.9). Moreover, the redundancy factor in this case remains unchanged since it 

only depends on the number of scale levels of the RCT-Plus decomposition. 

From this analysis, we came out with the observation that directional 
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information is important in enhancing texture discrimination and retrieval 

performance.   

 

 

Methods 

2 scale levels (L=2) 3 scale levels (L=3) 

Directional sub-bands/scale level 

[D1, D2] 

Directional sub-bands/scale level 

[D1, D2, D3] 

[2, 2] [4, 4] [4, 8] [8, 8] [2, 2, 2] [4, 4, 4] [4, 8, 8] [8, 8, 8] 

GGD1 73.54 75.10 75.45 77.43 73.54 74.93 74.99 77.15 

GGD2 70.77 68.31 73.47 75.13 71.51 73.20 73.18 75.24 

GGD2-ED 63.34 67.09 69.69 70.15 64.96 67.52 69.55 71.78 

E1 61.68 66.17 66.99 69.23 65.18 68.44 68.73 70.50 

E2 61.56 67.27 67.99 70.15 65.54 69.49 69.76 71.72 

Table 5.2 Average retrieval rates (AR%) in the Top16 images. Retrieval methods using RCT-Plus 

with various combinations of scale levels and directions are compared. The number of directional 

sub-bands at each scale level l is indicated by Dl.    

 

Figure 5.9  Average retrieval rates (AR%) of 640 queries according to the number of top matches 

considered, TopN. Two retrieval methods are compared: GGD1 using a 3-level RCT-Plus with 

D= [4, 4, 4] and GGD1 using a 3-level RCT-Plus with D= [8, 8, 8].   
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2.2. RCT-Plus in comparison to other transforms  

 

A third experiment setup is carried out to compare our contourlet-based CBIR 

schemes with classical and state-of-the-art methods including discrete 

wavelet-based CBIR schemes [10] and Gabor-based schemes [6].  

Each of the introduced feature extraction method can operate on any of the 

following multi-scale decompositions including contourlet transform 

variants: 

 

DWT: Discrete Wavelet Transform, with db4 filters (Daubechies filters), 

yielding 3 sub-bands at each scale level.  

1. Gabor: Gabor transform, with Gaussian filters, yielding 4 directional 

sub-bands at each scale level.  

2. SCT: Standard Contourlet Transform, with pkva filters, yielding a 

flexible number D of directional sub-bands at each scale level. 

3. RCT: Redundant Contourlet Transform, with pseudo-Gaussian and 

pkva filters, yielding 4 directional sub-bands at each scale level. 

4. NSCT: NonSubsampled Contourlet Transform, with pkva filters, 

yielding a flexible number D of directional sub-bands at each scale level. 

5. RCT-Plus: Redundant Contourlet Transform, with pseudo-Gaussian and 

pkva filters, yielding a flexible number D of directional sub-bands at 

each scale level. 

 

Therefore, a new CBIR scheme is built for each combination of one of the 

above-listed multi-scale image decompositions with GGD1, GGD2, GGD2-

ED, E1, or E2 feature extraction methods. Let's recall that RCT is a special 

case of RCT-Plus where the number of directional sub-bands is fixed to 4 at 

each scale level. 

 

Table 5.3 depicts the best achieved results using GGD1 and energy E2 

methods. All transforms have either 2 or 3 scale levels while the number of 

directional sub-bands at each scale level is 3 in DWT, 4 in Gabor, SCT and 

RCT, 8 in NSCT and RCT-Plus. It is very clear that 1) RCT delivers much 

better results than SCT and DWT even if the number of its directional sub-

bands is limited to four, thanks to Gaussian filtering and redundancy, 2) there 

is very little improvement in retrieval performance when going from 2 to 3 

levels of decomposition, 3) although the NSCT is a non-subsampled 
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decomposition and its redundancy factor is much higher than that of the RCT-

Plus, feature extraction methods operating on RCT-Plus consistently give 

superior retrieval results than NSCT-based methods, and 4) feature extraction 

using RCT-Plus (with Dl fixed at 8) and GGD1 achieves the best retrieval 

rates. As additional results, Table 0.1 in Annex IV reports the average retrieval 

rates (AR%) according to the number of top matches considered (from 16 to 

100). We compared CBIR methods (GGD1, GGD2, GGD2-ED, E1 and E2) 

operating on NSCT decompositions with D=8 and L ranging from 1 to 3. 

In Figure 5.10, more comparison examples clearly show the superiority of the 

RCT-Plus. As can be seen in Figure 5.10, by varying the number of top 

matches considered (TopN) from 16 to 100, the GGD1 with RCT-Plus method 

still outperforms the GGD1 with NSCT, RCT and SCT in terms of average 

retrieval rates (AR%). Moreover, almost 96% of relevant images are retrieved 

when the TopN considered is 100 images.  

 

 

Table 5.3 Average retrieval rates (AR%) in the Top16 images. CBIR schemes based on contourlet 

variants (SCT, RCT, NSCT and RCT-Plus) are compared to DWT and Gabor CBIR schemes. 

 

 

Transform 

type 

2 scale levels (L=2) 3 scale levels (L=3) 

GGD1 E2 GGD1 E2 

DWT 70.17 60.30 72.63 60.41 

GABOR 63.79 61.76 66.89 64.41 

SCT 65.28 60.56 68.29 62.89 

RCT 75.10 67.27 74.93 69.49 

NSCT 76.91 68.37 75.83 68.84 

RCT-Plus 77.43 70.15 77.15 71.72 
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Figure 5.10  Average retrieval rates (AR%) of 640 queries according to the number of top 

matches considered, TopN. The GGD1 method is applied on 3-level contourlet decomposition 

variants (SCT, NSCT, RCT and RCT-Plus).  

Examples of retrieved images from VisTex-40 dataset are shown in Figure 

5.11. In each retrieval case, the query image is Food8.02 and the feature 

extraction method is GGD1 operating on one of the contourlet transform 

variants (SCT, NSCT, RCT or RCT-Plus). For each result, the Top16 

retrieved images are ranked in the order of similarity with the query image 

from left to right, top to bottom. One can notice that RCT-Plus method 

retrieved perfectly all relevant images to the query Food8.02 while the other 

methods resulted in some non-relevant images in the Top16 matches.    

Thanks to the enhanced properties of Gaussian filtering, redundancy and 

augmented directional selectivity, the joint exploitation of RCT-Plus with 

simple statistical modeling such as generalized Gaussian distribution or 

energy has resulted into powerful methods for discriminating textures and 

performing content-based image retrieval. 
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Query image: 

Food8.02 

   

 

 

 

SCT 

 
Two images from Flower5 and one from Leaves10 are non-relevant to the query. 

 

 

NSCT 

 

 
Two images from Leaves16 are non-relevant to the query image. 

 

 

RCT 

 
One image from Tile4 is non-relevant to the query image. 

 

 
RCT-Plus 

 
All relevant images to the query are perfectly retrieved. 

 

Figure 5.11  Examples of Top16 retrieval results from the VisTex-40 dataset (640 images). The 

query image is Food8.02.  
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2.3. Color texture feature extraction methods in the CBIR framework 

 

For datasets of color images (such as RGB and YCbCr color spaces), we 

involved color texture in the CBIR framework by five different methods of 

feature extraction (see Table 5.4). Each of them combines RCT-Plus color 

image decomposition with sub-band modeling and a suitable similarity 

measurement from the following: 

 

1) GGD1 for color images: GGD modeling of color image sub-bands 

(4.13) using MM estimation and similarity metric using the symmetric 

KLD in (4.14). Two parameters (feature vector elements) are estimated 

for each sub-band.  

 

2) GGD2 for color images: GGD modeling of color image sub-bands 

(4.13) using ML estimation and similarity metric using the symmetric 

KLD in (4.14). Two parameters (feature vector elements) are estimated 

for each sub-band.  

 

3) GGD1+GMapp: GGD modeling (4.3) of each color channel detail sub-

bands using MM estimation, modeling of each color approximation sub-

band using GMM (4.17) and the sum (over all color channels) of 

symmetric KLDs in (4.5) and (4.18) as a similarity metric. Two 

parameters (feature vector elements) are estimated for each detail sub-

band and five parameters are estimated for each approximation sub-

band.  

 

4) GGD2+GMapp: GGD modeling (4.3) of each color channel detail sub-

bands using ML estimation, modeling of each color approximation sub-

band using GMM (4.17) and the sum (over all color channels) of 

symmetric KLDs in (4.5) and (4.18) as a similarity metric. Two 

parameters (feature vector elements) are estimated for each detail sub-

band and five parameters are estimated for each approximation sub-

band.  

 

5) GGD1+GM: GGD modeling (4.3) of grayscale image detail sub-bands 

using MM estimation, modeling of the entire color image using GMM 

and the sum of the symmetric KLDs in (4.5) and (4.18) as a similarity 

metric. Two parameters (feature vector elements) are estimated for each 

detail sub-band and nineteen parameters are estimated for the entire 

color image.  



 

108 

 

 
Feature 

extraction 

method 

GGD modeling GMM modeling Similarity 

metric 

Feature vector 

components 

1) GGD1 MM estimation 

on each color 

image sub-band 

(4.13) 

none Symmetric 

KLD (4.14) 

2/sub-band 

2) GGD2 ML estimation 

on each  color 

image sub-band 

(4.13) 

none  2/sub-band 

3) GGD1+GMapp For each color 

channel, MM 

estimation on 

each detail sub-

band (4.3) 

Approximation 

sub-band for 

each color 

channel (4.17) 

Sum of 

symmetric 

KLDs (4.5) 

and (4.18) 

over all color 

channels 

2/detail sub-band, 

5/approximation 

sub-band 

4) GGD2+GMapp For each color 

channel, ML 

estimation on 

each detail sub-

band (4.3) 

Approximation 

sub-band for 

each color 

channel (4.17) 

Sum of 

symmetric 

KLDs (4.5) 

and (4.18) 

over all color 

channel 

2/detail sub-band, 

5/approximation 

sub-band 

5) GGD1+GM For grayscale 

image, MM 

estimation on 

each detail sub-

band (4.3) 

Entire color 

image 

Sum of 

symmetric 

KLDs (4.5) 

and (4.18) 

2/detail sub-band, 

19 for color 

image 

Table 5.4 Color texture feature extraction methods: associated models and similarity metrics. 

 

Based on the experimental results and conclusions drawn in the previous 

section 2.1, the energy-based modeling is discarded in favor of GGD and 

GMM, and the RCT-Plus decomposition is performed using 3 scale levels and 

8 directions (L=3, D= [8, 8, 8]), thus producing 24 detail sub-bands and one 

approximation sub-band for each color channel from an RGB or YCbCr 

image. Consequently, the size of the extracted feature vector in methods 1) 

and 2) is 150 (50 elements per color channel). In methods 3) and 4), 48 

parameters are extracted from the detail sub-bands while 5 (see Table 4.1) 

parameters are from the approximation sub-band of each color channel for a 

total vector size of 159 elements. In method 5), the feature vector includes 67 

elements, 48 of which come from the grayscale detail sub-bands and 19 (See 

Table 4.1) from the GMM modeling of the entire color image. 
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It should be noted that the proposed CBIR schemes 1), 2), 3) and 4) are also 

applicable to grayscale images (considered as single-color channel images) 

and this allows us to compare the results and show the contribution of the 

color components in the discrimination of textures. 

Table 5.5 illustrates a sample of the achieved average retrieval rates (AR%) 

according to the number of top matches considered, in two color datasets, 

namely, VisTex-40 (Top16, 640 queries) and Stex (Top16, 7616 queries). As 

it appears in Table 5.5, we could conclude the following: 

1- Joint color texture features improve the retrieval results substantially in 

comparison to grayscale texture features.  

2- Using Gaussian Mixtures (GMM) to model the approximation sub-band 

fits more accurately than the GGD model.  

3- In terms of retrieval performance, the YCbCr color space always shows a 

slight improvement in comparison to the RGB color space. 

4- The GGD1+GM method appears to be the best choice for color texture 

retrieval among the proposed methods. Indeed, its retrieval rates are the 

highest ones while its feature vector size (67 elements) is the most compact 

(159 for GGD1+GMapp and 150 for GGD1 and GGD2). 
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CBIR schema Color space 
Feature vector 

size 

AR% 

VisTex-40 
AR% Stex 

GGD2 

Grayscale 50 75.24 51.14 

RGB 150 81.58 58.14 

YCbCr 150 84.36 69.20 

GGD1 

Grayscale 50 77.15 51.89 

RGB 150 83.43 59.29 

YCbCr 150 85.93 70.67 

GGD2+GMapp 

Grayscale 53 (48+5) 82.53 53.14 

RGB 159 (48×3+15) 84.91 63.28 

YCbCr 159 (48×3+15) 89.53 76.96 

GGD1+GMapp 

Grayscale 53 (48+5) 82.77 53.64 

RGB 159 (48×3+15) 85.15 63.72 

YCbCr 159 (48×3+15 89.83 77.20 

GGD1+GM 

Gray + RGB 67 (48+19) 91.77 76.85 

Gray + YCbCr 67 (48+19) 92.26 77.63 

Table 5.5 Average retrieval rates (AR%) in the Top16 images. The compared CBIR schemes 

operate on RCT-Plus decomposition with D= [8, 8, 8] and L=3, and GMM modeling is performed 

with k=2.  

Furthermore, we conducted LBP-ED (Local Binary Pattern and Euclidean 

distance) texture feature extraction with eight neighbors for comparison to our 

approaches. The LBP function is available in the Image Processing Toolbox 

of Matlab [77].     

We also compared many existing methods [11], [32], [33], [24], [80] [81], 

[35] to our proposed methods, namely, GGD1+GM, GGD1+GMapp and 

GGD2+GMapp. Table 5.6 presents the color textures feature extraction 

methods applied on Stex and VisTex-40 datasets. Correspondingly, Table 5.7 

presents the grayscale texture feature extraction methods on Stex, VisTex-40, 

Kylberg-27 and Kylberg-28 datasets. For the Stex which is a challenging 

dataset, we achieved a retrieval rate of 77.63% using GGD1+GM method, 

while the best rate achieved by the compared state-of-the-art method is only 

73.70%. Also, the corresponding feature vector size increases from 67 to 776 

elements respectively. For the Kylberg dataset, we gained between 10 to 25 

percentage in retrieval rate compared to LBP-ED and LDPVBP methods. 
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Consequently, our proposed methods perform very well, in comparison to 

many existing methods, both in terms of feature vector compactness and 

average retrieval rates (AR%).  

Also, complimentary results from Kylberg-27 and Kylberg-28 are available 

in Table 0.2. 

CBIR schema 
Feature 

vector size 

AR%-Top16 

Stex 

AR%-Top16 

VisTex-40 

DWT/GGD [11], [80] 54 49.30 82.00 

Multivar. Power Exp. [32] 

The Multivariate Power Exponential 

modeling of DWT coefficients 

54 71.30 91.20 

DWT/ GGamma [33] 81 52.90 81.00 

EMM [24] 

Embedded multiresolution mixtures of 

Gaussian modeling of DCT coefficients 

776 73.70 88.90 

Gaussian Copula GGD [80] 63 65.20 87.50 

DTCWT Weibull [81] 108 58.80 84.00 

Gaussian Copula Weibull [80] 207 70.60 89.50 

Gaussian Copula Gamma [80] 207 69.40 89.10 

LBP-ED (RGB) 177 57.00 85.10 

LBP-ED (YCbCr) 177 66.92 85.44 

GGD1+GM (YCbCr) 67 77.63 92.26 

Table 5.6 Comparison of the proposed color texture GGD1+GM method to various state of art 

methods in terms of feature vector length and CBIR average retrieval rates AR (%) in the Top16 

images. 

CBIR schema 

Feature 

vector 

size 

AR%-Top16 

VisTex-40 

AR%-Top40 

Kylberg-27 

AR%-Top160 

Kylberg-28 

AR%-Top16 

Stex 

LDPVBP [35] 32 71.79 - 39.46 - 

LBP-ED 59 75.74 61.24 53.46 50.70 

GGD2+GMapp 53 82.53 69.09 63.25 53.14 

GGD1+GMapp 53 82.77 70.04 63.89 53.64 

Table 5.7 Comparison of the proposed grayscale texture methods, GGD1+GMapp and 

GGD2+GMapp, to the existing methods LBP-ED and LDPVBP (Local directional peak valley 

binary pattern [35]) in terms of feature vector length and CBIR average retrieval rates AR(%) on 

Grayscale image datasets. 
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3.  Integrating a learning approach into the CBIR framework 

 

In this section, the image search and retrieval process is improved through a 

learning-based approach where the images of the dataset are classified using 

an adapted similarity metric to the statistical modeling of the RCT-Plus 

transform. A query is then first classified to select the best texture class after 

which the retained class images are ranked to select the top ones. 

 

3.1. ML algorithms selection 

 

In order to study the performance of a selection of supervised ML algorithms 

such as KNN, SVM, Decision tree, linear discrimination, and Quadratic 

discrimination, a learning phase with cross-validation is conducted for each 

algorithm using: 

- VisTex-40 dataset features derived from RCT-Plus transform (with 

L=3, D=8) and one of these modeling methods GGD1, GGD2 or E2, 

- a choice of parameters for each algorithm such as K value and 

Euclidean distance in KNN or kernel type in SVM,   

- various data split scenarios in the n-fold cross-validation procedure. 

From the sample of experimental results depicted in Table 5.8, the best 

obtained Accuracy value is 99.69% for KNN (with K=1) and 98.40% for 

linear SVM. In general, KNN and SVM learning models were more accurate 

than Decision trees and Discriminant analysis models. Moreover, in most 

cases, KNN and SVM achieved high Accuracy levels when using GGD1 and 

GGD2 feature extraction methods. Therefore, we consider that either KNN or 

SVM algorithms are a promising approach in terms of classifier Accuracy to 

be incorporated in the ML-CBIR framework. Also, GGD1 and GGD2 are 

more efficient compared to E2. 
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ML algorithms 
Feature extraction methods using RCT-Plus 

GGD1 GGD2 E2 

KNN (K=1) 99.69 98.00 96.95 

KNN (K=10) 88.36 88.92 86.91 

SVM (Linear kernel) 98.40 98.36 97.00 

SVM  (Gaussian kernel) 96.63 96.76 94.42 

SVM (Quadratic kernel) 97.33 97.33 95.96 

SVM (Cubic kernel) 96.93 96.93 95.80 

Decision trees 85.52 85.29 87.83 

Quadratic Discrimination 96.12 94.87 91.42 

Linear Discrimination 90.33 90.50 87.25 

Table 5.8 Accuracy measures (%) of compared ML algorithms on the whole VisTex-40 dataset. 

The learning phase is held with 5-fold cross-validation. Trained features are derived from GGD1, 

GGD2, and E2 methods using RCT-Plus. 

 

3.2. ML-CBIR results, comparison and discussion 
 

To evaluate the retrieval performance of the proposed ML-CBIR framework 

using texture discrimination, an experimental setup is conducted by trained 

KNN and SVM models over 600 images from the grayscale VisTex-40 

dataset. The remaining 40 images (one per each texture class) are reserved as 

test data. The learned image features are based on RCT-Plus image 

transformation followed by either GGD1or GGD2 modeling method.  

Each image of VisTex-40 is considered as a query image (including the 

remaining 40 test images) and submitted to the ML-CBIR system. First, the 

trained classifier is used to predict the class membership (class label) of a 

given query image. Next, all images from the predicted class are retrieved and 

ranked according to the similarity measurement using either KLD or 

Euclidean distance. Finally, the N first images are displayed as being the N 

most similar images to the query (TopN retrieved images). 

During this experimental setup, many other parameters are tuned such as: 

- the number of neighbors (K=1, 2, 3, 4, 5, …)  in the KNN algorithm and 

kernel type in SVM. 

- the number of data partitions (n-fold) in the cross-validation procedure. 

The sample of results reported in Table 5.9 show a performance comparison 

of ML-CBIR schemes in terms of average retrieval rates (AR%) in the Top16 
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images and classifier Accuracy corresponding to a learning phase with 5-fold 

and 10-fold cross validations. The considered ML algorithms are KNN (with 

K=1) and SVM (with Linear kernel). One can see that, all of the two feature 

extraction methods operating on RCT-Plus, namely GGD1 and GGD2, 

achieved average retrieval rates (AR%) that are higher than 99%. Indeed, the 

number of false class membership predictions are very low (ranging from 0 to 

5 over 640 queries). It is also worth mentioning that SVM results are the best 

and slightly higher than KNN ones. 

Figure 5.12 illustrates an example of a KNN-CBIR system which made false 

class membership predictions to 3 queries among 640. The first column of the 

table displays the submitted queries to the system while the second column 

illustrates the wrong predicted class labels. In each case, the Top 16 retrieved 

images are non-relevant to the query. Therefore, the average retrieval rate 

(AR%) is about 99.5%.  

The proposed ML-CBIR system operating on RCT-Plus image features 

achieved nearly perfect retrieval results on VisTex-40 dataset. It is also more 

efficient and more discriminative than conventional CBIR. Indeed, KNN-

CBIR and SVM-CBIR schemes yield significant improvements in 

comparison to the conventional CBIR scheme in terms of retrieval rates (see 

Table 5.10). 

 

ML algorithm:  KNN (K =1) 

 

 

5-fold cross-validation 10-fold cross-validation 

AR% 

 

False 

predictions 

Classifier 

Accuracy 
AR% 

False 

predictions 

Classifier 

Accuracy 

GGD1 99.69 2 97.33 99.69 2 98.17 

GGD2 99.53 3 97.33 99.84 1 97.67 

ML algorithm:  SVM (Linear kernel) 

 

 

5-fold cross-validation 10-fold cross-validation 

AR% 

 

False 

predictions 

Classifier 

Accuracy 

AR% 

 

False 

predictions 

Classifier 

Accuracy 

GGD1 100.00 0 98.50 100.00 0 98.67 

GGD2 100.00 0 98.50 100.00 0 98.67 

Table 5.9 Performance comparison of ML-CBIR schemes in terms of average retrieval rates 

(AR%), number of false predictions and classifier Accuracy corresponding to a learning phase 

with 5-fold and 10-fold cross-validations. The considered ML algorithms are KNN and SVM and 

texture dataset is VisTex-40 [7]. 
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Feature extraction 

using RCT-Plus 

AR% 

(KNN-CBIR) 

AR% 

(Trad. CBIR) 
Difference% 

GGD1 99.69 77.15 +22.54 

GGD2 99.53 75.24 +24.29 

 
AR% 

(SVM-CBIR) 

AR% 

(Trad. CBIR) 
Difference% 

GGD1 100.00 77.15 +22.85 

GGD2 100.00 75.24 +24.76 

Table 5.10 Performance comparison of ML-CBIR schemes vs. conventional CBIR schemes in 

terms of average retrieval rates (AR%) over 640 image queries fromVisTex-40 dataset. 

 
Query 296: Food0.08 

 
Predicted class: 18 (Flowers5) 

 
Query 380: Leaves10.12 

 
Predicted class: 19 (Food0) 

 
Query 413: Leaves12.13 

 
Predicted class: 23 (Leaves8) 

Figure 5.12 Examples of KNN-CBIR retrieval using GGD2 on VisTex-40. For each submitted 

query (left column), the predicted class membership (right column) is false. 
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To evaluate and validate the retrieval rate of texture and color texture ML-

CBIR each classifier model (KNN and SVM) is learned on a set of training 

features from four distinguished textural datasets. The learned image features 

are based on RCT-Plus followed by GGD1 and GGD2 modeling for grayscale 

images and modeling of either color approximation sub-band or the whole 

color image using GMM (See Table 5.4). The training and testing data are 

organized as follows: 

VisTex-40 does exist in three versions (RGB, YCbCr, and grayscale). The 

training set (labeled index) corresponds to 600 images (15 per class) while 40 

images are reserved for the online phase test. 

Kylberg-27 is only available in grayscale. The training set (labeled index) 

corresponds to 405 images (15 per class) while 675 images are reserved for 

the online phase test. 

Kylberg-28 is only available in grayscale. The training set (labeled index) 

corresponds to 1680 images (60 per class) while 2800 images are reserved for 

the online phase test.  

Stex does exist in three versions (RGB, YCbCr, and grayscale): The training 

set (labeled index) corresponds to 1904 images (4 per class) while 5712 

images are reserved for the online phase test.  

Each image is considered as a query and submitted to the ML-CBIR system. 

First, the trained classifier is used to predict the class membership (class label) 

of a given query image. Next, all images from the predicted class are retrieved 

and ranked according to the similarity measurement. Finally, the N first 

images are displayed as being the N most similar images to the query (TopN 

retrieved images). 

Table 5.11 and Table 5.12 report the performance comparison of ML-CBIR 

schemes in terms of average retrieval rates (AR%) in 4 texture datasets. Note 

that the considered ML algorithms are KNN (with K=1) and SVM (with linear 

and KLD kernels) and the training phase has been implemented using 10-fold 

cross-validations. (See Table 5.9). One can see that: 

- All the feature extraction methods operating on RCT-Plus and using 

both GGD and GMM models, achieved average retrieval rates (AR%) 

that are higher than other methods such as GGD1 and GGD2. 
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- It is also worth mentioning that, in general, using SVM algorithm 

instead of KNN does not significantly affect the retrieval results on a 

given dataset. 

- Using a YCbCr color dataset yields marginally better retrieval rates 

compared to RGB and grayscale formats. 

- The ML approach for CBIR significantly improved the retrieval rates 

compared to conventional CBIR schemes.  For example, in the YCbCr 

Stex dataset, using the method GGD1+GM improved the retrieval rate 

from 77.63% to 97.10%. Also, in the Kylberg-28 which is a grayscale 

dataset, the retrieval rate AR% has increased from 63.89% to 99.04% 

while applying GGD1+GMapp method.  

- This ML-CBIR framework not only enhances the retrieval score but 

also makes it computationally efficient, thus, avoiding the requirement 

of comparing a query with all the images of the dataset. 

 

Table 5.13 reports some of the recent states of art compared to our proposed 

methods for the VisTex-40 dataset. In order to have a fair comparison, we just 

reported our best grayscale method named GGD1+GMapp. As it appears, our 

proposed methods achieved higher retrieval rates compared to other state-of-

art methods including some deep learning based methods such as CNN-25 

[82] and DBN [83]. Complementary results are illustrated in Table 0.3 and 

Table 0.4 (Annex IV). 

 

 
ML-CBIR 

(KNN) 
Color Space 

VisTex-40 

Top16 

Kylberg-27 

Top40 

Kylberg-28 

Top160 

Stex 

Top16 

GGD1 

Grayscale 99.69 97.69 97.32 88.29 

RGB 99.69 - - 91.78 

YCbCr 99.84 - - 95.52 

GGD2 

Grayscale 99.53 97.31 96.90 87.59 

RGB 99.69 - - 90.93 

YCbCr 99.84 - - 95.13 

GGD1+GMapp 

Grayscale 99.64 98.61 98.50 90.61 

RGB 99.84 - - 93.97 

YCbCr 100.00 - - 96.09 

GGD1+GM 
RGB 100.00 - - 94.24 

YCbCr 100.00 - - 97.10 

Table 5.11 Average retrieval rates (AR%) of ML-CBIR using fine (K=1) KNN.  
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ML-CBIR  

(SVM) 
Color Space 

VisTex-40 

Top16 

Kylberg-27 

Top40 

Kylberg-28 

Top160 

Stex 

Top16 

GGD1 

Grayscale 99.69 97.96 98.75 87.64 

RGB 99.84 - - 90.05 

YCbCr 100.00 - - 93.21 

GGD2 

Grayscale 88.69 97.59 98.66 87.24 

RGB 99.84 - - 89.67 

YCbCr 99.84 - - 93.04 

GGD1+GMapp 

Grayscale 99.69 98.70 99.04 89.92 

RGB 100.00 - - 93.49 

YCbCr 100.00 - - 95.65 

GGD1+GM 
RGB 100.00 - - 94.10 

YCbCr 100.00 - - 96.99 

Table 5.12 Average retrieval rates (AR%) ML-CBIR using SVM. 

 

CBIR schema Classifier 
AR%-Top16 

 VisTex-40 

CNN with 25 layers [82] CNN-25 95.28 

LBP-ED SVM (Linear) 86.06 

LBP-ED KNN(K=1) 98.59 

Directional Magnitude Local Hexadecimal 

Pattern (DMLHP) [23] 

Ensemble Subspace 

Discriminant (ESD) 
98.00 

Deep Belief Network- Similarity-Based 

Indexing 

 DBN- SBI [83] 

DBN 98.45 

Local Neighbor Pattern (LNP) [19] SVM (Linear) 98.40 

Local Neighbor Pattern (LNP) [19] KNN(K=1) 99.5 

GGD1+GMapp KNN(K=1) 99.69 

GGD1+GMapp SVM (KLD) 99.69 

Table 5.13 Comparison of the proposed grayscale texture GGD1+GMapp method to various 

state-of-the-art methods in terms of CBIR average retrieval rates AR(%) in the Top16 images for 

VisTex-40 dataset.  
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4. Abnormality detection experiments and results 

 

This section is dedicated to Abnormality detection experiments and results. 

Starting with the choice of parameters we concluded from section 3 for texture 

feature extraction, we validate the block-based approach for abnormality 

detection (see Sections 4.1-4.4 in Chapter 4). Also, comparing the obtained 

results with the deep learning approach (U-net) confirms our methodology in 

the end. 

 

4.1. Abnormality detection choice of parameters and methods 

 

In the previous section, Table 5.11 and Table 5.12 demonstrated that the 

GGD1+GM method (GGD modeling of grayscale image detail sub-bands, 

from RCT-Plus, using MM estimation, and the modeling of entire color image 

using GMM) is a reliable choice for texture feature extraction in CBIR and 

ML-CBIR applications (or in texture retrieval applications). Consequently, to 

discriminate among normal and abnormal regions in skin lesion images (using 

KNN/SVM classifiers) we rely on both GGD for texture and GMM for color 

image characteristics. Also by experimenting with our features on many color 

spaces (YCbCr, RGB, HIS, and LAB), we chose YCbCr and RGB as suitable 

spaces for our texture features. 

In the context of abnormality detection on image blocks of skin lesions, we 

experimented with different numbers of overlapping pixels between image 

blocks, color spaces, threshold values in labeling methods, ML algorithms, 

distance metrics in texture and color texture feature extraction and 

conciliation processes between grayscale and color label prediction to achieve 

final block-based abnormality detection. 
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4.2. Block-based detection 

 

We selected two skin lesion datasets namely ISIC-32 and ISIC-42 from 

the International Skin Imaging Collaboration (ISIC) to conduct the 

experiments and validate our proposed block-based detection method. It is 

built on two main stages as the following: 

 

- The offline stage: Firstly, we selected 28 images from ISIC-32 as a 

training dataset. Each image is subdivided into overlapping color 

blocks Bc(i) and grayscale blocks B(i), with i=1…NB. The choice of 

color space could be either YCbCr or RGB. For example, we obtained 

9856 color blocks of size 128×128 pixels when the number of 

overlapping pixels is 64. Then we did a similar subdivision on the 

corresponding binary ground truth maps to create the block-based 

ground truths G(i), with i=1…NB. 

In order to extract the block-based texture features F(i), we rely on 

GGD1 modeling of RCT-Plus decomposition (with D= [8, 8, 8] and 

L=3) since this choice of parameters has been shown to be the best over 

many experiments.  Also, we perform a k-component GMM modeling 

for each color block Bc(i) to extract a color texture feature vector FC(i). 

As defined in Section 4.1 of Chapter 4, (the labeling of local features) 

assigns two class labels, Clabel and Tlabel, to each block according to 

Labeling method 1 and Labeling method 2 respectively. A threshold T% 

has to be tuned in order to get Clabel values (0 for healthy /1 for lesion). 

Also, two thresholds T1% and T2% have to be tuned to get Tlabel values 

(0 for non-border /1 for border). One example of thresholding in our 

experiments is 30% as T% in Labeling method 1, 20% as T1%, and 

100% as T2% in Labeling method 2. 

As we have two parallel learning processes for classification purposes, 

a learning phase with cross-validation is conducted for each training 

dataset (Color index and Texture index) using: 

- a choice of parameters for each algorithm such as K value and distance 

metric (based on either ED or KLD) in KNN or kernel type in SVM 

(Linear, KLD-based);   

http://www.isdis.net/index.php/isic-project
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- various data split scenarios in the n-fold cross-validation procedure in 

order to select the best learning models CLT and CLC corresponding to 

texture features and color texture features respectively. 

An example of parameter selection corresponds to KNN learning with 

K=7, n=10 and a KLD-based metric as defined in Equations (4.5) and 

(4.19). At the end of the learning process, CLT and CLC are saved for 

detection purposes during the online phase. 

 

The online stage: The online detection phase is meant to detect skin 

abnormality in each block of a submitted test image. To evaluate the 

efficiency of the online phase, we use new test images (IC) from ISIC-

32 and ISIC-42, each test image undergoes a block-based subdivision 

and feature extraction that obey the same parameters as the offline 

phase (block size, overlap, texture feature method, color texture feature 

method, etc.). In ISIC-32 all images are the same size while in ISIC-42 

the variant size of images is the challenge during subdividing into 

overlapping blocks. According to the choice of parameters we 

exampled in the offline phase, we formed 1408 and 27648 testing 

blocks regarding the 4 testing images in ISIC-32 and the 42 images in 

ISIC-42 respectively. 

For prediction purposes, the extracted grayscale texture feature is used 

to classify each test block using the classifier model CLT and obtain its 

label Tlabel (0 as non-border and 1 as border) and its corresponding score 

(Tscore). Similarly, the extracted color texture feature is used to classify 

each test block using the classifier model CLC and obtain its label Clabel 

(0 as healthy and 1 as lesion) and its corresponding score (Cscore). Then, 

a block-based label conciliation (See Chapter 4, Section 4.3) is applied 

in order to derive a single label for each block (0 as healthy and 1 as 

lesion). 

Furthermore, to localize and visualize the abnormality detection results, 

a binary detection map is constructed by mosaicking a set of blocks 

tagged by the corresponding predicted class label (0 as black and 1 as 

white). Superimposing the constructed detection map on the original 

test image Ic shows the final detected results and determines the 

abnormal skin image regions. 
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In order to evaluate the efficiency of the abnormality detection for a given test 

dataset (ISIC-32, ISIC-42, etc.), we first compare the predicted labels to the 

corresponding ground truth ones and then calculate the Precision, Recall, and 

detection Accuracy values (See the above Section 1.7). 

Table 5.14 reports the final results for the abnormality detection approach by 

joining together texture and color texture features in ISIC-32 test images. One 

can notice that using KLD-based distances instead of ED distances in KNN is 

more effective in terms of Accuracy, Precision and Recall in the detection 

results. For example, the Precision of detection increases from 72.03% to 

85.09% for the RGB ISIC-32 test data. In Figure 5.13, a sample of mapped 

detection results corresponding to RGB color space and SVM classifier is 

shown. For each test image, the red contour presents the block-based ground 

truth while the white contour illustrates the resulting detection map that 

distinguishes the lesion from the healthy region. For the four test images, our 

approach succeeds to achieve an Accuracy, Recall, and Precision of 96.88%, 

97.22% and 93.92% respectively. 

In order to show the contribution of the joint color texture features to the 

abnormality detection we compare the obtained result from grayscale texture-

based detection, color texture detection and joint color texture detection. 

Table 5.15 and Table 5.16 show examples of this comparison using RGB and 

YCbCr color spaces in the ISIC-42 dataset. It is clear that the joint approach 

improves the Accuracy of detection by up to 12% (from 87.55% to 99.68%) 

and Precision by up to 21% (from 75.70% to 97.29%) for SVM classifier and 

YCbCr color space. Also, in both KNN and SVM, using the joint color texture 

features gives the best trade-off between Precision and Recall. Figure 5.14 

shows a sample of mapped detection results on ISIC-42 images 

(corresponding to YCbCr and KNN). The results that are depicted in the row 

d) confirm that there is a reliable match between the block-based ground truth 

and the achieved detection. 

Overlapping is an approach that can be advantageously used to enhance the 

localization precision of the detected abnormal regions. For example, we 

tested 5, 16, 32, and 64-pixel overlapped blocks, and among all the results, 

the 64-pixel overlap between blocks was chosen for better detection and 

segmentation. A part of preliminary results is provided in Annex V. 
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KNN with K=7 

Color Space 

 Threshold for 

Labeling Method 1 

(T%) and distance 

Threshold for Labeling 

Method 2 (T1%-T2%) 

and distance 

Accuracy Recall Precision 

RGB 30% (KLD) 20%-100% (ED) 90.63 79.85 72.03 

RGB 30% (KLD) 20%-100% (KLD) 94.44 100.00 85.09 

YCbCr 30% (KLD) 20%-100% (ED) 92.47 97.80 83.70 

YCbCr 30% (KLD) 20%-100% (KLD) 94.91 100.00 86.16 

SVM with KLD-based kernel 

Color Space 

Threshold for 

Labeling Method 1 

(T%) 

Threshold for Labeling 

Method 2 (T1%-T2%) 
Accuracy Recall Precision 

RGB 30% 20%-100% 96.88 97.22 93.92 

YCbCr 30% 20%-100% 98.01 97.94 97.28 

Table 5.14 A sample of block-based abnormality detection results corresponding to 4 test images 

from ISIC-32 dataset. RCT-Pus, GGD and GMM (k=2) modeling of texture and color texture 

blocks are used. 

ISIC_0000062 ISIC_0000063 

ISIC_0000064 ISIC_0000065 

Figure 5.13 Examples of abnormality detection results mapped onto 4 original test images from 

ISIC-32. For each image, the red contour represents the original block-based ground truth, and 

the white contour shows the resulting abnormality detection map (healthy/lesion). 
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KNN with K=7 and KLD-based distance 

Color Space 

Threshold for 

Labeling Method 1 

(T%) 

Threshold for 

Labeling Method 2 

(T1%-T2%) 

Accuracy Recall Precision 

a) Grayscale ----- 20%-100% 97.02 87.69 81.93 

b) RGB 30% ----- 95.97 96.48 85.34 

c) Grayscale 

and RGB 
30% 20%-100% 98.16 95.24 92.79 

SVM with KLD-based kernel 

Color Space 

Threshold for 

Labeling Method 1 

(T%) 

Threshold for 

Labeling Method 2 

(T1%-T2%) 

Accuracy Recall Precision 

a) Grayscale ----- 20%-100% 87.55 83.69 75.70 

b) RGB 30% ----- 95.81 94.19 80.65 

c) Grayscale 

and RGB 
30% 20%-100% 99.60 97.91 94.05 

Table 5.15 A comparison between block-based abnormality detection results using: a) texture 

features, b) color texture features and c) joint color texture features from RGB and grayscale 

images in the ISIC-42 dataset. 

KNN with K=7 and KLD-based distance 

Color space 

Threshold for 

Labeling Method 1 

(T%) 

Threshold for 

Labeling Method 2 

(T1%-T2%) 

Accuracy Recall Precision 

a) Grayscale ----- 20%-100% 97.02 87.69 81.93 

b) YCbCr 30% ----- 96.21 96.95 85.94 

c) Grayscale 

and YCbCr 
30% 20%-100% 99.16 95.74 93.54 

SVM with KLD-based kernel 

Color space 

Threshold for 

Labeling Method 1 

(T%) 

Threshold for 

Labeling Method 2 

(T1%-T2%) 

Accuracy Recall Precision 

a) Grayscale ----- 20%-100% 87.55 83.69 75.70 

b) YCbCr 30% ----- 96.02 95.72 83.18 

c) Grayscale 

and YCbCr 
30% 20%-100% 99.68 98.68 97.29 

Table 5.16 A comparison between block-based abnormality detection results using: a) texture 

features, b) color texture features and c) joint color texture features from YCbCr and grayscale 

images in the ISIC-42 dataset. 
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 ISIC_0000058 ISIC_0000060 ISIC_0000082 ISIC_0000121 

a) Texture 

border/non-

border 

detection 
    

b) Color 

healthy/lesion 

detection 

    

c) Conciliation 

healthy/lesion 

detection 

    

d) Comparison 

of c) to block-

based ground 

truth 
    

Figure 5.14 Examples of abnormality detection results mapped onto four test images from the 

ISIC-42 dataset. The rows show:  a) Texture border/non-border detection maps; b) Color 

healthy/lesion detection maps; c) Conciliation between texture and color detection maps and d) a 

comparison between the achieved detection results and the block-based ground truths (red 

contours). 

 

In addition, the discriminative power of the extracted texture and color texture 

features, using jointly texture and color through a reasonable labeling method 

with fair block-based conciliation rules, choosing the right amount of overlap 

between blocks and accurate ML algorithms are among the variables to 

improve block-based abnormality detection. From all the achieved results 

including those presented in previous Tables, the following conclusions can 

be drawn: 

- YCbCr is better than RGB color space for color feature extraction; 

- KLD-based distances provide better results than Euclidean distance 

(ED); 

- Using SVM algorithm provides slightly better results than KNN. 
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4.3. Texture segmentation and comparison with a deep learning approach 

 

To perform texture segmentation on dermoscopic images, the interactive 

foreground extraction algorithm using Grabcut is leveraged to segment the 

lesion against the healthy skin (on a pixel basis). To initiate the segmentation 

process, we rely on our proposed grayscale RCT-Plus texture detection 

method. Indeed, we determine foreground and background masks by 

separating the inner and outer lines from border/ non-border abnormality 

detection map (See Figure 4.17). Then, the texture Grabcut segmentation 

applies iteratively starting from a random selection of foreground and 

background points that are marked on the original image. 

The Grabcut segmentation results are compared to the deep learning methods 

(namely U-net_50, U-net_250 and U-net_500) that are trained on various 

datasets (50 images, 250 images and 500 images respectively). Table 5.17 and 

Table 5.18 report the segmentation results that are achieved on ISIC-32 and 

ISIC-42 datasets. For comparison, in Grabcut, the size of training data is 28 

images from ISIC-32, while it is, in the U-net methods, about 50, 250 and 500 

images from the international ISIC dataset. Our methodology's success 

appears, especially for small training datasets. Indeed, the Accuracy of 

segmentation that is obtained with U-net_50 is quite low comparatively to the 

other methods. Using the Grabcut approach gives the best trade-off between 

Precision and Recall of the segmentation. Also, the best achieved Accuracy 

value is up to 99.02% for Grabcut segmentation while the maximum Accuracy 

value achieved with U-net methods is 98.47% (corresponding to U-net_250 

segmentation of ISIC-42 images). 

Figure 5.15 and Figure 5.16 compare original images and ground truth to 

image segmentation examples obtained from Grabcut and U-net methods on 

ISIC-42 and ISIC-32 datasets. One can notice that, in most examples, the 

visual quality of segmentation is better when using Grabcut instead of U-net 

methods. 
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Segmentation method on ISIC-32 Accuracy Precision Recall 

U-net_50 90.02 95.51 74.63 

U-net_250 96.89 88.69 92.99 

U-net_500 95.14 91.38 88.63 

Grabcut 98.64 94.43 94.86 

Table 5.17 Comparison of segmentation results between U-net deep learning and Grabcut 

methods applied on ISIC-32 dataset. 

 

Segmentation method on ISIC-42 Accuracy Precision Recall 

U-net_50 96.09 86.98 83.89 

U-net_250 98.47 83.49 93.83 

U-net_500 97.70 81.59 92.64 

Grabcut 99.02 92.49 94.11 

Table 5.18 Comparison of segmentation results between U-net deep learning and Grabcut 

methods applied on ISIC-42 dataset. 
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Figure 5.15 Examples of image segmentation results obtained on ISIC-32 dataset. The first 

column a) illustrates five ground truths and their superimposition on the corresponding original 

images. The columns b)-e) show segmentation results obtained by using Grabcut, U-net_50, U-

net_250, and U-net_500, respectively. 
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Figure 5.16 Examples of image segmentation results obtained on ISIC-42 dataset. The first 

column a) illustrates five ground truths and their superimposition on the corresponding original 

images. The columns b)-e) show segmentation results obtained by using Grabcut, U-net_50, U-

net_250, and U-net_500 U-net, respectively. 
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CHAPTER 6.  Conclusion and future work 
 

In this thesis, we addressed the issue of texture analysis and discrimination 

with a new methodology based on parametric statistical modeling of multi-

scale image representations. We developed novel methods for the extraction 

of relevant image features that achieved powerful characteristic 

discrimination in grayscale and color texture images while providing feature 

descriptors with reduced dimensionality. The major contributions of this work 

can be summarized as follows:   

 A novel multi-scale image representation, named RCT-Plus, is 

proposed. It is as a variant of the contourlet transform that is redundant, 

rich in directional information and applicable to grayscale images and 

multi-channel color images. 

 A hybrid statistical modeling approach combining the Generalized 

Gaussian Distribution (GGD) and the multivariate Gaussian Mixture 

Model (GMM) is designed to provide highly compact data models of 

texture images while ensuring accurate shape fitting and flexible 

adjustment to variability and multimodality in the texture data (color 

channels, high-frequency detail sub-bands, low-frequency 

approximation sub-bands). In addition, suitable similarity metrics 

based on Kullback-Leibler divergence are adapted accordingly.  

 A joint exploitation of color and texture features in the multi-scale 

space is performed either by applying an early concatenation procedure 

at the feature level or a late conciliation procedure operating at the 

result level. This approach offers the benefit of extracting relevant 

information from a much richer data source and results in a variety of 

enhanced feature extraction methods and more powerful texture 

discrimination schemes. 

 Supervised machine learning algorithms (KNN and SVM) are 

integrated into the processing system as key techniques of feature 

learning and multi-class classification to infer texture types on the 

extracted features and achieve improved performance in terms of 

texture discrimination. 
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Furthermore, the methodology we proposed for texture feature extraction, the 

statistical modeling of texture and color texture on multi-scale image 

representations, was applied according to the following strategies: global 

region-based and local region-based in order to respond to the specific needs 

of various application domains. To illustrate texture feature extraction 

according to these two strategies, two main applications namely, content-

based image retrieval (CBIR) in texture datasets and abnormality detection in 

medical skin lesion images were considered in this work. 

The global region-based texture feature extraction is extensively tested in the 

framework of conventional CBIR and machine learning CBIR (ML-CBIR) 

using the well-known grayscale and color datasets VisTex-40 [7], Kylberg-27 

[37], Kylberg-28 [37] and Stex [25]. A comparison with state-of-the-art 

methods, including deep learning, showed that our proposed texture feature 

extraction methodology yields more successful results. In conventional CBIR, 

the use of our method GGD1+GM on the challenging YCbCr Stex dataset was 

very successful as it achieved the highest average retrieval rate 

(AR%=77.63%) as well as the most compact feature vector with only 67 

elements. 

Moving from conventional CBIR to ML-CBIR significantly improved the 

retrieval results in all experimented datasets. For example, in the YCbCr Stex 

dataset, the retrieval rate increased from 77.63% to 97.10% for the 

GGD1+GM method. Also, in the Kylberg-28 which is a grayscale dataset, we 

improved AR% from 63.89% to 99.04% while applying the GGD1+GMapp 

method. For both conventional CBIR and ML-CBIR, we came to the 

conclusions that: 1) In terms of retrieval performance, the use of the YCbCr 

color space has always shown slightly better results compared to the RGB 

color space; 2) Using GMM to model the color data and RCT-Plus 

approximation sub-bands fitted more accurately than the GGD model; 3) For 

both grayscale and color datasets, all the feature extraction methods operating 

on RCT-Plus and jointly using GGD and GMM models (GGD1+GMapp, 

GGD2+GMapp and GGD1+GM) achieved average retrieval rates (AR%) that 

are higher than other methods such as GGD1 and GGD2; 4) The GGD1+GM 

is the best method among all the proposed ones because it allows powerful 

characteristic discrimination of color texture images while providing the most 

compact feature representation. 
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In abnormality detection and segmentation, we used the local region-based 

strategy for feature extraction. The proposed GGD1+GM method has been 

chosen as it showed the best results in comparison to the other proposed 

methods for color texture feature extraction in CBIR and ML-CBIR 

applications. We experimented on two selected datasets from the International 

ISIC dataset [40], namely ISIC-32 and ISIC-42.  The joint exploitation of 

color and texture features which is performed by a conciliation procedure 

operating on grayscale and color label prediction results, has improved the 

Accuracy of detection by up to 12% and Precision by up to 21% for the SVM 

classifier and YCbCr color space in the ISIC-42 dataset. It also offered the 

best trade-off between detection Precision and Recall. 

For segmentation purposes, the obtained detection maps were integrated into 

the Grabcut segmentation application. Then, segmentation results were 

compared to the following deep learning methods, namely U-net_50, U-

net_250 and U-net_500. Deep learning-based classification, detection and 

segmentation are becoming very popular in the field of medical image 

processing and they require large datasets to be efficiently trained, while our 

proposed method is more classic and has been trained only on 28 images 

(9856 blocks). Also, it has great efficiency on small datasets. The Grabcut 

segmentation results showed the best trade-off between Precision and Recall 

and achieved the best Accuracy value of 99.02% in the ISIC-42 dataset. 

We published a part of this research in [6], [68] and [84]. In addition, another 

publication is in preparation. As a future work, we believe that our proposed 

methodology can be used and extended to address the problem of multi-class 

classification of skin cancer in dermoscopic images. Indeed, neural network 

diagnoses of skin tumors are very popular in the field of medical image 

processing and automatic classification of skin cancer is considered a 

promising tool for the diagnosis of skin cancer, therefore as future works, we 

will explore the use of our developed texture feature extraction methods to do 

lesion classification and determine the type of skin cancer 

including Melanoma, Nevus, Angiosarcoma, Basal cell carcinoma, 

Cutaneous B-cell lymphoma, Cutaneous T-cell lymphoma, 

Dermatofibrosarcoma protuberans, Merkel cell carcinoma, Sebaceous 

carcinoma or Squamous cell carcinoma [85] [86] [87]. 

 

 

 

https://www.mayoclinic.org/diseases-conditions/angiosarcoma/symptoms-causes/syc-20350244
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Annex I  

 

 

               Figure 0.1 Original Zone Plate Image. 

 

 

Figure 0.2 Redundant contourlet sub-bands of zone plate image for 3 scale levels and 4 

directions. 
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Figure 0.3 RCT-Plus decomposition of a 256×256 zone plate image.  The number of scale levels 

is L=3. The number of directional sub-bands at each scale level l is indicated by Dl, thus [D1, D2, 

D3] = [4, 8, 8]. The redundancy factor is 4. 
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Annex II  

 

                    

 

 

 
Query image: 

Stone.0004.15 

 

 

 

 

SCT 

 
Two images from Bark.0008 are non-relevant to the query. 

 

 

NSCT 

 

 
One image from Bark.0008 is non-relevant to the query. 

 

 

RCT 

 
All relevant images to the query are perfectly retrieved. 

 

 
RCT-PLUS 

 
All relevant images to the query are perfectly retrieved. 

 

Figure 0.4 Examples of Top16 retrieval results from the VisTex-40 dataset (640 images). The 

query image is Stone.0004.15. 
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Annex III  

 

Complementary facts about SVM  

 

Figure 0.5 SVM 

 

- In ML, the kernel trick, is a method of using a linear classifier to solve 

a non-linear problem. It transforms linearly inseparable data to linearly 

separable data. The kernel function is applying on each data to map the 

original non-linear observations into a higher-dimensional space and 

make it separable. 

- Support vectors are the coordinates of observation, the one green star 

and two red Circles on maximum margins. 

- The kernel SVM happens when the data in not linearly separable, then 

we need to use a linear or non-linear way to separate the data. 

- In linear kernels we map our data to a space which we can separate the 

classes linearly, but in non-linear kernels we map our data to a space 

which we need non-linear functions to separate our classes. 

- For example, polynomial RBF radial basis function (Gaussians) and 

sigmoid (neural net activation function) are non-linear kernels. 

- Quadratic and Cubic kernels are the special cases of polynomial kernel. 
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- A simple and natural definition about kernel is a similarity function. 

Given two elements, the kernel outputs similarity score. The elements 

can be anything starting from two integers, two real valued vectors 

everything that the kernel function knows how to compare them. 

- Kernel functions are also referred to as Gram matrices. Since the Gram 

matrix over the elements is a symmetric matrix, it is diagonalizable and 

its quantities are non-negative. As we created a new kernel function 

with KLD divergence and convert it to a symmetric gram matric. 

- The penalty parameter of the error which is known as (C) parameter has 

a role of controlling the trade-off between the decision boundaries to 

classify the training data properly. In other words, it states that how 

much the algorithm care about misclassified points. When increasing 

the value of C, the algorithm sets the margins to classify all the training 

points correctly, so the classifier becomes more prone to over fitting 

and cannot generalize on future data. 
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Annex IV 

 

TopN Number of scale levels L E1 E2 GGD1 GGD2 GGD2-ED 

16 1 62.01 62.47 75.30 72.91 69.18 

2 66.81 68.37 76.91 75.41 72.09 

3 66.90 68.84 75.83 75.23 69.55 

20 1 66.42 67.14 79.90 76.52 73.30 

2 71.41 72.85 81.55 79.43 75.68 

3 71.61 73.34 80.77 79.79 73.32 

40 1 77.78 79.02 87.47 84.27 82.60 

2 81.61 83.03 88.48 86.74 83.98 

3 81.78 82.79 88.55 87.65 82.51 

60 1 83.54 84.73 91.04 87.75 87.71 

2 86.84 87.99 92.40 90.86 88.17 

3 86.87 87.42 91.81 91.16 86.36 

80 1 87.23 88.45 92.84 89.88 90.52 

2 90.65 91.50 94.45 92.81 91.22 

3 90.19 90.70 94.00 93.35 89.10 

100 1 89.67 90.74 94.42 91.63 92.87 

2 92.65 93.35 95.71 94.15 93.14 

3 92.20 92.46 95.40 94.72 91.16 

Table 0.1 Average retrieval rates (AR%) according to the number of top matches considered, 

TopN. The compared CBIR methods (E1, E2, GGD1, GGD2 and GGD2-ED) operate on NSCT 

decompositions with D=8 and L ranging from 1 to 3. 
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Traditional CBIR Color Space VisTex-40 Kylberg-27 Kylberg-28 Stex 

E2 

Grayscale 71.72 63.77 55.51 44.55 

RGB 77.37 - - 51.86 

YCBCR 80.42 - - 66.26 

GGD2 

Grayscale 75.24 65.79 59.53 51.14 

RGB 81.58 - - 58.14 

YCBCR 84.36 - - 69.20 

GGD2-ED 

Grayscale 71.78 66.60 59.53 45.28 

RGB 7.12 - - 51.53 

YCBCR 78.37 - - 63.77 

GGD2+GMapp 

Grayscale 82.53 69.09 63.25 53.14 

RGB 84.91 - - 63.28 

YCBCR 89.53 - - 76.96 

GGD1 

Grayscale 77.15 64.95 58.48 51.89 

RGB 83.43 - - 59.29 

YCBCR 85.93 - - 70.67 

GGD1-ED 

Grayscale 74.98 66.06 58.48 44.18 

RGB 77.17 - - 50.19 

YCBCR 78.40 - - 63.05 

GGD1+GMapp 

Grayscale 82.77 70.04 63.89 53.64 

RGB 85.15 - - 63.72 

YCBCR 89.83 - - 77.20 

GGD1+GM 
Gray+ RGB 91.77 - - 76.85 

Gray+ YCBCR 92.26 - - 77.63 

 

LBP-ED 

 

Grayscale 75.74 61.24 53.46 50.70 

RGB 85.10 - - 57.00 

YCBCR 85.44 - - 66.92 

Table 0.2 Average retrieval rates (AR%) according to the number of top matches considered. The 

compared CBIR schemes operate on RCT-Plus decomposition with D= [8, 8, 8] and L=3, and 

GMM modeling is performed with k=2. 
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ML-CBIR 

(KNN) 
Color Space VisTex-40 Kylberg-27 Kylberg-28 Stex 

E2 

Grayscale 99.22 93.43 92.37 86.06 

RGB 99.37 - - 90.77 

YCbCr 99.84 - - 96.17 

GGD1 

Grayscale 99.69 97.69 97.32 88.29 

RGB 99.69 - - 91.78 

YCbCr 99.84 - - 95.52 

GGD2 

Grayscale 99.53 97.31 96.90 87.59 

RGB 99.69 - - 90.93 

YCbCr 99.84 - - 95.13 

GGD1+GMapp 

Grayscale 99.69 98.61 98.50 90.61 

RGB 99.84 - - 93.97 

YCbCr 100.00 - - 96.09 

GGD1+GM 
RGB 100.00 - - 94.24 

YCbCr 100.00 - - 97.10 

LBP-ED 

 

 

Grayscale 98.59 93.48 91.67 85.77 

RGB 99.22 - - 90.03 

YCbCr 99.37 - - 93.95 

Table 0.3 ML-CBIR using fine (K=1) KNN. 

ML-CBIR  

(SVM) 
Color Space VisTex-40 Kylberg-27 Kylberg-28 Stex 

E2 

Grayscale 99.69 93.43 96.38 87.13 

RGB 99.69 - - 89.89 

YCbCr 99.84 - - 93.29 

GGD1 

Grayscale 99.69 97.96 98.75 87.64 

RGB 99.84 - - 90.05 

YCbCr 100.00 - - 93.21 

GGD2 

Grayscale 88.69 97.59 98.66 87.24 

RGB 99.84 - - 89.67 

YCbCr 99.84 - - 93.04 

GGD1+GMapp 

Grayscale 99.69 98.70 99.04 89.92 

RGB 100.00 - - 93.49 

YCbCr 100.00 - - 95.65 

GGD1+GM 
RGB 100.00 - - 94.10 

YCbCr 100.00 - - 96.99 

LBP-ED 

 

 

Grayscale 86.06 93.43 96.29 86.66 

RGB 95.50 - - 88.31 

YCbCr 97.32 - - 93.11 

Table 0.4 ML-CBIR using SVM. In GGD1, GGD2, E2 and LBP linear kernel and in 

GGD1+GMapp and GGD1+GM the KLD kernel are applied. 
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Annex V 

 

In proposal, we used grayscale component of images and 4-pixel overlapping 

subdivisions into blocks. A set of experiments were conducted on the ISIC-

32 dataset. On the one hand, feature extraction based on RCT-Plus and GGD 

modeling was applied to each sub-image yielding a set of feature vectors. As 

we experienced and examined many retrieval schemes using RCT-Plus with 

various combinations of scale levels and directional orientations, we chose 3 

scale levels and 8 directions at each scale level for the subsequent analysis. 

Thus, one image decomposition results into  24 contourlet sub-bands. 

Applying GGD modeling and  estimating α and β parameters on each sub-

band yield a feature vector with 48 components. 

On the other hand, a class label was assigned to each sub-image of the ISIC-

32 dataset according to the following rule: if the ratio of lesion pixels in the 

corresponding ground truth segmentation map was greater than a pre-defined 

threshold T%, the class label was set to 2 (unhealthy skin) otherwise it was set 

to the value 1 (healthy skin). The choice of the threshold value T% was made 

empirically. Typically, test values range from 0% to 90% using a step of 10.  

Consequently, for each new threshold T%, a new ground truth labeling set was 

defined and assigned to the feature vectors to form a new feature dataset 

(Dataset-T%). 

For the learning process of KNN and SVM algorithms (offline phase), the 

selected feature dataset (Dataset-T%) was split into train data (3024 feature 

vectors and labels) and test data (432 feature vectors and labels) 

corresponding to 28 and 4 original ISIC images respectively. Both KNN and 

SVM algorithms were considered with either Euclidean (ED) or KLD 

distances. Moreover, the cross-validation approach was applied during the 

learning phase with a 10-fold data split for both SVM and KNN. 

The online detection phase is meant to detect skin abnormality in each sub-

image of the test data. For this purpose, the trained model classifier was used 

to predict and assign a class label 1 (healthy skin) or 2 (unhealthy skin) for 

each input feature vector from the test data.  

In order to evaluate the effectiveness of the abnormality detection, we firstly 

compare the predicted labels to the ground truth ones and calculate the 
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Precision, Recall, and detection Accuracy metrics under the following varying 

parameters: the factor K (in KNN algorithm), the kernel type in SVM, the type 

of distance metric in either KNN or SVM and the selected dataset Dataset-

T%.  

Table 0.5 displays a sample of obtained results for KNN classifier. In Table 

0.6 more detection results are reported by considering the SVM classifier with 

linear kernel and Euclidean distance ED. The whole detection map was 

constructed by mosaicking a set of blocks (sub-images) tagged by the 

predicted class labels. Superimposing the constructed detection map on the 

original test image shows the segmentation results and determines the 

abnormal skin image regions. Figure 0.6 presents examples of mapped results 

on original test images using KNN with image features Dataset-0%, Dataset-

30%, and Dataset-40%. It appears the results from Dataset-30% show higher 

recall in KNN. 
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Dataset-T% 

 

Distance K Precision Recall Accuracy 

0% 
 

ED 7 90.10 93.70 93.30 

KLD 87.40 92.20 92.30 

10% 
 

ED 7 83.30 94.80 92.00 

KLD 87.57 97.37 94.21 

20% 
 

ED 7 76.54 95.80 89.00 

KLD 81.44 97.64 92.00 

30% 
 

ED 7 78.40 93.70 89.35 

KLD 79.60 98.43 91.20 

40% 
 

ED 7 74.00 91.34 88,00 

KLD 74.25 97.64 89.35 

50% 
 

ED 7 70.34 90.00 87.04 

KLD 71.34 91.80 87.30 

60% 
 

ED 7 62.83 87.40 85.88 

KLD 68.00 95.28 87.04 

70% 
 

ED 7 55.20 92.40 80.00 

KLD 63.53 96.23 85.64 

80% 
 

ED 7 55.32 82.70 83.33 

KLD 56.40 92.13 82.64 

90% 
 

ED 7 55.71 92.22 83.10 

KLD 55.00 93.33 82.70 

Table 0.5 A sample of abnormality detection results, Precision, Recall and Accuracy, 

corresponding to various selected feature datasets (Dataset-T %) from ISIC-32. The KNN 

classification algorithm is based on either KLD or ED distance. The factor K is equal to 7. 

 

Dataset-T% 

 

Precision Recall Accuracy 

0% 87.10 89.10 90.30 

10%  82.74 91.45 90.30 

20%  77.11 89.51 87.73 

30%  74.23 88.32 86.57 

40%  71,00 86.61 85.65 
Table 0.6 A sample of abnormality detection results, Precision, Recall and Accuracy, 

corresponding to various selected feature datasets (Dataset-T %) from ISIC-32. The considered 

classification algorithm is SVM with linear kernel and ED distance. 
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Figure 0.6 Examples of primary abnormal detection results mapped onto original test images 

from ISIC-32 dataset. The considered classifier is KNN with K=7 and KLD distance, operating 

on the feature datasets a) Dataset-0%, b) Dataset-30%, and c) Dataset-40%. 

 


