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Résumé

L’utilisation croissante des véhicules aériens sans pilote (UAV) dans les applications
civiles nécessite des méthodes fables pour la navigation autonome, en particulier pour
la détection de zones d’atterrissage sûres (SLZ). Cette thèse explore des méthodologies
d’apprentissage profond afn d’améliorer la détection de SLZ à partir d’images capturées
par UAV, avec un accent sur la génération de cartes de sécurité denses en temps réel et
l’adaptation à des environnements statiques et dynamiques.

Le chapitre 1 présente le rôle croissant des UAV dans les applications modernes et
souligne l’importance des atterrissages autonomes sûrs. Il expose les motivations, les
défs de recherche et les questions principales qui orientent cette thèse, en mettant en
avant l’intégration de la vision par ordinateur dans la navigation des UAV.

Le chapitre 2 fournit une revue complète de l’état de l’art en reconnaissance visuelle.
Il couvre à la fois la détection d’objets et la segmentation d’images, en détaillant les
méthodes antérieures à l’apprentissage profond (fondées sur des descripteurs classiques)
ainsi que les approches modernes basées sur les réseaux de neurones convolutifs (CNN).
Une attention particulière est portée aux architectures U-Net, aux fonctions de perte
utilisées en segmentation et aux métriques d’évaluation. Le chapitre se termine par une
revue de la littérature sur la détection de SLZ, la navigation UAV en environnements
dynamiques, et l’utilisation de la régression ordinale par CNN pour l’évaluation de la
sécurité.

Le chapitre 3 présente un modèle de régression supervisée utilisant une architec-
ture encodeur-décodeur pour générer des cartes de sécurité denses et continues à partir
d’images UAV. Cette méthode permet une évaluation fne de la sécurité du terrain,
contrairement aux approches de classifcation binaire.

Le chapitre 4 introduit OR-SLZNet, un modèle de régression ordinale profonde qui
combine des indices photométriques et géométriques tels que la couleur, la profondeur,
la planéité et l’inclinaison pour attribuer des niveaux de sécurité à chaque pixel. Le



xiii

modèle ofre un bon équilibre entre précision prédictive et efcacité computationnelle,
ce qui le rend adapté à un déploiement sur des UAV embarqués.

Le chapitre 5 propose un cadre unifé pour la détection de SLZ en environnements
dynamiques. Il fusionne la segmentation statique du terrain avec la détection d’objets
en temps réel, le suivi multi-objets et la prédiction de trajectoires. Un module de
compensation du mouvement par homographie assure l’alignement spatial des images
malgré le déplacement de l’UAV, permettant une mise à jour continue des cartes de
sécurité.

Les modèles proposés sont évalués sur plusieurs jeux de données publics d’UAV,
couvrant des scènes urbaines et naturelles variées, avec des vues nadir et obliques. Les
résultats expérimentaux confrment leur efcacité à générer des cartes de sécurité fables,
même dans des conditions difciles. Toutes les approches ont été conçues pour respecter
les contraintes de traitement en temps réel, ce qui les rend parfaitement adaptées à un
déploiement sur des plateformes UAV aux ressources limitées.



Abstract

The increasing use of Unmanned Aerial Vehicles (UAVs) in civilian applications ne-
cessitates reliable methods for autonomous navigation, particularly for SLZ detection.
This thesis investigates deep learning methodologies to enhance SLZ detection using
UAV-captured imagery, with a focus on generating dense safety maps in real-time and
adapting to both static and dynamic environments.

Chapter 1 introduces the role of UAVs in modern applications and highlights the
importance of safe autonomous landing. It outlines the motivation, research challenges,
and questions that guide the thesis, with emphasis on the integration of computer vision
into UAV navigation.

Chapter 2 provides a comprehensive review of the state of the art in visual recogni-
tion. It covers both object detection and image segmentation, detailing pre-deep learning
approaches (e.g., traditional feature-based methods) and deep learning-based solutions,
including modern convolutional neural networks (CNNs). Special attention is given to
U-Net architectures, segmentation loss functions, and performance metrics. The chapter
concludes with a literature review of SLZ detection methods, UAV navigation in dynamic
environments, and the use of CNN-based ordinal regression for safety assessment.

Chapter 3 introduces a supervised deep regression model based on an encoder-decoder
architecture that generates dense, continuous safety maps from UAV imagery. This
method allows for fne-grained evaluation of terrain safety compared to binary classif-
cation schemes.

Chapter 4 presents OR-SLZNet, a deep ordinal regression model that combines pho-
tometric and geometric cues such as color, depth, fatness, and inclination to assign
safety levels to each pixel. The model balances predictive accuracy and computational
efciency, enabling deployment on lightweight UAV platforms.

Chapter 5 proposes a unifed framework for SLZ detection in dynamic environments.
It fuses static terrain segmentation with real-time object detection, multi-object track-
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ing, and trajectory prediction. A homography-based motion compensation module en-
sures consistent spatial alignment despite UAV movement, supporting continuous safety
map updates.

The proposed models are evaluated on multiple public UAV datasets covering varied
urban and natural scenes with both nadir and oblique views. Experimental results
confrm their efectiveness in generating reliable safety maps, even under challenging
conditions. All approaches are designed to meet real-time constraints, making them
well-suited for deployment on resource-limited UAV platforms.



Chapter 1

Introduction

1.1 UAV Adoption and Applications

Unmanned Aerial Vehicles (UAVs), or drones, have shifted from niche tools to widely
adopted civil platforms. Relative to crewed aviation, they ofer rapid feld deployment
in constrained or hazardous settings and increasingly automate aerial data acquisition.
With high-resolution imaging and complementary sensors, UAVs provide on-demand
measurements that feed operational workfows across sectors [192, 239, 113, 163, 8].

Several factors have accelerated adoption. First, cost efectiveness: compared to
manned aircraft, UAVs reduce design, manufacturing, and operating expenses, broaden-
ing access to aerial capabilities [113]. Second, accessibility: many systems ofer vertical
take-of and landing, removing the need for runways and facilitating use in constrained
or remote sites. Third, safety: removing onboard crews lowers the risk of casualties in
malfunction scenarios, which is crucial for dangerous or complex missions [170]. Fourth,
versatility: platforms span sizes and confgurations suited to tight spaces and special-
ized tasks [150]. Fifth, data: integrated cameras and sensors deliver rich measurements
for analysis across domains such as agriculture, environment, and infrastructure [150].
Finally, evolving regulations and airspace integration frameworks are enabling safer op-
erations and wider commercial uptake [170].

Across civil sectors, UAVs now enable precision agriculture (crop-health monitoring,
soil assessment, variable-rate input application), mapping and surveying (photogramme-
try, topographic reconstruction, construction progress monitoring), and infrastructure
inspection (bridges, power lines, pipelines, rail corridors, and buildings). They sup-
port environmental monitoring and conservation through pollution tracking, habitat and
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wildlife observation, and forest-health assessments; they enhance emergency response
with rapid scene awareness for search and rescue, disaster assessment, and wildfre mon-
itoring; and they provide time-critical logistics in hard-to-reach communities, notably
for medical supplies [92, 191, 20, 34, 93, 150, 170].

1.2 Autonomous Safe Landing Zone Detection for UAVs

Regardless of the application, every UAV mission must ultimately end with a safe land-
ing that protects people, infrastructure, and the drone itself. The landing phase is often
the most safety-critical portion of the fight, as it typically occurs in cluttered, con-
strained, or partially unknown environments and may coincide with degraded sensing,
communication, or power margins. Ensuring that the landing decision can be made
autonomously and reliably—rather than relying solely on a remote pilot’s situational
awareness—is therefore a central requirement for scalable, repeatable UAV operations.

A key barrier to fully realizing the potential of UAVs is the design of reliable au-
tonomous navigation systems. Beyond reducing operator workload, autonomy must
support safe maneuvering around obstacles, robust operation under uncertainty, and
resilience to degraded or unavailable Global Navigation Satellite Systems (GNSS) or
communication links. These capabilities are essential for beyond-visual-line-of-sight
(BVLOS) operations—fights where the remote pilot cannot maintain direct visual con-
tact—because the aircraft must sense and avoid, replan, and execute contingencies with-
out continuous human input, enabling safe, compliant integration into civilian airspace [150,
89, 107].

Achieving this level of autonomy requires a comprehensive perception stack that
fuses complementary onboard sensing to provide situational awareness and inform deci-
sion making. Four core functionalities are particularly critical. Internal state awareness
monitors platform health via real-time telemetry (e.g., power, temperature, vibration,
fault indicators), enabling self-diagnosis and safe fallback behaviors [2]. Environmen-
tal perception characterizes the external scene—terrain, structures, and weather—using
multimodal sensors such as RGB and depth cameras, LiDAR, radar, and thermal imag-
ing [46, 17], supporting semantic understanding and terrain assessment. Target and
landmark recognition detects, classifes, and tracks salient objects (e.g., people, vehicles,
markers), a capability that has been signifcantly strengthened by deep learning-based
detectors [175, 205]. Finally, obstacle detection and classifcation identifes and diferen-
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tiates static and dynamic hazards, leveraging sensor fusion and learning-based segmen-
tation to enable robust collision avoidance under diverse environmental conditions [54].

Safe Landing Zone (SLZ) detection operates at the intersection of these modules.
It integrates semantic understanding with geometric assessment to evaluate candidate
landing sites in terms of both static terrain properties (surface type, inclination, rough-
ness, structural integrity) and dynamic constraints, including moving agents, transient
obstacles, and short-term changes in the environment. Vision-based SLZ approaches
are particularly attractive due to their low cost, high spatial resolution, and compat-
ibility with embedded computing platforms. Recent methods train deep networks on
annotated aerial datasets to generate dense, pixel-wise safety maps that score or rank
feasible landing areas in real time [101, 168, 71]. Such maps can be continuously up-
dated along the fight path, enabling context-aware selection of nominal, alternate, and
emergency landing sites.

Reliable SLZ detection is therefore a foundational capability for civil UAV operations
rather than an optional add-on. First, it enhances safety by reducing the risk of colli-
sion with people, infrastructure, vehicles, or natural obstacles during both nominal and
contingency landings [92, 129]. Second, it increases mission robustness: when weather
deteriorates, the planned site becomes unusable, or GNSS/communications are lost, the
UAV can autonomously identify suitable alternatives within its reachable footprint (see
Figure 1.1). Third, it improves operational efciency by limiting time spent hovering or
searching for viable sites, conserving limited battery or fuel and extending efective range
and task throughput. Finally, by enabling consistent landing decisions across heteroge-
neous environments—urban, rural, industrial, coastal, or mountainous—SLZ detection
supports scalable deployment of autonomous UAV services in realistic, safety-critical
conditions [23, 100, 89].
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Figure 1.1: Examples of emergencies that occur when a UAV is in fight [92].

1.2.1 Key Factors in SLZ Selection

Selecting a SLZ is pivotal for fight safety and mission success. The assessment spans
two complementary domains, site conditions and obstacle environment that must be
judged jointly to determine suitability [151, 1, 56].

Site conditions: The landing surface should provide sufcient usable area relative
to the vehicle’s footprint (wingspan or rotor disc), with an additional safety margin to
accommodate touchdown dispersion, rollout, and minor crosswind corrections. Local
slope is ideally near level to minimize tipping or post-contact sliding, as excessive incli-
nation can destabilize the airframe. Surface roughness and texture also matter: large
debris, holes, vegetation, or protrusions threaten landing gear integrity and can induce
shocks that compromise state estimation. When possible, the site orientation should
allow approaches into the prevailing wind to aid deceleration, fare, and lateral control.

Obstacle environment. A clear approach/egress corridor is required to maintain
safe clearance during descent, fare, and potential go-around. Tall obstacles in the near
feld (e.g., buildings, trees, poles, terrain ridges) reduce vertical margins, while insuf-
cient horizontal standof limits options for missed approaches or emergency maneuvers.
Ensuring a clear glide path with adequate lateral bufers mitigates gust-induced drift
and reduces the chance of sensor occlusion.

Additional operational factors. The ground should possess adequate bearing ca-
pacity to prevent gear sinkage or overturning an especially important consideration for
heavier platforms and saturated or compliant surfaces. Illumination and visibility must
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be sufcient for detection and alignment; in dusk, night, or degraded visual environ-
ments, either the SLZ should be illuminated or the UAV equipped with suitable lighting
or thermal sensing. Dynamic hazards (people, vehicles, animals), overhead utilities, wa-
ter bodies, and sloped rooftops introduce additional risk and should be excluded from
candidate sites.

A disciplined evaluation of these cues lowers the likelihood of damage or mission
loss. Contemporary SLZ detection pipelines encode such geometric, appearance, and
contextual features into learning-based models to deliver real-time suitability maps and
risk scores [85, 241].

1.2.2 Types of Landing Zones

Understanding how landing zones are characterized and classifed is essential for de-
signing robust guidance, navigation, and control pipelines. At a high level, Figure 1.2
summarizes common categories across operating environments (indoor vs. outdoor) and
platform dynamics (static vs. dynamic), highlighting how each combination imposes
distinct sensing and planning requirements [191].

Figure 1.2: Diferent types of landing zones [191].

Indoor environments are typically structured and space-constrained, with GNSS
often unavailable or unreliable. Candidate landing areas tend to be planar and relatively
static (e.g., factory foors, warehouse aisles, inspection halls), yet clutter, tight corridors,
and moving agents still complicate approach and touchdown. SLZ detection indoors
generally relies on vision (e.g., cameras detecting fducials, high-contrast patterns, or
texture-poor fat patches) complemented, when needed, by LiDAR or depth sensing to
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recover geometry and free space. Onboard perception and compute must operate in real
time to localize markers, estimate surface suitability, and maintain safe corridors for
approach and aborts [191].

Outdoor environments encompass delivery, inspection, security, agriculture, and
humanitarian missions, and are inherently more variable. Weather, illumination, ter-
rain, and dynamic obstacles (vehicles, pedestrians, animals) require fusing appearance
cues with geometry and wind-aware planning. In practice, pipelines integrate obsta-
cle detection, terrain and roughness estimation, and short-horizon trajectory generation
with wind and drift compensation so that approach, fare, and go-around remain feasible
under changing conditions [191].

Platform dynamics introduce a complementary axis of complexity. Static landing
zones are fxed, fat areas such as helipads, rooftops, runways, or open felds. When these
are known static sites, they are often pre-surveyed or visually marked (e.g., geometric
shapes, high-contrast paint) so that onboard vision can lock onto expected patterns
and refne pose for precision touchdown. By contrast, unknown static sites lack prior
labels or fducials, requiring the vehicle to search and rank candidate patches online
using fatness, slope, roughness, and clearance cues; in more complex scenes, LiDAR or
thermal/infrared can assist in disambiguating safe surfaces [191]. Dynamic landing zones
are moving platforms (e.g., trucks, ships, buses). Known dynamic platforms may carry
distinctive markers or be cataloged a priori, enabling target recognition and motion-
aware tracking; landing then couples visual servoing with predictive control that accounts
for the platform’s velocity and heading. Unknown dynamic platforms are unmarked and
present the most challenging case: the UAV must detect, track, and continually reassess
feasibility in the presence of platform motion, occlusions, and environmental disturbance,
while preserving safe abort options [191].

Complementing this environment and dynamics view, Figure 1.3 (from [226]) pro-
poses a vision-centric taxonomy that groups autonomous landing scenes as static, dy-
namic, or complex, with subclasses defned by the detection target (e.g., marked pad
vs. unmarked terrain vs. moving vehicle). This perspective emphasizes the perception
bottlenecks, including marker detection, terrain suitability estimation, obstacle clear-
ance, and motion-compensated tracking, which are especially salient in GPS-denied or
emergency landings where decisions must be taken with minimal delay and strong safety
guarantees [226].



Landing in the GPS-Denied 
situation or emergency 

Landing in static scenes 

Landing in dynamicscenes 

La nding in complex sce nes 

Y Target Detect 
1 -

Co ope ra tiveta rge t 

Naturalscenario 

1.3. WHY VISION-BASED SLZ MAPPING MATTERS 7

Figure 1.3: Vision-based classifcation of autonomous UAV landing scenarios in GPS-
denied or emergency conditions. The framework distinguishes between static, dynamic,
and complex scenes, with target detection strategies categorized into cooperative and
natural scenarios [226].

1.3 Why Vision-Based SLZ Mapping Matters

SLZ mapping aims to determine where an unmanned aerial vehicle (UAV) can land
safely, and with what level of risk. A useful SLZ map does more than separate landable
from non-landable areas: it provides a graded assessment that accounts for obstacles,
surface quality, dynamic agents, and uncertainty. For small and medium UAVs, passive
vision is particularly well suited to this task. Cameras are light, inexpensive, and energy-
efcient, while modern learning-based methods can convert image streams into landing
decisions directly onboard the platform [160, 20].

A frst reason for using vision lies in semantic understanding. Landing safety depends
on what is present on the ground, not only on whether an area appears empty. Vision-
based models can distinguish between surfaces such as short grass, concrete, water,
shrubs, vehicles, or human crowds, and detect thin or small structures that are critical
for safety, such as poles, fences, or cables [232, 241]. Two regions with similar geometry
may have very diferent risk profles; access to appearance and context allows the SLZ
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map to refect these diferences and to provide interpretable reasons for labeling a region
as safe or unsafe.

Vision also contributes geometric information without requiring heavy active sensors.
Using monocular or stereo depth cues, visual odometry, and structure-from-motion,
the UAV can estimate local slope, roughness, height discontinuities, and distances to
obstacles [115, 35, 86]. Optical fow further supports the detection of looming obstacles
and helps assess relative motion during approach [145]. Although individual estimates
may be noisy, combining observations over several frames and viewpoints generally yields
geometric information that is sufcient for assessing touchdown stability and clearance.

In addition, vision enables SLZ mapping to account for dynamic elements. Object
detection and tracking can identify and follow pedestrians, vehicles, or other moving
agents in the scene [144]. This allows the system to down-rank regions that are currently
free but likely to be occupied shortly, which is essential during fnal approach when the
situation can change within a few seconds. When required, simple activity cues can also
improve awareness in shared or constrained environments [108].

From a systems perspective, vision integrates well with real-time, onboard processing.
Current embedded accelerators can run compact neural networks at sufcient frame
rates to update the SLZ map throughout descent. This enables a closed-loop interaction
with guidance and control: as altitude decreases and visibility improves, the system
refnes candidate regions, rejects zones that become occluded or unsafe, and authorizes
landing only when the estimated safety level exceeds a predefned threshold. Because
the outputs are spatial and semantic, they can also be visualized as safety maps and
hazard overlays, which facilitates human supervision, debugging, and compliance with
explainability requirements [242, 160].

Other sensing modalities remain important but play a complementary role. LiDAR
provides accurate 3D measurements but often at higher cost, mass, and power consump-
tion, which can be limiting for small UAVs or large feets [129]. Radar is robust in
adverse weather and over long ranges but ofers limited resolution for fne-grained land-
ing decisions [195]. Thermal cameras are valuable at night or for search-and-rescue but
do not provide the detailed textures and colors that many vision models exploit for gen-
eral SLZ assessment [10]. In contrast, passive vision cameras are comparatively low-cost
and lightweight while still ofering high spatial resolution, making them particularly at-
tractive as the primary sensing modality for SLZ perception. In hybrid confgurations,
cameras typically form the core perception source, while inertial sensors, altimeters,
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GNSS (when available), and selective active ranging are fused to improve robustness in
challenging conditions [104, 48].

Finally, vision-based SLZ mapping benefts from a practical data and deployment
ecosystem. As illustrated in Figure 1.4, our AI-embedded vision model architecture en-
ables real-time, onboard SLZ perception and decision support. Training data can be
collected directly from UAV operations, augmented synthetically, or generated in simu-
lation, making it possible to expose models to diverse environments, seasons, and rare
hazards. Domain adaptation techniques then help maintain performance as operating
conditions change. Together, the semantic richness, geometric cues, dynamic awareness,
favorable size–weight–power characteristics, and data efciency of camera-based systems
explain why vision is increasingly adopted as the primary modality for SLZ mapping,
and why it serves as the foundation for the risk-aware landing framework developed in
this thesis [129, 242, 160].

1.4 Key Challenges

Developing a reliable and efcient system for SLZ detection in UAV operations involves
addressing several tightly coupled challenges that arise from both the complexity of
real-world environments and the constraints of onboard platforms. First, SLZ perception
must operate in dynamic and uncertain scenes. A region that appears safe at one instant
may rapidly become hazardous due to the motion of vehicles, pedestrians, animals, or
other UAVs. Consequently, the system must continuously update its assessment of can-
didate landing areas by coupling terrain analysis with real-time detection, tracking, and
short-horizon motion reasoning, while running at low latency on resource-constrained
embedded hardware [71, 101]. Ensuring that such models remain both responsive and
accurate under operational constraints is a central difculty.

A second challenge is the extraction of semantically meaningful safety cues from vi-
sual data. Raw images must be converted into estimates of surface type, roughness,
structural integrity, slope, and contextual usage, while also identifying hazardous ele-
ments such as cables, poles, vehicles, or crowds [168, 191]. This often requires the fusion
of complementary cues (e.g., RGB appearance, depth proxies, fatness, or inclination
maps) under varying illumination, viewpoints, and weather conditions. Designing mod-
els that can robustly learn and generalize these relationships, rather than overftting to
specifc environments or textures, remains non-trivial.
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Figure 1.4: AI-embedded vision model architecture for real-time, onboard SLZ percep-
tion and decision support [163].

A third difculty lies in jointly modeling static and dynamic cues within a single SLZ
framework. Many existing approaches treat terrain classifcation, obstacle detection,
and motion analysis as separate components, which complicates temporal consistency
and may lead to conficting decisions [226, 71]. In practice, however, landing safety
depends on the interaction between long-term static properties (e.g., surface geometry
and material) and transient events (e.g., a pedestrian crossing a previously safe area).
An efective SLZ system must therefore integrate high-resolution semantic maps with
time-sensitive motion information in a coherent, spatially aligned, and temporally stable
representation.
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These perception requirements are further constrained by the limited computational,
memory, and energy budgets of UAV platforms. High-resolution aerial imagery and
multi-modal inputs are costly to process in real time, especially when employing deep
neural networks with millions of parameters [101, 191]. Achieving an acceptable trade-
of between accuracy, complexity, and latency demands compact architectures, efcient
feature sharing, and task-aware optimization strategies that preserve safety-critical per-
formance while respecting onboard limitations.

Generalization across diverse operating conditions represents another major chal-
lenge. In real deployments, UAVs encounter heterogeneous environments, including
urban areas, roads, rooftops, industrial sites, natural felds, coastal regions, and un-
structured terrain, observed from varying altitudes and viewing angles, and populated
by diferent types of objects and activities [191, 168]. Appearance shifts due to ge-
ography, season, illumination, and sensor characteristics can signifcantly degrade the
performance of models trained on limited datasets. Robust SLZ detection therefore re-
quires representations and training strategies that maintain reliable performance across
domains without exhaustive environment-specifc annotation.

Finally, safe decision-making must be maintained under uncertainty and degraded
sensing. Adverse weather (haze, fog, rain, snow), low sun angles, shadows, glare, mo-
tion blur, occlusions, and sensor noise can reduce the reliability of both semantic and
geometric estimates [71, 226]. In such conditions, the system must avoid overconfdent
predictions, propagate uncertainty into the SLZ map, and, when necessary, delay or
refuse landing until sufcient evidence is available. Developing models that explicitly
handle incomplete or ambiguous information, and that can adjust their behavior accord-
ing to confdence levels, is essential to guarantee operational safety.

In light of these challenges, this thesis proposes a vision-based SLZ mapping frame-
work that integrates semantic segmentation, deep regression, ordinal safety ranking,
and dynamic obstacle forecasting into a unifed and computationally efcient architec-
ture. The proposed approach is designed for real-time onboard deployment, evaluated
across diverse datasets and viewpoints, and analyzed under both nominal and degraded
conditions to demonstrate its robustness and applicability to real-world UAV landing
scenarios.
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1.5 Research Problem

The growing use of Unmanned Aerial Vehicles (UAVs) in civilian, industrial, and emergency-
response applications demands reliable mechanisms for identifying SLZs under nominal,
degraded, and time-critical conditions. In many practical scenarios such as GNSS out-
ages, communication loss, low battery, system faults, or sudden environmental changes
the UAV must autonomously select a landing site using only onboard sensing and com-
putation. Passive vision sensors are particularly attractive for this task due to their
favorable size–weight–power characteristics and their ability to support both semantic
scene understanding and geometric inference. However, exploiting vision to produce
landing decisions that are sufciently accurate, interpretable, and robust for real-world
deployment remains a challenging open problem.

Existing SLZ detection approaches present several critical limitations. A large body
of prior work relies on binary safe/unsafe classifcation or on coarse, rule-based heuristics,
which fails to refect the graded nature of landing risk and provides limited fexibility for
decision-making in constrained or partially suitable environments. Many methods focus
on static or simplifed scenes, neglecting dynamic obstacles such as pedestrians, vehicles,
or other UAVs and ignoring how short-term motion patterns infuence future occupancy
of candidate landing areas. Other solutions depend on costly or heavy active sensors
(e.g., LiDAR) or on computation that exceeds the capabilities of embedded platforms,
hindering deployment on small and medium UAVs. Furthermore, existing evaluations
are often dataset- or scenario-specifc, with limited evidence of generalization across
diverse viewpoints, terrains, and environmental conditions.

From an operational perspective, safe landing decisions must integrate multiple
sources of information into a coherent representation: semantic attributes of the terrain
(e.g., roads, grass, rooftops, water), geometric properties (e.g., fatness, slope, rough-
ness), dynamic agents and their predicted motion, and the ego-motion of the UAV itself.
In most prior work, these components are treated as disjoint modules whose outputs
are combined through ad hoc rules, leading to inconsistencies, latency issues, and a lack
of principled handling of uncertainty. There is a need for a unifed, image-aligned SLZ
mapping framework that continuously updates landing suitability in real time, explicitly
models safety as an ordered quantity, and remains compatible with the computational
and energy constraints of onboard hardware.
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The central research problem addressed in this thesis is therefore to design, imple-
ment, and evaluate a vision-based SLZ mapping framework that: (i) produces dense,
fne-grained and interpretable safety maps instead of binary decisions; (ii) leverages both
photometric and geometric cues to capture the structure of landing risk; (iii) extends
naturally to multi-level ordinal safety scales suitable for risk-aware planning; (iv) in-
corporates dynamic obstacles and UAV ego-motion to maintain a temporally consistent
assessment of landing feasibility; and (v) satisfes real-time and resource constraints for
deployment on practical UAV platforms. The subsequent chapters develop and vali-
date this framework through continuous deep regression, ordinal regression networks
for visual safety mapping, and an integrated pipeline for SLZ identifcation in dynamic
environments.

1.6 Research Questions

To address the aforementioned challenges, this thesis investigates the following research
questions:

1. How can deep learning-based vision models be designed to accurately
predict SLZs for UAVs in both urban and natural scenes?
This explores the potential of semantic segmentation and object detection tech-
niques in generating dense safety maps.

2. What is the impact of integrating both photometric and geometric cues
such as color, depth, fatness, and inclination—on the accuracy and re-
liability of SLZ prediction?
This investigates whether multimodal input improves scene understanding for land-
ing zone assessment.

3. How can dynamic obstacles and UAV motion be incorporated into the
SLZ detection process to ensure safe landings in real-time scenarios?
This question focuses on integrating object detection, tracking, and motion com-
pensation through homography.

4. What design strategies can ensure that the proposed SLZ detection
framework remains computationally efcient and suitable for real-time
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deployment on resource-constrained UAV platforms?
This addresses the trade-of between model complexity and inference performance.

5. How does the proposed approach perform across diverse environments
such as construction zones, suburban roads, or natural terrain—when
compared to existing state-of-the-art methods?
This evaluates generalization and robustness of the proposed system in varying
operational conditions.

1.7 Thesis Organization

The remainder of this document is organized as follows.

– Chapter 2 reviews the state of the art in visual recognition and SLZ detection for
UAVs. It covers object detection, semantic segmentation, relevant deep learning
architectures, loss functions, and evaluation metrics, and the literature review.

– Chapter 3 presents the deep regression-based method for continuous SLZ safety
mapping from UAV imagery, detailing the network architecture, training strategy,
and experimental evaluation on static scenarios.

– Chapter 4 introduces the OR-SLZNet ordinal regression framework for multi-
level safety assessment, describes the integration of photometric and geometric
cues, and compares its performance against baseline classifcation and regression
models.

– Chapter 5 extends the framework to dynamic environments by integrating ter-
rain segmentation, object detection, multi-object tracking, trajectory prediction,
and homography-based motion compensation into a unifed SLZ pipeline, with
experiments on realistic UAV video sequences.

– Chapter 6 summarizes the main fndings of the thesis, discusses limitations, and
outlines perspectives for future research on robust, certifable SLZ assessment and
its integration into broader autonomous navigation systems.



Chapter 2

State of the Art

2.1 Visual Recognition Problems in Computer Vision

Computer vision is a multidisciplinary feld that enables computers to analyze digital
images or videos at a high level, similar to how humans perceive visual information. It
relies on techniques from computer science, mathematics, and artifcial intelligence to in-
terpret visual data, extract meaningful information, and support autonomous or assisted
decision-making. Today, computer vision underpins a broad range of applications, in-
cluding autonomous driving, medical imaging, augmented reality, surveillance, robotics,
and industrial automation. It can recognize objects in photos, interpret complex scenes,
and even anticipate future events based on visual cues. As hardware capabilities and
machine learning algorithms continue to advance, the boundaries of what is feasible with
computer vision are constantly being extended, creating new opportunities for innova-
tion and discovery [215, 198].
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Figure 2.1: Four Main Visual Recognition Tasks in Computer Vision

Within this feld, four main visual recognition tasks serve as core building blocks for
perception systems (Figure 2.1).
Image Classifcation. Image classifcation is the task of assigning a single label or cat-
egory to an entire image (Figure 2.1(a)). It underpins numerous applications, including
content-based image retrieval, industrial quality control, and computer-aided medical
diagnosis. The advent of deep learning, and in particular convolutional neural networks
(CNNs), has dramatically improved classifcation accuracy, enabling models to recognize
a wide variety of objects and scenes with high reliability [198]. In many computer vision
pipelines, image classifcation also serves as a foundational problem upon which more
complex recognition tasks are built.
Object Detection. Object detection extends image classifcation by simultaneously
recognizing and localizing multiple objects within an image using bounding boxes (Fig-
ure 2.1(b)). This capability is essential for tasks such as autonomous driving, UAV
navigation, surveillance systems, and augmented reality, where knowing what is present
is not sufcient without knowing where it is. Compared to pure classifcation, object de-
tection must address additional challenges, including scale variation, occlusion, overlap-
ping objects, and cluttered or dynamic backgrounds, which require robust and efcient
algorithms [215].
Semantic Segmentation. Semantic segmentation provides a denser and more detailed
understanding of the scene by assigning a semantic label to every pixel in the image
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(Figure 2.1(c)). This pixel-level categorization is crucial for applications that require
precise scene understanding, such as autonomous navigation, land-use mapping, medical
image analysis, and image editing. However, semantic segmentation is computationally
demanding and typically relies on large annotated datasets and high-capacity models,
which may limit deployment on resource-constrained platforms [102].
Instance Segmentation. Instance segmentation goes one step further by distinguish-
ing not only between semantic categories but also between individual object instances
within the same category (Figure 2.1(d)). Each object is segmented with pixel-level pre-
cision, making this task well suited to applications such as robotic manipulation, fne-
grained scene analysis, crowd understanding, and safety-critical decision-making where
accurate object boundaries and separations are essential. Despite these advantages,
instance segmentation remains highly challenging due to overlapping objects, complex
shapes, cluttered scenes, and large intra-class variability [102].

2.2 Object Detection

Object detection is a core building block of modern computer vision systems, bridging
the gap between image-level recognition and dense scene understanding. Instead of only
predicting which categories are present, detectors output a set of localized object hy-
potheses, each with a category label and spatial support (typically a bounding box, and
in some cases a coarse mask). This joint reasoning over category and location underlies
many applications introduced earlier—such as autonomous driving, UAV navigation,
surveillance, medical imaging, and human–computer interaction—where decisions de-
pend on both what is present and where it is [224, 248, 65].

Modern detection systems combine several design choices that jointly determine ac-
curacy, robustness, and efciency [65]. One concerns the representation of objects:
bounding boxes remain the dominant choice because of their simplicity and compu-
tational efciency [248], whereas pixel-wise masks, as used in semantic and instance
segmentation, provide fner localization for tasks that require precise shape information
(e.g., in medical imaging or high-precision inspection). A second concerns the detection
paradigm. Two-stage (region-based) detectors frst generate candidate regions and then
classify and refne them, typically achieving strong accuracy at higher computational
cost [224, 121]. One-stage (region-free) detectors perform classifcation and localization
in a single pass over dense sampling points or anchor grids, simplifying the pipeline and
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enabling real-time inference on embedded or resource-constrained platforms [65, 224]. In
practice, two-stage methods remain competitive when maximum accuracy is paramount,
while one-stage methods dominate latency-sensitive scenarios.

Object detection supports a broad range of domains, from face and pedestrian de-
tection in consumer devices and intelligent transportation, to text detection in natural
scenes, remote sensing analysis, and medical imaging. For autonomous vehicles and mo-
bile robots in particular, detection provides the foundational perception layer required
to identify obstacles, trafc participants, and relevant infrastructure, supporting robust
scene understanding and safe navigation in dynamic environments [248, 65]. Progress
in this feld has been accelerated by large-scale benchmarks such as PASCAL VOC,
MS COCO, and specialized datasets for faces and pedestrians, which ofer standardized
evaluation protocols for fair comparison of algorithms [224, 248].

As illustrated in Figure 2.2, the evolution of object detection over the past two
decades can be broadly divided into two periods [248]. The pre-deep learning era (before
2014) was dominated by hand-crafted features (e.g., HOG, SIFT) and classical classi-
fers (e.g., SVMs, boosting), as detailed in Appendix A. The deep learning-based era
(after 2014) was initiated by region-based convolutional frameworks and subsequently
advanced through end-to-end trainable two-stage and one-stage detectors. This transi-
tion led to substantial gains in accuracy, robustness, and scalability, establishing deep
neural networks as the de facto standard for modern object detection.

Figure 2.2: Road map of object detection [248].
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2.2.1 Deep Learning-Based Object Detection Methods

With the advent of deep learning, object detection underwent a fundamental transforma-
tion. Unlike traditional pipelines that relied on handcrafted features and independently
designed stages, deep learning-based approaches learn hierarchical, task-specifc feature
representations directly from data. Convolutional Neural Networks (CNNs) enable end-
to-end or near end-to-end training, integrating feature extraction, localization, and clas-
sifcation within unifed architectures. As a result, deep learning-based detectors have
achieved substantial improvements in accuracy, robustness, and scalability compared
to traditional methods, and now constitute the dominant paradigm in modern object
detection [224, 248].

Two-stage detectors

A central class of such approaches is formed by two-stage detectors, which operate
in two sequential steps: region proposal generation followed by region-wise classifcation
and bounding-box refnement. Although generally more computationally demanding
than one-stage designs, two-stage detectors typically deliver higher localization precision
and state-of-the-art performance on challenging benchmarks.
R-CNN (Regions with CNN Features) [68] was one of the pioneering deep learning-
based object detectors and marked the transition from handcrafted to learned features.
Its design combines (i) bottom-up region proposals obtained using Selective Search; (ii)
high-capacity CNNs to extract deep feature representations from each proposed region;
and (iii) class-specifc linear SVMs and bounding-box regressors for fnal classifcation
and localization. The model leverages supervised pretraining on large-scale image classi-
fcation datasets followed by task-specifc fne-tuning, which was crucial when detection
datasets were relatively small. R-CNN signifcantly improved detection accuracy over
traditional methods, but introduced several notable drawbacks [121]. First, training is
complex and multi-stage: the CNN, SVMs, and bounding-box regressors are trained
separately, making the pipeline cumbersome and difcult to optimize jointly. Second,
feature extraction is computationally and storage intensive: deep features must be com-
puted and cached for thousands of proposals per image, particularly expensive with
networks such as VGG-16. Third, inference is slow, as each region proposal is passed
independently through the CNN at test time, preventing real-time deployment. These
limitations motivated more efcient architectures (Figure 2.3).
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Figure 2.3: R-CNN framework for two-stage object detection [224].

SPPNet (Spatial Pyramid Pooling Network) [76] was proposed to accelerate R-
CNN and improve robustness to scale and aspect ratio. Instead of forwarding each
proposal independently through the CNN, SPPNet computes a single convolutional fea-
ture map for the entire image. A Spatial Pyramid Pooling (SPP) layer is then applied on
top of the last convolutional layer to generate fxed-length feature vectors for proposals of
arbitrary size. Concretely, the SPP layer overlays multiple spatial grids (e.g., 1×1, 2×2,
3×3, 6×6) on the proposal’s feature map and performs pooling (typically max pooling)P 

2in each bin; the pooled outputs are concatenated into a descriptor of length K ℓ nℓ 

for a feature map with K channels and grid sizes nℓ×nℓ. This preserves coarse spatial
layout and multi-scale context while eliminating the need to warp proposals to a fxed
size, substantially reducing redundant computation and improving detection speed [224].
However, SPPNet still relies on a multi-stage training scheme, and in its original form
does not backpropagate gradients through all convolutional layers before the SPP layer,
efectively freezing early layers and limiting full end-to-end optimization [121]. Its frame-
work within the two-stage pipeline is shown in Figure 2.4.
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Figure 2.4: SPPNet framework within a two-stage detector [224].

Fast R-CNN [67] addresses key drawbacks of both R-CNN and SPPNet by enabling
efcient, single-stage training while sharing computation across all region proposals.
The image is frst processed by a CNN to generate a shared convolutional feature map.
Candidate regions (e.g., from Selective Search) are then projected onto this feature
map, and a Region of Interest (RoI) Pooling layer converts each projected region into
a fxed-size feature map by partitioning it into a grid and applying max pooling within
each cell. The pooled RoI features are passed through fully connected layers and then
branch into two output heads: a softmax classifer over object categories (including
background) and a class-specifc bounding-box regression module. This design allows
backpropagation through both the RoI Pooling and convolutional layers, enabling end-
to-end training (excluding proposal generation) and dramatically reducing redundant
computation, since the convolutional backbone is executed only once per image [224,
121]. Fast R-CNN achieves higher detection accuracy, signifcantly faster training, and
much faster inference than R-CNN and SPPNet (Figure 2.5).
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Figure 2.5: Fast R-CNN framework for two-stage object detection [224].

Faster R-CNN [178] represents a major step toward fully integrated, learnable detec-
tion pipelines by introducing the Region Proposal Network (RPN). Instead of relying on
external proposal mechanisms, the RPN is a fully convolutional module that operates
on the shared backbone feature map and, at each spatial location, predicts objectness
scores and bounding-box ofsets for a set of predefned anchors with diferent scales and
aspect ratios. High-scoring proposals are selected, refned, and then passed through RoI
Pooling (or RoI Align in later variants) and subsequent layers for classifcation and f-
nal localization. By sharing convolutional features between the RPN and the detection
head, Faster R-CNN eliminates the computational bottleneck of external proposals and
further improves accuracy [224]. Nonetheless, each RoI is still processed by region-wise
fully connected layers, so computational cost remains relatively high when a large num-
ber of proposals are used, which can hinder strict real-time performance. The overall
architecture is summarized in Figure 2.6.
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Figure 2.6: Faster R-CNN framework with integrated Region Proposal Network [224].

R-FCN (Region-based Fully Convolutional Network) [50] is proposed to further
reduce the computational overhead associated with per-RoI fully connected layers in
Faster R-CNN. R-FCN is designed as a nearly fully convolutional architecture in which
almost all computations are shared across the entire image. The key innovation is the
introduction of position-sensitive score maps, where each class is associated with a bank
of maps encoding responses for specifc relative positions (e.g., top-left, center, bottom-
right) within an object. For each RoI, Position-Sensitive RoI (PSROI) Pooling partitions
the RoI into a grid and pools from the corresponding position-sensitive channels, aggre-
gating spatially aligned responses into class scores. This mechanism preserves the neces-
sary translation variance for detection (unlike standard fully convolutional classifcation
networks, which are largely translation invariant) while avoiding heavy region-wise fully
connected sub-networks [224, 121]. As a result, R-FCN achieves accuracy competitive
with Faster R-CNN but with signifcantly improved efciency, making it well-suited for
large-scale detection scenarios (Figure 2.7).



Stage 1 

ln-p-ut_C_N_N_ map ~ --cl~-~_v_ 

Stage 2 

- ---- ~-----~-------r \ 
,-------------- .. 
:1 C+l Soft max ] ! 
1 1 

·------,' rn- ü Regressors ___ 
Image 

RPN 

R-FCN 

Position-sensitive 
feature map 

For each region 

2.2. OBJECT DETECTION 24

Figure 2.7: R-FCN framework with position-sensitive score maps [50].

One-Stage (Unifed) Detectors

One-stage detectors bypass the explicit region proposal stage and directly perform clas-
sifcation and bounding-box (or mask) regression in a single network pass over dense
sampling points or anchor boxes. By unifying detection into a single-stage formula-
tion, they substantially reduce computational overhead and are well-suited for real-time
applications, especially on embedded or resource-constrained platforms.
OverFeat [190] is an early single-stage detector that won ILSVRC-2013. The original
classifer is cast into a fully convolutional network by interpreting the fully connected
layers as 1×1 convolutions. This lets a single forward pass over an image of arbitrary
size produce dense class-score maps. As shown in Figure 2.8, panel (b), the image is
evaluated at multiple enlarged scales; for each scale the FC-as-CONV classifer outputs
an a×b grid of predictions, where a and b are the grid’s height and width (i.e., the
number of sliding-window positions along rows and columns).

To densify sampling without recomputing features, OverFeat applies ofset max pool-
ing after the last CONV layer. Pooling is repeated at every stride ofset, producing 3×3 

interleaved outputs per location—the red “3×3” in Figure 2.8(a). Consequently, each
scale yields a×b×9 candidate views that vote for object presence, improving robustness
while remaining efcient.
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Bounding boxes are obtained by a regression head applied only at locations whose
class score exceeds a threshold. Reusing the shared CONV features, the regressor pre-
dicts four continuous values (x, y, w, h) relative to that location/scale’s receptive feld;
only the regressor’s FC layers are evaluated, so no feature recomputation is needed. Fi-
nally, predictions from all locations, ofsets, and scales are combined by a greedy merge
procedure—functionally similar to non-maximum suppression but with score-weighted
box averaging—to produce the fnal detections. Despite its efciency, OverFeat’s accu-
racy lagged behind R-CNN methods [121], refecting early training challenges for FCNs
and the absence of later proposal/anchor mechanisms [224].

Figure 2.8: Illustration of the OverFeat detection framework [121]

You Only Look Once (YOLO) is a widely adopted one-stage object detection family
that has signifcantly advanced modern computer vision. Unlike traditional two-stage
frameworks such as Faster R-CNN, which decouple region proposal and classifcation,
YOLO formulates detection as a single regression problem and processes the entire image
in one forward pass [175]. This unifed design enables real-time inference with high
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throughput and low latency, making it well suited to time-critical applications such as
autonomous driving, security surveillance, and robotics.

Since its initial release by Redmon et al. in 2015, YOLO has undergone continuous re-
fnement across multiple versions, improving accuracy, speed, and generalization. Recent
variants are increasingly adapted to diverse imaging modalities including multispectral,
thermal, and hyperspectral data, broadening their use in remote sensing, environmen-
tal monitoring, and defense systems. Figure 2.9 illustrates the main milestones in the
evolution of the YOLO family from v1 to v11 [65].

Figure 2.9: Milestones in YOLO evolution (v1 to v11) [65].

YOLO Version Year Backbone Key Contributions Framework
YOLOv1 [175]
YOLOv2/9000 [176]
YOLOv3 [177]
YOLOv4 [21]
YOLOv5 [87]
YOLOv6 [109]
YOLOv7 [217]
YOLOv8 [212]
YOLOv9 [218]
YOLOv10 [216]
YOLOv11 [98]

2015
2016
2018
2020
2020
2022
2022
2023
2024
2024
2025

Custom CNN
Darknet-19
Darknet-53
CSPDarknet-53
CSP-based
EfcientRep
E-ELAN
C2f-based
GELAN
CSP variants
Enhanced CSP/C2PSA

Unifed single-stage detector
Anchors, multi-scale, 9000 classes
FPN-style multi-scale, residuals
SPP, PAN, rich augmentations
SPPF, PAN/FPN, strong augmentations, variants
RepVGG, TAL, deploy-focused design
Re-parameterized convs, efcient scaling
Decoupled head, multi-task support
PGI, improved mAP/FLOPs trade-of
NMS-free training/inference
Attention, multi-task, edge-ready design

Darknet
Darknet
Darknet
Darknet
PyTorch
PyTorch
PyTorch
PyTorch
PyTorch
PyTorch
PyTorch

Table 2.1: Overview of YOLO model evolution.

The evolution from YOLOv1 to YOLOv11, detailed in Appendix B and summa-
rized in Table 2.1, highlights steady gains in speed, accuracy, and efciency. Successive
versions introduce innovations such as multi-scale feature extraction, more expressive
backbones, improved feature aggregation, attention mechanisms, and deployment-aware
re-parameterization. As a result, the YOLO family has become a reference one-stage
detector for real-time applications, including autonomous navigation, multispectral anal-
ysis, industrial automation, and healthcare diagnostics. The most recent releases, such
as YOLOv10 and YOLOv11, further optimize computational cost while extending the
framework to tasks like instance segmentation, pose estimation, and generic image clas-
sifcation, reinforcing its role as a versatile backbone for modern computer vision. For
the object detection module in Chapter 5, we employ YOLOv11 as our primary detec-
tor [98]. YOLOv11 ofers a favorable trade-of between accuracy, inference speed, and
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deployment efciency, making it well suited to the real-time constraints of our UAV-
based SLZ detection framework.
SSD (Single Shot MultiBox Detector) [123]: In 2016, Liu et al. introduced the
Single Shot MultiBox Detector (SSD) to improve object detection speed while maintain-
ing high accuracy. Unlike YOLO [175], SSD utilizes a set of anchor boxes with multiple
scales and aspect ratios within each grid cell, discretizing the output space of bounding
boxes more efectively. A key innovation in SSD is its multi-scale feature map approach,
where object detection occurs at diferent layers of the network. Shallow feature maps
capture local information for precise object positioning, while deeper feature maps focus
on classifcation by leveraging segmentation information, shown in Figure 2.10. This
hierarchical detection strategy allows SSD to perform well across varying object sizes.

SSD combines YOLO’s regression-based detection with Faster R-CNN’s anchor mech-
anism, leading to signifcant improvements in speed and accuracy. Built on the VGG-16
backbone with additional convolutional layers, SSD processes 300×300 resolution images
efciently. It achieves a mean average precision (mAP) of 74.3% at 59 FPS, surpassing
YOLOv1’s [175] 63.4% mAP at 45 FPS and Faster R-CNN’s [178] 7 FPS performance
despite its high accuracy. However, SSD has limitations, such as the need for manu-
ally set prior box parameters and suboptimal performance on small object detection
compared to Faster R-CNN [178]. Nevertheless, SSD remains a robust one-stage detec-
tor, striking a balance between detection speed and accuracy, making it well-suited for
real-time applications [224, 9].

Figure 2.10: SSD Architecture [224]
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RetinaNet [117]: proposed by Lin et al. in 2017, addressed the long-standing issue of
class imbalance in one-stage object detectors, which had traditionally lagged behind two-
stage detectors in accuracy. The key innovation in RetinaNet was the introduction of
Focal Loss, a modifed cross-entropy loss function that reduces the impact of easy nega-
tive samples while emphasizing hard, misclassifed examples. This approach signifcantly
improved training stability and enabled RetinaNet to achieve accuracy comparable to
Faster R-CNN while maintaining the efciency of one-stage detection.

As shown in Figure 2.11, RetinaNet utilizes a ResNet backbone for feature extrac-
tion and integrates a Feature Pyramid Network (FPN) to enhance multi-scale object
detection. FPN improves the model’s ability to detect objects of various sizes by lever-
aging feature representations at diferent levels of abstraction. The model achieved a
COCO mAP@0.5 of 59.1%, demonstrating its efectiveness in real-world detection sce-
narios. While Focal Loss alleviates the imbalance between foreground and background
classes, it remains susceptible to noise, requiring careful sample labeling. Despite this,
RetinaNet established itself as a highly efcient and accurate one-stage object detector,
bridging the gap between traditional single-stage and two-stage methods [224, 9].

Figure 2.11: RetinaNet Architecture [224]

CenterNet [60]: released in April 2019, a new anchor-free detection method proposed
on the basis of CornerNet [106]. CenterNet is a keypoint-based object detection frame-
work that eliminates the need for complex post-processing steps such as non-maximum
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suppression (NMS) and group-based keypoint assignment. Unlike previous approaches
like CornerNet [106], which detect objects using pairs of corner keypoints, CenterNet
represents each object by a single center point and directly regresses its attributes, in-
cluding size, orientation, location, and pose. This simplifed detection paradigm allows
CenterNet to achieve efcient, fully end-to-end object detection.

A key improvement over CornerNet is the use of Cascade Corner Pooling, which
enhances the ability to capture internal object features by sequentially extracting max-
imum boundary values, the architecture of CenterNet is shown in Figure 2.12. Center-
Net demonstrated superior performance on the MS COCO dataset, achieving a COCO
mAP@0.5 of 61.1%, surpassing many existing one-stage and even some two-stage detec-
tors. Additionally, CenterNet’s fexible architecture extends beyond object detection to
tasks such as 3D object detection, human pose estimation, depth estimation, and opti-
cal fow learning. However, a notable limitation of CenterNet arises when two objects
have overlapping center points after downsampling, leading to detection errors where
the model identifes them as a single object. Despite this, CenterNet remains a power-
ful and efcient detection framework, setting a new standard for keypoint-based object
detection[9].

Figure 2.12: CenterNet Architecture [9]
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Transformer-Based Detectors

Recently, transformer architectures have been adopted for object detection, demonstrat-
ing improved global context modeling and reducing reliance on anchor-based methods.
DEtection TRansformer (DETR) [33] introduced by Carion et al. in 2020, was
a groundbreaking application of Transformer architecture in object detection. Unlike
traditional CNN-based methods, DETR formulates object detection as a set prediction
problem, eliminating the need for anchor boxes and non-maximum suppression (NMS).
The model (Figure 2.13) consists of three main components: a CNN backbone for feature
extraction, a Transformer encoder-decoder for global feature learning, and a feedforward
network for predicting bounding boxes and class labels. The self-attention mechanism
in DETR enables it to model complex relationships between objects across an image,
making it particularly efective for detecting overlapping and cluttered objects.

Despite its simplicity and competitive performance, DETR has notable limitations,
including slow convergence and suboptimal detection of small objects. To address these
challenges, Zhu et al. [246] later introduced Deformable DETR, which improved con-
vergence speed and enhanced small object detection capabilities. DETR achieves state-
of-the-art performance on the MS COCO dataset, with a COCO mAP@0.5 of 71.9%,
making it a promising approach for end-to-end object detection. While it is computa-
tionally intensive compared to traditional detectors like Faster R-CNN, DETR’s fully
attention-based architecture simplifes the object detection pipeline, paving the way for
future Transformer-based models in computer vision [208, 9, 248].
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Figure 2.13: The process of DETR and its structure [9]

Vision Transformer (ViT) [58]: applies the standard Transformer architecture to
image classifcation tasks with minimal modifcations. As shown in Figure 2.14, unlike
traditional convolutional neural networks (CNNs), ViT processes images as sequences of
fxed-size patches rather than pixel grids. An input image is divided into N = HW/P 2 

patches, where H and W represent the image dimensions, and P 2 is the resolution of
each patch. These patches are fattened and embedded before being passed through
the Transformer encoder, similar to word embeddings in natural language processing
(NLP). A classifcation token is appended to the patch sequence, allowing ViT to perform
classifcation based on global context.

One challenge in ViT is the loss of spatial information during the transformation of
patches into linear embeddings. To address this, positional embeddings are added to
retain location information. While this design leverages the scalability and efciency of
NLP Transformers, ViT requires large-scale datasets for efective training and demands
signifcant computational resources. Additionally, ViT struggles with encoding precise
positional information, limiting its performance on certain vision tasks. Despite these
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challenges, ViT has demonstrated strong performance on classifcation benchmarks and
has infuenced the development of Transformer-based models in computer vision [9].

Figure 2.14: Vision Transformer structure [9]

Swin Transformer (Swin ViT) [124]: Swin Transformer was introduced to address
key limitations of the Vision Transformer (ViT) and improve its applicability to various
computer vision tasks. Unlike ViT, which processes small resized images, Swin Trans-
former directly takes original images as input, preserving spatial information. A key
innovation in Swin Transformer is its hierarchical network structure, similar to convo-
lutional neural networks (CNNs), which progressively expands the receptive feld while
reducing resolution and increasing the number of channels. This hierarchical design
allows Swin Transformer to perform classifcation, object detection, and instance seg-
mentation efectively, achieving state-of-the-art (SOTA) results.

Main diference between Swin Transformer and ViT is depicted in Figure 2.15, Swin
Transformer also improves upon ViT by adapting local attention mechanisms instead of
global self-attention, making it more computationally efcient while maintaining strong
feature representation. Its structure is inspired by Feature Pyramid Networks (FPN)
and U-Net, enabling it to detect and segment objects more efectively. Due to its ef-
ciency and accuracy, Swin Transformer has become a universal backbone architecture
for Transformer-based vision tasks. However, it has notable challenges, including high
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computational costs, signifcant GPU memory requirements, and the need for precise
fne-tuning in certain applications. Despite these limitations, Swin Transformer suc-
cessfully bridges the gap between CNNs and Transformers, making Transformer-based
architectures more practical for dense prediction tasks in computer vision [9].

Figure 2.15: Main diference between Swin Transformer and ViT [124]

2.2.2 Object Detection Metrics

Evaluating object detection models requires assessing both what is detected (classif-
cation) and where it is detected (localization). Unlike semantic segmentation, where
outputs are dense pixel-wise predictions, object detection produces a variable number
of bounding boxes with class labels and confdence scores. Metrics must therefore (i)
handle varying numbers of predictions per image, (ii) penalize duplicate detections, (iii)
incorporate geometric overlap between predicted and ground-truth boxes, and (iv) sup-
port comparison across classes and object scales. In addition to accuracy, modern works
often report computational metrics such as inference speed and model size, especially
for real-time and embedded applications [224, 248, 65].
Intersection over Union (IoU). Intersection over Union is the fundamental measure
of bounding box overlap. For a predicted box Bp and ground-truth box Bg, it is defned
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as
|Bp ∩ Bg|

IoU(Bp, Bg) = . 
|Bp ∪ Bg| 

A predicted box is typically counted as a true positive (TP) if its IoU with an unmatched
ground-truth box is greater than or equal to a specifed threshold (e.g., 0.5) and the
predicted class is correct; otherwise, it is a false positive (FP). By varying the IoU
threshold, one can impose stricter or looser localization requirements [61].
Precision, Recall, and F1. Given TP, FP, and false negatives (FN), precision and
recall are defned as

TP TP 
Precision = , Recall = . 

TP + FP TP + FN 

Precision refects the reliability of detections (low FP), while recall refects how com-
pletely objects are found (low FN). The F1 score,

Precision · Recall 
F1 = 2 · ,

Precision + Recall 

provides a single summary at a chosen confdence threshold; however, ofcial benchmarks
usually rely on metrics derived from the full precision–recall curve rather than a single
operating point.
Average Precision (AP) and mean Average Precision (mAP). Average Precision
(AP) summarizes the precision–recall (PR) relationship for a given class. Predictions are
sorted by confdence, then precision and recall are computed as the confdence threshold
is swept from high to low. AP is defned as the area under the PR curve [61]:Z 1 

APc = Precisionc(r) dr, 
0 

computed numerically in practice. The mean Average Precision over C classes is

C 
1 X 

mAP = APc. 
C 

c=1 

The PASCAL VOC protocol reports AP at a fxed IoU threshold of 0.5, denoted AP50 

or mAP@0.5, and this convention remains widely used [61].
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COCO-Style AP Metrics. The MS COCO benchmark introduced a more stringent
and informative evaluation scheme that has become standard for modern detectors [118].
The primary COCO metric is

AP50:95, 

defned as the mean of AP over ten IoU thresholds from 0.5 to 0.95 in steps of 0.05
(commonly referred to as mAP@0.5 : 0.95). In addition, COCO reports:

– AP50: AP at IoU = 0.5 (looser localization).

– AP75: AP at IoU = 0.75 (stricter localization).

– APS, APM , APL: AP for small, medium, and large objects.

These metrics jointly evaluate classifcation, localization accuracy, and robustness across
object scales. Many contemporary implementations and toolkits (including YOLO-based
frameworks) adopt this protocol and routinely report mAP@0.5 and mAP@0.5 : 0.95 

alongside precision and recall, ensuring consistency with VOC/COCO standards.
Average Recall (AR). Average Recall focuses on a detector’s ability to cover ground-
truth objects across varying thresholds and constraints on the number of predictions.
COCO reports AR under diferent maximum detection limits (e.g., AR@1, AR@10,
AR@100) and for diferent object sizes [118]. AR is particularly informative for evalu-
ating proposal methods and high-recall settings, complementing AP, which emphasizes
the precision–recall trade-of.
Duplicate Detections and Matching Protocol. To ensure consistent evaluation,
each ground-truth object may be matched to at most one predicted box. Predictions
are considered in descending order of confdence; the frst prediction that attains IoU
above the threshold with an unmatched ground-truth box is marked as TP, while sub-
sequent overlapping predictions are FPs. This matching protocol penalizes duplicate
detections of the same object. In practice, Non-Maximum Suppression (NMS) or its
variants are applied prior to evaluation to reduce redundancy. All metrics described
above are computed under this standardized matching scheme [61, 118].
Efciency Metrics. For deployment-oriented scenarios (e.g., UAV platforms, embed-
ded systems, real-time surveillance), accuracy metrics are complemented with:

– inference speed (frames per second, latency per image),

– model size (number of parameters, storage),

mailto:mAP@0.5:0.95
mailto:mAP@0.5:0.95
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– computational cost (e.g., FLOPs).

While these are not accuracy measures, reporting them together with AP/mAP is es-
sential for judging the practicality of object detection models in real-world applica-
tions [224, 248].

2.3 Image Segmentation

After introducing the fundamental concepts of visual recognition in Section 2.1, we now
turn our attention to segmentation techniques. This section contrasts three widely used
paradigms: semantic segmentation, instance segmentation, and panoptic segmentation.
We then outline the core methodologies underlying many advanced approaches, starting
from pre-deep learning (classical) methods, summarized in Appendix C, and moving on
to deep learning-based techniques in Section 2.3.1.

Throughout this thesis, segmentation plays a central role in all three contributions to
the SLZ problem. The model architectures proposed in Chapters 4 and 3 are both derived
from the U-Net encoder–decoder 2.3.2 family of segmentation networks. Moreover, a
key component of the integrated framework presented in Chapter 5 relies on semantic
segmentation to extract static objects in the scene and to delineate potential SLZs.
Semantic Segmentation vs. Instance Segmentation: Semantic segmentation as-
signs a class label to every pixel in an image, grouping all pixels that belong to the same
semantic category (e.g., all cars, all roads, all buildings). In contrast, instance segmen-
tation goes one step further by distinguishing between diferent objects of the same class
and assigning a unique identifer to each instance. In other words, semantic segmentation
(Figure 2.16(b)) answers the question of what is present (e.g., all pixels corresponding
to car), whereas instance segmentation (Figure 2.16(c)) answers both what and which
one (e.g., pixels for Car 1, Car 2, and so on).
Panoptic Segmentation: Panoptic segmentation unifes semantic and instance seg-
mentation within a single, coherent representation. Each pixel is assigned a semantic
class label and, when applicable, an instance identifer, thereby capturing both category-
level and object-level information. Practically, this means that the pixel encoding in-
cludes two components: one for semantic classifcation and one for instance indexing.
This joint formulation provides a more complete understanding of the scene than using
semantic and instance segmentation separately. As illustrated in Figure 2.16(d), panop-
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tic segmentation not only diferentiates individual cars but also labels non-object regions
such as the sky, road, or vegetation with appropriate semantic classes [102].

Figure 2.16: Diferent Image Segmentation Approaches [102]

2.3.1 Deep Learning Image Segmentation Methods

Deep learning has fundamentally transformed image segmentation by replacing hand-
crafted features and heuristic pipelines with end-to-end trainable architectures that learn
rich, hierarchical representations from data. Modern models can jointly capture low-level
appearance, high-level semantics, and long-range context, and are adaptable across nat-
ural, medical, aerial, and industrial imaging domains. Below, we summarize the main
families of deep learning-based segmentation methods.
Fully Convolutional Networks (FCNs). Fully Convolutional Networks (FCNs) [127]
were among the frst deep learning architectures proposed specifcally for semantic seg-
mentation. They convert classifcation CNNs into dense predictors by replacing fully
connected layers with convolutional layers, enabling input images of arbitrary size and
producing correspondingly sized segmentation maps. FCNs exploit skip connections to
fuse coarse, high-level semantic features from deeper layers with fne, appearance-rich
features from shallower layers, improving boundary localization and segment consis-
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tency (Figure 2.17). They achieved state-of-the-art performance on early benchmarks
and established the paradigm of fully convolutional dense prediction. However, FCNs
have limitations, including relatively coarse outputs without strong multi-scale context
modeling, challenges in modeling global dependencies, and difculties when extended
directly to 3D volumetric data [147]. Subsequent architectures build upon and refne
these ideas.

Figure 2.17: Fully Convolutional Network for image segmentation [147].

Convolutional Models with Graphical Models. To compensate for the limited
spatial and contextual modeling of early FCNs, convolutional networks have been com-
bined with probabilistic graphical models such as Conditional Random Fields (CRFs)
and Markov Random Fields (MRFs). In these hybrid CNN+CRF/MRF frameworks,
the CNN typically produces unary potentials (per-pixel class scores), while the graph-
ical model encodes pairwise or higher-order relationships between neighboring pixels
or regions, encouraging label smoothness and alignment with image edges [147]. A
CNN+CRF model illustrated in Figure 2.18. of Dense CRFs have been particularly ef-
fective for sharpening object boundaries, and end-to-end or iterative refnement schemes
have integrated CRF-like operations into deep networks. These approaches improve
boundary accuracy and region consistency, though they can increase complexity and
computational cost.

Figure 2.18: Illustration of a CNN+CRF model [147].
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Encoder–Decoder Based Models. Encoder–decoder architectures form a dominant
family of segmentation models, an example of this architectures showed in Figure 2.19.
The encoder progressively reduces spatial resolution while extracting high-level seman-
tic features; the decoder then upsamples these features to recover dense predictions.
Early variants employed deconvolution or transposed convolutions, while SegNet [14]
introduced decoders that reuse encoder pooling indices for more accurate and memory-
efcient upsampling. HRNet [233] maintains high-resolution representations throughout
the network, repeatedly fusing multi-scale branches to preserve fne details. In medical
imaging, U-Net [182] has become a standard: it uses a symmetric contracting and ex-
panding path with skip connections that directly concatenate encoder feature maps to
decoder layers, enabling precise localization with strong contextual encoding. Extensions
such as V-Net [28] generalize this paradigm to 3D data and address class imbalance. De-
spite potential information loss during aggressive downsampling, encoder–decoder mod-
els ofer a fexible and powerful framework for a wide range of 2D and 3D segmentation
tasks [147].

Figure 2.19: Example of an encoder–decoder architecture [147].

Multiscale and Pyramid Network-Based Models. To capture objects and con-
text at diferent spatial scales, multiscale and pyramid-based architectures have been
proposed. As shown in Figure 2.20, Feature Pyramid Networks (FPN) [116] exploit
the inherent hierarchical structure of CNNs by combining low-resolution, semantically
strong features with high-resolution, spatially precise features through top-down and
lateral connections, yielding rich multi-scale feature maps for detection and segmenta-
tion. Pyramid Scene Parsing Network (PSPNet) [243] aggregates context via spatial
pyramid pooling over multiple receptive feld sizes and fuses this information with local
features to better disambiguate similar regions [147]. Such designs signifcantly improve
robustness to scale variation and complex scene layouts.
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Figure 2.20: The PSPNet architecture [147].

R-CNN Based Models for Instance Segmentation. Instance segmentation ex-
tends semantic segmentation by distinguishing individual object instances. R-CNN-
based methods, particularly Mask R-CNN [75], are highly infuential in this area. Mask
R-CNN builds on Faster R-CNN [179] by adding a parallel branch that predicts a bi-
nary mask for each detected instance, using RoIAlign for precise spatial alignment.
PANet [122] enhances information fow with bottom-up path augmentation and adap-
tive feature pooling, improving mask quality. Other approaches, such as MaskLab [41]
and TensorMask [45], explore richer feature combinations and dense 4D mask repre-
sentations within the R-CNN framework (Figure 2.21). These models provide strong,
fexible baselines for instance-level segmentation, though at relatively high computa-
tional cost [147].
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Figure 2.21: Mask R-CNN architecture for instance segmentation [147].

Dilated Convolutional Models. Dilated (atrous) convolutions enlarge the receptive
feld of convolutional flters without increasing the number of parameters or reducing
resolution, making them well-suited for dense prediction. The DeepLab family illus-
trates their efectiveness. DeepLabv2 [42] combines dilated convolutions with Atrous
Spatial Pyramid Pooling (ASPP) to capture multi-scale context and employs dense
CRFs for boundary refnement. DeepLabv3+ [44] extends this with an encoder–decoder
structure and depthwise separable convolutions for efcient, high-quality segmentation
(Figure 2.22). More broadly, dilated convolutions are used to balance context and detail
in many modern architectures, contributing to strong performance in both accuracy-
focused and near real-time settings [147].

Figure 2.22: DeepLabv3+ architecture [147].
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RNN-Based Models. Recurrent Neural Networks (RNNs) have also been explored
for segmentation to explicitly model long-range dependencies and structural relation-
ships. For example, ReSeg [214] employs ReNet layers that sweep across the image
horizontally and vertically, aggregating contextual information, while graph-LSTM ar-
chitectures [114] operate on superpixels to capture higher-level structure. Other models
combine CNN encoders with LSTMs (Figure 2.23) driven by natural language expres-
sions to segment objects referred to in text [80]. Although RNN-based methods highlight
the benefts of sequential and structured modeling, their limited parallelism and higher
computational cost have made them less prevalent than CNN- and Transformer-based
designs [147].

Figure 2.23: Semantic segmentation from natural language expressions using a
CNN+LSTM model [147].

Attention-Based Models. Attention mechanisms enhance segmentation networks by
allowing them to weight spatial locations, channels, and scales according to task rele-
vance. Scale-aware attention modules can selectively emphasize features corresponding
to important objects at diferent resolutions, outperforming simple average or max pool-
ing [43]. Reverse Attention Networks [81] further improve performance by explicitly
modeling “where not to attend,” refning boundaries and suppressing false positives.
Attention has since become a core component in many state-of-the-art architectures,
enabling better focus on salient structures and more efective integration of global con-
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text [147]. An example of an attention-based semantic segmentation model is given in
Figure 2.24.

Figure 2.24: Example of an attention-based semantic segmentation model [147].

Generative Adversarial Networks (GANs) for Segmentation. Generative Ad-
versarial Networks have been employed to improve segmentation quality by encour-
aging outputs that resemble realistic label maps. In adversarial training frameworks
Figure 2.25, a segmentation network (generator) predicts masks, while a discriminator
network distinguishes between ground-truth and predicted segmentations [133]. This
setup imposes higher-level structural regularization that complements pixel-wise losses.
In medical imaging and other domains, multiscale adversarial losses have been shown
to sharpen boundaries and reduce artifacts [227]. Although more complex to train,
GAN-based approaches demonstrate the potential of adversarial learning to refne and
stabilize segmentation results [147].
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Figure 2.25: GAN-based semantic segmentation framework [147].

In summary, deep learning-based image segmentation has evolved from early FCNs
to a diverse ecosystem of encoder–decoder networks, pyramid and dilated-convolution
models, instance-segmentation frameworks, attention and Transformer-based designs,
and adversarial training schemes. These architectures leverage end-to-end learning,
multi-scale context, and increasingly powerful global reasoning mechanisms to achieve
substantially higher accuracy and robustness than classical methods across a wide range
of visual domains.

2.3.2 U-Net

U-Net [182] is a widely used deep learning architecture for semantic segmentation, orig-
inally proposed for biomedical microscopy images and subsequently adopted in many
other domains, including aerial and UAV imagery. It can be viewed as a modifed
Fully Convolutional Network (FCN) specifcally designed to address challenges such as
limited annotated data, the need for precise localization, and the preservation of fne
structural details. Its characteristic U-shaped, symmetric architecture with extensive
skip connections enables the network to efectively combine contextual information with
high-resolution spatial cues [182, 147].

The U-Net architecture, illustrated in Figure 2.26, is composed of two main paths.
The contracting path (encoder) is responsible for capturing context. It consists of re-
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peated applications of 3 × 3 convolutions followed by rectifed linear unit (ReLU) ac-
tivations, and 2 × 2 max pooling operations for downsampling. As spatial resolution
decreases, the number of feature channels increases, allowing the network to learn in-
creasingly abstract and semantically rich representations. Opposite to this, the expand-
ing path (decoder) focuses on precise localization and reconstruction of the segmentation
map. It uses up-convolutions (transpose convolutions or other upsampling operations)
to progressively restore spatial resolution. At each decoding stage, feature maps from
the corresponding encoder layer are concatenated with the upsampled features via skip
connections. These skip connections are crucial: they reintroduce fne-grained details
lost during downsampling and provide the decoder with both low-level boundary infor-
mation and high-level contextual cues. A fnal 1×1 convolution layer maps the resulting
features to class scores, producing a dense pixel-wise segmentation.

This combination of deep context encoding and fne-detail recovery gives U-Net sev-
eral practical advantages. First, it is highly efective in settings with limited annotated
data: the architecture’s strong inductive bias and skip connections allow robust learning
from relatively small training sets, which is particularly valuable in medical imaging
and specialized UAV applications [182, 147]. Second, U-Net is computationally efcient
enough to support real-time or near real-time inference on modern hardware, making
it suitable for time-critical tasks such as on-site disaster assessment, vegetation and
land-cover mapping, or trafc monitoring from UAV imagery [219]. Third, the precise
localization enabled by its skip connections leads to accurate, sharp object boundaries
and reliable pixel-level predictions, which are essential whenever small structures, thin
objects, or detailed regions must be segmented. These properties have established U-Net
and its numerous variants as foundational architectures for modern image and volume
segmentation across a broad range of domains.



64 64 

input 
image • tile 

N 0 CO 
I'- I'- <.D 
li) li) li) 
X X X 

N 0 CO 
I'- I'- <.D 
li) li) li) 

f 128 128 

128 64 64 2 

• 
N 
0) 
C") 

X 
N 
0) 
C") 

t 

• • output 
segmentation 

CO 
CO map C") 

X 
CO 
CO 
C") 

• conv 3x3, ReLU 
.,. copy and crop 

t max pool 2x2 
t up-conv 2x2 

• conv l xl 

2.3. IMAGE SEGMENTATION 46

Figure 2.26: The U-Net architecture [147].

2.3.3 Loss Functions

Careful design of loss functions is central to training accurate and robust segmentation
networks. Diferent losses emphasize diferent aspects of prediction quality—per-pixel
correctness, region-level overlap, boundary precision, or robustness to severe class im-
balance—and thus directly afect both convergence during training and performance in
real-world deployments. As summarized in Figure 2.27, semantic segmentation losses
are often grouped into four categories: (i) region-level, (ii) boundary-level, (iii) pixel-
level, and (iv) combination losses [12]. In this work, we focus on several widely used
and conceptually important pixel- and region-level losses that are closely related to our
study.
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Figure 2.27: Semantic segmentation loss function taxonomy [12].

Cross-Entropy and Weighted Cross-Entropy. Cross-entropy (CE) loss measures
the discrepancy between the predicted class probabilities and the ground-truth labels
at each pixel [103]. Let tc ∈ {0, 1} denote the one-hot ground truth for pixel n andn 

cclass c, and ŷn ∈ [0, 1] the corresponding softmax probability. The standard multi-class
cross-entropy is

N CXX 
tc cLCE = − n log ŷn. 

n=1 c=1 

CE encourages the network to assign high probability to the correct class at each pixel
and is widely used due to its probabilistic interpretation and stable optimization proper-
ties. However, when classes are highly imbalanced (e.g., small target structures against
a dominant background), CE tends to be biased toward frequent classes. Weighted
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Cross-Entropy (WCE) addresses this by assigning a weight wc to each class:

XN CX 
tc cLWCE = − wc n log ŷn, 

n=1 c=1 

where larger wc values are used for underrepresented classes. When all wc = 1, WCE
reduces to standard CE. In practice, CE/WCE often serve as the baseline pixel-level
loss in segmentation networks [12, 219].
Dice Loss. The Dice coefcient measures the overlap between a predicted segmentation
Y and the ground-truth mask T :

2|Y ∩ T |
Dice = . 

|Y | + |T | 

It can be interpreted as the harmonic mean of precision and recall and is especially
useful when the positive class occupies only a small portion of the image, as is common in
medical imaging and fne-structure segmentation. Dice loss is defned as LDice = 1−Dice,
with a diferentiable extension for soft predictions. For multi-class segmentation, a
standard formulation is [146, 12, 219]

C PNX tc c1 2 n=1 nynLDice = 1 − ,PN PN ycC tc + c=1 n=1 n n=1 n 

cwhere yn denotes the predicted (soft) score for class c and pixel n. Dice loss directly
optimizes region-level overlap, making it well suited for highly imbalanced segmentation
tasks.
IoU (Jaccard) Loss. Intersection over Union (IoU), or the Jaccard index,

|Y ∩ T |
IoU = ,

|Y ∪ T | 

is another widely used set-similarity measure. Like Dice, it quantifes overlap between
prediction and ground truth but penalizes discrepancies diferently, often more harshly
when the overlap is small. IoU loss is typically defned as LIoU = 1 − IoU, with a soft
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multi-class extension [171, 12]:

C PN tcX c1 yn=1 n nLIoU = 1 − .PN tc 
PN yc 

PN tc ycC + − c=1 n=1 n n=1 n n=1 n n 

Because IoU-based metrics are often used as evaluation criteria, IoU loss provides a
training objective that is closely aligned with the fnal performance measure.
Tversky Loss. The Tversky index generalizes Dice and IoU by allowing asymmetric
weighting of false positives and false negatives, which is particularly important in ap-
plications where missing a target (FN) is more severe than over-segmentation (FP), or
vice versa. A soft Tversky index for class c is given by [186]PN tc cyn=1 n nTIc = ,PN tc yc 

PN PN+ α tc (1 − yc ) + β (1 − tc )yc n=1 n n n=1 n n n=1 n n 

where α and β control the penalties for false negatives and false positives, respectively.
Setting α = β = 0.5 recovers the Dice coefcient; α = β = 1 is related to IoU. The
Tversky loss is defned as

C
1 X 

LT = 1 − TIc,
C 

c=1 

providing a fexible objective for heavily imbalanced segmentation tasks [12, 219].
Combo Loss. Combo loss [204] explicitly combines the strengths of region-based and
pixel-wise losses to better handle class imbalance and stabilize training. It is defned as

Lcombo = αLWCE + (1 − α)LDice, 

where α ∈ [0, 1] controls the relative contribution of Weighted Cross-Entropy and Dice
loss. The WCE component encourages correct pixel-wise classifcation, especially for mi-
nority classes through class weights, while the Dice component emphasizes good overlap
for the segmented structures. By tuning α and the WCE weights, Combo loss can be
adapted to diferent datasets and clinical or operational requirements [12].

2.3.4 Metrics for Segmentation Models

A comprehensive evaluation of segmentation models should consider not only accuracy
but also inference speed, memory footprint, robustness, and visual plausibility of the
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predicted masks. In practice, however, most works emphasize quantitative accuracy
metrics. Below we summarize several commonly used measures for assessing segmen-
tation quality [147]. While these metrics enable fair comparisons across methods, they
should be complemented with qualitative inspection, since many applications ultimately
depend on human interpretation of the results.
Pixel Accuracy (PA). Pixel Accuracy measures the proportion of correctly classifed
pixels over all pixels. Let pij denote the number of pixels of true class i predicted as
class j for K + 1 classes (including background). ThenPK 

i=0 piiPA = .PK PK 
i=0 j=0 pij 

Although PA is intuitive, it can be misleading when class distributions are highly im-
balanced, as large background regions may dominate the score even if foreground seg-
mentation is poor.
Mean Pixel Accuracy (MPA). Mean Pixel Accuracy addresses class imbalance by
computing the accuracy for each class separately and averaging:

KX1 PK 

pii
MPA = . 

K + 1 
i=0 j=0 pij 

This metric assigns equal importance to each class, including small or rare categories,
and thus provides a more balanced assessment of model performance [147].
Intersection over Union (IoU). Intersection over Union (IoU), or the Jaccard index,
is one of the primary metrics used in semantic segmentation challenges. For a given
class, IoU is defned as

|A ∩ B|
IoU = ,

|A ∪ B| 
where A and B are the predicted and ground-truth regions, respectively. Mean IoU
(mIoU) is obtained by averaging class-wise IoUs. IoU directly measures the quality of
overlap and penalizes both over- and under-segmentation, making it a robust and widely
adopted metric [147].
Dice Score. The Dice score is closely related to IoU and is especially popular in
medical image segmentation. For binary segmentation with foreground as the positive
class, the Dice coefcient is equivalent to the F1 score. It emphasizes correct overlap
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and is sensitive to errors in small structures, which makes it particularly useful when
the target regions occupy only a small fraction of the image [147, 219].

Taken together, PA, MPA, IoU, and Dice provide complementary perspectives on
segmentation performance. High-quality segmentation models should achieve strong
quantitative scores across these measures while also producing visually coherent and
interpretable results that meet the requirements of their target applications.

2.4 Literature review

Several surveys have been proposed to present the theory, methods, and challenges
related to vision-based UAV navigation and SLZ detection.Yuncheng Lu et al. [132]
explored vision-based methods for UAV navigation, emphasizing localization, obstacle
avoidance, and path planning. Loureiro et al. [129] presented existing methods using
multiple sensors (LiDAR, Vision) that address the problem of emergency landing site
detection. Kakaletsis et al. [89] presented vision-based techniques for UAV safe navi-
gation, particularly for safe landing. They also proposed a typical vision-based pipeline
for carrying out safe landing. Alama et al. [191] presented a taxonomy for vision-based
UAV landing methods, which is built using several criteria related to whether the landing
site is indoor or outdoor, static or dynamic, or known or unknown. For known landing
sites, Xin et al. [226] presented the challenges for designing and detecting markers for
vision-based autonomous landing. Given the achievements brought by using deep learn-
ing techniques for vision recognition, we look at related works to our method through
three categories: classical techniques, deep learning techniques, and CNN-based ordinal
regression.

2.4.1 Classical techniques for SLZ detection

These methods include 3D reconstruction and or 2D image analysis for detecting SLZs.
Vision-based 3D reconstruction generally uses stereo, tomography, and structure from
motion, which can provide terrain fatness and orientation. Bosh et al. [23] used homog-
raphy estimation to detect planar surfaces for safe landing. However, the method works
well only when a large planar surface exists in the scene. Chatzikalymnios et al. [35, 36]
used stereo and information from the inertial measurement unit (IMU) for 3D terrain
reconstruction, on which terrain fatness, inclination, and steepness are estimated to
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identify potential SLZs. Likewise, Liu et al. [125] proposed a 3D reconstruction method
using structure from motion, which is used for autonomous safe landing. Detecting
SLZs has also been investigated using methods combining machine learning and 2D im-
age processing techniques. For example, Gabor flters [92] and the histogram of oriented
gradients (HOG) [72] have been used to extract useful representations to train SVM for
separating safe from unsafe regions.

2.4.2 Deep Learning techniques for SLZ detection

Semantic segmentation has been widely applied to identify SLZs for UAVs by classi-
fying image pixels into thematic categories such as vegetation, pavement, or obstacles.
Early works [101, 168, 56] utilized lightweight models to efciently segment static terrain
while others, such as [1], introduce continuous safety mapping through deep regression.
Datta et al. [52] enhanced segmentation to better diferentiate roads, trees, and water
bodies. Guerin et al. [71] proposed an emergency landing framework using the Multi-
Scale-Dilation (MSDnet) network on the UAVid dataset [136], integrating regional dam-
age grading and Bayesian neural networks for runtime safety prediction. Other works
include SafeUAV-Net [139] and PatchmatchNet-A [125], which leverage depth segmenta-
tion and dense reconstruction, respectively. Models such as KDP-Net [241], Wu et al.’s
DeepLabv3+ with ShufeNetv2 backbone [223], and CNN-Transformer hybrids [131]
were introduced to address real-time constraints and dynamic scenes. Morales-Navarro
et al. [152] combined superpixel segmentation with depth-based DNN classifcation to
improve 3D SLZ detection in urban aerial imagery. Additionally, transfer learning was
explored in [59] to adapt pretrained models for SLZ scene recognition.

Monocular and stereo depth estimation plays a critical role in analyzing terrain slope
and roughness for safe UAV landings. Chen et al. [37] applied a graph-based method
over depth maps extracted from monocular vision to evaluate ground safety. Several
studies leveraged supervised or self-supervised depth prediction [138, 139] to improve
understanding of terrain topography. These approaches enable UAVs to reason about
elevation changes, thereby avoiding hazardous regions. Lim et al. [115] further advanced
the feld by integrating depth and semantic cues from LiDAR and cameras to support
robust and real-time SLZ detection.

To improve scene understanding and robustness in unstructured environments, sev-
eral works employed sensor fusion. Liu et al. [120] projected 3D LiDAR data into camera
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views to refne semantic labeling. Zou et al. [247] proposed a multi-stage SLZ detection
system combining point cloud and image data for terrain analysis and neural recogni-
tion. Lim et al. [115] demonstrated an efcient real-time system using both LiDAR and
camera data to analyze slope and surface categories. These multimodal methods allow
UAVs to operate efectively in visually ambiguous or cluttered scenes.

Handling emergencies requires evaluating not only terrain suitability but also the
associated risks. Guerin et al. [71] introduced damage grading and uncertainty modeling
to guide UAV emergency landing. Loera et al. [126] proposed a risk-aware planning
method based on terrain hazards. Bong et al. [22] utilized dynamic segmentation and
open-vocabulary models to generalize SLZ detection in unfamiliar environments. In
contrast to binary segmentation, Abdollahzadeh et al. [1] introduced a continuous safety
score regression model, allowing fne-grained interpretation of terrain safety.

Detecting humans and dense crowds is essential for ensuring UAVs avoid populated
zones. Safadinho et al. [184] and Shao et al. [193] introduced deep vision-based models
for real-time human detection. Gonzalez et al. [70] employed CNNs and density maps to
identify crowded regions, while works like [210, 164] used lightweight CNNs for fast de-
ployment. Advanced YOLO models [188, 13] and Bayesian fusion across multiple UAVs
[88, 89] further improved accuracy. Surveillance-based approaches [69, 140] monitored
crowd dynamics, supported by datasets like UAV-Human [111] and UAV-CROWD sim-
ulator [172], which aid in training and evaluating UAVs for people-aware SLZ detection.

Various frameworks have been proposed to enhance UAV autonomy and safety. Yang
et al. [232] introduced a semantic SLAM system for indoor UAV landing. Badiya
et al. [16] proposed a robust landing pipeline combining YOLOv5, DeepSORT, and
PID control to handle obstacle-laden environments. Springer et al. [199] developed an
appearance-based autonomous landing approach using synthetic data and a U-Net seg-
mentation model, focusing on unstructured environments. Dataset creation and simula-
tion tools, such as those from Peñarroya et al. [165], have been critical in benchmarking
performance under synthetic and real-world conditions. These developments underscore
the importance of deep learning and data-driven models in improving UAV navigation,
especially in complex or unknown terrains.
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2.4.3 UAV Navigation in dynamic environments

UAVs require robust object tracking and trajectory prediction techniques for efcient
navigation and guidance. This section reviews advancements in these areas, integrating
fndings from various studies.

Object detection and tracking are fundamental for UAV applications like surveillance,
reconnaissance, and search-and-rescue missions. Techniques such as YOLO-based frame-
works accelerated with TensorRT [137] have enabled efcient real-time detection and
landing recognition. Template-driven Siamese networks [201] have addressed challenges
like occlusion and appearance changes, achieving competitive results on UAV bench-
marks. Optimized neural network-based tracking algorithms and deep learning models
combining detection and tracking [159, 95] have further enhanced real-time multi-object
tracking capabilities.

Strategies for real-time ground target tracking in dynamic environments [43] have
been demonstrated, along with advancements in multi-object tracking using architec-
tures like GM-YOLO and Transformer-based methods [234, 235]. Memory maps that
integrate metadata with video object detection [99] have boosted tracking accuracy in
both short- and long-term scenarios. The integration of geo-location data with neural
network-based recognition [220] has also contributed to robust target tracking.

Trajectory prediction remains critical for UAV navigation, with surveys highlighting
methods that leverage machine learning and reinforcement learning approaches [196].
Multi-trajectory model predictive control (mt-MPC) has been proposed for safe navi-
gation in unknown environments [183]. Frameworks for UAV-assisted trafc speed pre-
diction [244] have incorporated deep learning for spatiotemporal data processing, while
particle flters and image segmentation techniques [236] have enhanced vehicle trajectory
prediction from UAV imagery.

Integrated systems that combine detection, tracking, and navigation provide holistic
solutions for UAV operations. These include pipelines leveraging YOLO-based detec-
tion with Re-ID datasets for advanced tracking and collision avoidance [11], dynamic
visual SLAM systems for efcient mapping in 3D environments [222], and vision-guided
adaptive tracking methods addressing emergency landings [53]. Prediction-based path
planning frameworks have also been developed for dynamic crowd surveillance [47].

Additional advancements include methods for the detection of moving object using
image registration [24], refned multi-object tracking frameworks utilizing deep rein-
forcement learning [173], and car detection models emphasizing road segmentation for
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accuracy [78]. Eforts to improve multi-object tracking have introduced IoU matching-
based methods for fast tracking [169], as well as deep learning frameworks for 6-DOF
path planning and obstacle-free navigation [221].

Despite these advancements, challenges such as computational limitations, occlusion,
and real-time performance persist. Emerging technologies like machine learning, 5G, and
cloud computing are proposed as potential solutions [4]. Future research should focus
on developing robust algorithms that handle dynamic environments, improve accuracy,
and ensure efcient real-time operations.

2.4.4 CNN-based ordinal regression

Ordinal regression has a long story in statistics and machine learning [73, 105]. Early
works proposed extensions of generalized linear models to predict ordinal response vari-
ables [209]. The most widely used model is the so-called proportional odds model,
which uses the logistic function to represent the cumulative distribution of ordinal re-
sponses [142]. Most of machine learning models for ordinal regression reformulated the
problem as multi-task binary classifcation [110]. Early methods in this regard include
the ones using the perceptron [194], support vector machines [49, 110] and random forests
[84]. This concept has been recently investigated using CNNs to estimate persons’ age
from images [156]. Basically, an ordinal regression model with K ranks can be formu-
lated using a neural network with K − 1 binary outputs, with the kth output predicting
whether the target exceeds the rank rk. Another approach used Siamese architecture
to compute ranks from pair-wise comparisons between input images [167]. Similarly,
[64] proposed depth estimation using CNN ordinal regression, where depth values are
divided into non-uniform intervals using a spacing-increasing discretization strategy. To
obtain consistent ordinal responses from the CNN network, Cao et al. [32] proposed the
COnsistent Rank Logits (CORAL) method to ensure rank-monotonicity and consistent
ordinal scores in the model outputs. The model however is rigid in the sense that all
ranks are predicted from the same activation function on which intervals are defned by
thresholds.

2.4.5 Limitations of Existing Vision-Based SLZ Methods

Existing vision-based SLZ methods exhibit several important limitations. First, many
approaches assume access to prior maps, pre-surveyed landing sites, or visual markers
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(e.g., fducials on helipads or rooftops). While efective in controlled or known envi-
ronments, these assumptions break down in unknown, rapidly evolving, or emergency
scenarios where no infrastructure is available and the UAV must autonomously dis-
cover safe alternatives. Second, safety is often modeled as a binary label (safe/unsafe),
which ignores the inherently ordered nature of landing risk and the need for graded
safety margins near hazards. In such formulations, misclassifying a highly unsafe region
as marginally unsafe is treated no diferently than misclassifying it as fully safe, even
though the operational consequences are dramatically diferent.

Third, many methods rely solely on RGB imagery, which captures rich appearance
information but lacks explicit metric geometry such as slope, roughness, and height.
This makes it difcult to distinguish, for example, between fat asphalt, sloped roofs,
and cluttered vegetation, and limits robustness under challenging illumination or tex-
ture conditions. Fourth, evaluation practices are often misaligned with operational risk.
Standard segmentation metrics such as mIoU or F1-score treat all pixel errors equally
and do not account for error severity or ordinal structure; confusing “very unsafe” with
“unsafe” is penalized the same way as confusing “very unsafe” with “very safe,” despite
the vastly diferent safety implications.

A further limitation is that many SLZ pipelines retain a static view of what is funda-
mentally a dynamic problem. People, vehicles, and other moving agents can invalidate
a candidate landing zone seconds after it is identifed, yet numerous methods operate
frame-by-frame, without explicit temporal reasoning, tracking, or short-horizon predic-
tion. Finally, the perception-to-decision pipeline is typically fragmented: segmentation,
detection, and landing decision-making are treated as separate modules, often optimized
in isolation. This modular design leaves little room for end-to-end, risk-aware reason-
ing that directly encodes asymmetric costs (e.g., overestimating versus underestimating
safety) and mission-level constraints.

2.5 Motivation and Contributions

The limitations outlined in Section 2.4.5 show that existing vision-based SLZ methods
are not yet fully aligned with the requirements of real-world UAV operations. In par-
ticular, there is a need for SLZ assessment that is graded rather than binary, risk-aware
rather than purely geometric, and dynamic and integrated rather than static and frag-
mented. This thesis responds to these needs through three main contributions, which
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together form a unifed vision-based framework for SLZ assessment tailored to real-time
deployment on resource-constrained UAV platforms.

SLZ Detection for UAVs Using Deep Regression. The frst contribution formu-
lates SLZ detection as a continuous safety mapping problem. Building on a semantic
segmentation backbone, the proposed method maps terrain classes and contextual cues
into continuous safety scores defned over the image plane. This representation enables
fne-grained ranking of candidate landing sites, supports adaptive decision thresholds
(e.g., in emergency scenarios), and interfaces smoothly with downstream guidance and
control compared to hard, binary masks. It directly addresses the limitations related to
binary safety modeling and reliance on pre-defned landing markers or maps discussed
in Section 2.4.5. This contribution is detailed in Chapter 3.

Deep Ordinal Regression for SLZ Detection Using Photometric and Geomet-
ric Information The second contribution introduces OR-SLZNet, an ordinal regres-
sion framework for multi-level SLZ safety assessment in UAV imagery. Recognizing that
landing suitability is inherently ordered rather than categorical, OR-SLZNet assigns each
pixel an ordinal safety level by jointly exploiting photometric cues (color, texture) and
geometric cues (e.g., fatness, slope, depth proxies) within an encoder–decoder architec-
ture. Rank-aware losses and risk-aligned metrics explicitly encode the ordered structure
of safety levels and the asymmetric cost of diferent misclassifcations, improving ro-
bustness to annotation uncertainty and yielding more interpretable safety maps. This
contribution targets the limitations related to unordered classifcation, RGB-only sens-
ing, and misaligned evaluation metrics highlighted in Section 2.4.5. The model achieves
real-time inference and shows strong generalization across multiple real and synthetic
UAV datasets. These advances are presented in Chapter 4.

A Framework for SLZ Mapping for UAVs in Dynamic Environments. The
third contribution extends SLZ assessment to dynamic environments through an inte-
grated perception and decision framework. The proposed pipeline combines semantic
segmentation-based terrain understanding with real-time object detection, multi-object
tracking, short-horizon trajectory prediction, homography-based ego-motion compensa-
tion, and uncertainty estimation. By predicting the future occupancy of candidate re-
gions and continuously updating the safety map over time-to-land, the framework main-
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tains a temporally consistent estimate of safe landing areas in cluttered, time-varying
scenes such as roads with trafc, construction zones, or pedestrian corridors. This con-
tribution addresses the static, frame-by-frame assumptions and fragmented pipelines
identifed in Section 2.4.5, enabling end-to-end, risk-aware reasoning from pixel-level
perception to landing decisions. The dynamic SLZ framework is documented in Chap-
ter 5.

The above contributions are supported and disseminated through the following pub-
lications by the author:

– A Vision-Based Framework for Safe Landing Zone Mapping of UAVs in Dynamic
Environments, IEEE Open Journal of the Computer Society, under revision, May
2025.

– Visual Safety Mapping for UAV Landings Using Ordinal Regression Networks,
IEEE Transactions on Artifcial Intelligence, accepted, November 2025.

– Safe Landing Zones Detection for UAVs Using Deep Regression, IEEE, 2022.1

1Available at: https://ieeexplore.ieee.org/document/9867062.

https://ieeexplore.ieee.org/document/9867062


Chapter 3

SLZ Detection for UAVs Using Deep
Regression

In this chapter, we concentrate primarily on extracting 2D data from UAV-acquired
images to generate a safety map using deep learning techniques. To achieve this, We
propose a deep learning-based approach that directly generates a safety map from UAV-
acquired images. This map goes beyond simple safe/unsafe classifcation, providing
a pixel-wise continuous safety score. This score indicates the landing suitability at
every location within the image, enabling informed decision-making for autonomous
UAV landing.

We utilize a supervised regression model built on a semantic segmentation framework.
This framework trains on a labeled dataset where each image segment is assigned a
corresponding landing safety score: Low-risk, Medium-risk, and High-risk. Additionally,
to account for potential collisions with obstacles like walls and vehicles, we incorporate
a safety margin around these structures. This margin smoothly transitions the safety
score from high-risk near the obstacle to safer zones further away.

Our experiments encompass images captured from both nadir (vertical) and oblique
viewpoints in diverse environments, including urban and natural landscapes. In contrast
to existing methods like [92], which categorize the terrain as simply safe or unsafe, our
approach ofers a more nuanced solution. The continuous safety map empowers the UAV
to adapt its landing strategy based on the detailed risk assessment provided for every
image pixel.

The obtained results demonstrate the promising capabilities of the proposed frame-
work for real-world UAV landing safety evaluation.
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3.1 Methodology

This section details our methodology for generating a UAV safety map using two-
dimensional information extracted from RGB images captured by a UAV-mounted cam-
era. This safety map serves as the foundation for extracting SLZs suitable for au-
tonomous UAV landing under normal or emergency conditions, relying solely on real-
time environmental perception. The primary objective is to minimize potential damage
risks to the UAV and surrounding elements during landing.
Conventional methods focus on preventing UAV landings on specifc object types (e.g.,
humans, buildings) by employing object detection techniques and circumventing them
using rectangular bounding boxes that designate unsafe zones. Our approach deviates
from this strategy by proposing a segmentation-inspired method that produces a com-
prehensive safety map encompassing all object types.

3.1.1 Deep Regression for Safety Score Prediction:

We formulate SLZ detection as a deep regression problem, aiming to obtain continuous
safety scores for each location within the image. Deep regression techniques, prevalent in
computer vision, are adept at predicting continuous outputs from images, such as head
pose, age estimation, or depth perception [105, 32]. The emergence of deep learning has
empowered deep regression using Convolutional Neural Networks (CNNs) to map input
features to outputs via intricate non-linear transformations. In essence, these CNN ar-
chitectures comprise several convolutional layers typically followed by fully-connected
regression layers that incorporate linear or sigmoid activation functions [105]. Notably,
these models have surpassed the state-of-the-art in numerous traditional computer vi-
sion tasks, including image classifcation and semantic segmentation tasks [182].

3.1.2 Encoder-Decoder Architecture for Safety Map Generation:

Our deep regression model leverages an encoder-decoder architecture(Figure 2.19), which
has achieved remarkable success in semantic segmentation tasks exemplifed by the U-
Net(Section 2.3.2) model and its variants [182]. However, unlike segmentation techniques
that assign categorical labels for thematic classes [158, 25], our model generates contin-
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uous safety values across three primary classifcations: low risk, medium risk, and high
risk. These classifcations refect the landing suitability of each location. Additionally,
we incorporate a smooth safety transition (margin) between vertical and fat structures
to account for potential obstacles, resulting in continuous safety values between the three
main risk levels. The ultimate goal is to generate a safety heatmap that facilitates the ex-
traction of the safest landing zones through straightforward thresholding techniques [26].

3.1.3 Network Architecture Details:

Figure 3.1 illustrates our SLZ detection architecture. Similar to segmentation models,
the core structure is comprised of consecutive encoding and decoding sub-networks.
The encoder sub-network progressively compresses the input image into a latent-space
representation via an encoding function (z = f(x)) . Conversely, the decoder sub-
network upsamples the latent representation (y = g(z)) to recover the output, efectively
capturing the essential semantic information from the input that is crucial for predicting
the safety scores (y). The decoder’s fnal output is a dense safety map that retains the
same spatial resolution as the input image.

Figure 3.1: Architecture of the modifed U-Net with a MobileNetV2 encoding phase
network.
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To accommodate the computational constraints of a UAV with limited processing
power, our framework adopts a network based on the MobileNetV2 back-end [187]. This
pre-trained model leverages the ImageNet dataset [55] for improved performance.

During the decoding phase, the encoder’s output is upsampled and passed through
convolutional layers with a 3 × 3 pixel kernel size. This process reintroduces encoded
information from specifc blocks (13, 6, 3, and 1) and the original input image through
concatenation. In conventional semantic segmentation architectures with K classes [182,
128], a softmax activation layer is employed to generate a label for each pixel from the
K-dimensional output vector. Our architecture utilizes a sigmoid activation function
in the fnal layer, producing a prediction value y ranging from 0 to 1 for each pixel,
representing the predicted safety score.

For visualization purposes, the output is transformed into a grayscale image by scal-
ing the safety score map’s dynamic range from [0, 1] to [0, 255], as shown in Figure 3.2.

Figure 3.2: (a) Urban Area sample from the dataset (b) Prediction map from the input
(c) Prediction map including security border with Low-risks represented with lighter
pixels and higher risks represented with darker pixels.

3.2 Experimental Results

3.2.1 Dataset Collection:

This section details the experimental evaluation of our methodology for generating UAV
safety maps. To improve the model’s generalizability, We investigated two common
drone view scenarios: the vertical (nadir) view and the oblique view.
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To train our model efectively, we established ground truth data derived from the RGB
images. Each location within an image is assigned a corresponding safety value. For
enhanced visualization, these safety values are encoded within the grayscale range (0 to
255). To maintain simplicity, we categorized safety into three primary grades:

Unsafe: 0 (Black) - Represents areas with high collision risk.Moderately Safe:
127 (Gray)- Areas with some potential hazards. Safe: 255 (White)- Low-risk areas
suitable for Landing.

ICG Dataset

The ICG Semantic Drone Dataset [83] concentrates on semantic understanding of urban
environments to enhance the safety of autonomous drone fights and landing maneuvers.
The imagery showcases over 20 houses captured from a nadir (bird’s-eye) perspective
at an altitude ranging from 5 to 30 meters above ground level. The dataset ofers a
publicly available set containing 400 high-resolution images (6000x4000 pixels) with 24
thematic classes for semantic understanding. Additionally, the dataset includes bound-
ing box annotations to aid in person detection tasks, promoting the development of safer
autonomous drone fight and landing procedures. We generated the safety ground truth
by converting the dataset’s thematic classes into safety scores:

– Safe: Paved areas, gravel, dirt, grass, and ar-markers.

– Moderately Safe: Rocks, vegetation, and roofs with an incline.

– Unsafe: Cars, trees, walls, windows, doors, fences, fence poles, dead trees, obsta-
cles, people, unlabeled regions, water, pools, dogs, bicycles, and conficting objects.

The example of conversion of original segmentation mask of ICG dataset into gray-scale
three level safety map has illustrated in Figure 3.3 (b).
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Figure 3.3: (a) Original segmentation map from [83] (b) Grayscale conversion produced
from risk levels (c) Grayscale conversion produced from risk levels with security border

MidAir dataset

The MidAir dataset [63], meticulously crafted by the Montefore Institute, serves as an
invaluable resource for researchers developing algorithms for low-altitude drone fights.
This dataset ofers extensive information, including RGB images of size 1024 × 1024 
pixels, captured by multi-modal sensors. Additionally, it provides surface normal orien-
tation, depth, object semantics, and stereo disparity.

The dataset has 420,000 training frames, divided into 54 distinct trajectories, each
encompassing diverse weather and seasonal conditions. The dataset also ofers three
diferent environment maps, further increasing its versatility and applicability. Since
the dataset is voluminous, we selected a subset of 3855 images and segmentation maps,
sampled from various weather conditions (i.e., sunny, foggy, etc.), then splitted into
two parts: 75% for training and 25% for testing. Here’s a breakdown of the conversion
process for ICG dataset:

– Safe: Dirt ground, ground vegetation, and road.

– Moderately Safe: Rocky ground, boulders, and train tracks.

– Unsafe: Man made construction, Road Sign, Other man-made stuf, Water plane,
empty, Animals.

The example of conversion of original segmentation mask of MidAir dataset into gray-
scale three level safety map has illustrated in Figure 3.4 (b)
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Figure 3.4: (a) Original segmentation map from [63] (b) Grayscale conversion produced
from risk levels (c) Grayscale conversion produced from risk levels with security border

To enhance the distinction between safe and non-safe areas, a safety margin has been
implemented at all transitions between upright and fat structures. This margin creates
a smoother gradient between safety levels, improving navigation and decision-making
for autonomous systems.

The safety margin is generated by applying a Gaussian flter to the original ground
truth data, which initially contains three distinct safety levels. This fltering technique
efectively blurs the boundaries between the levels, creating a smoother transition zone.
Importantly, the unsafe (black) and medium safe (gray) zones within the ground truth
remain unaltered. This ensures a clear distinction between critical danger zones and
areas with some level of safety.

The resulting safety margin is visualized in Figure 3.3 (c) and Figure 3.4 (c) for
illustrative purposes.

3.2.2 Model Training Details:

The Keras API within TensorFlow 2.7 was used to build the model on an NVIDIA
GeForce RTX 2070 GPU equipped with 6 GB of memory. The segmentation maps,
represented as grayscale images with three categories (low, medium, and high) assigned
distinct values (255, 127, and 0) (refer to Figure 3.2), were normalized by division by 255
to yield safety scores corresponding to each class. A custom generator was then employed
to feed the processed data into the network. The training process encompassed 50 epochs
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with a batch size of one image due to image size constraints. The model has been trained
with the Adam optimizer, with a default learning rate of 5×10−4 , decreasing at a rate of
0.1 after a stagnation of the validation loss for four consecutive epochs, with a minimum
value of 1 × 10−7 .

3.2.3 Model Evaluation

We trained the models for 50 epochs, allowing them to predict safety maps within a
specifc range relevant to the target region. The obtained scores, initially ranging from
0 to 1, were then converted for visual representation:

Grayscale: Scores were mapped to a grayscale intensity between 0 (black) and 255 (white),
with higher values indicating greater safety.

Heatmap: Using the Hue, Lightness, and Saturation (HLS) color space, the scores were trans-
formed into a heatmap. Green represents safe areas, yellow indicates slightly safe
zones, and red depicts unsafe regions.

Visualizations for urban and natural scene predictions are presented in Figures 3.5 and
3.6, respectively.

Since the safety maps are continuous scores (0-1), standard segmentation metrics like
Intersection over Union (IoU) or Dice coefcient are not suitable for evaluation. While
ground truth masks might use labels like "Low," "Medium," and "High" risk, the predic-
tions themselves hold continuous values. Therefore, we employed Mean Absolute Error
(MAE) and Mean Squared Error (MSE) as the primary quantitative metrics. These
metrics refect the average diference between the predicted and ground truth safety val-
ues.

Our qualitative evaluation in Figures 3.5 and 3.6 visually confrms the efectiveness
of our method. While the ICG dataset yielded positive results, it occasionally struggled
to diferentiate between grass and trees. This resulted in some instances where trees
received low-risk scores on certain maps, while grass received high-risk scores on oth-
ers. Conversely, the MidAir dataset generally produced clear visual outputs, accurately
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depicting safe areas (primarily roads and grass) versus unsafe zones (mostly trees and
rocks). As expected, the model encountered difculties in darker and foggier scenes,
which are inherently unsuitable for fying drones (refer to Figure 3.6).

Quantitative evaluation is presented in Table 4.8. We assessed performance using
two metrics for both datasets, analyzing predictions with and without a safety margin
between vertical and fat sutures. For the ICG dataset, the Mean Absolute Error (MAE)
was 0.157 without a margin and improved to 0.127 when incorporating a margin. The
MidAir dataset displayed similar trends, with MAE values of 0.169 and 0.129, respec-
tively.

In terms of Mean Squared Error (MSE), the MidAir dataset – capturing a natural
scene from a frst-person perspective – achieved an average of 0.069 without a margin
and 0.049 with a margin. The ICG dataset’s MSE values were 0.122 and 0.056, again
demonstrating improvement with the inclusion of a safety margin. These results col-
lectively indicate that our model generates consistently accurate predictions. Notably,
incorporating safety margins consistently enhanced performance across both training
and test data, as shown in Table 4.8.

To further evaluate our approach, we compared it to a pure segmentation method.
This involved training both datasets with a categorical cross-entropy loss function to
produce segmentation outputs. Segmentation results are detailed in Table 3.2. Inter-
estingly, we observed minimal diferences in MAE and MSE between segmentation and
regression for the ICG dataset. However, the MidAir dataset exhibited signifcantly
lower MAE and MSE values when using regression compared to segmentation. This
fnding reinforces the advantage of employing regression for the specifc task of SLZ de-
tection.
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Figure 3.5: Predictions on the test samples from the ICG dataset. (a) Input image (b)
Ground truth (3 categories) (c) Safety score map map (grayscale) going from lighter
(low landing risks) to darker (high landing risks) (d) Safety heat map (HLS colorspace)
going from green (low landing risks) to red (high landing risks)
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Figure 3.6: Predictions on the test samples from the MidAir dataset. (a) Input image
(b) Ground truth (3 categories) (c) safety score map (grayscale) going from lighter (low
landing risks) to darker (high landing risks) (d) Safety score heat map (HLS colorspace)
going from green (low landing risks) to red (high landing risks)
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Table 3.1: Experimental results (Regression)
Dataset Loss Margin MAE MSE

ICG
ICG
ICG
ICG

MAE
MAE
MSE
MSE

No
Yes
No
Yes

Training Testing

0.104 0.153
0.120 0.206
0.177 0.193
0.171 0.240

Training Testing

0.073 0.112
0.062 0.109
0.077 0.104
0.061 0.098

MidAir
MidAir
MidAir
MidAir

MAE
MAE
MSE
MSE

No
Yes
No
Yes

0.029 0.104
0.016 0.087
0.029 0.145
0.020 0.124

0.018 0.054
0.005 0.045
0.016 0.078
0.005 0.041

Table 3.2: Experimental results (Segmentation)
Dataset Loss Function Margin MAE MSE

ICG
MidAir

Categorical Crossentropy
Categorical Crossentropy

No
No

Training Testing
0.113 0.152
0.065 0.196

Training Testing
0.054 0.108
0.031 0.1139

3.3 Conclusion

In this chapter, we proposed a method for SLZ prediction for UAVs based on supervised
deep regression. The model is built on a segmentation backbone and is able to predict
dense safety maps by taking into account the color/texture distribution of images as
well as the proximity to upright and fat structures. We implemented the model on two
diferent datasets containing images in both vertical (nadir) and oblique views as well
as urban and natural scenes. Our results showed the huge potential of our method for
accurately identifying SLZ. While the tests have been conducted entirely on existing
aerial images datasets, further tests using real drones will enable to better evaluate
the proposed approach. In addition, combination of 2D and 3D information will give
precious cues about surface orientation and the presence of obstacles that cal potentially
increase the accuracy of SLZ detection.



Chapter 4

Deep Ordinal Regression for SLZ
Detection Using Photometric and
Geometric Information

4.1 Introduction

Ensuring the reliability and safety of UAV operations is a major challenge for large-
scale deployment, particularly in compliance with legislated safety rules and regulations
[89, 107]. This necessitates the implementation of robust mechanisms for obstacle avoid-
ance [240] and autonomous operation in environments lacking GPS or communication
signals [150]. A key requirement in such scenarios is the ability to identify SLZs during
emergency situations triggered by component failures, communication loss, or adverse
weather conditions, all of which can lead to crashes and potential harm to people, prop-
erty, or other vehicles [89]. SLZ detection also supports human pilots in executing
planned missions more safely by enabling landing trajectory optimization. To achieve
this, UAVs must avoid hazardous areas such as those containing dense vegetation, water
bodies, buildings, or dynamic obstacles—and prioritize fat, obstacle-free regions devoid
of people or animals. Integrating automated decision-making processes for detecting
such areas is essential for achieving reliable and autonomous UAV navigation.

Past methods for SLZ detection used either non-vision-based, vision-based, or com-
bined approaches to analyze the scene surrounding the UAV [191]. Non-vision-based
approaches use mainly Light Detection and Ranging (LiDAR) to estimate digital eleva-
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tion models (DEMs) from which a 3D representation of the terrain is generated [129].
This is achieved by computing the refection time of laser beams projected from the
UAV to the target area. Although LiDAR can provide highly accurate 3D terrain maps
with point clouds [228], it is a very costly sensor compared to cameras. Vision-based ap-
proaches use an onboard camera, which can provide continuous images and videos about
the UAV’s immediate environment. Compared to LiDAR, cameras have the advantage
of being inexpensive, lighter, and a passive means for terrain sensing. In addition, ef-
cient computer vision techniques can be used to extract relevant cues to identify SLZs
[20, 89].

Most vision-based SLZ detection methods relied on prior knowledge about the land-
ing sites, which can be a 3D elevation map [191], or designation of static landing locations
using easily-identifable markers or patterns [226]. However, this knowledge is not al-
ways available, especially in emergency landing situations which can occur at arbitrary
locations. Additionally, in GPS-denied environments, the UAV should be endowed with
computational intelligence that can visually explore the UAV surroundings to quickly
identify potential SLZs [90]. The progress of Convolutional Neural Networks (CNNs)
in the last decade has signifcantly enhanced computer vision for diferent scene under-
standing tasks, including image classifcation, object detection and tracking [112, 206],
and semantic segmentation [203]. This, in turn, has spurred research for vision-based
UAV navigation, more particularly for SLZ detection [89, 226].

For example, methods have been proposed for detecting crowded areas during UAV
landing [70, 89, 164, 210]. These methods proposed architectures that perform binary
(crowd/non-crowd) segmentation of the scene; thus mapping the scene into two classes:
safe and high-risk landing zones. Other methods perform multi-label segmentation of the
scene, by assigning safety labels to image regions (e.g., safe, moderately safe, and unsafe
) [72, 139]. The class labels correspond generally to semantic concepts such as crowds,
vehicles, and vegetation, which give a rough indication about damage risk for the UAV or
third parties. These methods suppose the safety classes are independent to each other,
and, consequently, they are treated equally during training and validation. However,
safety levels have a strong ordinal relationship, which cannot be captured by multi-class
segmentation. For example, collision with a human should have a much higher cost than
trying to land a UAV on a rough rocky ground. Also, a security perimeter should be
guaranteed for the surrounding of very unsafe objects (e.g., moving objects) to avoid
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collisions. Consequently, the predicted safety maps should be be spatially consistent and
carry the most relevant information to minimise the risk of damage.

This chapter presents the development of a deep-learning model designed for vision-
based detection of SLZs using an ordinal regression strategy. The proposed model,
referred to as OR-SLZNet (Ordinal Regression for SLZ Detection Network), aims
to generate dense safety maps from visual inputs in both urban and natural environ-
ments. These safety maps can be seamlessly integrated into autonomous UAV navigation
pipelines for safer landings.

Conventional semantic segmentation techniques often treat class labels as indepen-
dent categories. However, when assessing safety, such an assumption is limiting. Safety
levels inherently possess an ordinal structure, ranging from highly unsafe to highly safe
conditions. The OR-SLZNet model addresses this limitation by formulating the SLZ
detection problem as a multi-task ordinal regression, enabling the model to learn and
represent the ordered nature of safety labels more efectively.

To implement this concept, the safety spectrum is divided into fve ordered levels:
very unsafe, unsafe, moderately safe, safe, and Very Safe. Unsafe regions typically
correspond to areas that pose a risk to UAVs or surrounding individuals and property
(e.g., high vegetation, water bodies, pedestrians, cyclists, or infrastructure such as power
lines). In contrast, safe regions are characterized by fat, unoccupied surfaces free from
water and obstacles (e.g., lawns, pavements), minimizing the potential for damage upon
landing.

The OR-SLZNet model adopts an encoder-decoder architecture inspired by U-Net
[182], enhanced with task-specifc adaptations to handle ordinal outputs. Each level of
safety is predicted using a set of binary sub-tasks, allowing the model to incrementally
assess the safety level of each pixel. The model also incorporates:

– A dual encoder to extract multi-modal features from color (RGB), depth, and
terrain fatness inputs.

– Attention mechanisms to prioritize semantically relevant features for accurate
sub-task predictions.

– Multi-scale convolutional blocks to enrich contextual understanding across
spatial resolutions.

The main technical contributions of this work are outlined below [185]:
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– A novel deep-learning model, OR-SLZNet, is introduced for ordinal safety predic-
tion in UAV imagery. It employs multiple binary classifers corresponding to each
safety level, allowing for more consistent and interpretable safety ranking. The
model integrates attention gates and multi-scale convolutions to better capture
local context and critical obstacle details.

– To accurately assess terrain safety, the model leverages multi-modal inputs,
including RGB images for semantic cues, depth maps for distance awareness, and
fatness indices for geometric reasoning. These complementary inputs enhance the
model’s ability to identify viable SLZs that are both safe and practical for landing.

– The training process is supported by safety annotations derived from several pub-
lic datasets, including AeroScapes [155], ICG [83], MidAir [63], UAVid [136],
and Valid [38]. These datasets span a diverse range of aerial scenes, encompassing
both synthetic and real-world imagery, vertical and oblique viewing angles, and
a mixture of natural and built environments. Safety levels are annotated by ag-
gregating thematic classes according to criteria commonly used in SLZ evaluation
such as fatness, slope, and absence of dynamic or structural hazards.

Experimental evaluation on these datasets demonstrates that OR-SLZNet outper-
forms traditional semantic segmentation models in the context of SLZ detection, pro-
viding more accurate and consistent safety maps.

The rest of this chapter is organized as follows: Section 4.2 presents the proposed
methodology. Section 4.3 presents experimental results validating our work. We end the
chapter with a conclusion and future work perspectives.

4.2 Methodology

The OR-SLZNet aims to predict dense SLZ maps from the aerial images acquired by
an UAV. The model is built on an architecture trained in an end-to-end fashion to
extract tailored features, enabling the prediction of an ordinal safety value for each
image location. Real-world scenes are often complex, and RGB images alone may not
provide sufcient information to accurately assess landing safety. To overcome this
limitation, RGB channels are complemented by depth data, surface fatness, and surface
inclination features. Depth provides an estimate of the relative distance of objects to the
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UAV; whereas fatness and inclination are useful to represent the local surface geometry.
Herein, we describe the process for extracting these features.

4.2.1 Input cues for SLZ detection

Depth map

Depth is an important information for UAV navigation. It can give a good estimate of
the relative object distance to the camera, which can help identify obstacles and terrain
characteristics [174]. Therefore, depth is used as one of the input channels to predict
our safety maps. However, depth can be difcult to estimate from single images since no
motion or stereo information is available. Recent advancements in computer vision and
deep learning techniques have enabled the development of methods for depth estimation
on monocular images [148], [229] and [230]. These methods rely on cues such as context,
texture variation, shading, and defocus. In our model, we use the DeepAnything model
[230], a two-stage framework frst predicting depth up to an unknown scale, and then
using 3D point cloud encoders to recover a smoother depth map.

Flatness map

Flatness is a characteristic that indicates whether an area is fat enough and clear of
obstacles (e.g., bushes, stones, etc.). It is generated using the idea presented in [35, 149],
which is based on using depth gradient values to estimate a region fatness. We use the
gradient magnitude of the input grayscale depth image to identify depth discontinuities.
Let d(x, y) be the calculated gradient magnitude on the depth map. Flatness is then
given by :

F (x, y) = 1 − exp(−Gσ ∗ d(x, y)) (4.1)

where Gσ is a Gaussian convolution kernel of size m × m. For the datasets, we found
that m = 13 gives the best results. Finally, the negative of the resulting fltered image
is used to represent the fatness map, which represents the degree at which the surface
is void of bumpy elements that can cause damage for the UAV.
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Figure 4.1: Illustration of the inclination computation using local surface normal vectors
estimated from depth.

Inclination-map

Simply having a fat surface is not enough to ensure a safe landing. Another important
cue that should be considered is surface inclination or slope. This can be estimated
using the angle between the local surface normal and the vertical axis (see Figure 4.1
for illustration). Surface normals can be determined when 3D digital surface map is
available. Otherwise, a 3D representation of the scene can be estimated, which can be
challenging to obtain in monocular vision. In our study, we utilized the repository from
[15] to extract surface normals from RGB images for all datasets, except for MidAir [63],
which already provided surface normals as part of the dataset. Then, we compute
the average normal for each location using the location neighborhood. Finally, the
inclination is computed using the scalar product between the normalized versions of the
averaged surface normal n⃗ and the upward vector v⃗:

I(x, y) = 1 − v⃗ · n⃗(x, y) (4.2)

Note that the upward vector v⃗, signifying the zenith direction of the 3D world coor-
dinate system, corresponds to (x, y, z) = (0, 0, 1). It can be determined from the UAV
navigation parameters or estimated from some vertical objects (e.g., buildings, trees,
etc.). In the above formula, I = 0 indicates a horizontal surface, whereas I = 1 indi-
cates a vertical surface. The map in Figure 4.1 illustrates the inclination computation
using local normal vectors.
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4.2.2 OR-SLZNet Model Architecture

We propose a deep ordinal regression network to deal with the SLZ detection problem.
The model, as illustrated in Figs 4.2 has a multi-modal input including six channels
(RGB, depth, fatness, and inclination). The model is based on an encoder-decoder
Unet architecture designed to predict ordinal safety outputs for each image location.
The architecture is composed of three-level feature extraction modules: low-level (LL),
mid-level (ML), and high-level (HL) feature extraction modules.

The LL module is composed of two parallel sub-Unets made of sub-encoders and
sub-decoders specialized in parsing photometric and geometric features, respectively.
Each sub-encoder consists of four convolution blocks and ends up with a bottleneck of
256 features. These are then passed to the sub-decoder which is composed of three
up-sampling blocks (the forth block is transparent in the architecture is used in the
pre-training of each sub-Unet). The outputs of the two sub-decoders are concatenated
to constitute intermediary features.

The ML module generates contextual information by using dilated convolutions with
sizes (d1, d2, d3, d4). This technique captures context from larger regions and improves
model performance for segmenting objects of various sizes. It is especially benefcial for
UAV imaging, where object sizes vary due to changes in UAV altitude and camera view
angle. Dilated Convolution enables the model to recognize objects with diferent sizes
[39].

Finally, the HL module refnes the intermediary features to solve each of the four
sub-tasks. Each sub-task is a pipeline that starts by generating two feature maps using
convolution with 3 × 3 and 7 × 7 kernel sizes, then passed through the Spatial-Channel
Attention Block (SCAB) (described in Section 4.2.4). This is followed by two convolution
blocks with 3 × 3 and 1 × 1 kernel sizes, respectively.

4.2.3 Safely prediction using extended binary classifcation

Inspired from [110], a series of K − 1 binary classifcation sub-tasks are used to output
K ordinal safety levels per location. The classifcation sub-tasks share the same feature
representation learned from the low-level feature extraction module. However, each sub-
task is characterized by its own high-level feature extraction pipeline. Each pipeline also
contains an attention gate that sifts through the decoded features to select the most
relevant (spatial/channel) information for each rank prediction.
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Figure 4.2: The detailed architecture of the OR-SLZNet model.

Suppose that we have a space of K safety ranks S = {s1, ..., sK }, with ranks ordered
such that s1 ≺ s2 ≺ · · · ≺ sK (in our case the relation si ≺ sj means rank sj is safer
than rank si). We want to predict for every pixel its optimal rank by transforming
the problem into a series of K − 1 binary classifcation sub-tasks T1, T2, ..., TK−1. Each
binary task Tk predicts whether the target variable is less than, or greater equal, to a
specifc safety rank sk.

In our implementation, the safety outcome space is discretized into K = 5 levels,
as follows: {Very Unsafe, Unsafe, Moderately Safe, Safe, Very Safe}. Given n training
examples D = {(X (i), Y (i))}n composed of images with their safety masks, the goal isi=1 

to build a model representing the mapping f : X → Y , where X ⊆ Rn×m×d is the space
of input images and Y ⊆ Nn×m is the space of masks whose element values are taken
from the set S.

Given a ground-truth safety rank Yp for a pixel p, the optimal mapping f should
minimize the cost of rank prediction Ŷ  p. A matrix C can be used to encode the pairwise
cost C ˆ of mis-assigning rank Ŷ  p when the true pixel rank is Yp. A popular costYp,Yp 

ˆfunction can be defned by the absolute error CYp,Ŷ  
= |Yp − Yp| [110]. When the cost

p 

of rank mis-assignment is nit symmetric, one can use an asymmetric loss function that
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can put more penalty for mis-assigning lower to higher ranks, for example. This can be
formulated as follows: h i2 h i2 

Ca 
ˆ = α min(0, Ŷ  p − Yp) + β max(0, Ŷ  p − Yp) (4.3)

Yp,Yp 

where α and β are weights determining the penalty direction. When α > β (resp.
α < β), more penalty is given for mislabeling lower ranks with higher ranks (resp.
mislabeling higher ranks with lower ranks). When α = β, the formula boils down to a
symmetric loss function.

While the input images are shared among the diferent binary classifcation sub-tasks,
the coding of the ground truth will be diferent for each task. That is, each pixel p is

1 2 K−1)T kassociated an ordinal response vector yp = (y , y , ..., y , where y is the actualp p p p 

response value for pixel p with regard to the k -th sub-task, such that:

yp
k = 1(Yp ≥ sk) (4.4)

where 1(·) is an indicator funciton. Moreover, to ensure consistency between the diferent
classifers and the ranking, we assume that if ypk > 0, then yp

j > 0, ∀j < k [110]. In other
words, a pixel is assigned a given safety rank if it has passed all lower safety ranks. Let
Y (i,k) be the mask encoding all the pixel outputs for the k -th sub-task. Then, the train-
ing of all sub-tasks is done in parallel using the dataset Dk = {(X(i), Y (i,k))}n for thei=1 

k -th sub-task. One can also associate a weight for each data point w(i,k) representing the
(i,k)importance of the i-th sample to k-th classifer; for simplicity, we set w = 1, ∀(i, k).

Let hk(X
(i)) ∈ {0, 1} be the prediction of the k-th sub-task. Then, the predicted full

rank of every pixel in the image Ŷ  (i) is given by the following function:

K−1X 
ˆ (i)Y = 1 + hk(X

(i)) (4.5)
k=1 

The ordinal regression model composed of several task modules is trained in an End-
to-End fashion. This enables to automatically learn good features for defning each safety
rank. Moreover, sharing low-level and mid-level representations between sub-tasks can
enforce consistency between their predictions.
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Figure 4.3: Spatial-channel Attention Block (SCAB) Architecture

4.2.4 Attention for SLZ detection

Attention is a powerful technique used to improve computer vision tasks such as image
classifcation and segmentation by selectively focusing on the most informative regions
and channels for better prediction. Over the past few years, several attention mechanisms
have been developed [74]. For segmentation networks, attention is often included either
in the encoder to extract richer encoded information [225], or in the the decoder to
reconstruct a latent representation that fts a specifed criteria given by the loss function.

For the SLZNet model, we integrated an attention mechanism at the top decoding
blocks to reconstruct a representation to solve each sub-task. This is achieved through
the Spatial-channel Attention Block (SCAB) layer which is composed of channel atten-
tion followed by spatial attention. The channel attention weights are computed through
global average pooling, followed by sigmoid activation. These weights are multiplied by
the input features. The spatial attention weights are computed through one standard
and two dilated convolutions to enlarge the receptive feld. The produced weights are
averaged and pout through a sigmoid function and again multiplied by the input fea-
tures. Finally, the original features are added as a residual to the output of the spatial
attention. The SCAB module is particularly useful for putting focus on small critical
objects such as humans and small vehicles that are difcult to recognize at high altitudes.

4.2.5 Loss function

To train the SLZNet model, we use a loss function that handles K − 1 separate outputs
corresponding to each task, in addition to the asymmetric regularization to penalize
severe mislabeling of non-safe zones. The complete loss function over all pixels of image
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I(i) is given by:

K−1X 
Lk(Y 

(i,k) (Y (i) ˆ (i))Ltot = , Ŷ  (i,k)) + Lg , Y (4.6)
k=1 

where Lk is the loss function associated with the k-th sub-task, whereas Lg is the global
rank loss. The sub-task loss Lk is composed of dice and weighted binary cross entropy
losses, whiuch is given by:

ˆ ˆ (i,k))Lk = DICE(Y (i,k), Y (i,k)) + wBCE(Y (i,k) , Y (4.7)

The DICE between two sets A and B is equal to:

DICE(A, B)) = 2|A ∩ B|/(|A| + |B|) 

The wBCE is designed to enforce the rank consistency between sub-tasks and is given
for a pixel p and sub-task k as follows:

k k k k k kwBCE = −w1 y log(y ) + −w0 (1 − y ) log(1 − y ) (4.8)p p p p 

where w1 
k and w0 

k are the enforcing consistency weights. For example, if a rank of a pixel
p is Yp = 3, sub-tasks T1 and T2 should predict yp 

1 = yp 
2 = 1, whereas sub-tasks T3 and

1 2 1 1 2 2 3 3T4 should predict yp = yp = 0. Consequently, we assign w1 ≫ w0, w1 ≫ w0, w ≪ w01 

and w1
4 ≪ w0

4 .
Finally, the global loss Lg for each pixel p is given by Eq. (4.3). To obtain a prediction

of the full rank of a pixel Ŷ  p, we use Eq. (4.5) where the prediction of each sub-task
hk
p is obtained by thresholding the sub-task output ŷp

k using a shifted Sigmoid function
hk
p = [1 + exp(a(δ − ŷpk)]−1 . The best values for the constants a and δ are 100 and 0.5,

respectively.

4.2.6 SEG-SLZNet

SEG-SLZNet with RGBDFI (late-fusion). The model ingests a 6-channel tensor formed
by concatenating RGB (3-ch) and DFI (3-ch). It splits this into two streams, each passed
through its own UNet with an ImageNet-pretrained, frozen encoder and a trainable de-
coder (so pretrained encoders stay stable while decoders adapt to SLZ semantics). From
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each branch, we take the fnal high-resolution decoder feature map, concatenate them
along channels to fuse appearance (RGB) with geometry/illumination cues (DFI), then
apply a lightweight SegmentationHead to output per-pixel logits for the 5 safety classes
(softmax for inference). Training uses cross-entropy on class indices. This setup keeps
3-channel encoders (so pretrained weights are valid) while leveraging complementary
RGB/DFI information for more robust safety mapping.

4.3 Experimental Results

4.3.1 Dataset annotation

To demonstrate the efectiveness of safety prediction, we conducted several experiments
examining diferent aspects of the proposed model. Since no existing dataset addresses
the safety prediction problem like our approach, we generated safety annotation for
several datasets proposed for semantic segmentation. These include AeroScapes [155],
ICG [83], MidAir [63], UAVid [136] and Valid [38]. These datasets include a variety of
acquisition scenarios (e.g., diferent camera angles, diferent altitudes) and scene types
(e.g., real and synthetic data, urban and natural environments).

To create a fve-level safety classifcation for each RGB image across all datasets, we
generated safety ranks for the semantic classes within the datasets. For visualization
purposes, safety ranks were represented using specifc RGB colors: Red for Very Unsafe
(VU, rank 0), Brown for Unsafe (U, rank 1), Orange for Moderately Safe (MS, rank 2),
Cyan for Safe (S, rank 3), and Green for Very Safe (VS, rank 4). The detailed division
of semantic classes into safety levels for diferent datasets is provided in Table 4.1. It
is important to note that due to the diversity of classes across datasets, similar classes
may have been assigned to diferent safety categories. Additionally, all images, along
with their corresponding maps and masks, were resized to 512×512 pixels for consistency.
The images selected for each dataset were then split into three subsets: 80% for training,
10% for validation, and the remaining 10% for testing. A detailed description for each
dataset follows (see Figure 4.4 for illustrative examples):

AeroScapes Dataset [155]

Comprises 3,269 high-resolution real-world images of size 1280 × 720 pixels, captured
by a drone fying at altitudes (from 5 to 50 meters) on a variety of urban and natural
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Table 4.1: Safety Level Classifcation Overview.
Dataset Very Safe Safe Moderately Safe Unsafe Very Unsafe
Aerospace paved-area, grass,

sport feld
road construction vegetation, obstacle, car person, bike, drone, boat,

animal, water, sky, back-
ground

ICG paved-area, grass,
AR-marker

dirt, gravel roof rocks, vegetation, car,
tree, wall, fence-pole,
bald-tree, obstacle, win-
dow, door, fence

person, unlabeled, bicycle,
conficting, water, pool,
dog

MidAir ground vegetation road, dirt ground rocky ground, train track,
boulders

man-made construction,
road sign, trees, other
human-made stuf

water plane, empty, ani-
mals

UAVid low vegetation road building static car, moving car, tree humans, background clut-
ter

Valid pavement land roof, building, bridge, small vehicle, large vehi-
cle, chair, stones, lamp,
fence, garbage bin, sign,
ship, pier-rubble, tree,
trafc light, other plant,
ice, bus stop, tunnel,
harbor, other low obstacle

plane, power line, other
high obstacle, animal, per-
son, water, pool, back-
ground

scenes. The dataset background class posed a challenge due to its complexity, making it
difcult to annotate. To address it, we replaced his class with four additional subclasses:
grass, water, paved area, and sports feld. This refnement allowed for a more precise
classifcation. Finally, we discarded images without any viable landing zones (e.g., scenes
entirely over water), making a dataset of 2,725 images, divided as follows: 2,168 for
training, 279 for validation, and 278 for testing.

ICG Dataset [83]

is a collection of 400 real-world images, of resolution 6000 × 4000 pixels, captured by
a drone operating at altitudes spanning from 5 to 30 meters. It focuses on a semantic
understanding of urban scenes to increase autonomous drone fight safety and landing
procedures. The images depict more than 20 houses from a nadir (bird’s eye) view.
The segmentation ground truth consists of 24 thematic classes. For the task of person
detection, the dataset also contains bounding box annotations of the training and test
set. We used all 400 images from this dataset for various experiments, allocating 320
for training, 40 for validation, and 40 for testing.

MidAir Dataset [63]

The Montefore Institute Dataset of Aerial Images and Records (MidAir) is a synthetic
dataset specifcally designed to simulate low-altitude drone fights. This dataset ofers
extensive information, including RGB images of size 1024 × 1024 pixels, captured by
multi-modal sensors. Additionally, it provides surface normal orientation, depth, object
semantics, and stereo disparity.
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Figure 4.4: (a) Original image AeroScapes [155], ICG [83], MidAir [63], UAVid [136] (b)
depth map (c) fatness map (d) inclination map (e) fve-level safety ground truth.

The dataset has 420,000 training frames, divided into 54 distinct trajectories, each
encompassing diverse weather and seasonal conditions. The dataset also ofers three
diferent environment maps, further increasing its versatility and applicability. For our
model training and evaluation purposes, We selected a representative sample of 2,202
RGB images (with 1,761 for training, 221 for validation, and 220 for testing), each
accompanied by its corresponding ground-truth, depth, and surface normal maps.
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UAVid Dataset [136]

Consists of high-resolution 4K real-world images captured from videos recorded by
drones in urban environments. The images portray streets from an oblique viewpoint
and are specifcally designed for semantic segmentation tasks. The dataset encompasses
eight diferent object classes that need to be identifed. For our purposes, we modifed
the original dataset split. We selected 820 images and randomly divided them into 653
for training, 86 for validation, and 81 for testing. We used the original ground truth
masks to generate our fve-level safety maps.

VALID Dataset [38]

Short for Virtual Aerial Image Dataset, provides a collection of synthetic images specif-
ically created for segmentation tasks involving 30 distinct categories. The dataset com-
prises 6,690 images with a resolution of 1024 × 1024 pixels., generated in six virtual en-
vironments (Airport, Downtown, Mountain, Neighborhood, Night, and Seaside). Each
environment includes images captured at three diferent altitudes (20, 50, and 100 me-
ters), except for Night, which only comprises images at 20 meters. Additionally, the
dataset encompasses various lighting conditions. Our work combined images from var-
ious environments and altitudes to create a comprehensive dataset for a single training
phase. We randomly divided this dataset into 5,352 images for training, 669 for valida-
tion, and 669 for testing.

4.3.2 Model training and evaluation

In this section, we evaluate the performance of OR-SLZNet using the fve distinct
datasets previously introduced. All experiments were conducted on an NVIDIA sta-
tion with a 48GB RTX 6000 Ada GPU, and a system with 128GB memory. Each model
was trained for up to 200 epochs, allowing for thorough convergence and performance
evaluation.

We evaluate the model performance using key metrics such as mean Intersection over
Union (mIoU), Accuracy (Acc), Dice, and Mean Square Error (MSE) across training,
validation, and test splits. While these metrics provide a general sense of the model
efectiveness, they do not fully capture the critical safety aspect of our problem. In
particular, mis-classifying Very Unsafe (rank 0) as Safe or Very Safe (ranks 3 or 4) is far
more dangerous than the reverse, given the higher safety risks involved in such errors.
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To better refect these concerns, we use Asymmetric Mean Square Error (AMSE) in
Eq. (4.3), which applies a higher penalty when the model predicts a higher safety rank
than the actual rank. Specifcally, we set α = 1 and β = 3 to emphasize the cost of
overestimating safety. We calculate AMSE for individual sub-tasks and as a total score
across all classes. This ensures that even if the model’s performance on conventional
metrics is not superior, it focuses on minimizing AMSE, particularly for the Very Unsafe
rank. Ensuring accurate detection of this rank is vital for making reliable UAV landing
decisions, where any failure to avoid unsafe zones could lead to severe consequences.
Note that if we discard the ordinal nature of the safety scores, the fve classes can still
be derived from a standard semantic segmentation model.

To demonstrate the performance and advantages of our proposed OR-SLZNet model,
we developed a variant of it by replacing the ordinal regression with a segmentation head.
This model integrates the photometric (RGB) and a geometric (DFI) features as in the
OR-SLZNet model. That is, the RGB and DFI features go through their respective
encoders, then decoded and concatenated in a similar way to OR-SLZNet. Finally, the
produced features pass through a dual-layer segmentation head to produce the fnal
output. This model is trained using cross-entropy (CE) loss.

The following sections outline our experiments, beginning with an ablation study
that demonstrates the importance of diferent inputs and components for both SEG-
SLZNet and OR-SLZNet. This analysis emphasizes the role of key components of our
model. Next, we explore the impact of using an asymmetric loss function to prioritize
correct predictions for critical safety classes, ensuring better performance in high-risk
mis-classifcations. Finally, to enable a more realistic scenario, we added a safety margin,
labelled unsafe, around the very unsafe parts since this part can constitute some risk
for a fying UAV. This adds a challenge for safety estimation by enabling to assess how
well our model handles subtle safety boundaries compared to standard segmentation
methods. Finally, we tested OR-SLZNet in hazy conditions to evaluate its robustness
to adverse weather conditions.

Ablation study

As discussed in Sec. 4.2.2, OR-SLZNet integrates both photometric (RGB) and geomet-
ric (DFI) features to leverage rich visual information alongside spatial and structural
cues. In this ablation study, we frst demonstrate the efectiveness of the feature fusion
for both SEG-SLZNet and OR-SLZNet. Then, we compare the performance of OR-
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Figure 4.5: Illustrative Ablation Study Model Prediction Comparison

SLZNet and SEG-SLZNet using four overall evaluation metrics, as well as AMSE. For
this experiment, we used only a symmetric version of our loss function (DICE+BCE),
whereas for the SEG-SLZNet we used the cross-entropy (CE) loss. The comparative
results across all fve datasets are presented in Tables 4.2 to 4.3. The bold numbers in
the tables indicate the direct comparison between OR-SLZ and Seg-SLZ: for each metric,
the value corresponding to the better-performing method is shown in bold.

Note that except for MidAir where depth and surface normals were provided, the
other datasets required to estimate these cues. Thus, MidAir provides an ideal baseline
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Table 4.2: Ablation study on input features analyzing the performance of: (a) SEG-
SLZNet and (b) the OR-SLZNet models.
Dataset Loss Input Train Validation Test

mIoU Acc Dice MSE mIoU Acc Dice MSE mIoU Acc Dice MSE
AeroScape CE DFI 0.963 0.992 0.981 0.082 0.855 0.966 0.916 0.300 0.798 0.953 0.883 0.352

RGB 0.969 0.994 0.984 0.073 0.955 0.991 0.977 0.106 0.953 0.990 0.976 0.118
Fusion 0.973 0.994 0.986 0.063 0.957 0.991 0.978 0.101 0.956 0.991 0.977 0.112

ICG CE DFI 0.953 0.990 0.976 0.129 0.807 0.957 0.892 0.540 0.815 0.959 0.897 0.493
RGB 0.949 0.989 0.974 0.152 0.866 0.971 0.926 0.386 0.868 0.972 0.929 0.396
Fusion 0.959 0.992 0.979 0.116 0.903 0.980 0.949 0.258 0.900 0.979 0.947 0.266

MidAir CE DFI 0.901 0.979 0.948 0.147 0.886 0.975 0.939 0.177 0.871 0.971 0.928 0.213
RGB 0.900 0.979 0.947 0.149 0.885 0.975 0.937 0.185 0.876 0.973 0.932 0.205
Fusion 0.924 0.984 0.960 0.108 0.908 0.980 0.951 0.137 0.896 0.978 0.944 0.165

UAVid CE DFI 0.913 0.982 0.954 0.269 0.793 0.953 0.882 0.857 0.798 0.954 0.886 0.813
RGB 0.930 0.985 0.964 0.209 0.854 0.968 0.921 0.518 0.854 0.969 0.921 0.49
Fusion 0.954 0.991 0.977 0.131 0.860 0.970 0.924 0.501 0.861 0.970 0.925 0.508

Valid CE DFI 0.950 0.990 0.974 0.103 0.887 0.974 0.936 0.250 0.886 0.974 0.936 0.253
RGB 0.949 0.989 0.974 0.110 0.933 0.986 0.965 0.149 0.928 0.985 0.962 0.158
Fusion 0.967 0.993 0.983 0.069 0.962 0.992 0.981 0.081 0.96 0.992 0.979 0.083

(a)

Dataset Loss Input Train Validation Test
mIoU Acc Dice MSE mIoU Acc Dice MSE mIoU Acc Dice MSE

AeroScape DBCE DFI 0.968 0.993 0.984 0.061 0.923 0.984 0.960 0.133 0.924 0.984 0.960 0.144
RGB 0.972 0.994 0.986 0.057 0.957 0.991 0.977 0.100 0.954 0.991 0.976 0.112
Fusion 0.981 0.996 0.991 0.036 0.957 0.991 0.978 0.091 0.954 0.991 0.977 0.101

ICG DBCE DFI 0.927 0.985 0.962 0.162 0.790 0.953 0.883 0.516 0.795 0.954 0.885 0.518
RGB 0.959 0.992 0.979 0.100 0.862 0.970 0.926 0.365 0.867 0.971 0.929 0.364
Fusion 0.960 0.992 0.980 0.103 0.901 0.979 0.948 0.255 0.901 0.979 0.948 0.250

MidAir DBCE DFI 0.908 0.981 0.951 0.126 0.888 0.976 0.941 0.163 0.878 0.974 0.935 0.187
RGB 0.905 0.980 0.950 0.127 0.889 0.976 0.941 0.159 0.876 0.973 0.933 0.189
Fusion 0.929 0.985 0.963 0.091 0.908 0.981 0.952 0.125 0.897 0.978 0.946 0.153

UAVid DBCE DFI 0.912 0.982 0.954 0.211 0.787 0.952 0.881 0.756 0.791 0.953 0.883 0.759
RGB 0.921 0.983 0.959 0.197 0.855 0.969 0.922 0.470 0.854 0.969 0.921 0.490
Fusion 0.964 0.993 0.982 0.075 0.867 0.972 0.929 0.441 0.862 0.970 0.926 0.470

Valid DBCE DFI 0.951 0.990 0.975 0.091 0.938 0.987 0.968 0.110 0.931 0.986 0.964 0.118
RGB 0.951 0.990 0.975 0.097 0.947 0.989 0.973 0.107 0.942 0.988 0.970 0.113
Fusion 0.969 0.994 0.984 0.057 0.964 0.993 0.982 0.068 0.961 0.992 0.98 0.073

(b)

Table 4.3: Comparison Between SEG-SLZNet and OR-SLZNet Using AMSE Metric
Across Safety Classes for Diferent Datasets
Dataset Model Train Validation Test

VU U MS S Vs Total VU U MS S Vs Total VU U MS S Vs Total
AeroScape SEG-SLZNet

OR-SLZNet
0.616
0.297

0.097
0.082

0.055 0.032
0.048 0.023

0.080
0.033

0.131
0.075

0.969
0.805

0.184
0.186

0.160 0.050
0.115 0.046

0.197
0.132

0.247
0.210

1.448
1.283

0.158
0.137

0.231 0.050
0.143 0.051

0.180
0.122

0.291
0.247

ICG SEG-SLZNet
OR-SLZNet

0.595
0.442

0.562
0.510

0.018 0.211
0.018 0.229

0.087
0.075

0.210
0.188

1.723
1.598

1.405
1.559

0.079 0.534
0.095 0.542

0.165
0.146

0.493
0.512

1.411
1.335

1.583
1.547

0.053 0.485
0.056 0.499

0.160
0.141

0.538
0.518

MidAir SEG-SLZNet
OR-SLZNet

0.104
0.074

0.284
0.244

0.794 0.371
0.525 0.268

0.089
0.081

0.263
0.193

0.116
0.095

0.312
0.287

0.805 0.427
0.713 0.409

0.094
0.094

0.277
0.252

0.140
0.107

0.301
0.278

1.003 0.364
0.901 0.326

0.103
0.097

0.309
0.277

UAVid SEG-SLZNet
OR-SLZNet

0.747
0.452

0.225
0.213

0.031 0.131
0.027 0.127

0.339
0.317

0.271
0.208

2.652
2.193

0.932
0.841

0.096 0.379
0.080 0.378

1.233
1.292

1.014
0.900

2.490
2.166

1.012
0.907

0.089 0.339
0.071 0.347

1.530
1.523

0.977
0.885

Valid SEG-SLZNet
OR-SLZNet

0.322
0.210

0.410
0.391

0.020 0.072
0.020 0.024

0.109
0.069

0.118
0.100

0.455
0.290

0.535
0.467

0.031 0.082
0.031 0.032

0.143
0.077

0.153
0.129

0.443
0.316

0.549
0.483

0.036 0.089
0.036 0.084

0.145
0.125

0.161
0.139

for testing the combination of photometric and geometric inputs. As shown in Tables
4.2.(a) and 4.2.(b), both SEG-SLZNet and OR-SLZNet achieved comparable perfor-
mance for the DFI and RGB features. In contrast, for other datasets, the RGB results
were generally superior. Although other datasets lack ideal geometric maps, the results
still demonstrate that for both SEG-SLZNet and OR-SLZNet, fusing low-level photomet-
ric and geometric features improves performance. While the improvement is not drastic
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in some cases, such as with AeroScape, adding geometric information consistently leads
to better results.

A key part of our ablation study is the comparison between the fused SEG-SLZNet
and OR-SLZNet models. Across almost all datasets, our proposed OR-SLZNet consis-
tently outperforms SEG-SLZNet in terms of mIoU, Accuracy, and Dice metrics. Notably,
in the AeroScape dataset, the performance of both models is comparable, while in the
ICG dataset, SEG-SLZNet shows a slight advantage in the validation split. However,
across all datasets, for the MSE metric, OR-SLZNet consistently performs better. Since
the MSE metric accounts for the diference between the predicted rank and the actual
rank, this demonstrates that the ordinal regression approach of OR-SLZNet provides a
more accurate ranking of safety levels.

Table 4.3 shows AMSE metric per rank and for overall ranks for SEG-SLZNet and
OR-SLZNet. In all the datasets, across all train, validation, and test splits, the AMSE
of the very unsafe class for OR-SLZNet is lower than for SEG-SLZNet. This suggests
that OR-SLZNet is more efective in distinguishing between safety levels, especially in
critical very unsafe regions usually characterized with a high risk for hitting obstacles. In
Tables 4.2 to 4.3, instances where OR-SLZNet outperforms SEG-SLZNet are highlighted
in bold. The visualizations of the predictions from SEG-SLZNet and OR-SLZNet are
shown in Figure 4.5.

Asymmetric Loss Function

In Section 4.2.5, we introduced our innovative asymmetric loss function, specifcally
designed to enforce rank consistency among classifers. This method serves as a powerful
mechanism for guiding the model toward more accurate predictions by imposing greater
penalties for mis-classifcations involving critical classes. The asymmetric loss function
emphasizes safety by penalizing errors where more hazardous very unsafe parts are
incorrectly classifed as safer categories. This prioritization pushes the model to exhibit
more reliable and precise performance in high-stakes situations. By harnessing this
loss function, our OR-SLZNet model shows a distinct advantage over the Seg-SLZNet
model, particularly in its capacity to fne-tune predictions to privilege higher accuracy
scores for very unsafe levels. In contrast, standard segmentation models lack this tailored
enforcement mechanism, which complicates the prioritization of safety-critical outcomes.

Tables 4.4 and 4.5 present the results of our asymmetric loss function in relation
to overall performance metrics and AMSE. The results indicate that, while the metrics
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Figure 4.6: Confusion matrices for the AeroScape dataset across training, validation,
and test splits, comparing the performance of symmetric and asymmetric loss functions.
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Figure 4.7: Confusion matrices for the ICG dataset across training, validation, and test
splits, comparing the performance of symmetric and asymmetric loss functions.
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Figure 4.8: Confusion matrices for the MidAir dataset across training, validation, and
test splits, comparing the performance of symmetric and asymmetric loss functions.
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Figure 4.9: Confusion matrices for the UAVid dataset across training, validation, and
test splits, comparing the performance of symmetric and asymmetric loss functions.
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Figure 4.10: Confusion matrices for the Valid dataset across training, validation, and
test splits, comparing the performance of symmetric and asymmetric loss functions.
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Table 4.4: Evaluation of OR-SLZNet Performance Using the Consistent Asymmetric
Loss Function.
Dataset Weight Train Validation Test

mIoU Acc Dice MSE mIoU Acc Dice MSE mIoU Acc Dice MSE
AeroScape [25., 5., 5., 5.] 0.982 0.996 0.991 0.033 0.957 0.991 0.978 0.094 0.956 0.991 0.977 0.101
ICG [50., 5., 5., 5.] 0.964 0.993 0.982 0.088 0.903 0.980 0.949 0.250 0.900 0.979 0.947 0.253
MidAir [10., 25., 5., 10.] 0.926 0.985 0.962 0.097 0.91 0.981 0.953 0.126 0.899 0.979 0.947 0.150
UAVid [25., 10., 10., 10.] 0.964 0.993 0.982 0.077 0.857 0.969 0.923 0.482 0.862 0.970 0.926 0.470
Valid [10., 25., 5., 10.] 0.971 0.994 0.985 0.052 0.966 0.993 0.983 0.063 0.963 0.992 0.981 0.067

Table 4.5: Evaluation of Segmentation Model and Inference on diferent examples
Dataset Weight Train Validation Test

VU U MS S Vs Total VU U MS S Vs Total VU U MS S Vs Total
AeroScape [25., 5., 5., 5.] 0.688 0.156 0.104 0.047 0.141 0.186 0.712 0.179 0.101 0.044 0.136 0.195 1.194 0.159 0.199 0.050 0.100 0.243
ICG [50., 5., 5., 5.] 0.383 0.405 0.016 0.200 0.061 0.154 1.515 1.520 0.090 0.525 0.143 0.498 1.298 1.592 0.048 0.508 0.138 0.525
MidAir [10., 25., 5., 10.] 0.079 0.229 0.567 0.288 0.087 0.203 0.099 0.258 0.685 0.423 0.093 0.244 0.104 0.253 0.870 0.343 0.096 0.267
UAVid [25., 10., 10., 10.] 0.347 0.153 0.023 0.096 0.181 0.149 2.191 0.829 0.080 0.333 1.117 0.947 2.159 0.841 0.070 0.328 1.495 0.880
Valid [10., 25., 5., 10.] 0.212 0.296 0.020 0.024 0.067 0.102 0.303 0.381 0.027 0.074 0.121 0.115 0.312 0.391 0.031 0.080 0.126 0.124

mIoU, accuracy, Dice, and MSE remain relatively stable in both validation and test
stages, the AMSE for the very unsafe level is consistently reduced when using the asym-
metric loss. The enhancements range from 19% to over 30% across diferent datasets,
demonstrating the ability of asymmetric loss function to efectively mitigate classifca-
tion errors in very unsafe areas. In addition, Figures 4.6, 4.7,4.8,4.9 and 4.10 present the
confusion matrices for diferent datasets across training, validation, and test splits, com-
paring the performance of symmetric and asymmetric loss functions, with a particular
focus on improving the identifcation of Very Safe regions.

Finally, note that forcing the model to classify asymmetrically can raise important
considerations regarding weight selection and the trade-ofs involved in sacrifcing general
performance for improved classifcation of specifc classes. The selection of weights can
be infuenced by imbalanced sampling and the defned safety concerns, particularly for
very unsafe classes, such as humans, small vehicles, and wildlife, which are typically rare
in UAV-collected datasets compared to more prevalent categories like grass and paved
areas. As a result, it is essential to prioritize these critical regions for accurate classif-
cation. However, in certain scenarios such as identifying the safest landing spot, where
small objects or markers may be present classifying the Very Safe class becomes equally
crucial. Fortunately, our loss function allows for fexible weight selection, enabling the
model to intensify its prediction focus according to safety priorities.

Safety Margin

To enhance the safety representation of our data, we introduced a safety margin sur-
rounding the very unsafe parts (Rank 0) in the ground truth of the ICG and UAVid
datasets. This approach refects a realistic scenario where the vicinity of very unsafe
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Figure 4.11: Example of Safety Margin Around Very Unsafe Class

areas pose a collision risk, especially for moving objects. Given that our masks consist
of discrete ranks, we designated this margin as the unsafe class (Rank 1). For the ICG
dataset, we conducted experiments using masks with safety margins of 50 and 70 pixels,
whereas for the UAVid dataset, we used only a 50-pixel margin. Figure 4.11 presents
some examples on ICG and UAVid along with the original masks and the masks in-
tegrating the safety margin. In Tables 4.6 and 4.7 the results for margin inclusion on
SEG-SLZNet and OR-SLZNet are provided.

In evaluating the impact of margin, a distinct trade-of emerges between the overall
model performance and the prediction of the very unsafe (VU) rank. We can remark
that OR-SLZNet consistently outperforms SEG-SLZNet, both with and without margins
(as shown in the fusion ablation study) for predicting the VU rank, manifested by lower
AMSE values. Specifcally, as we can observe from Tables 4.6 and 4.7, for both the
50-pixel and 70-pixel margins, OR-SLZNet achieves lower AMSE than SEG-SLZNet,
even in its fusion confguration without margins (refer to Table 4.3). This indicates that
margin inclusion efectively captures more nuanced unsafe regions.

For the overall performance, mIoU, accuracy, Dice, and MSE, both models generally
perform better without margin, where the complexity and noise are reduced. This
suggests that while the OR-SLZNet yields superior overall results in terms of MSE,
accuracy, and Dice, the inclusion of margins enhances the models capacity to detect the
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Table 4.6: Comparison of SEG-SLZNet and OR-SLZNet with Margin Inclusion
Dataset Model Loss Margin Train Validation Test

mIoU Acc Dice MSE mIoU Acc Dice MSE mIoU Acc Dice MSE
ICG SEG-SLZNet

OR-SLZNet
SEG-SLZNet
OR-SLZNet

CE
DBCE
CE
DBCE

50
50
70
70

0.955
0.957
0.957
0.955

0.991 0.977
0.991 0.978
0.991 0.978
0.991 0.977

0.107
0.096
0.105
0.101

0.902
0.900
0.900
0.896

0.979 0.949
0.979 0.947
0.979 0.947
0.978 0.945

0.237
0.241
0.250
0.250

0.900
0.899
0.899
0.898

0.979 0.947
0.979 0.947
0.979 0.947
0.978 0.946

0.239
0.245
0.251
0.248

UAVid SEG-SLZNet
OR-SLZNet

CE
DBCE

50
50

0.947
0.959

0.989 0.973
0.992 0.979

0.077
0.05

0.821
0.830

0.961 0.901
0.963 0.905

0.386
0.347

0.825
0.829

0.962 0.904
0.963 0.906

0.398
0.385

Table 4.7: Comparison of SEG-SLZNet and OR-SLZNet Using AMSE Metric with Mar-
gin Inclusion Across All Safety Categories
Dataset Model Loss Margin Train Validation Test

VU U MS S Vs Total VU U MS S Vs Total VU U MS S Vs Total
ICG SEG-SLZNet

OR-SLZNet
SEG-SLZNet
OR-SLZNet

CE
DBCE
CE
DBCE

50
50
70
70

0.091
0.050
0.065
0.043

0.661
0.619
0.522
0.482

0.016 0.159
0.016 0.181
0.012 0.174
0.019 0.186

0.079
0.061
0.089
0.057

0.201
0.183
0.180
0.154

0.490
0.323
0.387
0.259

1.434
1.687
1.367
1.715

0.057 0.421
0.106 0.441
0.060 0.451
0.083 0.493

0.159
0.135
0.186
0.143

0.455
0.497
0.460
0.513

0.411
0.308
0.304
0.269

1.477
1.731
1.486
1.691

0.052 0.381
0.046 0.411
0.048 0.395
0.050 0.472

0.155
0.136
0.174
0.141

0.476
0.521
0.490
0.524

UAVid SEG-SLZNet
OR-SLZNet

CE
DBCE

50
50

0.111
0.086

0.209
0.154

0.018 0.113
0.014 0.061

0.268
0.145

0.14
0.097

1.052
0.927

0.923
0.782

0.063 1.369
0.062 0.326

0.37
1.337

0.743
0.646

0.917
0.737

0.932
0.927

0.056 0.383
0.059 0.305

1.8
1.670

0.73
0.669

very unsafe rank. In this regard, OR-SLZNet consistently outperformed SEG-SLZNet in
both margin and non-margin settings, with margins further narrowing the performance
gap between the two models.

As we can observe from Table 4.7, the ICG dataset particularly benefts from margin
inclusion, with OR-SLZNet demonstrating improved VU AMSE values (e.g., 0.308 with
a 50-pixel margin and 0.269 with a 70-pixel margin compared to 1.448 without margins)
while maintaining stable overall performance. Conversely, UAVid faces more challenges
due to the added complexity, with global metrics such as accuracy, Dice, and MSE
showing some decline. Although the 50-pixel margin ofers a slight improvement in VU
AMSE for UAVid, the fusion method (without margins) delivers better overall results in
this dataset. This indicates that while margins enhance performance in ICG, balancing
precision for unsafe regions, they have a more detrimental impact on global performance
in UAVid. Notably, the VU class in UAVid largely consists of background classes, while
ICG presents a more challenging dataset where adding margins around VU areas proves
to be more efective.

Haze Efect

To evaluate OR-SLZNet in adverse weather conditions, we need to introduce weather
variations since, except for MidAir and Valid, all other datasets were captured in clear
weather conditions. To test the behaviour of our model in hazy conditions, we augmented
a proportion of the images in ICG and AeroScape with haze which is generated through
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the atmospheric scattering model (ASM) [141]:

I(x, y) = J(x, y)T (x, t) + A(1 − T (x, y)), (4.9)

which gives the hazed image I from the clear version of it J , where A is the luminance
and T is the transmittance approximated by the expression T = exp(−βD), with D 

is the depth map of the image and β is the scattering coefcient. This transmission
map controls how much light is scattered based on depth, mimicking the real-world phe-
nomenon where distant objects appear progressively hazier due to increased scattering.
In our implementation, we set β = 2. and A = [1, 1, 1] which introduced a signifcant
haze in images (see Figure 4.12 for illustration). We randomly replaced 25% of im-
ages with their hazed version in each of the training, validation, and test sets for both
datasets.

Table 4.8: Evaluation of OR-SLZNet Using AMSE Metric with Margin Inclusion Across
All Safety Categories
Dataset Model Loss % Haze Train Validation Test

VU U MS S Vs Total VU U MS S Vs Total VU U MS S Vs Total
AeroScape SEG-SLZNet

OR-SLZNet
CE
DBCE

25
25

0.625
0.349

0.173
0.074

0.144 0.029
0.044 0.024

0.061
0.049

0.152
0.083

0.907
0.757

0.253
0.192

0.253 0.044
0.133 0.047

0.135
0.145

0.249
0.206

1.321
1.243

0.224
0.153

0.269 0.048
0.171 0.047

0.129
0.121

0.285
0.241

ICG SEG-SLZNet
OR-SLZNet

CE
DBCE

25
25

0.428
0.222

0.547
0.553

0.010 0.134
0.016 0.181

0.103
0.308

0.201
0.149

1.382
0.852

1.612
1.591

0.080 0.445
0.203 0.621

0.205
0.223

0.538
0.560

1.214
0.794

1.840
1.489

0.057 0.411
0.072 0.632

0.185
0.217

0.595
0.544

Table 4.9: Comparison of SEG-SLZNet and OR-SLZNet with Haze Efect
Dataset Model Loss % Haze Train Validation Test

mIoU Acc Dice MSE mIoU Acc Dice MSE mIoU Acc Dice MSE
AeroScape SEG-SLZNet

OR-SLZNet
CE
DBCE

25
25

0.971
0.979

0.994 0.985
0.996 0.989

0.069
0.042

0.951
0.954

0.990 0.975
0.991 0.977

0.116
0.102

0.951
0.955

0.990 0.975
0.991 0.977

0.129
0.107

ICG SEG-SLZNet
OR-SLZNet

CE
DBCE

25
25

0.960
0.944

0.992 0.979
0.989 0.971

0.115
0.155

0.893
0.884

0.977 0.943
0.975 0.938

0.282
0.304

0.893
0.887

0.977 0.943
0.976 0.940

0.290
0.296

As expected, the overall performance decreased when haze images replaced original
images in both datasets. Table 4.9 shows that the performance drop was more pro-
nounced in ICG dataset for both SEG-SLZNet and OR-SLZNet, compared to AeroScape
Dataset. The impact of haze inclusion in the input images for AeroScape was less sig-
nifcant than in ICG, yet OR-SLZNet consistently outperformed SEG-SLZNet in the
ICG dataset. However, the trade-of between overall performance and specifcally for
very unsafe rank remains evident under the haze efect. In this regard, OR-SLZNet
demonstrates a better ASME for the VU class compared to SEG-SLZNet. This indi-
cates that even in haze-afected scenes, where RGB information may be less informative,
our proposed OR-SLZNet, which utilizes more than just color features, proves to be sig-
nifcantly more efective in detecting VU instances. The visualizations of the predictions
from SEG-SLZNet and OR-SLZNet are shown in Figure 4.12.
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Figure 4.12: Haze prediction for SEG-SLZNet and OR-SLZNet

4.4 Discussion

OR-SLZNet relies solely on visual inputs, making it suitable for GPS-denied or communication-
limited environments. Though designed for static images, it supports frame-by-frame
inference on UAV video feeds, enabling real-time SLZ detection. Real-world tests con-
frm its efectiveness in such settings. However, temporal inconsistencies may arise from
motion blur or scene changes. To address this, future work will integrate SLAM or
visual-inertial odometry for temporal stability [189], and incorporate object tracking
to monitor moving hazards (e.g., humans, animals, vehicles), ensuring continuous situ-
ational awareness without GPS. Also, while OR-SLZNet is efective against moderate
noise, severe degradation due to adverse weather conditions remains challenging. Fu-
ture work will explore uncertainty-aware prediction, and more advanced photometric
and geometric augmentations (e.g., using generative models) to boost model reliability.

Energy efciency is critical for deployment on resource-constrained UAVs [143]. OR-
SLZNet is lightweight, with a low inference time (0̃.02s/frame), making it suitable for
real-time use on embedded systems. This reduces processing load and extends fight time,
especially during long missions or emergency landings. OR-To enhance this capability,
future work will explore dynamic inference scheduling (e.g., activating the model only
at low altitudes or during anomalies), as well as compression techniques like pruning,
quantization, and knowledge distillation [119]. Adaptive resolution processing based on
fight speed, altitude, or scene complexity will also be considered to further optimize
computation.
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A promising direction is multi-agent UAV systems, where cooperative SLZ detection
improves coverage, energy efciency, and fault tolerance. By sharing intermediate out-
puts, such as partial safety maps, obstacle detections, or uncertainty scores, drones can
reduce redundancy and make better collective decisions [7, 207]. Task specialization is a
key advantage: lightweight drones can perform quick, low-resolution scans, while more
capable ones handle detailed SLZ mapping, segmentation, or dynamic object detection.
This compute-aware allocation can optimize drone roles based on hardware and battery
levels. In disaster response, for example, high-end drones can track moving hazards
while others can focus on terrain mapping or localization [162].

Finally, inter-drone communication can enable enable SLZ map fusion, ensuring spa-
tial consistency and resolving conficts from occlusions or sensor noise. It can also
support dynamic reconfguration, allowing drones to adapt to failures or changing con-
ditions by reallocating tasks. In complex environments (e.g., urban or forested areas),
more drones can be assigned for detailed analysis. Additionally, integrating multi-agent
reinforcement learning (MARL) ofers a promising approach for coordinated landing
decisions, enabling UAVs to learn optimal policies through interactions. This allows
adaptive, context-aware site selection while accounting for obstacles, energy limits, and
mission priorities, enhancing system resilience and autonomy in real-world scenarios.

4.5 Conclusions

In this chapter, we proposed a novel model for SLZ detection in UAV applications using
deep ordinal regression networks. The model generates accurate, dense safety maps by
leveraging multimodal information, including color, depth, and local terrain geometry.
We validated its performance on diverse datasets with both vertical (nadir) and oblique
views, covering urban and natural environments. Results highlight the model strong
potential for improving UAV navigation automation and safety. Comparative evalua-
tions against state-of-the-art segmentation methods further confrmed its efectiveness.
Although validated on 2D aerial data, the predicted SLZ maps are readily applicable for
UAV piloting assistance and 3D trajectory planning. Moreover, a lightweight version of
the model can support efcient onboard deployment, enabling real-time decision-making
in single or multi-UAV operations.



Chapter 5

A Framework for SLZ Mapping for
UAVs in Dynamic Environments

5.1 Introduction

As UAV deployment increases in real-world environments marked by continuous move-
ment and unpredictability, the concept of dynamic SLZs has become essential. Unlike
static SLZs that rely on fxed terrain analysis, dynamic SLZs must accommodate evolv-
ing scene contexts where previously safe areas may become hazardous in seconds. Urban
intersections, construction sites, and post-disaster zones are typical examples where tran-
sient obstacles such as pedestrians, vehicles, and debris—frequently obstruct potential
landing surfaces. In such cases, especially during emergencies like equipment failures or
signal loss, UAVs must rely on autonomous systems capable of perceiving environmental
changes and making time-sensitive decisions to ensure safe landings [18, 53, 197].

Identifying dynamic SLZs thus presents a complex and multi-dimensional challenge
[222]. Beyond detecting fat, obstacle-free regions suitable for landing [40], systems must
also assess the location, behavior, and predicted trajectories of moving objects, includ-
ing humans, vehicles, bicycles, and animals. Static analysis alone is insufcient—areas
initially deemed safe can quickly become risky due to the motion of surrounding agents
[191]. A robust SLZ detection framework must therefore integrate static scene seg-
mentation with real-time object tracking and motion forecasting to support adaptive,
context-aware decisions [91, 153, 231]. Furthermore, accounting for uncertainties in
motion prediction is crucial; by modeling these uncertainties explicitly, the system can
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better evaluate landing risks and avoid unsafe outcomes under variable lighting and
obstacle dynamics [180, 231].

Traditional methods for SLZ identifcation often rely on static segmentation tech-
niques [1, 168, 101], predefned safe zones, or specifc visual landing markers. While these
approaches can be efective in controlled or less dynamic environments, they struggle
to adapt to the complexities of real-world, ever-changing scenes. In particular, meth-
ods that classify thematic surface types such as grass, pavement, or open felds—as
inherently safe often overlook the fuctuating nature of the environment and the haz-
ards posed by dynamic objects [180]. Roads and cycling paths, which are generally fat
and wide, may appear suitable for landing based on static analysis, yet they are fre-
quently occupied by moving vehicles, bicycles, or pedestrians, signifcantly complicating
the decision-making process. Moreover, many existing approaches repeatedly classify
such thematic regions as reliable SLZs without integrating contextual awareness of tran-
sient obstacles [1, 56, 153]. This oversimplifcation introduces substantial safety risks, as
areas deemed safe under static assumptions can quickly become unsuitable due to un-
predictable elements like trafc congestion, construction activity, or crowd movement.
For example, roads and cycling lanes may initially seem ideal due to their geometry,
but their constant occupation by dynamic agents renders them highly unreliable—and
potentially dangerous—for autonomous UAV landings [180].

To enable safe and adaptive UAV landings in real-world conditions, it is essential
to move beyond static terrain classifcation and adopt a comprehensive framework that
integrates both static and dynamic scene understanding. This integration allows for real-
time hazard assessment and facilitates context-aware decision-making. By employing
semantic segmentation, UAVs can identify structurally appropriate landing zones by
classifying thematic terrain types such as roads, paths, grass, and paved areas. However,
static analysis alone is insufcient, as it does not account for the presence or motion of
dynamic agents. Therefore, accurately forecasting the motion of such objects is crucial
to ensuring that landing zones remain unoccupied and viable at the time of descent.

To address the challenges of safe UAV landing in dynamic environments, we propose
a comprehensive vision-based framework that unifes multi-scale semantic segmentation,
real-time dynamic object tracking, short-term trajectory forecasting, and homography-
based motion compensation into a single, closed-loop pipeline. Unlike traditional meth-
ods that rely on static terrain analysis or predefned safe zones, our approach incorporates
uncertainty-aware reasoning to evaluate scene dynamics and adapt landing decisions ac-
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cordingly. By integrating predicted object occupancy into the decision process, the UAV
can proactively identify and update SLZs that are free of transient obstacles, even in
complex and rapidly changing scenarios. We can summarize our key contributions as
follows:

– We introduce a comprehensive framework that dynamically identifes and maps
safe landing zones for UAVs using vision-based sensing. Our framework integrates
object detection, semantic segmentation, and predictive modeling to assess future
object occupancy to distinguish between suitable landing areas and regions with
high risk of collision. By leveraging visual data, our approach enables UAVs to
navigate and land safely in complex, dynamic environments without reliance on
external localization systems.

– To account for UAV motion, we introduce an optimized homography computation
method that leverages multi-scale image analysis and a recursive update mecha-
nism. This approach ensures more accurate geometric transformations, reducing
distortions caused by UAV dynamics. Additionally, to mitigate trajectory predic-
tion errors, we integrate an uncertainty-aware forecasting module that estimates
both the expected position and confdence bounds of moving objects. By explic-
itly modeling uncertainty, the system can proactively adjust safety envelopes and
exclude areas of high risk from potential landing zones. Furthermore, we employ
context-aware segmentation to provide semantic cues to enhance scene understand-
ing.

– Our approach has been rigorously tested across a diverse set of real-world scenarios,
including urban roads with vehicular fow, suburban roads featuring mixed pedes-
trian and bicycle trafc, and parks. In each setting, we evaluated key performance
metrics for each module of the pipeline, starting from semantic segmentation,
to object detection, tracking and trajectory prediction. Finally, we evaluate the
quality of the safe landing mapping accounting for static and moving obstacles.
Quantitative and qualitative results confrmed that the system performs well in
diferent scenarios, which underscores the practical viability of our framework for
predicting SLZs in highly dynamic environments.

The remainder of this chapter of thesis is structured as follows: Section 5.2 details the
proposed methodology. Section 5.3 presents experimental results and analysis. Finally,
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Figure 5.1: Representation of the diferent modules constituting our pipeline for safe
landing zones prediction in dynamic environments.

the thesis concludes with Section 5.4, which discusses key fndings and outlines directions
for future work.

5.2 Methodology

To address the critical challenge of ensuring UAV safety in dynamic environments, we
introduce a unifed vision-based framework that enables continuous safe landing zone
(SLZ) mapping under motion and environmental uncertainty. Our system integrates
real-time semantic segmentation, homography-based motion compensation, and trajec-
tory prediction to detect obstacles, track their motion, and estimate predictive uncer-
tainty. This allows SLZs to be dynamically updated in response to scene changes, object
motion, and camera shifts.

Unlike prior work limited to static scene analysis, our framework produces time-
aware safety maps that better refect evolving risk in complex environments. The full
pipeline is illustrated in Figure 5.1.
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Figure 5.2: Encoder-Decoder architecture for trajectory prediction using attention
LSTMs.

5.2.1 Multiple Online Object Detection and Tracking

To prevent collisions, a UAV must continuously monitor its immediate surroundings,
detecting and analyzing objects that encroach upon its operational space and pose po-
tential risks. For instance, if a pedestrian or vehicle enters the designated landing zone,
the UAV should not only identify their presence but also track their movement patterns
to anticipate possible collisions. By leveraging real-time object detection and trajectory
prediction, the UAV can dynamically adjust its landing strategy, either by waiting for
the obstruction to clear or proactively selecting an alternative safe landing area to ensure
safe and efcient operations.

To ensure accurate and real-time detection of potential obstacles across diverse envi-
ronments, we employ the state-of-the-art YOLOv11 object detector, known for its high
accuracy and low-latency inference performance [97]. To enhance detection of small ob-
jects, we integrate Slicing Aided Hyper Inference (SAHI) [3], which partitions images into
overlapping slices before detection to improve resolution on small targets. The detector
is trained in an ofine setting using a rich and diverse dataset composed of samples
from the Stanford Drone Dataset (SDD) [245], VisDrone [181], and a curated collec-
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tion of aerial imagery gathered via the RobotFlow platform. This training set includes
various environments and object types (e.g., humans, vehicles, bicycles, and animals)
under diferent lighting and altitude conditions, thereby enhancing the robustness and
generalization of the model across urban, suburban, and rural scenes.

For object tracking, we adopt BoxMOT [29], a modular multi-object tracking (MOT)
framework that combines detection with object re-identifcation (ReID) to maintain
persistent object identities across frames. By incorporating both appearance embeddings
and motion cues, BoxMOT ensures stable tracking even in the presence of occlusions or
rapid viewpoint changes. This allows the UAV to maintain an accurate understanding
of dynamic object trajectories within its feld of view, which is critical for collision
avoidance.

Finally, we employ a predictive module to estimate the future positions of moving
objects from their trajectory histories. This encoder–decoder network, trained on the
motion patterns of multiple object types, enables the UAV to proactively adapt its fight
plan, rerouting around high-risk zones, adjusting speed to maintain safe separation, or
selecting alternative landing sites with lower collision probability, thereby signifcantly
reducing collision risk.

5.2.2 Moving Trajectory Prediction

Encoder-decoder trajectory prediction

To predict object motion trajectories, we propose a lightweight sequence-to-sequence
(Seq2Seq) model based on Long Short-Term Memory (LSTM) networks with attention,
illustrated in Figure 5.2. Unlike Transformer-based models, which are computationally
intensive, LSTM architectures ofer efciency with fewer parameters while maintain-
ing high predictive accuracy [238]. The integrated attention mechanism enhances the
model’s ability to focus on relevant past trajectory points, improving its handling of
complex, dynamic motion patterns. Dropout and multiple LSTM layers further improve
generalization and robustness, making the approach well-suited for real-time motion
forecasting.

The encoder is a stacked LSTM network that processes the input sequence X = 

{x1, x2, . . . , xT } and transforms it into a fxed-length context vector, as follows:

(ht, ct) = LSTM(xt, ht−1, ct−1), (5.1)
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Figure 5.3: Illustration of inter-frame homography estimation.

Figure 5.4: Illustration of point matching using patch-based correspondence.
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where ht and ct represent the hidden and cell states at timestep t. In our case, we use
an LSTM with two layers with dropout applied between them to prevent overftting.

The decoder is an LSTM network augmented with an attention mechanism. At each
timestep, it receives the previous output yt−1 and the context vector ct, and updates its
hidden and cell states as follows:

(h ′ t, c 
′ ) = LSTM([yt−1; ct], h 

′ 
t−1, c 

′ 
t−1), (5.2)t 

producing the next predicted output yt. During training, teacher forcing is applied
with a fxed ratio, using the ground truth value yt−1 instead of the predicted output to
stabilize learning.

To overcome the limitations of a fxed-length context vector, an attention mechanism
computes a weighted sum of the encoder outputs, allowing the decoder to focus on the
most relevant parts of the input sequence. The attention weights αt are computed as:

� � 
αt = softmax v T tanh(W[ht; ei]) , (5.3)

where ht is the decoder’s current hidden state, ei are the encoder outputs, and W, v 
are learnable parameters. The full model integrates the encoder, attention module, and
decoder. It is trained to minimize the mean squared error (MSE) between predicted and
ground truth trajectories.

When an object frst enters the scene, there is insufcient motion history to predict
its trajectory. To address this, we extrapolate the missing past points using average ve-
locity estimation, ensuring temporal continuity within frame boundaries. The resulting
trajectories are then passed to an LSTM model for future point prediction. To mitigate
noise-induced fuctuations, predicted trajectories are smoothed when necessary.

Inter-frame homography estimation

Let Rt1→t2 and tt1→t2 denote the rotation matrix and translation vector induced by the
UAV motion between two time instants t1 and t2 = t1 + ∆t. Let pt1 = (xt1 , yt1 , zt1 ) 

and pt2 = (xt2 , yt2 , zt2 ) represent the coordinates of a 3D point p in the scene, expressed
relative to the UAV camera frame at times t1 and t2, respectively. Then, the following
geometric transformation holds:

pt2 = Rt1→t2 pt1 + tt1→t2 (5.4)
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Let dt1 be the altitude of the UAV at instant t1 (i.e., distance from the UAV to the
planar scene), and n be the normal vector of the scene. Then, we have : dt1 = nT pt1 .
Using Eq. (5.4), we obtain the following relation:� � 

tt1→t2 T pt2 = Rt1→t2 + n pt1 (5.5)
dt1 

xt1 yt1 xt2Let rt1 = ( , , 1) and rt2 = ( , 
yt2 , 1) be the homogeneous coordinates of pt1zt1 zt1 zt2 zt2 

and pt2 projected on the UAV image at instants t1 and t2, respectively. Then, we can
prove that: � � 

tt1→t2 T rt2 = γ Rt1→t2 + n rt1 = γ Ht1→t2 rt1 , (5.6)
dt1 h i 

zt1 tt1→t2 Twhere γ = , and Ht1→t2 = Rt1→t2 + n is the homography matrix between
zt2 dt1 

frame t1 and t2.
The estimation of the homography matrix, Ht1→t2 , aims to compute the projec-

tive transformation that geometrically relates two consecutive frames, t1 and t2. This
transformation plays a crucial role in compensating for perspective distortions, enabling
accurate image alignment and improved registration [135]. However, a reliable estima-
tion of Ht1→t2 depends on establishing precise correspondences between feature points
in both images [203]. When both the UAV and scene objects are moving, homography
estimation becomes unreliable, as keypoints may lie on dynamic objects rather than
the static background, leading to incorrect transformations. This challenge intensifes in
dense or dynamic environments, where keypoints are more likely to lie on moving objects,
causing the estimated homography to deviate from the true geometric transformation
between frames.

To reduce the infuence of dynamic objects, we adopt a patch-based correspondence
strategy (Fig. 5.4). Specifcally, small localized patches (e.g., 50 × 50 pixels) are ran-
domly sampled from frame t1, avoiding regions overlapping with moving objects. Their
corresponding matches in frame t2 are then found using normalized cross-correlation.
Only high-confdence matches are retained to ensure robust keypoints for estimating
the homography matrix Ht1→t2 . To accelerate this process, we apply two optimization
strategies. First, we perform multi-resolution matching, generating L = 3 scales per
frame and beginning the search at the coarsest scale (ℓ = 3). Matches found at lower
resolutions guide the search in higher ones, signifcantly reducing the required window
size (typically ±10 pixels). Second, we leverage the previously estimated homography
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Ht0→t1 to predict likely match regions, further narrowing the search space and improving
efciency.

Once a reliable set of keypoints is established, the homography matrix is computed
using the Direct Linear Transform (DLT) algorithm, combined with RANSAC for out-
lier rejection [203]. This robust estimation process ensures that keypoints infuenced
by moving objects do not distort the fnal homography matrix, providing an accurate
representation of camera motion even in dynamic and challenging environments.

5.2.3 Dynamic SLZ Mapping and Visualization

The fnal step of our pipeline overlays outputs from all modules to visualize SLZs, ex-
cluding dynamically or structurally hazardous regions. SLZs typically correspond to fat,
obstacle-free surfaces such as roads, grass, pavement, and sport felds. This visualization
aids rapid pilot decision-making.

To build the safety map, we frst map the segmentation output, consisting in en-
vironment categories such as road, grass, and buildings, into a binary mask selecting
regions corresponding to structurally safe classes. Then, for detected and tracked mov-
ing objects, we extract the center coordinates and bounding box dimensions. Detected
objects are tracked using YOLOv11 [97] and BoxMot [29]. The past trajectory points
for each track are refned using a homography transformation (5.2.2) to compensate for
UAV motion. The refned past trajectories are then fed into our trajectory prediction
model, depicted in Figure 5.2.

Figure 5.5: A simple visualization of the occupancy bufer for moving objects.

Finally, a grayscale safety map is generated over the refned free zone, assigning
pixel values from 255 (very safe) to 0 (unsafe) based on proximity to moving objects.
Around each predicted trajectory, we build a dynamic bufer zone that refects the likely
occupancy region of the object. This bufer resembles an isosceles triangle that expands
over time. The width of this bufer at each point pi along the trajectory is proportional
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to standard deviation of the prediction error at that position σi, efectively capturing
uncertainty in future motion at that position (see Figure 5.5). Within this bufer, pixel
safety scores are inversely weighted by their distance to the predicted path, accounting
for higher risk in regions of uncertain motion. Outside the bufer zone, pixel values are
instead computed based on distance to the object center, ensuring that both immediate
and anticipated risks are represented in the fnal safety map. This process yields a
per-pixel, risk-aware grayscale representation of the scene, emphasizing safer zones for
potential landing.

5.2.4 Model Setting and Implementation Details

The model is implemented in PyTorch, with both the encoder and decoder composed
of two LSTM layers, each confgured with a hidden state size. A dropout rate of 30%
is applied between LSTM layers to prevent overftting. Training is performed with a
batch size of 32, and optimization is done using the Adam optimizer. The learning rate
is selected through tuning, and a teacher forcing ratio of 0.1 is used to balance between
ground truth inputs and model-generated predictions during training.

For object detection, we trained YOLOv11 [97] for 100 epochs using our custom-
labeled dataset described in Section 5.3.1. The training was performed using the AdamW
optimizer with an initial learning rate of 1e-4. To improve generalization, we applied
data augmentation, including horizontal and vertical fipping, brightness and contrast
variation, and random cropping. The network was fne-tuned using transfer learning from
weights pre-trained on COCO, allowing faster convergence and improved performance
in aerial scenes.

For segmentation,we used a U-Net from the Pytorch Segmentation Models Library
with an EfcientNet-B2 encoder pretrained on ImageNet. To further enhance perfor-
mance, we integrated dilated convolutions to capture multi-scale contextual information
and squeeze-and-attention [79] mechanism to improve feature selection in cluttered or
complex aerial scenes. These architectural improvements were specifcally designed to
address challenges commonly encountered in UAV-based semantic segmentation, such as
detecting small-scale objects and handling class variability. The training was conducted
for 150 epochs using a combination of class-balanced cross-entropy and Dice losses, op-
timized with Adam and a learning rate equal to 1e-4. All input images were resized
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to (512 × 512) pixels, and standard augmentation techniques (e.g., fipping, rotation,
cropping) were used to improve generalization.

Figure 5.6: Sample RGB images with their corresponding segmentation masks. Distinct
colors in the masks indicate diferent semantic classes.

5.3 Experimental Results

We conducted extensive experiments to validate the proposed framework, evaluating
each system component under diverse scenarios with dynamic environments, varying
object densities, and terrain types. Comparative analyses with state-of-the-art methods
were also performed to highlight the strengths and limitations of our approach.

Predicting SLZs in dynamic environments requires understanding both the thematic
content of the scene (e.g., terrain classes) and track moving objects (e.g., vehicles, pedes-
trians). To train the components of our framework efectively, we used the following
datasets:

5.3.1 Datasets

Thematic segmentation dataset

To train a robust segmentation model, we compiled a diverse dataset from multiple
sources, including the AeroScape [155], ICG [83] and UAVID [136]. The fnal dataset
includes 2,630 images with these classes: moving obstacle, static obstacle, construction,
high vegetation, road, sky, pavement, grass, and sports feld. The images are split to
2,369 for training and 260 for validation. Figure 5.6 shows representative samples and
their corresponding masks.
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Figure 5.7: Sample images from the object detection training dataset, along with detec-
tion results produced by YOLOv11

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Figure 5.8: Sample frames from videos used to evaluate safety landing zone prediction.

Object detection dataset

For object detection, we used a refned version of the publicly available Urban Zone
Aerial Object Detection Dataset [66], with four classes: Person (P), Small Vehicle (SV),
Medium Vehicle (MV), and Large Vehicle (LV). For ore diversity, we added images
images from the Stanford Drone and the VisDrone datasets. The fnal dataset includes
4,022 images for training and 485 for validation. Figure 5.7 shows sample detections
with bounding boxes.

Trajectory prediction dataset

Tracking moving objects is essential to anticipate hazards and avoid collisions. For tra-
jectory prediction, we gathered UAV videos showing vehicles, pedestrians, and animals
from various angles and resolutions. Each object’s trajectory was labeled, and 100 rota-
tional variations were generated per track to boost diversity. Sequences were formatted
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Figure 5.9: Visualization of our framework’s heatmap generation across diferent com-
ponents. (A) Original RGB image; (B) segmentation prediction; (C) detection and
tracking results (D) trajectory prediction: red lines indicate generated missing past
points, blue lines represent the observed past trajectory, and the green lines show future
trajectory predictions; (E) uncertainty visualization: red regions denote the frst level of
uncertainty along the predicted trajectory and grey regions indicate the second level of
uncertainty based on object movement direction; (F) fnal SLZ heatmap, ranging from
red (very unsafe) to green (very safe); and (G) ground truth heatmap.
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with 15 input and 8 output time steps. The fnal dataset includes 660,870 training and
73,430 validation samples, enabling robust prediction across diverse scenarios.

Test deployment dataset

To quantitatively evaluate the quality and robustness of our SLZ maps, we selected four
video sequences that represent diferent scenarios of dynamic environments:

– Scenario 1 (S1), 205 frames, altitude ≃ 10m, angle ≃ 30◦: depicts a street under
construction with dynamic elements such as workers, trucks, and cars, along with
static obstacles like orange cones. Pavement areas and unobstructed parts can be
viable for landing.

– Scenario 2 (S2), 299 frames, altitude ≃ 30m, angle ≃ 40◦: depicts a marine
environment with an unpaved road, featuring moving trucks and pedestrians. In
this scenario, the unpaved road is the only viable landing area, making dynamic
scene understanding critical for accurate SLZ identifcation.

– Scenario 3 (S3), 245 frames, altitude ≃ 10m, angle ≃ 25◦: depicts a street with
pedestrians. Although grass and pavement may appear safe based on static scene
analysis, pedestrians frequently traverse these areas.

– Scenario 4 (S4), 160 frames, altitude ≃ 15m, angle ≃ 30◦: depicts an urban alley
with pedestrians, cyclists and strollers. Pavement is the only available landing
zone when not occupied by pedestrians.

All sequences were recorded at 30 frames per second and manually annotated frame by
frame for segmentation, object detection, and tracking (with object IDs), to generate
accurate ground truth maps of safe and unsafe landing zones. Figure 5.8 presents a
representative frame from each sequence 1.

5.3.2 Ablation Study

Segmentation Evaluation

To assess the generalization ability of our segmentation model, we conducted experiments
under two training data confgurations:

1Link to download data: redhttps://drive.google.com/drive/folders/1AOQ811FBPP31dMbr37-
uGGCyBx0M236F?usp=drive_linklink to download datasets

https://redhttps://drive.google.com/drive/folders/1AOQ811FBPP31dMbr37
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– Confguration I: The model was trained on a composite dataset including images
from AeroScape, ICG, and UAVid, ofering a diverse set of semantic categories and
environmental conditions.

– Confguration II : This confguration extends the frst by incorporating additional
images collected from the web that are thematically aligned with our deployment
scenarios (e.g., urban , parking and construction zones).

Table 5.1: Segmentation performance comparison across two data training confgura-
tions.

Split Confguration I Confguration II
/Scenario Acc. mIoU Dice Acc. mIoU Dice
Train
Validation

0.981
0.978

0.987
0.910

0.973
0.944

0.981
0.962

0.971
0.909

0.962
0.931

S1
S2
S3
S4

0.929
0.945
0.961
0.955

0.679
0.602
0.701
0.665

0.517
0.751
0.824
0.798

0.971
0.971
0.980
0.971

0.768
0.904
0.866
0.847

0.868
0.935
0.928
0.917

Avg 0.947 0.662 0.723 0.973 0.846 0.912

Our model evaluation was performed on the four deployment scenarios that were
kept strictly unseen during training. The results in Table 5.1 show a clear improvement
in segmentation performance when the training dataset is enriched with web-sourced im-
ages thematically aligned with the deployment environments. While both confgurations
achieve high training and validation accuracy, Confguration II consistently outperforms
Confguration I on unseen test scenarios, achieving an average mIoU of 84.6% and Dice
91.2% compared to 66.2% and 72.3%, respectively. Confguration I, trained only on gen-
eral aerial datasets, struggles to generalize well across unseen scene structures, whereas
Confguration II better captures semantic variability thanks to its exposure to curated
samples representing images close to our testing scenarios. These results confrm that
domain shift can result in drop of segmentation performance. However, data augmen-
tation enables to enhance the performance and improve results. This substantial gain
highlights the importance of diversifying data.

Detection evaluation

We targeted multiple object categories relevant to aerial scene understanding, such as
pedestrians and vehicles. Table 5.2 summarizes the detection performance across train-
ing, validation, and diverse test scenarios. On the training set, the model achieved
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high box-level Precision (93.2%), Recall (79.6%), and strong detection accuracy with
a mean average precision mAP@50 of 87.9%. Validation results show similarly strong
generalization with mAP@50 of 85.1%.

Across the four test scenarios, the model consistently performed well. In Scenarios
1, 2 and 3, the model achieved an excellent detection accuracy with precision and recall
above 95%, and mAP@50 values reaching up to 99.5%. Scenario 3 stands out with the
highest mAP@50–95 of 90.6%, highlighting precise multi-scale localization even under
occlusions. Although Scenario 4 presents a more complex scene with a higher object
count, the model still performs reliably, achieving mAP@50 of 93.2% and mAP@50–95
of 60.9%. These results demonstrate our model robustness and accuracy in detecting a
wide range of object types in complex aerial environments, enabling reliable support for
tasks such as trajectory prediction and SLZ assessment.

Table 5.2: Detection evaluation in diferent scenarios.
Dataset # Samples Box(P) R mAP50 mAP50-95
Train 24,787 0.932 0.796 0.879 0.596
Validation 5,580 0.912 0.775 0.851 0.549
S1
S2
S3
S4

2,001
2,327
1,767
3,262

0.985
0.975
0.992
0.881

0.976
0.951
0.993
0.896

0.985
0.983
0.995
0.932

0.863
0.771
0.906
0.609

Multi-Object tracking evaluation

To assess multi-object tracking in diverse environments, we used BoxMot [29], a modular
framework combining object detection and re-identifcation (ReID). A custom-trained
YOLOv11 served as the base detector, and objects were tracked across frames using
visual embeddings to maintain identity despite occlusions or abrupt motion. BoxMot
processes each frame in 15–23 ms, enabling real-time tracking.

Tracking performance was evaluated using three metrics [134]: 1) Higher Order
Tracking Accuracy (HOTA): evaluates detection and association accuracies, ofering
a balanced assessment of object localization and identity tracking, 2) Multiple Object
Tracking Accuracy (Mota): aggregates errors from false positives, false negatives, and
identity switches into a single score, refecting the overall tracking quality, 3) Identif-
cation precision-recall (IDF1): measures how well the tracker maintains identity consis-
tency over time. It is the F1-score of detections that are correctly identifed.
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We implemented a custom evaluation pipeline to compute these metrics. Object
crops were extracted from video frames, and visual embeddings were generated using
a pre-trained ResNet-50 model. Cosine similarity between embeddings is then used to
match identities between ground truth and predictions, constrained by an IoU threshold
of 0.3 to ensure spatial overlap. Matched identities across frames were used to calculate
the metrics.

As shown in Table 5.3, S1 (construction) had strong IDF1 (96.96%) but lower MOTA
(80.21%), while S2 (marine) had balanced performance (HOTA = 94.43%). S3 (pedes-
trians) achieved the best results overall. S4, with similar-looking pedestrians and oc-
clusions, was most challenging (HOTA = 82.39%, MOTA = 65.99%, IDF1 = 87.45%).
These results confrm that our pipeline maintains strong identity tracking (IDF1), with
detection accuracy varying by scene complexity. HOTA remains a reliable metric for
overall performance across SLZ scenarios.

Table 5.3: Evaluating multi-object tracking across diferent scenarios.
Scenarios HOTA MOTA IDF1

S1
S2
S3
S4

90.54%
94.43%
97.48%
82.9%

80.21%
89.17%
94.91%
65.99%

96.96%
94.44%
99.40%
87.45%

Trajectory prediction results

Table 5.4: Evaluating seq2seq trajectory prediction.
Dataset Split Num Samples MSE MAE
Train 660,870 0.0004 0.0047
Validation 73,430 0.0004 0.0048
S1
S2
S3
S4

1,435
2,107
1,525
1,457

0.0015
0.0001
0.0002
0.0006

0.0073
0.0021
0.0047
0.0065

We evaluated our trajectory predictor across four scenarios representing varying mo-
tion complexity, from straight paths to curved trajectories in dense environments. For
each test sample, we computed the Mean Square Error (MSE) and Mean Absolute Error
(MAE), averaged over the entire set. Results are summarized in Table 5.4.
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The model performs best in S2 and S3 (straight motion), with minimal error. S4,
involving moderate curvature, showed slightly higher but acceptable errors. S1, with
complex trajectories around moving objects, had the highest MSE and MAE. Overall,
the low error values confrm the model’s ability to generalize across diverse motion
patterns. Qualitative overlays of predicted versus ground-truth paths (see Figure 5.9)
further reveal that even in the most congested scenario, the model captures both the
coarse directionality.

5.3.3 Safety Map Evaluation

To assess similarity between predicted and ground truth safety maps, we use Weighted
Mean Squared Error (WMSE), which penalizes overestimations (predicting a pixel as
safer than it is) more heavily than underestimations. For each pixel, the squared error
between predicted and true safety values (scaled 0–1) is calculated, with a higher weight
if the predicted value exceeds the ground truth. WMSE is then averaged over all pixels
and images. A WMSE of 0 indicates perfect alignment; higher values refect greater
deviations.

Table 5.5 shows results across the four scenarios. S2 performed best (MSE = 6×10−4 ,
WMSE = 8 × 10−4), indicating high accuracy with minimal overestimation. S3 also
had low error (MSE = 15 × 10−4 , WMSE = 23 × 10−4), while S1 showed moderate
discrepancies (WMSE = 168 × 10−4). S4 had the highest errors (MSE = 202 × 10−4 ,
WMSE = 344 × 10−4). This suggests this scene poses more difculty, likely due to
occlusions or visually ambiguous regions that make safety estimation more challenging.
Figure 5.9 presents one qualitative examples per scenario, comparing predicted and
ground truth heatmaps step by step.

Table 5.5: Evaluation of Safety map: Inference Across Diverse Examples
Scenarios MSE WMSE

S1
S2
S3
S4

0.0101
0.0006
0.0015
0.0202

0.0168
0.0008
0.0023
0.0344

Finally, for qualitative evaluation, we applied our model to three additional unseen
landing scenarios (S5: altitude ≃ 15m, angle ≃ 15◦ , S6: altitude ≃ 20m, angle ≃ 0◦ ,
S7: altitude ≃ 15m, angle ≃ 0◦). Each scenario depicts a distinct environment in which
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the UAV initiates a descent from a bird’s-eye view. As illustrated in Figure 5.10, the
model consistently predicts safe landing zones across diverse scenes. It efectively avoids
unsafe regions and exhibits strong adaptability to varying scene structures, even under
challenging conditions such as occlusions or difcult lighting. These qualitative results
further support the model’s capacity for generalization and its practical suitability for
real-world UAV deployment.

Figure 5.10: Samples from unseen landing scenes (S5, S6, S7) depicting: (left) RGB
frame, (middle) trajectory prediction, and (right) predicted safety map.

5.3.4 Discussion

The proposed SLZ framework demonstrates strong performance in dynamic environ-
ments by combining static terrain segmentation with real-time object tracking and tra-
jectory prediction. Tests across varied scenes confrm that this integration reduces false-
positive SLZ detections. A key strength of our approach lies in its ability to accurately
project moving object trajectories under UAV motion, thanks to optimized homography
computation and multi-scale scene alignment. By continuously updating the transforma-
tion, the system maintains spatial coherence even during fight, ensuring reliable landing
decisions. Unlike methods that rely solely on static segmentation or basic tracking, our
unifed pipeline fuses static terrain analysis with real-time dynamic tracking, improving
both safety and timing for collision avoidance—as confrmed by our ablation results.

Despite the strengths of our system, several limitations remain. The lightweight
trajectory models may struggle in cases of erratic motion, such as abrupt turns, group
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dynamics, or non-linear paths. Moreover, the reliance on overhead RGB imagery reduces
robustness in occluded environments, such as dense vegetation or urban canyons, where
critical visual cues may be absent. Future work should investigate the integration of
IMU data and additional sensing modalities (e.g., infrared, LiDAR) to improve resilience
under such conditions.

Although the system is optimized for high-end embedded GPUs, deployment on
resource-constrained platforms may require model compression or pruning strategies to
maintain real-time performance. Semantic segmentation accuracy could also be im-
proved by employing multiple specialized models tailored to diferent scene types, selec-
tively activated based on contextual cues, as proposed in recent work [6]. Beyond binary
SLZ decisions, segmentation outputs could enable more fne-grained safety assessments
by incorporating multiple risk levels, identifying scene-specifc hazards (e.g., dynamic
agents, uneven terrain), and capturing temporal dynamics such as crowd formation or
obstacle movement.

5.4 Conclusion

We presented a comprehensive vision-based framework for Safe Landing Zone (SLZ) iden-
tifcation that addresses both static terrain analysis and dynamic obstacle prediction in
real-world UAV operations. By combining semantic segmentation of the landing surface
with real-time tracking and short-term forecasting of moving objects, and compensating
for UAV motion through an optimized homography pipeline, our system ensures that
SLZ maps remain accurate and up-to-date even in highly dynamic scenes. Experiments
across four diverse scenarios, including construction sites, suburban roads, and pub-
lic parks, demonstrated strong SLZ detection performance. Beyond empirical results,
the framework ofers practical advantages: its modular design allows independent up-
grading of components (e.g., segmentation, tracking, homography), and its closed-loop
architecture enables continuous scene reassessment, adapting to abrupt UAV maneuvers
or sudden object appearance.
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Conclusion

This thesis presented a comprehensive study on vision-based SLZ detection for UAVs, ad-
dressing both static and dynamic environments using advanced deep learning techniques.
The motivation stemmed from the growing reliance on UAVs in civilian applications and
the corresponding need for reliable autonomous landing strategies under complex scene
conditions.

We began by reviewing the foundations of computer vision techniques applicable to
UAV navigation, covering object detection and image segmentation from both classical
and deep learning perspectives. A detailed literature review revealed the limitations
of binary classifcation and rigid mapping techniques in SLZ detection, particularly in
real-time and safety-critical contexts.

In Chapter 3, we proposed a deep regression model to generate continuous safety
maps from UAV imagery. By assigning safety scores at the pixel level, this model pro-
vided a fexible and context-aware alternative to conventional safe/unsafe classifcations.
The regression-based approach demonstrated promising results on diverse datasets, es-
tablishing its potential for real-world deployment.

Chapter 4 introduced OR-SLZNet, a novel deep ordinal regression model that inte-
grates multimodal scene information including photometric and geometric cues such as
color, fatness, and depth. This model extended the binary classifcation paradigm by
mapping terrain safety across multiple ordered levels. Notably, the architecture main-
tained a low inference time, making it suitable for embedded UAV systems and real-time
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processing. Experimental validation on several benchmark datasets highlighted its ac-
curacy, robustness, and adaptability across diferent environments and viewpoints.

To handle the complexities of dynamic scenes, Chapter 5 proposed a unifed SLZ map-
ping framework that combines semantic segmentation, object detection and tracking,
trajectory prediction, and homography-based motion compensation. This closed-loop
pipeline continuously updated safety maps in response to transient obstacles and UAV
motion, ensuring reliable landing decisions in real-time scenarios. Tests on real-world-
like dynamic scenes, including roads, construction zones, and public areas, demonstrated
strong performance and adaptability.

In summary, this thesis contributes the following:

– A deep regression-based approach for dense SLZ prediction using UAV imagery.

– OR-SLZNet, a real-time ordinal regression model leveraging both photometric and
geometric scene cues.

– A dynamic SLZ mapping framework integrating vision-based tracking, motion fore-
casting, and UAV motion compensation.

Together, these contributions ofer a scalable and efcient vision-based solution for
safe UAV landings in varied operational contexts. Future work will explore integration
with onboard UAV hardware, extension to 3D terrain modeling, and deployment in
real-world feld tests. Advancements in lightweight model architectures and multi-sensor
fusion could further enhance the reliability and autonomy of UAV landing systems.



Appendix A

Pre-Deep Learning Object Detection
Methods

Before the advent of deep learning, object detection relied on handcrafted features and
classical machine learning algorithms. Typical pipelines were decomposed into three
stages: (i) proposal generation, (ii) feature extraction, and (iii) region classifcation [224,
248]. These approaches laid the groundwork for modern detectors but were limited in
their ability to capture complex visual variability and to scale to large, unconstrained
datasets.

Figure A.1: SIFT (Scale-Invariant Feature Transform) [130].

A common early strategy was the multi-scale sliding window approach [224]. The
image was scanned exhaustively at diferent locations, scales, and aspect ratios over an
image pyramid, and at each window position features were extracted and passed to a



[I (a) Edge Featnres 

[IJ (b) T .ine Fealures 

(c) Fom-rectru1cle feahires 

125Chapter A : Pre-Deep Learning Object Detection Methods

classifer to decide whether an object of interest was present [248]. While conceptually
simple, this exhaustive search generated an enormous number of candidate windows,
resulting in redundant proposals, high computational cost, and sensitivity to design
choices, which restricted its suitability for real-time or large-scale applications.

Figure A.2: Haar-like features used in Viola–Jones detection [213].

Handcrafted feature descriptors were central to improving robustness within this
framework. SIFT (Scale-Invariant Feature Transform) [130] detects stable keypoints
across scales using diference-of-Gaussian extrema and encodes local neighborhoods with
gradient orientation histograms, providing robustness to changes in scale, rotation, and
moderate illumination variations (Figure A.1). Haar-like features [213] capture edge
and texture patterns through intensity diferences between adjacent rectangular regions
and were used in the Viola–Jones framework, where an AdaBoost-based cascade of
classifers enables efcient real-time face detection (Figure A.2). HOG (Histogram of
Oriented Gradients) [51] describes local object shape by aggregating gradient orientation
histograms over spatial cells with normalization, proving particularly efective for human
detection due to its sensitivity to contours and robustness to illumination and pose
changes (Figure A.3). SURF (Speeded-Up Robust Features) [19] was introduced as a
more computationally efcient alternative to SIFT, using integral images and box flters
to approximate Hessian-based detectors and a compact descriptor, thereby accelerating
detection and matching (Figure A.4). These descriptors became standard components
of pre-deep-learning object detection systems and remain infuential in classical feature-
based recognition [224].
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Figure A.3: Histogram of Oriented Gradients for human detection [51].

Once candidate regions and features were obtained, classifcation was typically per-
formed using traditional discriminative models. Support Vector Machines (SVMs) were
widely adopted for their strong performance on moderate-sized datasets and their abil-
ity to handle high-dimensional feature spaces [224]. By maximizing the margin between
classes, linear SVMs provided efcient and relatively scalable solutions, whereas kernel
SVMs (e.g., RBF) ofered greater fexibility at the cost of increased computational com-
plexity and more demanding hyperparameter tuning. Boosting-based methods, such
as AdaBoost, further contributed to early successes [213]. By combining multiple weak
learners into a strong classifer and focusing iteratively on misclassifed samples, boosting
improved detection accuracy. In cascade architectures, simple classifers rapidly rejected
easy negatives in early stages, reserving more complex computations for promising can-
didates, which enabled practical real-time detection in constrained scenarios.
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Figure A.4: SURF (Speeded-Up Robust Features) [19].

A major breakthrough in traditional object detection came with Deformable Part-
Based Models (DPM) [62]. In DPM(Figure A.5), objects are represented as a set of
parts arranged in a deformable star-structured confguration, with each part modeled
using HOG features and spatial relationships encoded via learned deformation costs.
Training is performed using a latent SVM framework with hard negative mining, al-
lowing the model to capture intra-class variability, articulations, and partial occlusions
more efectively than rigid templates. DPM achieved state-of-the-art performance on
benchmarks such as PASCAL VOC from 2007 to 2009 [224], and is often regarded as
the culmination of the pre-deep-learning era. However, its computational demands and
limited scalability became increasingly apparent as datasets grew in size and complexity.

Figure A.5: Deformable Part-Based Models (DPM)) [62].
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In parallel, several other traditional strategies were explored. Template matching
detected objects by correlating image patches with predefned templates [30], ofering
simplicity but lacking robustness to changes in scale, rotation, and viewpoint. Edge-
based detection methods leveraged contour information, using operators such as the
Canny edge detector to delineate object boundaries [31]; while efective under controlled
conditions, they were sensitive to noise and illumination changes. Color-based detection
employed color histograms and probabilistic models to isolate objects with distinctive
chromatic properties [202], performing well in specialized scenarios (e.g., skin or logo
detection) but degrading in cluttered or visually ambiguous scenes.

Despite their historical impact, these traditional pipelines exhibit several inherent
limitations. Exhaustive sliding-window search leads to a large number of redundant
proposals and high computational costs [248]. Handcrafted features, though carefully
engineered, have limited capacity to encode high-level semantic information and complex
appearance variations in unconstrained environments [224]. The separation of proposal
generation, feature extraction, and classifcation into independent stages complicates
global optimization and makes the systems brittle and task-specifc [248]. Most im-
portantly, these methods cannot learn rich hierarchical representations directly from
large datasets, restricting their adaptability and ultimate performance. These limita-
tions motivated the shift toward deep learning-based detectors such as R-CNN [68] and
YOLO [175], where convolutional neural networks unify feature learning, localization,
and classifcation within end-to-end trainable architectures, leading to substantial gains
in both accuracy and efciency [224, 248].



Appendix B

YOLO family

YOLOv1 (2015) [175]: introduced by Joseph Redmon in 2015, revolutionized object
detection by treating it as a single-pass regression problem rather than relying on region-
based approaches like R-CNN [68]. Unlike previous models that performed detection in
multiple stages, YOLOv1 processes the entire image at once, making it signifcantly
faster and computationally efcient. It divides the input image into an S × S grid,
where each grid cell predicts bounding box locations, confdence scores, and class prob-
abilities. This unifed approach eliminates the need for separate region proposal steps,
enabling real-time object detection at 45 frames per second (FPS). However, YOLOv1
sacrifces accuracy for speed, achieving a mean average precision (mAP) of 64.4% on the
VOC 2007 dataset, compared to Fast R-CNN’s 70% mAP at 0.5 FPS. Despite its limi-
tations, YOLOv1 marked a major breakthrough by introducing a single-stage detection
framework that infuenced the development of more advanced YOLO versions [9, 65].
YOLOv2 (2016) [176]: introduced by Redmon et al., enhanced the original YOLO
architecture by incorporating several key improvements. The backbone network was
redesigned as Darknet-19, which consists of 19 convolutional layers and 5 max pooling
layers. Unlike YOLOv1 [175], YOLOv2 eliminated dropout and introduced batch nor-
malization after each convolutional layer, leading to more stable training and improved
accuracy. It also employed a new training strategy known as union training, which
allowed simultaneous training for detection and classifcation tasks.

One notable extension of YOLOv2 was YOLO9000, a model trained on both the
COCO and ImageNet datasets, enabling it to detect around 9000 object categories. De-
spite these advancements, YOLO9000 retained the same core architecture as YOLOv2.
The model achieved a mean average precision (mAP) of 76.8% on the VOC 2007 dataset
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at 67 frames per second (FPS), outperforming traditional object detection models such
as R-CNN, ResNet, and SSD. Additional improvements in YOLOv2 included the in-
troduction of anchor boxes to enhance recall and a high-resolution classifer for better
classifcation performance, making it a signifcant advancement over YOLOv1 [9, 65].
YOLOv3 (2018) [177]: In 2018, Redmon and Farhadi introduced YOLOv3, the f-
nal version released by Redmon before stepping away from the project. The primary
improvement in YOLOv3 over YOLOv2 [176] was the introduction of a deeper feature
extractor, Darknet-53, which replaced Darknet-19. Darknet-53 is a more powerful back-
bone network composed of 53 convolutional layers and incorporates residual connections,
improving both feature extraction and network depth.

YOLOv3 also introduced multi-scale predictions by detecting objects at three difer-
ent scales, inspired by the Feature Pyramid Network (FPN) architecture. This enhance-
ment improved the model’s ability to detect objects of varying sizes more accurately.
Similar to YOLOv2 [176], YOLOv3 employed anchor boxes but expanded their usage
by introducing three anchor boxes per scale, resulting in a total of nine anchor boxes
across all scales. These modifcations led to a signifcant improvement in detection ac-
curacy, with YOLOv3 achieving a 13.9% higher mean average precision (mAP) on the
COCO dataset compared to YOLOv2 [176]. The combination of a deeper backbone,
residual connections, and multi-scale detection made YOLOv3 a major advancement in
the YOLO series, enhancing both speed and accuracy in object detection [9, 65].
YOLOv4 (2020) [21]: introduced by Bochkovskiy et al. in 2020, continued the evolu-
tion of the YOLO framework by incorporating state-of-the-art optimization techniques
to improve detection efciency and accuracy. While it did not introduce new theoretical
innovations, YOLOv4 made signifcant enhancements in data processing, network train-
ing, activation functions, and loss functions. The model utilized CSPDarknet-53 as its
backbone and introduced spatial pyramid pooling (SPP) and the path aggregation net-
work (PAN) in the neck, enhancing feature extraction. A major contribution of YOLOv4
was the implementation of the mosaic data augmentation technique, which combined
four training images into one, improving the detection of small objects. These optimiza-
tions allowed YOLOv4 to achieve a balance between inference speed and precision while
remaining trainable on consumer-grade GPUs [82, 9, 65].
YOLOv5 (2020) [87]: developed by Glenn Jocher and also released in 2020, marked
a paradigm shift in YOLO development by transitioning away from the Darknet frame-
work to PyTorch. Architecturally (Figure B.1), the backbone stacks CBS blocks (Con-
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volution + Batch Normalization + SiLU, the Sigmoid Linear Unit) with C3 modules
built on CSP bottlenecks (Cross-Stage Partial); the C5 stage ends with SPPF (Spa-
tial Pyramid Pooling–Fast) for lower-latency inference. The neck follows a PAN/FPN
design (Path Aggregation Network / Feature Pyramid Network), performing CBS, up-
sampling, and concatenation to fuse features into pyramid levels P3, P4, and P5 (output
strides 8, 16, 32). The head applies small convolutional predictors at each level to out-
put bounding-box ofsets, objectness, and class probabilities per anchor. Training uses
strong data augmentation—mosaic, MixUp, random afne, and HSV color jitter—to
improve generalization. While YOLOv4 [21] and YOLOv5 both advanced one-stage de-
tection, YOLOv5’s PyTorch implementation and SPPF layer broadened adoption and
sped up deployment [82, 9, 65].

Figure B.1: YOLOv5 Architecture [65]

YOLOv6 (2022) [109]: released by Meituan in 2022, improves efciency and accuracy
with several architecture and training changes. Architecturally (Figure B.2), its Efcien-
tRep backbone is built on RepVGG (re-parameterized VGG): multi-branch convolutions
used at training are re-folded into a single 3×3 conv at inference for faster runtime. The
neck is a PAN variant using RepBlocks or CSPStackRep blocks for stronger multi-scale
fusion. Training refnements include Task Alignment Learning (TAL) for label assign-
ment, VariFocal Loss for classifcation, and SIoU (Scylla-IoU) or GIoU (Generalized
IoU) for box regression. A self-distillation scheme and a quantization pipeline with Re-
pOptimizer plus channel-wise distillation further boost generalization and speed without
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sacrifcing accuracy. The Bidirectional Concatenation (BiC) module strengthens local-
ization, and Anchor-Aided Training (AAT) supports both anchor-based and anchor-free
heads. YOLOv6 ships in eight model sizes; the largest reports 57.2% AP on COCO at
about 75 FPS on an NVIDIA Tesla T4, making it faster and more accurate than prior
YOLO releases [82].

Figure B.2: YOLOv6 Architecture [109]

YOLOv7 (2022) [217]: released in 2022, introduced several advancements in object
detection, outperforming many existing models with speeds ranging from 5 FPS to 160
FPS. Unlike its predecessors, YOLOv7 was trained on the MS COCO dataset without
pre-trained backbones, demonstrating its strong standalone learning capabilities. A
major innovation was the introduction of the Extended Efcient Layer Aggregation
Network (E-ELAN), which improved learning efciency by optimizing gradient paths
and feature aggregation. YOLOv7 also introduced a novel model scaling approach for
concatenation-based architectures, ensuring proportional depth and width scaling to
maintain structural integrity. Additionally, it incorporated planned re-parameterized
convolutions (RepConvN), which removed identity connections to address residual issues
found in previous networks like ResNet and DenseNet. The model further enhanced
label assignment by implementing a dual-head approach, using coarse assignment for
auxiliary heads and fne assignment for lead heads, improving training efciency. Batch
normalization was integrated directly into the convolutional layers during inference,
reducing computational overhead. While YOLOv7 demonstrated improved real-time
detection efciency, studies have shown that YOLOv5 [87] still outperforms it in precision
and mean average precision (mAP), though YOLOv7 has a slightly higher recall. Despite
this, YOLOv7 remains a powerful choice for real-time applications, ofering a balance
between speed and accuracy without increasing inference costs [82, 65].
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Figure B.3: YOLOv7 Architecture [65]

YOLOv8 (2023) [212]: introduced by Ultralytics in January 2023, represents a signif-
cant evolution in the YOLO series, incorporating various architectural enhancements and
expanded capabilities. It retains a backbone similar to YOLOv5 but introduces the C2f
module (cross-stage partial bottleneck with two convolutions), which improves feature
extraction and detection accuracy. YOLOv8 supports multiple scaled versions, ranging
from nano (YOLOv8n) to extra-large (YOLOv8x), catering to diferent computational
and application needs. A key advancement in YOLOv8 is its expanded support for se-
mantic segmentation through YOLOv8-Seg, which employs a CSPDarknet53 backbone
and a C2f module, diverging from traditional YOLO neck architectures. Benchmarked
on the MS COCO dataset, YOLOv8x achieved an average precision (AP) of 53.9% at
an image size of 640 pixels, outperforming YOLOv5. Additionally, YOLOv8 demon-
strated a remarkable inference speed of 280 FPS on an NVIDIA A100 with TensorRT,
emphasizing its real-time efciency. With its improved architecture, loss functions, and
segmentation capabilities, YOLOv8 stands as a versatile and powerful tool for object
detection and semantic segmentation applications [82, 65].
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Figure B.4: YOLOv8 Architecture [211]

YOLOv9 (2024) [218]: released in 2024 by Wang et al., introduced groundbreaking
innovations to enhance gradient fow, reduce error accumulation, and improve model
convergence. A key advancement was the introduction of the Generalized Efcient
Layer Aggregation Network (GELAN), which built upon CSPNet and ELAN to pro-
vide greater fexibility in integrating computational blocks such as convolutional layers
and attention mechanisms. Additionally, YOLOv9 addressed vanishing gradients with
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the Programmable Gradient Information (PGI) module, which improved backpropa-
gation across multiple prediction branches, enhancing detection accuracy in complex
scenarios. The model also incorporated reversible functions to minimize data loss dur-
ing transmission through the neural network, ensuring better information preservation
and reconstruction. Compared to YOLOv8-X, YOLOv9-E achieved a 1.7% improve-
ment in mean average precision (mAP) while reducing the number of parameters by
16% and computation by 27%, making it more efcient and computationally less in-
tensive. These optimizations positioned YOLOv9 as a versatile and high-performance
model for real-time object detection tasks [5, 65].

Figure B.5: YOLOv9 Architecture [77]

YOLOv10 (2024) [216]: released in May 2024 by Wang et al. from Tsinghua Uni-
versity, introduced signifcant advancements in real-time object detection by improving
feature aggregation and computational efciency. A key innovation was the introduc-
tion of the C3k2 block, which enhanced feature extraction while reducing computa-
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tional overhead, making the model highly suitable for deployment on edge devices. An-
other major improvement was the elimination of Non-Maximum Suppression (NMS) for
post-processing, which reduced inference latency and improved deployment efciency
in real-world applications. YOLOv10 demonstrated superior performance in detect-
ing small and occluded objects, making it particularly efective for tasks like facemask
detection and autonomous vehicle applications. Compared to YOLOv9, YOLOv10-M
achieved the same mAP (51.1%) while reducing parameters by 23%, and it outperformed
YOLOv8 variants by 1.2–1.4% mAP while requiring 28–57% fewer parameters. With
a benchmarked mAP50 of 0.944, YOLOv10 set a new standard for balancing detection
precision and computational efciency, further cementing its role in real-time object
detection [5, 65].

Figure B.6: YOLOv10 Architecture [216]

YOLOv11 (2025) [98]: introduced signifcant advancements in real-time object de-
tection by enhancing spatial awareness, efciency, and multi-task capabilities. A key
innovation was the introduction of C2PSA (Cross-Stage Partial with Spatial Attention)
blocks, which improved the model’s ability to focus on critical regions within an image,
particularly benefting applications in healthcare, autonomous systems, and environmen-
tal monitoring. The model featured a restructured backbone with smaller kernel sizes
and optimized layers, increasing processing speed without sacrifcing accuracy. Addi-
tionally, the integration of Spatial Pyramid Pooling-Fast (SPPF) enabled faster feature
aggregation, making YOLOv11 the most efcient and accurate YOLO model to date,
achieving a benchmarked mAP50 of 0.958.
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Beyond object detection, YOLOv11 extended its capabilities to instance segmen-
tation, image classifcation, pose estimation, and oriented object detection, making it
a versatile solution for various computer vision tasks. The model introduced multiple
scaled versions, from nano to extra-large, ensuring deployment fexibility across resource-
constrained edge devices and high-performance computing environments. The refned
attention mechanisms, particularly the C2PSA component, enhanced the model’s ability
to detect small or partially occluded objects in complex scenes. These architectural inno-
vations positioned YOLOv11 as a leading real-time object detection framework, setting
a new benchmark in efciency, scalability, and detection accuracy [98, 5].

Figure B.7: YOLOv11 Architecture [96]



Appendix C

Pre-Deep Learning Image
Segmentation Methods

Before the emergence of deep learning, image segmentation was addressed using classi-
cal, algorithm-driven techniques designed to partition an image into meaningful regions
based on intensity, color, texture, or spatial continuity. These methods rely on explicit
mathematical models or optimization principles rather than learned feature represen-
tations. Although they have notable limitations in complex real-world scenarios, they
established many of the core ideas that modern segmentation networks build upon.
Thresholding. Thresholding is one of the simplest segmentation techniques, converting
a grayscale image into a binary mask by assigning pixels above a chosen threshold to
the foreground and those below to the background [161]. Global thresholding assumes
a bimodal histogram and applies a single threshold to the entire image, while adaptive
or local thresholding adjusts the threshold within neighborhoods to handle illumination
changes. Despite its simplicity and efciency, thresholding is highly sensitive to noise,
lighting variation, and overlapping intensity distributions between classes.
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Figure C.1: Segmentation by thresholding technique [237].

Region Growing. Region growing methods start from one or more seed pixels and
iteratively expand these seeds by aggregating neighboring pixels that exhibit similar
properties such as intensity, color, or texture [157]. The process yields connected, ho-
mogeneous regions and can incorporate spatial constraints naturally. However, its per-
formance heavily depends on the choice of seeds and similarity criteria, and it can be
sensitive to noise and intensity inhomogeneities.
K-means Clustering. Clustering-based segmentation treats pixels as points in a fea-
ture space (e.g., intensity, color channels, spatial coordinates) and partitions them into
a predefned number of clusters. K-means assigns each pixel to the closest cluster center,
with each resulting cluster interpreted as a segment [57]. While conceptually simple and
widely used, K-means requires specifying the number of clusters in advance and assumes
roughly spherical, well-separated clusters, which may not hold in complex images.
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Figure C.2: Segmentation of brain MRI: original image (left) and 3-means segmentation
(right) [237].

Watershed Transform. The watershed method interprets the gradient magnitude im-
age as a topographic surface, where high gradients correspond to ridges and low gradients
to valleys [154]. Simulated fooding from local minima flls catchment basins until wa-
tershed lines (ridges) emerge, delineating segment boundaries. Watershed segmentation
can produce precise object boundaries but often sufers from severe over-segmentation,
requiring careful preprocessing and marker-based control.
Active Contours (Snakes). Active contours, or snakes, are deformable curves that
evolve under internal smoothness constraints and external image forces derived from
features such as edges or region statistics [94]. Starting from an initial contour, the model
iteratively moves toward object boundaries to minimize an energy functional. Extensions
such as geodesic active contours and level sets improve robustness to topology changes
and complex shapes. These methods can yield accurate boundaries but are sensitive to
initialization and local minima.
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Figure C.3: Segmentation of brain MRI: original image (left), reference contours (mid-
dle), active contour result (right) [237].

Graph Cuts. Graph-cut-based methods formulate segmentation as an energy mini-
mization problem on a graph where pixels (or superpixels) are nodes and edges encode
similarity or boundary penalties [27]. By defning data terms (ft to foreground/background
models) and smoothness terms (penalizing label discontinuities), segmentation is ob-
tained via a minimum s-t cut that optimally partitions the graph. Graph cuts provide
globally optimal or near-optimal solutions for certain energy forms and have been highly
infuential, but require appropriate energy design and often some user interaction or prior
models.

Figure C.4: Segmentation of cardiac MRI by graph cuts: original image (left), initial-
ization (middle), fnal segmentation (right) [237].

Conditional Random Fields (CRFs). CRFs extend pixel-wise classifcation by mod-
eling contextual dependencies between neighboring pixels or regions in a probabilistic
framework [166]. Unary potentials capture class likelihoods (e.g., from intensity or hand-
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crafted features), while pairwise or higher-order terms encourage spatial coherence and
alignment with edges. In pre-deep-learning settings, CRFs were often used to refne
noisy segmentations and incorporate prior knowledge, though inference could become
computationally demanding for large images.
Sparsity-Based Methods. Sparsity-based segmentation approaches assume that im-
age patches or regions can be represented as sparse linear combinations of basis elements
(atoms) from one or multiple dictionaries [200]. Diferent structures or materials cor-
respond to diferent sparse codes, enabling separation of components such as textures,
edges, or anatomical structures. While powerful in certain applications, these methods
require carefully constructed dictionaries and can be computationally expensive.

Overall, classical segmentation methods provided important conceptual and algorith-
mic foundations, including region homogeneity, edge-based partitioning, energy mini-
mization, and probabilistic modeling. However, their reliance on hand-crafted features,
heuristic parameters, and limited global context restricts their performance in complex,
heterogeneous scenes. These limitations have driven the transition toward deep learning-
based segmentation models, which learn rich, hierarchical representations and achieve
signifcantly higher accuracy and robustness across diverse applications.
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