
Exploration Problems using Autonomous Robots:
PhD Thesis

Université du Québec en Outaouais
Département d’informatique et d’ingénierie

Maxime Godon

April 2018

Abstract

We introduce and study search problems for collections of mobile robots. Through-

out our work, we consider cases where robots may expérience various type of faults,

which may hinder the progress of the algorithm and require novel ways to solve the

problem. We first discuss the search and exploration problem in the Euclidian plane,

where a group of k robots with various maximal speeds, among which up to / may

be faulty, hâve to discover a target and gather at its location, using various com­

munication models. We then discuss the problem of search for a non-adversarial,

uncooperative robot on the cycle, based on various prémisses regarding the informa­

tion available to the robots. We also consider the évacuation problem on the dise

in the presence of faulty robots. In the évacuation problem, the robot finding a tar­

get point (exit) on the boundary of the environment must communicate it to other

robots, which then ail need to move to the exit (evacuate). Finally, we consider the

problem of exploring various types of graphs in the presence of time constraints: each

node has to be visited before a certain moment in time for the algorithm to succeed.

We discuss the complexity of the exploration, based on the number of robots, the

presence or absence of faults, and the topology of the graph.

For ail problems, we introduce algorithms to solve the problem, and discuss their

efficiency.

Contents

1Abstract

5Table of Contents

7List of Figures

List of Tables 8

1 Introduction 9

91.1 Motivation

1.2 Objective and Methodology 10

1.3 Models Studied 11

131.4 Thesis Results

161.5 Thesis Outline

171.6 Publications

192 Survey of Literature

192.1 Introduction

192.2 Searching and Exploration by a Single Robot

2.2.1 Graph Environment............................. 20

242.2.2 Géométrie Environment

1

2.3 Collective Search and Exploration.............................

2.3.1 Exploration Using Pebbles and Whiteboards

27

29

2.3.2 ANTS 32

2.4 Search, Rendezvous and Gathering Games

2.4.1 Rendezvous and Gathering

35

35

2.4.2 Look, Compute, Move Model

2.4.3 Deployment..........................

41

46

482.5 Varying Environments . . .

2.5.1 Time-Varying Graphs 48

2.5.2 Black Holes 50

522.5.3 Faulty Robots

2.6 Other Variations Involving Search by Multiple Robots..........................

2.6.1 Evacuation or Group Search by Collections of Mobile Robots . 57

56

592.6.2 Patrolling

602.6.3 Pursuit

632.6.4 Other Variations

642.7 Practical Results

3 Searching the Plane with Faulty Robots 67

3.1 Introduction 67

3.1.1 Preliminaries and notation 68

3.1.2 Related work 70

3.1.3 Outline and results 71

3.2 Non-Faultv (NF) Robots 72

3.2.1 Wireless communication 72

3.2.2 Face-to-faee communication 73

2

3.3 Robots with Crash-Faults (CF) 80

803,3.1 Wireless communication

813.3.2 Face-to-face communication

3.4 Robots with Byzantine Faults (BF) 88

893.4.1 Wireless communication

913.4.2 Face-to-face communication

983.5 Additional Remarks and Conclusion

4 Searching for a Non-adversarial, Uncooperative Agent on a Cycle 100

1004.1 Introduction

4.1.1 Preliminaries and model of computation 101

4.1.2 Related work 102

4.1.3 Outline and results 103

4.2 One Robot 104

4.2.1 Known direction of movement of the bus 105

4.2.2 Unknown direction of movement but known speed of the bus . 106

4.2.3 Robot knows neither the direction nor the speed of the bus . . 112

1154.3 Multiple Robots

4.3.1 Known direction of movement of the bus 115

4.3.2 Unknown direction of movement but known speed of the bus . 116

4.3.3 Robots know neither the direction nor the speed of the bus . . 121

1224.4 Additional Remarks and Conclusion

5 Evacuation from a Disc in the Presence of a Faulty Robot 123

. 1235.1 Introduction

1245.1.1 Preliminaries and notation

1255.1.2 Related work

3

5.1.3 Outline and results 127

5.2 Evacuation Protocols 128

5.2.1 Evacuating with Crash-Faults..........................

5.2.2 Evacuating in the presence of Byzantine Faults

. 128

135

5.3 Lower Bounds for Evacuation Protocols 139

5.4 Additional Remarks and Conclusion 143

6 Exploring Graphs with Time Constraints by Unreliable Collection

of Mobile Robots 144

6.1 Introduction . 144

1456.1.1 Preliminaries and notation

6.1.2 Related work 146

6.1.3 Outline and results 149

6.2 Single Robot on the Line..

6.2.1 The snapshot graph..

6.2.2 Given initial position of the robot......................

6.2.3 Arbitrary starting positions

6.3 Multiple Robots on the Line...

6.3.1 Given initial positions ..

6.3.2 Arbitrary initial positions...................................

6.4 Line Exploration with Unreliable Collections of Robots

6.4.1 Arbitrary starting positions................................

6.4.2 Given starting positions.......................................

6.5 The Ring Environment...

6.6 NP-hardness for Star Graphs...

6.7 Additional Remarks and Conclusion................................

149

150

152

155

157

158

161

165

166

167

173

177

179

4

1807 Conclusion and Future Work

5

List of Figures

Behaviour of the Non-Faulty Robots Algorithm3.1 73

Robot Search for a Moving Bus......................

Trajectory and Other Concepts......................

Catching a Bus with Speed Greater than 1 . .

Speeding Up Pruned Trajectory......................

Optimising a Three-Segment Trajectory . . .

Lower Bound for Unknown Bus Speed

Finding a Bus with an Odd Number of Agents

Excluded Régions when Finding a Bus of Speed Greater and Smaller

than 1 ..

4.1 . 105

4.2 108

4.3 110

4.4 . 110

4.5 111

4.6 114

4.7 118

4.8

119

Symmetric-persistent algorithm for robots with crash faults

Two robots exploring an arc or length 2n — s moving in opposite direction 131

Asymmetric-persistent algorithm for 3 robots

Initial search position for the Byzantine faults model

Evacuation of the second truth telling robot.............

5 1 . 129

5.2

5.3 132

5 4 137

5.5 141

Example of snapshot graph for a line of 5 nodes...................

Illustration of the execution of the line-exploration algorithm

Line-exploration algorithm, case of arbitrary starting node .

6.1 151

6.2 154

6.3 156

6

6.4 Illustration of robots Ai, B-KB(i) and Cnc^) visiting ail nodes of the line. 170

6.5 Snapshot graph for a case of ring R of five nodes 174

7

List of Tables

4.1 Optimal Search Time for a Single Robot

4.2 Optimal Search Time for k Robots . .

104

1Q4

Upper and lower bounds for crash and Byzantine évacuation

Distribution of cases based on faulty robot and location of the exit . . 133

5.1 127

5.2

8

Chapter 1

Introduction

1.1 Motivation

The area of search problems using mobile robots1 is well-studied in the realm of

theoretical computer science, from classical algorithms such as Dijkstra’s algorithm

to find the shortest path to the famous Traveling Salesperson Problem. Those hâve

direct real-world applications, be it to find the fastest route for a car trip, as is

implemented by software such as Google Map, or the best way for a postman to

complété their itinerary. The case of exploration of geometrical environments is itself

well-studied and has a plethora of real-world applications, ranging from patrolling of

an area using unmanned aerial vehicles (UAV) to exploration of new environments,

such as the exploration by the Mars Rover. It is but a natural extension to this setting

to consider faulty agents: robots in charge of any given exploration may stop working,

or provide unreliable data at any time. Under more adversarial conditions, a robot

may be hacked by an adversary and start acting erratically or contrary to the intention

of its original programming. As such, building for resilience is a necessary form of

Tn this thesis, the words robot and agent are used indiscriminately.

9

précaution in many real-world areas. This is reflected in our theoretical world by

discussing problerns where agents may expérience crash-faults and Byzantine faults.

Objective and Methodology1.2

The purpose of this thesis will be to study various exploration problerns using mobile

agents. For these problerns, we intend to find algorithms that solve the problem using

optimal resources (time, number of steps, number of required agents, percentage of

the agents that hâve to be reliable, etc.), and to establish their efficiency using lower

and upper bound proofs.

An algorithm solves an exploration problem by producing a schedule that will be

followed by the agents. This schedule lias to ensure that the objective of the problem

is met (be it complété exploration, rendezvous, évacuation, etc.), with respect to the

constraints of the problem. Our goal is to achieve efficiency, which can be defined as

minimal usage of time, of the agent’s energy, or in certain cases, a compétitive ratio,

which is defined as the ratio between the total cost required by an on-line algorithm

and the best-case cost to solve the problem offline. We focus on the correctness of

produced schedules, and on the efficiency (and sometimes optimality) of said sched-

ules. We also discuss the correctness and efficiency of the algorithms producing those

schedules.

The methods used to offer these solutions include oracle and adversarial argu­

ments, proofs of NP-Completeness by Karp réduction, proofs by induction and con­

tradiction and proof by exhaustive considération of ail possible cases.

10

1.3 Models Studied

The work presented in this thesis revolves around a few main concepts: mobile agents,

searching, tolérance to faults and communication.

Ail our work is related to the use of mobile agents. In this thesis, we use the terms

"mobile agent" and "robot" indiscriminately. It refers to an entity modelled as a sin­

gle point in the géométrie environment. A mobile agent has four main capabilities:

(1) movement: an agent may traverse the environment in which it is located; (2) per­

ception: a mobile agent is equipped with sensors that allow it to register information

located in its environment; (3) computation: an agent can make independent calcu­

lations. In this thesis, we assume that an agent has access to unlimited memory; (4)

communication: depending on the model, an agent is either equipped with a device

similar to a broadeasting station, that allows it to communicate wirelessly with every

other agent, or a simple device that allows it to exchange information when at some

time it is located at the same point of the environment as another agent.

The main objective of the algorithms presented here is to search the environment

for a given target. In a part of our work, this target is mobile, and in other parts,

it is motionless. The search may be conducted by multiple robots, and it may be

required that every robot complétés the search for the algorithm to accomplish its

goal. Search differs from exploration in the sense that it does not alwavs require for

a single robot or a group of robots to visit every point of the environment (which

may, in some cases, be infinité). A part of our work focuses on évacuation, which is

sometimes referred to as group search.

Every part of this work includes robots that may be faulty, to a various degree.

Three main type of faults are discussed in this paper: uncooperative, crash faults

and byzantine faults. An uncooperative robot is completely outside the control of

11

the algorithm, and though it will not try to hamper the progress of the algorithm,

it will not help it in any way either. Specifically, we use the concept of bus: a non-

adversarial, uncooperative mobile agent that moves at its maximum speed along a

predefined route. It does not deviate from its path, nor slow down for any reason.

A robot experiencing crash fault may stop working at any moment, as chosen by

an adversary. The robot may stop moving, communicating, searching or listening

to other robots’ communication. It, does not, however, gain additional capabilities,

such as the capability to transmit false information. A robot experiencing byzantine

faults is similar to a robot experiencing crash faults, but also has the capability to

transmit false information, deviate from its assigned path, stop exploring or stop

communicating. When communicating, however, wc consider that ail information

given by the robot is signed to its identity. It is therefore impossible for the robot to

prétend to be another agent. A byzantine robot will act in an adversarial way, trying

to hamper the progress of the algorithm to the best of its capacities. The objective

of the algorithms presented in this thesis is to build a resilience to those faults. We

use the term "reliable robot" to refer to a robot that does not expérience faults.

Our algorithms consider two main communication models: the face-to-face (F2F)

and the wireless communication model. In the face-to-face communication setting,

agents may exchange any amount of information at no cost (instantaneous commu­

nication), but orilv when at the same moment in time they are located at the saine

point in the environment, whereas in the wireless communication setting, agents may

exchange any amount of information at no cost (instantaneous communication), re-

gardless of the respective location of the agents in the environment.

12

1.4 Thesis Results

The purpose of this thesis is to study various exploration problems using a group of k

mobile robots. We are particularly interested in the scénario where some robots are

unreliable, i.e. f < k robots may expérience faults.

In the first part of our work, a collection of k robots, initially placed at the origin

of the plane, are searching for a stationary target. Each robot has a unit visibility

range and can move no faster than its maximal speed Vi, for i = 1,2,...,k. We

consider two communication models: wireless, in which a message sent by a robot

can reach ail other robots immediately, regardless of their positions, and face-to-face,

in which robots can only exchange information when they are meeting. We assume

that up to f < k robots may be unreliable. We consider two models of unreliability:

(1) crash faults, in which we deal with an absence of some of the robots’ capacities

(communication, perception, motion, etc.), and (2) Byzantine faults, in which the

robots may be malicious in that they may lie (e.g., transmitting wrong information).

The goal is to minimize the group search (also known as évacuation) time, which

is equal to the time of arrivai to the target of the last reliable robot. This is expressed

as a function of d, the distance from the origin to the target.

Our proposed algorithms for crash faults are asymptotically optimal in d in both

communication models. For byzantine faults, we propose an algorithm which is

asymptotically optimal for the wireless model. In the F2F model, we propose two

algorithms: the first one has a compétitive ratio of 2, while the second algorithm

works for k > 2/ + 2 and is optimal when the robots’ speeds are ail equal.

Our results also extend to the traditional search model which measures the time

of arrivai to the target of the first reliable robot.

The second part of our work assumes that k robots are placed on the perimeter of

13

a unit (radius) disk at a position of our choosing and can move with maximum speed

1. A non-adversarial, uncooperative agent, called bus is moving with constant speed

s along the perimeter of the cycle. The robots are searching for the moving bus but

do not know its exact location; during the search the robots can move anywhere on

the perimeter of the cycle and can communicate wirelessly. We give algorithms which

minimize the worst-case search time required for at least one of the robots to find the

bus.

We obtain the following results for one robot. 1) If the robot knows the speed s

of the bus but does not know its direction of movement then the optimal search time

is shown to be exactly la) 27t/s if s > 1, lb) 47r/(s + 1) if 1/3 < s < 1, and le)

27t/(1 — s) ifs < 1/3. 2) If the robot does not know neither the speed nor the direction

of movement of the bus then there is an algorithm with search time 27r(l + Tpj), and

for any e > 0, it is possible to assign a speed s to the bus such that no algorithm can

achieve rendezvous with the bus in time less than 47T —

We also generalize these results to k > 2 robots and prove analogous tight up-

per and lower bounds depending on the knowledge the robots hâve about the speed

and direction of movement of the bus, provided that the robots can communicate

wirelessly.

The third part of our work considère the évacuation problem on a circle for three

robots, at most one of which is faulty. The three robots search for an exit placed at

an unknown location on the perimeter of the circle. During the search, robots can

communicate wirelessly at any distance. The goal is to minimize the time it takes

the last non-faulty robot to reach the exit.

Our main contributions are two highly efficient and non intuitive évacuation pro-

tocols for the non-faulty robots to reach the exit in two well-studied fault-models,

Crash and Byzantine. Moreover, we complément our positive results bv lower bounds

14

in both models. A summary of our results reads as follows:

• Case of Crash Faults: Lower Bound sa 5.082; Upper Bound ~ 6.309,

• Case of Byzantine Faults: Lower Bound « 5.948; Upper Bound « 6.921,

For comparison, it is known (see [56]) that in the case of three non-faulty robots with

wireless communication we hâve a lower bound of 4.159, and an upper bound of 4.219

for évacuation, while for two non-faulty robots 1 + 27t/3 + v/3 ~ 4.779 is a tight upper

and lower bound for évacuation.

In the fourth part of this thesis, a graph environment must be explored by a

collection of mobile robots. Sonie of the robots, a priori unknown, may turn out

to be unreliable. The graph is weighted and each node is assigned a deadline. The

exploration is successful if each node of the graph is visited before its deadline by a

reliable robot. The edge weight corresponds to the time needed by a robot to traverse

the edge. Given the number of robots which may crash, is it possible to design an

algorithm, which will always guarantee the exploration, independently of the choice

of the subset of unreliable robots by the adversary? We find the optimal time, during

which the graph may be explored. Our approach permits to find the maximal number

of robots, which may turn out to be unreliable, and the graph is still guaranteed to

be explored.

We concentrate on line graphs and rings, for which we give positive results. We

start with the case of collections involving only reliable robots. We give algorithms

which find the optimal times needed for exploration when the robots are assigned to

fixed initial positions as well as when such starting positions may be determined by

the algorithm. We extend our considération to the case when some number of robots

may be unreliable. Our most surprising resuit is that solving the line exploration

problem with robots at given positions, which may involve crash-faulty ones, is NP-

15

hard, while the same problem has polynomial solutions for a ring and for the case

when the initial positions of the robots on the line are arbitrary.

The exploration problem is shown to be NP-hard for star graphs, even when the

collection consists of only two reliable robots.

1.5 Thesis Outline

In chapter 2, we introduce a survey of the literature concerning mobile agents. We fur-

ther divided the chapter according to the main focus of the papers surveyed, starting

with general search and exploration problems. We then discuss search and explo­

ration using multiple robots. Next, we survey rendezvous and gathering games, then

introduce papers where the environment may change over time. We then présent a

section attempting to introduce the most important variations of problems involving

search by multiple robots, and discuss the state of the art for those problems. We

finally discuss some practical applications of this research.

In chapter 3, we introduce the exploration of the plane with multiple robots. We

first discuss the case of non-faulty robots, then extend our model to include crash-

faults, and finally, byzantine faults. For ail cases, we discuss both the face-to-face and

the wireless communication model. Algorithms as well as upper and lower bounds

are presented for ail cases.

In chapter 4, we discuss the problem of searching a ring for a non-adversarial,

uncooperative mobile agent. We first discuss the case of search using a single robot,

then généralisé this situation to multiple robots, providing algorithms and bounds

based on various conditions (prior knowledge of the speed of the bus relative to the

speed of the robot; prior knowledge of the direction; number of robots at our disposai).

In chapter 5, we discuss the problem of evacuating a dise in the presence of faulty

16

robots. We consider the case of 3 robots, one of which can be either crash faulty or

byzantine faulty, under the wireless communication model. For both fault models,

we provide proofs of lower bounds, and non-trivial efficient algorithms.

In chapter 6, we discuss the problem of exploring graphs with time constraints by

unreliable robots. We start by providing an algorithm based on dynamic programming

to offer a solution to the problem of a single robot on the line, then apply the same

logic to multiple robots on the line, for both given and arbitrary starting positions.

We then discuss the case where some robots may expérience crash faults. We discuss

the ring environment and prove that such an exploration on graphs as simple as the

star graph in NP-hard.

In chapter 7, we conclude and discuss open problems and interesting variations to

the situations we presented in this thesis.

1.6 Publications

Publications upon which this thesis is based

Referred Conférence Papers

1. J. Czyzowicz, M. Godon, E. Kranakis, A. Labourel, E. Markou. Exploring

Graphs with Time Constraints by Unreliable Collections of Mobile Robots. In

Proceedings of SOFSEM 2018, 44th International Conférence on Current Trends

in Theory and Practice of Computer Science, January 29 - February 2, 2018,

Krems an der Donau, Austria, Springer LNCS.

2. J. Czyzowicz, S. Dobrev, M. Godon, E. Kranakis, T. Sakai, .1. Urrutia. Search-

ing for a Non-adversarial, Uncooperative Agent on a Cycle. In proceedings of

Algosensors 2017, 13th International Symposium on Algorithms and Experi-

17

ments for Wireless Networks, September 7-8, Vienna, Austria, Springer LNCS.

3. J. Czyzowicz, K. Georgiou, M. Godon, E. Kranakis, D. Krizanc, W. Rytter,

M. Wlodarczyk. Evacuation from a Disc in the Presence of a Faulty Robot. In

proceedings of SIROCCO 2017, 19-22 .lune 2017, Porquerolles, France, Springer

LNCS.

Submitted papers

1. J. Czyzowicz, M. Godon, E. Kranakis, A. Labourel, Searching the Plane with

Faulty Robots, to appear.

18

Chapter 2

Survey of Literature

2.1 Introduction

The exploration problem has been central in the world of theoretical computer science

for the past üfty years. This problem has known plenty of variations. In its most

simple form, a single robot is exploring either a géométrie environment or a graph

in search of a treasure hidden somewhere within the environment. A very similar

problem is often to explore the environment in its totality. In this survey, we will

consider the exploration problem and some of its most popular variations.

2.2 Searching and Exploration by a Single Robot

The simplest variation of the exploration problem considers a single robot in an

environment that can either be a graph (e.g. ring, tree, general graph) or a géométrie

environment (two-dimensional space, sometimes represented as polygons or a grid) is

tasked with the exploration of the totality of this environment, sometimes with the

purpose of drawing a map of this environment.

19

In some variations of this problem, the entire map of the environment can’t be

drawn, and the knowledge of the environment is then given by a so-called quotient

graph (a quotient graph regroups ail nodes in sets of équivalence classes, which in

certain variations of the exploration problem is the most information a robot exploring

an unknown graph environment can gather). In some instances of the problem, this

exploration includes the traversai of ail edges of a graph; in others, the visitation of ail

nodes is sufficient. In a géométrie environment, a robot has an additional attribute:

visibility. This visibility can either be unitary (or otherwise limited) or unlimited.

The efficiency of algorithms proposed use mostly two metrics: the nurnber of edges

traversed, and the amount of memory required by a robot.

Graph Environment2.2.1

In the graph environment, the exploration problem is usually resolved when the robot

has explored ail edges of the graph. The common measure of efficiency of a given

algorithm is its compétitive ratio: the ratio between the amount of edge traversais re­

quired by an agent following the algorithm and the minimal amount of edge traversais

required by an robot with perfect knowledge of the environment.

In [83], a single robot has for goal the exploration of a directed, strongly connected

graph. The robot is able to differentiate a new point from one it has already visited,

and can correctly identify the degree of each node it visits. The efficiency of the

algorithm is measured by the ratio of edge traversed without prior knowledge of the

graph compared to the minimal amount of edge traversais required with knowledge

of the graph. The authors of [83] provide a tight bound of 2 for Eulerian graphs,

and prove that this ratio is unbounded when the deficiency (the smallest number of

edges that hâve to be added to the graph in order to make it Eulerian) of the graph is

20

unbounded. The authors also provide an algorithm with a number of edge traversais

that is exponential in the deficiency of the graph.

A different measure of the efficiency of the algorithm is used in [112], where the

efficiency of a robot exploring ail edges of a directed, strongly connected graph is mea-

sured using a compétitive ratio between the number of edges traversed by the robot

and the minimal number of edge traversais required by a robot with full knowledge

of the graph. The authors claim to introduce the first deterministic online algorithm

with a compétitive ratio polynomial in d the deficiency of the graph.

[88| considers the task of exploring ail edges of an undirected connected graph by

a single robot traversing as few edges as possible. The quality of a given algorithm

is measured by the ratio between the number of edges traversed and the minimal

number of edge traversais given knowledge of the graph. Such a ratio is referred to

as the overhead of the algorithm for a given class of graphs when maximised over ail

possible starting nodes of the graph for this given class of graphs. The paper considers

three possible scénarios: in the first one, the robot knows nothing about the graph;

in the second, the robot has an isométrie map of the graph without spécification

about the starting point; and in the third one, the robot is also aware of its starting

point. For various classes of graphs, an algorithm is provided, often with an optimal

overhead.

The first sub-exponential algorithm to explore an unknown environment repre-

sented as a directed, strongly connected graph is provided in [4], where an algorithm

with a bound of d°(logd^m is provided, with d the deficiency of the graph and m the

number of edges. The authors also show that their algorithm is optimal by proving a

matching lower bound for this variation of the exploration problem.

Simple Depth-First search (DFS) algorithms hâve been used to explore graphs in

[166], with the number of edge traversais used as a measure for the efficiency of the

21

algorithm. They establish an upper bound of min(mn,dri2 + m) edge traversais, with

d being the defieiency of the graph, m edges and n nodes.

DFS algorithme are also used in [128], where a robot has to solve the exploration

problem (traverse ail edges) in an unlabelled graph with no prior knowledge of the

graph. In particular, there is no knowledge about the size of the graph. It is shown

that a robot with constant memory K is unable to explore certain graphs with a

maximum degree d\d > 3 and K+1 nodes. Moreover, a robot needs at least Q(D log d)

bits of memory to explore a graph of diameter D and maximum degree d, and this is

a tight bound.

In [93], the task of exploring a tree of maximum degree A is given to a robot that

has a limited memory. It is observed that 0(log A) bits of memory are required to

explore such tree if stopping is not required (that is, the robot does not hâve to stop at

the completion of the exploration). If stopping is required, it is shown that bounded

memory is not sufficient. Moreover, the authors show that ül(logloglogn) bits of

memory are required for some trees with n vertices. Finally, the paper considers

a variation of the problem where the robot has to return to its starting node after

exploration, and show that at least fî(logn) bits of memory are required to do so. An

algorithm that matches this bound is provided in [138], thus solving the exploration

of trees with O(logn) bits of memory.

The exploration problem is presented in a different light in [195], under the naine

of Chinese Postman Problem (CPP), and a variation for directed graph, the Directed

Chinese Postman Problem (DPP). The standard définition of this problem requires

for the agent to return to its original position after exploring ail of the edges; the

paper also introduces the Open Chinese Postman Problem, where the requirement

of returning to the original position is dropped. The paper offers algorithms that

résolves ail those problems, but without optimising the amount of memory used.

22

Memory concerns are considered in [127], where it is shown, for a directed graph

with n nodes of maximum out-degree d, that a minimum of fi(nlogd) bits of memory

are required by an agent to complété the exploration of the graph. The paper provides

an algorithm that solves the problem with 0(nd\ogn) bits.

In [39], a robot in an undirected graph has to visit ail edges, then return to

its starting point. The efficiency of the algorithm is measured by the number of

edges traversed. Alternatively, the efficiency is measured by the minimal amount of

memory required by the robot. In this paper, the robot knows a bound n on the

size of the graph, and a bound d on the maximal degree of a node. The paper offers

two algorithms, both aiming to improve the upper bound established in [65]. The

first algorithm aims at a minimal number of edge traversais while the second tries to

minimise the required amount of memory for the robot. Both algorithms represent

an improvement compared to the upper bound established in [65].

[86] explores the information required by a robot in order to draw a complété or

partial map of a graph. A complété map of a graph is understoocl to be an isomorphic

copy of the map including its port numbers, and a partial map is understood to be a

spanning tree with port numbers. The robot is forced to use a deterministic algorithm,

and is unable to mark nodes in any way. It is proven that this map drawing is possible

without, further information if the graph is a tree. Otherwise, some bits of information,

called advice, are required for the robot to construct either the complété or partial

map. The paper establishes that the minimal size of the advice is linked to the number

of nodes n of the graph, the number of edges m of the graph, and the multiplicity //.

of the graph, that is, the number of nodes that hâve an identical view of the graph.

Bounds on the minimal size of the advice for both the construction of a partial and

complété map are provided. Tight bounds are provided for fj, = 1.

In [177], a robot in a connected weighted unlabelled undirected unknown graph

23

has to visit ail nodes of the graph, without necessarily having to visit ail edges. The

robot only learns the weight of ail edges when it is located in a node adjacent to

those edges. The paper builds upon the work of [148], that presented an improved

DFS algorithm that was 16-competitive on planar graphs. [177] prove that the afore-

mentioned algorithm does not hâve constant compétitive ratio on general graphs.

Furthermore, the paper provides a constant compétitive algorithm for general graphs

with a bounded number of distinct weights.

Géométrie Environment2.2.2

In an interesting amalgam between the exploration problem and the illumination

problem, [153] considère the problem of a single robot starting at an arbitrary vertex

of a polygon and trying to find the shortest path inside the polygon that reaches

a different arbitrary vertex, and provide an algorithm that is linear in the shortest

distance between those two vertices, while also providing a 1.41 compétitive ratio as

a lower bound (the quotient between the distance travelled by the algorithm and the

shortest path for their problem given knowledge of the environment).

A very similar problem was studied in [82], where an agent is tasked with the

création of the map of a room filled with obstacles. The proposed algorithm is mea-

sured by the compétitive ratios between the distance required by the algorithm and

the optimal distance, given knowledge of the environment. They show that there are

no algorithms guaranteeing a compétitive ratio for general rooms with obstacles, yet

provide an algorithm for a room with a bounded number of obstacles. This bound is

further improved in [154], which also provides an algorithm that is within a constant

factor of optimal in the worse-case for arbitrary rooms with unbounded number of

polygons.

24

[64] explores a similar problem: a robot bas to explore a terrain with obstacles,

both represented as polygons. Two scénarios are considered: in the first one, the

robot has unlimited vision (though blocked by obstacles) whereas in the second one,

the robot has a unitary vision range. The robot is tasked with the full exploration of

the environment, and the efficiency of the algorithm used is measured based on the

length of the trajectory of the robot. For both cases, an upper bound and tight lower

bound are provided.

An interesting twist to this problem is considered in [155], where a robot attempts

to localise itself in a géométrie environment priorly known. They refer to this problem

as the location problem, and builds upon the algorithms provided in [11]. The article

also raises the question of landmark placement in an environment in order to simplify

further attempts at localisation. A landmark is a point in the environment that

can be used by a robot to localise itself. The algorithm provided in the paper is

asymptotically better than the one discussed in [11].

The concept of unknown environment with landmarks is referred to as the bound-

ary place graph in [194], Using an algorithm that focuses on incrémental construction

of the environment, the authors manage to identify ail landmarks in the environment.

The algorithm described in the paper has been implemented in a mobile robots plat-

form, thus proving the possibility to correctly explore an environment without the

need for GPS-like Systems or metric représentation of the environment.

The search for a target located at an unknown location in a one-dimensional

environment (the line) is known as the cow-path problem, or linear search problem,

as introduced in [19], which proves that a minimum distance of fi(9d), with d the

original distance between the robot and a treasure, is required for a robot on a line

to find the treasure.

The problem of exploration on the line by a single robot is considered in [81]

25

with an additional assumption: whereas most algorithms allow the robot to change

its direction without cost, this paper adds a cost of d to each change of direction of

the robot. An algorithm solving the problem in cost 9 ■ OPT + 2d, with OPT the

optimal time with knowledge of the location of the target. The notion of turn cost is

also applied to exploration on the star graph, and an algorithm solving this problem

in optimal time is provided, with matching lower bound. Randomised strategies are

discussed.

[149] considers randomised solutions to this problem, and conclude that the ran-

dom algorithm they provide is optimal, using the total distance covered by the robot

as measurement for the performance of their algorithm. The authors furthermore ob­

serve that their algorithm is almost twice as efficient as any deterministic algorithm.

A lower bound of fl(v/n)-competitive is proven for both deterministic and ran-

domised algorithms in polygonal environments in [5], and is generalised to tri-dimensional

rectilinear polyhedra without obstacles.

Simple greedy algorithms are used to explore unknown terrains in [156], and even

though they do not yield optimal results (as is to be expected), they offer acceptable

results. The authors discuss applications and advantages of the usage of such an algo­

rithm, and observe that it can take advantage of prior knowledge of the environment,

and offer the possibility to be applied to multiple robots acting in coopération.

An A* approximation algorithm is used in [172] to détermine the path followed

by a robot with limited visibility in an unknown environment discretised as a two-

dimensional grid. Experimental results are provided to discuss the efhciency of the

algorithm.

26

2.3 Collective Search and Exploration

The search and exploration problems were studied under many variations, and some

of those involve multiple robots. The classical problem of exploration can be mod-

ified by the addition of one or more robots. Sometimes, a graph that could not be

entirely mapped with the use of a single robot can now be completely recognised by

a team of collaborating robots. The presence of multiple robots allows for varions

strategies, such as the introduction of immovable robots that serve as markers to help

another robots orientate in a given environment. Those immovable robots are often

referred to as pebbles, or sometimes, when they can store and share information,

as whiteboards. The presence of multiple robots introduces a new variable for the

studied problem, that is, the communication between autonomous robots. The four

most studied variations of a communication model are the face-to-face communica­

tion, where robots can only share information when they are located at the exact

same location; the wireless communication, where robots can freely exchange com­

munication with no regard to their respective location; the pebble communication,

where robots are unable to communicate, but may leave markers on the ground that

contain no information; and finally, the whiteboard communication, where robots

may leave markers on the ground that do contain a certain amount of information

that can be read by other robots.

The ring environment is discussed in [114], where a group of k identical robots are

tasked with the exploration of ail nodes of a ring of size n. In this model, robots are

equipped with sensors, but are unable to communicate. Each node must be visited

by at least one robot, and ail robots must décidé to remain iclle for the algorithm to

be completed. It is shown that this problem is impossible if k and n are co-prirne

(the only common divisor between k and n is 1). The authors also show that the

27

minimum number of robots required to explore a ring of size n is O(logn).

[22] considers the exploration of a graph environment with two robots, and provide

an algorithm, called the homing-sequence algorithm, to accomplish this in a time

that is polynomial in n the number of nodes. They compare the performances of this

algorithm to a random walk algorithm, and conclude that the random algorithm has

better performances than the homing-sequence algorithm.

In [99], a group of robots equipped with wireless communication are tasked with

the exploration of ail nodes in a graph, and must then return to their initial position.

The robots hâve no prior knowledge of the graph. The efficiency of the algorithm is

given by the compétitive ratio between the total time required by the algorithm and

the smallest amount of time required, given knowledge of the graph. A lower bound of

Q(log/c/loglogfc) with k the number of robots is introduced for the compétitive ratio

of any given deterministic algorithms. Using the number of edges traversed instead

of the elapsed time, the authors présent an algorithm with a compétitive ratio of

(4 — 2/k) on trees.

A linear algorithm for the exploration of ail nodes of a graph by a group of

robots is provided in [84]. More precisely, the paper considers a scénario in which a

group of robots can explore a n-node graph located at a distance at most D of the

starting point of the robots in O(D), if the number of agents k is polynomial in D

and n (k = Dn1+e < n2+e for any e > 0). This algorithm works even with a local

communication model in which robots can only exchange information when they are

located at the sanie node.

[132] classifies decision problems for multiple robots in a graph environment using

deterministic algorithms. It is proven that the class of ail problems that can be

verified with a certificate is much wider than the class of ail decidable problems in

this context, and the paper shows the existence of a Mobile-Agent Vérifiable-complété

28

problem.

An alternative communication model is discussed in [189], where robots with wire-

less communication hâve a limited range of communication. An algorithm based on

a distributed bidding model is introduced, using two measures: (1) the distance be-

tween robots, and (2) a map synchronisation mechanism; both of which are meant to

reduce the amount of information exchanged between robots. Simulations are used

to measure the efficiency of the algorithm.

A similar bidding model is used in [165], to the différence that in this paper, com­

munication is impossible between robots. More so, [165] is concerned with collision

between robots, and the bidding value function used to détermine the path of ail

robots also aims at avoiding collisions.

Exploration Using Pebbles and Whiteboards2.3.1

A popular variation of the exploration problem sets either a single robot or a group of

robots in a graph environment that they must fully explore. In addition to their own

capabilities, robots can be equipped with one or more pebbles: movable devices that

are used to uniquely identify a node or an edge. Alternatively, an environment in

which everv node is equipped with a whiteboard is considered. Pebbles were a single

unary bit of information; whiteboards serve as bookkeeping devices, and as such, are

able to conserve a certain number of bits of information.

The problem of graph exploration using a single robot equipped with pebbles

is discussed in [21]. The paper considers an unlabelled strongly connected directed

general graph. It is shown that robot with knowledge of an upper bound on the

number of nodes of the graph can explore it using only one pebble. If this assumption

is dropped (that is, the robot has no prior knowledge of the graph), then at least

29

Sl(log logn) pebbles are required and are sufficient for the complété exploration of

the graph.

[129| first considers the problem of exploration of ail edges of a graph with a group

q of non-collaborative A'-state robots, and show that there is a graph of size O(qK)

that cannot be explored by any robot frorn the group. By applying this principle,

the authors consider the problem of exploration with stop (the robot has to stop its

exploration once it is done), and provide the robot with a single pebble. For graphs

of size at most n, a robot with fl(logn) bits of rnemory can solve the exploration

problem with stop. The authors also prove that there is an algorithm to solve the

exploration problem with stop requiring a robot with O(DlogA) bits of memory,

with D the diameter of the graph and A the maximal node-degree in the graph.

[96] considers the exploration of a graph by a single robot equipped with one or

more pebbles in the absence of any further information about the graph, and provide

experimental results to show the correctness of the exploration algorithm provided.

A variation on the standard pebble model is presented in [24], where a single

robot represented as a Finite State Automaton is tasked with the exploration of an

unknown cîirected graph. Rather than placing a pebble, however, the robot can, at

every node, place a pebble on one of the exit ports of the nodes, thus serving as

traffic signais. Two algorithms are studied: the first one solving the exploration in

0(|V| |-C|) edge traversais; and the second one traversing every edge three times.

In [127], it is established that a robot with no memory is unable to achieve the

exploration of a directed graph. In order to alleviate this problem, the authors provide

an algorithm that adds to every node of out-degree d a whiteboard with a memory

of size O(logd), and prove that this bound is tight for an agent with constant-size

memory.

The exploration of a graph by a group of robots with the help of whiteboards which

30

serve as communication devices is considered in [33]. Tree and graph exploration

are examined and results are corroborated with simulation results. In this paper,

whiteboards are not immovable devices fixed at a given node, but are rather devices

that can be moved freely by the robots and can be dropped at any node.

A slight variation of the exploration with whiteboard problem is presented in [75].

In this instance of the problem, a group of k robots hâve to build identically labelled

maps of a n-nodes graph. They are unable to communicate directly, but can freely

read and write on whiteboards located at everv node. In some cases, this problem is

shown to be unsolvable. An algorithm that solves the problem is presented under the

assumption that n and k are co-prime.

[76] is also interested in the problem of common map building by a group of robots

in an unknown graph. The paper provides the robots with either the number of nodes

n in the graph, or the number of robots k. The efficiency of an algorithm is measured

by the total number of edge traversais by ail the robots. Respecting the condition

established in [75] that n and k hâve to be co-prime, the algorithm provided solves

the problem in O (km) with m the number of edges of the graph.

The exploration of the tree by a group of robots is considered in [126]. It is stated

that scheduling an optimal collective exploration is NP-Hard, even when the tree is

known. Algorithms are provided for the exploration by a group of robots under three

conditions: in the first one, robots benefit from perfect wireless communication; in

the second one, robots can use whiteboards located at every node to communicate;

and in the third one, robots are completely unable to exchange information.

31

2.3.2 ANTS

The problem of Ants Nearby Treasure Search (ANTS), first introduced in [110], is a

généralisation of the cow-path problem. The authors of [110] describe the problem

as follows: a group of k identical agents are initially placed at the origin of a two-

dimensional infinité grid. Somewhere on this grid, at distance D of the starting

position is a treasure hidden by an adversary. The objective of any given algorithm

is to find this treasure as fast as possible. Communication settings vary, but are

generally limited; sometimes communication is altogether impossible. The robots do

not necessarily start the execution of their algorithm at the same time. In this first

paper, the authors show that the time required to find the treasure is Q(D + D2/k),

and they provide an algorithm that matches this bound under the condition that the

robots are aware of the value of k. They also présent a tight bound for the compétitive

penality that must be paid to compensate for the lack of knowledge of k by the robots.

A variation of the ANTS problem is provided in [106] and [105], where the robots

are represented as asynchronous randomised Finite State Automaton: they possess

constant-size memory, and can communicate locally (when two robots are at the

same point of the grid) through constant-size messages. They show that those re­

strictions do not diminish the performance of the robots, and provide an algorithm

that matches the bound provided in [110]. This variation is further explored in [103],

where the minimum number of robots required to accomplish various exploration scé­

narios are discussed. Those scénarios consider different computational capabilities for

the robots, as well as different tirning parameters. For ail scénarios, upper and lower

bounds are provided.

Communication between robots is further restricted in [179], where the only form

of communication allowed is lonehness détection, where a robot located at a node is

32

able to tell whether it is alone or shares the node with one or more other robot. In

this context, robots are still represented as Finite State Automaton, thus possessing

constant-size memory. An algorithm solving the ANTS problem under such circurn-

stances is provided, flnding the treasure in time 0(D logk + D2/k), thus beating the

lower bound for agents that are unable to communicate.

[108] explores the relationship between the memory of the robots and the running

time performances of the algorithm. More specifically, for various time performances,

the paper establishes a lower bound on the memory size of the robot.

A new metric to evaluate the performance of an algorithm is introduced in [171].

This metric, called the sélection complexity, represents how likely a given algorithmic

strategy is to arise in nature due to sélective pressures[171]. For this metric, an

algorithm working in asymptotically optimal time, taking the fineness of available

probabilities into account.

A variation of the problem called ant colony house-hunting is introduced in [139].

The objective of the algorithm is to explore a terrain nearby the origin in order to

find a location that is regarded as "best". In order to do this, ail robots must share

the task of exploring the environment, then corne to a consensus and rnove to the

chosen location. The paper shows that a time of at least fl(logn) with n the number

of robots is required for the formation of a consensus. Two algorithms are provided

to solve this problem: the first one runs in optimal time O(logn), but is described as

non characteristic of natural ant behaviour. The second one runs in time O(klogn)

and is simpler and doser to the natural behaviour of ants.

Animal metaphors similar to the ANTS problem are used in [202], where a group of

robots equipped with constant-size memory is tasked with the cleaning of a dirty floor

represented as a non-convex région of Z2 that may include obstacles. Interestingly,

in this scénario, the only mean of communication of the robots is the cleanness of the

33

floor itself. Experimental results are provided.

At the intersection between ANTS problems and problems using whiteboards is

[1] : in this paper, k robots modelled as either Finite State Autornata or Turing

Machines located at the origin of an infinité two-dimensional grid are tasked with the

identification of a treasure hidden at a distance D from their starting location. Each

robot is able to place information, referred to as pheromone, at its current location.

This pheromone can then be read by other robots, thus allowing communication. For

robots modelled as FSM, fl(D) pheromones are needed for the identification of the

treasure; this bound lowers to fî(k) when the robots are modelled as TM. Algorithms

matching those bounds are provided, and solve the problem in 0(D + D2/k), which

is proven to be optimal. The pheromones are also used as fault-tolerance mechanism,

which will be discussed later on.

Faults are introduced in the ANTS problem in [192] and [104]. In this variation

of the problem, up to / robots may be faulty and stop working at an arbitrary time.

The authors présent an algorithm that is able to detect and recover from failures, and

that performs in time 0(D + D'2/n + Df) with D the distance to the treasure and n

the nurnber of robots.

[10] adapt the exploration problem to require one more step before the completion

of any algorithm. Once robots hâve identified their target on the grid, they must

communicate this information to other robots, then transport the treasure back to

the nest. Five algorithms are provided for the exploration phase, and their compétitive

ratio is discussed. Simulation data is provided to support findings.

34

2.4 Search, Rendezvous and Gathering Games

One of the most common variation of the group search problem is the rendezvous

problem [7]. In the rendezvous problem, two agents located at distinct starting po­

sition are tasked with meeting one another. This is significantly different from the

exploration problem, where the target was immovable, or from the cops and robbers

problem (discussed later), where the target is actively trying to avoid being caught.

In this variation of the problem, both agents collaborate in order to ensure a meeting.

This problem has been studied under many variations: graph and géométrie environ­

ment, synchronous and asynchronous movements of the robots, variable starting time

and moment of apparition in the environment, memory restrictions for the robots,

presence or absence of a common compass, randomised or deterministic algorithms,

and limited visibility in the géométrie environment are some of the most common

variations. The problem of ensuring a meeting between n robots is known as the

gathering problem.

2.4.1 Rendezvous and Gathering

[131] studies the amount of memory that is required for two robots to meet in a tree.

It is first established that rendezvous is only possible if the initial position of the

agents is not symmetrical. For a tree of size n, it is shown that 0(logn) bits are

required and sufficient to ensure the rendezvous. The paper further shows that it is

impossible for two robots represented as Finite State Automaton to rendezvous in ail

bounded degree trees.

In [16], two asynchronous robots are located in an infinité grid of dimension S > 0

embedded in the Euclidean space. Both robots share a common compass and are

both equipped with a GPS-like device - in other words, they are both aware of their

35

respective position comparée! to the origin, and share the orientation of the spaces

on ail dimensions. An algorithm ensuring the rendezvous in time 0(dspolylogd),

which is close to the lower bound il(d5). Furthermore, this problem is expanded by

providing the robots with a visibility radius. This visibility radius may be different

for both robots, and the condition for the rendezvous is that both robots are within

the visibility radius of the other. An algorithm allowing asynchronous rendezvous in

0((fYpolylog(f)) with r = min(ri,r2) is provided.

[63] models an unknown bounded terrain as a polygon in which two robots hâve

to meet. An adversary détermines the walk of the robot (that is, the adversary does

not choose the path of the robot, but chooses the speed at, which the robot travels

it, with the possibility of using négative speed). Algorithms that ensure rendezvous

are provided for the following conditions: the presence or absence of obstacles in the

environment; robots having agreeing or disagreeing compassés; and robots having a

prior map of the environment with information about their exact starting position or

not. The efficiencv of the algorithm is determined by the length of the longest path.

Lower bounds are provided for ail conditions, and ail bounds are shown to be tight.

In [78], labelled asynchronous robots hâve to meet in an unknown anonymous

graph. As for almost every asynchronous rendezvous problem, rendezvous is allowed

inside the edges. The efficiency of an algorithm is measured by the number of edge

traversais required before the rendezvous happens. The first case studied in the paper

is the infinité line: in this case, the rendezvous can be ensured after 0(D|Lmin|2) with

D the original distance between the robots and Lmin the smallest label of a robot,

provided that D is known. If D is unknown, 0((D + |Lmax|)3) is required. The

second case studied is the ring, on which those bounds are still valid. An optimal

algorithm requiring 0(n\Lmiri\) is also provided when n is known and 0(n\Lmax\) for

n unknown. Finally, for arbitrary graphs, it is shown that the rendezvous is possible

36

with knowledge of an upper bound on the size of the graph, and an optimal algorithm

requiring 0(D\Lmin\) is provided, requiring prior knowledge of the topology of the

graph and the initial positions of both robots.

[92] considers the rendezvous problem in an unknown graph by asynchronous

labelled agents. The performance of an algorithm is measured by the number of edge

traversais required before the rendezvous happens. [92] is the first paper to provide

an algorithm polynomial in the size of the graph and the size of the smaller label.

The use of Universal Traversai Sequences and Universal Exploration Sequences

to solve rendezvous problems with asynchronous labeled robots are first introduced

in [193], and are used to improve previouslv existing upper bounds for this problem.

This paper is based on the work of [185].

The problem of rendezvous by synchronous anonymous agents in a graph is studied

in [65] in relationship with the minimum amount of memory required by the robots

for the rendezvous to be possible, using the results discussed in [193]. It is shown

that 0(logn) bits of memory are required and sufhcient to ensure rendezvous on a

graph of size n. This holds even if the agents do not appear on the graph at the saine

moment.

A survey of deterministic rendezvous algorithms in graphs is presented in [181].

In [71], two labelled asynchronous robots hâve to meet in a possibly infinité eon-

nected graph or in an unknown terrain in the plane. A deterministic algorithm ensures

the rendezvous under the following sine qua non conditions: in the graph, only con-

nectedness is required. In the géométrie scénario, it is required that the terrain is

closed, the robots start at interior points of the terrain, and the starting point of the

agents hâve rational coordinates.

A corrélation between required time and required memory is made in [161], where

two synchronous non-labelled robots hâve to meet on the anonymous, oriented ring.

37

It is shown that robots with 21 States can rendezvous on an n nodes ring in time

0{n2/2t + 2*), and any pair of robots with t/2 States require at least Q(n2/2J) to

ensure rendezvous. It is furthermore observed that 0(loglogn) bits or memory are

required to ensure meeting in linear time.

In [41], synehronous labelled robots are trying to meet in a graph of size n, without

bounds on the size of n. Robots know their own label, but not the label of the other

robot. Furthermore, the notion of delay fault is introduced: at each round, it is

possible for a robot to be subject to a delay fault, in which case the agent will remain

idle for the entirety of the round. The robot is aware of the fault, and can react

accordingly. Three fault scénarios are considered: the random scénario (at each round,

robots hâve a probability 0 < p < 1 of being delayed); the unbounded adversarial

scénario (an adversary may delay the agents indcfinitely); and the bounded adversarial

scénario (an adversary may delay a robot for at most c consecutive rounds), and c

is unknown to the robots. The performance of any given algorithm is measured by

the number of edges traversed. For random faults, an algorithm polynomial in n

and polylogarithmic in the larger label L is provided. It is shown that rendezvous

is not possible in the unbounded adversarial scénario, even on rings. Finally, for

bounded adversarial faults, an algorithm polynomial in n and logarithmic in c and L

is provided.

Rendezvous between heterogeneous robots is studied in [85]. Heterogeneous is

understood as follows: the environment is a weighted connected graph; however, the

weights are not the sarne for both agents. Agents hâve full knowledge of the graph,

as well as their own starting position and the starting position of the other robot.

They are now aware of the cost of edge traversais for the other robot, and hâve to

ensure a rendezvous for an edge-traversal cost that is as low as possible. Meeting is

allowed both in an edge an in a node. The efficiency of the algorithm is measured

38

as the ratio between the required time and the optimal required time for the offline

scénario, where the robots hâve knowledge both of their own costs for edge traversais

and the cost for the other robot. An algorithm ensures rendezvous in an n-nodes

graph in 0{nTopt), where rop4 is the optimal offline time. It is furthermore shown

that if the agents hâve the capability to exchange n bits of information at the start

of the algorithm, this bound can be lowered to 0(2^).

In [50], rendezvous of two anonymous synchronous robots that are aware of their

own starting position is studied for two environments: the graph environment and

the géométrie environment. The efficiency of algorithms is measured by the num-

ber of synchronous rounds that pass before the rendezvous happens. As for most

synchronous studies, rendezvous must happen in a node, and is not allowed inside

and edge. Is is shown that on the line, the tree and in multi-dimensional Euclidean

spaces and grids, agents can rendezvous in 0(d) with d the initial distance between

the agents. In ail n-node graphs, the rendezvous can happen in 0(d log2 n), and there

exists an infinité family of graphs in which rendezvous in this setting requires at least

u(d).

Rendezvous of asynchronous agents with limited (unit) visibility in the two-dimensional

Euclidean space is discussed in [51]. The paper considère agents equipped with a

common compass, and are aware of their own starting position (given by a set of

coordinates). The efficiency of an algorithm is measured by the sum of both agents’

travelling length. Rendezvous is considered achieved when both agents are within

line of sight of one another. An algorithm solving this problem in 0(d2+e), with d

the distance between the agents, is provided.

[87] considère the rendezvous for synchronous labelled agents in the graph. The

paper studies two scénarios: in the first one, both agents start the execution of their

algorithm simultaneously, and in the second one, there is a delay chosen by and

39

adversary between the start of the algorithm of one robot and the apparition of the

second robot on the graph. The efficiency of an algorithm is measured by the nurnber

of steps from the apparition of the second robot to the rendezvous for a given initial

configuration. In trees, it is shown that 0(n + log l) is required, with l the smallest

label, for arbitrary startup time. On a ring with simultaneous startup, 0(Dlog/)

is required, with D the initial distance between the agents. On general graphs, an

algorithm that ensures rendezvous in time linear in n, r and logarithmic in l is

provided, with r the delay between the start of the first robot and the apparition of

the second robot.

1159] studies the gathering problem for k labelled synchronous robots in a con-

nected graph with possible delay in the startup time. It is shown that this is no hardcr

than the same problem for two robots, and an algorithm is provided to support this

claim. The efficiency of the algorithm is measured by the nurnber of steps required be-

fore ail robots meet. An asymptotically optimal algorithm working in 0(n\ogl) with

l the smallest label is provided for the ring environment, and an algorithm polynomial

in n and l and indépendant of r the différence between startup times is provided for

general graphs, thus improving the bound presented in [87].

In [90], the gathering problem for synchronous anonymous robots in the graph

is studied. The nurnber of robots k is unknown. Ail gatherable configurations are

identified, and two universal gathering algorithms are provided. Those algorithms

allow the gathering to happen for ail configurations in which such gathering is possible.

[173] studies the problem of searching m concurrent rays by a group of p robots, in

order to identify a treasure located on one of the rays. The efficiency of an algorithm

is measured by the ratio of time required by an algorithm without knowledge of the

location of the treasure to time required with prior knowledge of its location. An

optimal algorithm achieving a compétitive ratio of 1 + 2/(m/p — l)(m/(m — p))m^v

40

is provided.

2.4.2 Look, Compute, Move Model

We consider robots modelled as points in their environment that are continuously ob-

taining information from their surroundings, and move either in synchronous fashion,

or hâve their walk controlled by an adversary, which means that though the path they

would take is determined by the algorithm and could not be steered from, the speed

they use to walk on it is controlled by an adversary (which could use négative speeds

as well) at ail time, provided that they covered the entirety of the path. The following

papers consider a different model: in this model, robots will in turn obtain informa­

tion about their surroundings, often obtaining information with perfect visibility of

the entirety of the environment (LOOK), use a deterministic algorithm to décidé of

their next destination (COMPUTE), and fînally, move in a given direction (MOVE).

The notion of synchronism is different here as well: for robots to be asynchronous

means that they execute their LCM cycles independently from one another. If they

are synchronous, they start each LCM cycle exactly at the same time. This model

also allows for the introduction of a new synchronism pattern: the semi-synchronous

model.

The problem of searching the plane by a mobile agent has first been identified

as a field of study in [11]. The model used can be considered a precursor to the

Look-Compute-Move (LCM) model that will be discussed later on. In this paper, a

mobile robot is tasked with a search problem in an unknown, unbounded environment,

and its performances are evaluated by considering the total distance covered between

every probe position taken. Various scénarios are explored, with varying level of a

priori information given to the robot, such as the distance to the target and the

41

general direction of the target. The paper also examines the possibiiity of errors in

the interprétation of the environment by the robot.

The gathering problem for asynchronous robots operating in LCM cycles is studied

in [72]. Robots are equipped with multiplicity détection: during their Look phase,

they see if any node is occupied by zéro robots, one robot, or two or more robots

(without knowing the spécifie amount). This paper identifies the initial configura­

tions in which the gathering problem can be solved, and provides an algorithm that

generates a solution whenever possible.

The graph exploration problem by a swarm of robots operating in asynchronous

LCM cycles is studied in [115]. In a given laps of time, the swarm of robots rnust

explore ail nodes, then put an end to their activities (quiescent State). The efficiency

of the algorithm is measured by the number of robots required to complété the explo­

ration in the given time. It is shown the even in n-node trees with a maximum degree

of 4, fi(n) robots are necessary to complété the exploration. If the maximum degree

) robots are sufficient, and this solution is asymptoticallylogre
log log nof the tree is 3, 0(

optimal.

[191] studies rendezvous of two asynchronous oblivious anonymous robots in the

two-dimensional Euclidean space in the absence of a common coordinate System. An

algorithm that allows for rendezvous in a finite number of cycle is provided under the

assumption that the compassés differ from at much 7r/4.

Based on the fact that rendezvous between two semi-synchronous robots is trivially

solvable when their coordinate Systems are consistent, [145] explores the magnitude

of consistency between coordinate Systems required robots to ensure rendezvous in

the semi-synchronous and asynchronous model. In the paper, robots hâve unreliable

compassés: their bearings may deviate from an absolute reference direction. From

there, two scénarios are considered: in the first one, the compass is static, and the

42

déviation remains the same throughout the execution of the algorithm. In the second

the compass is dynarnic, and the déviation may vary at the start of every new

LCM cycle. For robots with static compass in both the semi-synchronous and asyn-

chronous setting, a déviation of $ < 7r/2 allows for a rendezvous; a déviation of at

most <F < 7r/4 is required for semi-synchronous with dynarnic compassés to meet; and

a déviation of at most $ < 7r/6 is required for asynchronous with dynarnic compassés

to meet.

one

In a similar fashion, [144] considers gathering of more than two robots with un-

reliable compassés, both for the case of static and dynarnic compassés, under the

semi-synchronous setting. An algorithm allowing gathering is provided for a compass

that accepts déviations of up to 7t/2 — e, with e > 0. This algorithm is proven to be

optimal.For any déviation greater than 7t/2, it is proven that no algorithm can ensure

either rendezvous or gathering.

[200] considers anonymous, oblivious robots operating in LCM pattern with an

interesting added feature: both robots carry coloured lights that are visible to both

robots. They are placed either in the plane or on a line, and their purpose is to

reduce (or increase) the distance between them bv a constant factor without using

distance information. A solution is provided with spécifications on the number of

colours required to ensure rendezvous. Every synchronism model is explored. In the

asynchronous model, three colours are enough to ensure rendezvous for any initial

configuration.

In [123], anonymous robots hâve to meet in the plane under the asynchronous

setting. Two settings are studied: in the first one, robots are incapable of remembering

the layout of the environment in their previous cycle, but can communicate with

constant-size messages (finite-communication model), and in the second, robots can

remember the layout of the environment in their previous cycle using constant-size

43

memory, but are unable to communicate{ finite-state model). Those settings can be

modelled as robots carrying lights: in the finite-communication model, robots can

only see the other robot’s light, whereas in the finite-state model, robots can only

see their own. It is shown that finite-communication model allows rendezvous for

asynchronous robots, and finite-state model allows rendezvous for semi-synchronous

robots.

The relationship between synchronism models is studied in [77], under the as-

sumption that robots are equipped with lights of different colours that are persistent

- that is, the light is not automatically reset at the end of each LCM cycle. It is

shown that asynchronous robots with a constant number of colours are more pow-

erful than semi-synchronous robots without colours. Furthermore, it is shown that

there is no différence between asynchronous and semi-synchronous robots when they

are equipped with visible lights. Asynchronous robots with visible lights are also more

powerful than synchronised robots under the assumption that they hâve the ability

to remember a single snapshot of the graph.

Census of the capability of robots operating in LCM cycles under synchronous,

semi-synchronous and asynchronous settings are presented in [184] and [182], and the

problems of rendezvous, gathering and pattern formation are discussed.

Gathering in the ring environment is discussed in [152], under the asynchronous

setting. It is shown that for an odd number of robots, gathering is only possible if

their initial configuration is not periodic, and an algorithm is provided to solve the

gathering problem. For even number of robots, the feasibility is decided except for

one type of symmetrical initial configurations, and algorithms that ensure gathering

are provided.

The impact of svmmetries on gathering possibilities for asynchronous robots in

the graph are studied in [151]. On an undirected ring with at least 18 robots, it is

44

proven that an approach that focuses on preserving symmetries solves the gathering

problem for ail starting positions when the gathering is feasible.

[46| studies the gathering problem for oblivious asynchronous disoriented (no com-

mon compass) robots operating in LCM cycles in the two-dimensional Euclidean

space. The paper solves the gathering problem for n > 2 robots for any initial con­

figuration, even under such weak assumptions.

In [183], the minimal assumptions required for anonymous oblivious robots with-

out communication to gather in the two-dimensional Euclidean space are studied.

It is shown that in the synchronous case, robots require either multiplicity détec­

tion or infinité time, and in the asynchronous case, robots require either multiplicity

détection, a common compass, unbounded memory or infinité time in order to meet.

The assumption of unlimited visibility is dropped in [121]. The paper considère

the gathering problem for asynchronous oblivious robots operating in LCM cycles.

The paper provides an algorithm that allows gathering in a finite amount of time foi-

robots with limited visibility, provided that they share a common compass. From this

resuit, the authors show that orientation is as powerful as instantaneous movement

with respect to gathering.

Similarly, in [80], the gathering problem with synchronous robots with limited

visibility in the two-dimensional Euclidean space is considered. The robots rnust,

when choosing their next move, ensure that the unit disk graph defined by the view-

ing range of the robots remains connected at ail time. An algorithm that ensures

gathering in time 0(n2) is provided for the gathering.

In [74] and [73], oblivious robots operating in LCM cycles are placed on the discrète

ring. They are asynchronous, and during their Move phase, they can décidé either

to stay in place or to move to an adjacent node. Two problems are considered:

the gathering problem, and the exclusive searching problem, in which ail edges are

45

either traversée!, or both nodes adjacent to an edge are occupied, without two robots

ever occupving the same node. A description of the initial configurations that allow

resolution of those two problems is provided, and algorithms solving the problems are

provided.

The notion of rendez-vous with détection is explored in [102], where two agents

hâve to meet in a graph and then become aware of this meeting. They must then

déclaré sirnultaneously that the meeting took place, then stop. This paper uses the

synchronous model. Two variations are considered: the local beeping model, and the

global beeping model. Feasibility is discussed under various prémisses, and algorithms

are provided when possible.

2.4.3 Deployment

Rendezvous and gathering problems can be seen as a spécifie subset of a larger prob-

lem: the pattern formation problem. In the pattern formation problem, a group of

k > 2 robots must form a spécifie pattern. This includes rendezvous, but also the

formation of a regular k-gon, a formation in which no more than two robots form a

line, a formation in which robots are équidistant, etc.

In [89], robots operating in LCM cycles are located in the two-dimensional Eu-

clidean spaee. Two robots can only see one another if there is no other robot between

theni. Their purpose is to develop a formation in which ail robots can see ail other

robots, in a finite laps of time. This problem is called the Mutual Visibility Problem.

Each robot is equipped with visible lights that can take up to c different colours.

Various scénarios are considered: robots with prior knowledge of their environment,

number of available colours, and synchronism of the robots. It is proven that in the

semi-synchronous case, the Mutual Visibility Problem can be solved without collision

46

with c = 2, and with c = 3 if the robots are asynchronous.

[101] considers the even deployment of oblivious agents with no prior knowledge

of the environment on the discrète ring. The size of the swarm is unknown as weli.

Two variations of this problem: the first one, called dynamical uniform deployment,

requires for the agents to spread evenly, then keep moving as they hold this formation.

The second variation, called quiescent spread, requires for the agents to stop moving

once they are evenly spread. For the first variation, it is shown that the problem can

only be resolved if either the ring is oriented, or the agents hâve a visibility range

of at least [n/k\. An optimal algorithm is proposed for an oriented ring and agents

with a visibility range of at least \n/k\. For the second variation, the problem cannot

be solved if the agent can only measure the distance to its two neighbours.

In [120], a set of n ^ 4 asynchronous anonymous oblivious robots with no common

compass must arrange themselves to form a regular n-gon. This problem is called the

uniform circle formation problem. The paper proves that this problem can be solved

without any further assumption for any initial configuration.

Arbitrary pattern formation is studied in [122], where asynchronous oblivious

robots working in LCM cycles operating in the two-dimensional Euclidean space must

form a pattern that is given in advance. It is show that without common compass,

this task is impossible. With a compass, an odd number of robots can solve this

problem, but not an even number of robots. With two different compassés (say, one

pointing North and one pointing East), then an even number of robots can solve the

problem.

In [205], robots operating in LCM cycles must form a predetermined pattern. It

is shown that oblivious robots can form any pattern non-oblivious robots can, with

the exception of two robots trying to form a point, which is only possible if the robots

are not oblivious. The paper therefore proves that memory is not useful in the task

47

of pattern formation, apart from the aforementioned exception.

Varying Environments2.5

So far, situations in which the environment was static were considered. In this section,

we consider variations where the environment may présent a danger or be destructive

or misleading. We study time-varying graph, where the edges between nodes appear

and disappear; environment with black holes, where some nodes or edges of a graph

immediately destroy any robot that travels it; and scénarios where the agents them-

selves may be subject to faults. Two main type of faults are generally considered: in

the crash fault scénario, robots may lose the capability to move, communicate or sense

their environment correctly. In the Byzantine fault scénario, robots controlled by an

adversary may décidé to purposefully share wrong information and fail to convey the

appropriate information, or may change their path arbitrarily. Those situations call

for algorithms that include an element of resilience, and hâve a significant impact on

the feasibility and bounds of many well-studied problems.

Time-Varying Graphs2.5.1

Time-varying graphs (TVG) are graphs whose edges may be existent or non-existent,

as a factor of time. In most TVG, there is a cycle that dictâtes the moments where

edges are existing and non-existing, that repeats itself periodically. [38] présents an

effort to unify concepts, formalisms and results concerning various aspects of TVG,

ail the while providing a hierarchical classification of those variations.

In [118], the exploration problem by a single robot on a periodically varying graph

is studied. The edges of the graph go from existing to non-existing on an unknown,

periodic basis. Various scénarios are considered, depending on knowledge of the

48

length of the longest route, memory of the robot, knowledge of a bound on the size

of the graph and uniformity of the length of the routes. Necessary conditions for the

exploration problem to be solvable are established.

[188] model social networks as time-varying graphs in order to provide tools to

understand and evaluate their dynamics, and use this perspective to model concepts

such as distance and connectivity.

[204] proposes a model of TVG that has asymptotic memory complexity in the

order of complexity of the set of edges, and can be used to represent many previously

existing models, while being intrinsically able to model cyclical behaviour as well.

The spreading of k tokens of information to ail nodes of a TVG is studied in [98|. In

this model, each round, each node is able to broadcast one token of information to ail

its neighbours. The problem is solved in 0(n + k) in static graphs of size n. The paper

shows that at least Cl(nk/ log n + n) rounds are required for the information to spread

to every node for any randomised algorithm when the adversary is strongly adaptive,

i.e. the adversary chooses the available edges with knowledge of the information that

will be disseminated by every node. The weakly adaptive model forces the adversary

to choose the layout of the network first, then allows the algorithm to choose whieh

token of information to broadcast, and for this model, an algorithm spreads ail token

of information to ail nodes in 0((n + k) log n log k) rounds with high probability. If

the entire sequence of graph layout is known in advance, an algorithm solves the

problem in 0((n + k) log2 n).

In [119], the exploration problem is studied for carrier graphs, where the edges

between nodes only exist at unknown periodic times. Conditions required for the

problem to be solvable are established. Lower bounds for the amount of time required

are presented, and matching upper bounds are provided.

49

2.5.2 Black Holes

In the black hole problem, a team of agents must identify a black hole on a graph.

A black hole refers to a node or an edge that will instantly destroy any robot that

travels on it without leaving any trace. The purpose of any algorithm trying to solve

this problem is to identify the location of the black hole without entering it. The

efficiency of an algorithm is usually measured in one of three ways: either by the

amount of robots required to identify the black hole; by the time required before the

black hole is found; or by the amount of additional resources required (pebbles and

whiteboards being the most common example). In the usual scénario, ail agents hâve

the saine starting location. Variations of this problem include synchronism between

agents, possibility to use a pebble or a whiteboard, prior knowledge of the topology

of the graph and memory of each agent.

[116] examines the use of pebbles in the search for a black hole in a graph of known

topology by two asynchronous agents. It is proven that the pebble model has the exact

same complexity as the whiteboard model. Furthermore, two agents equipped with

one pebble each can locate the black hole in 0(nlogn), using a technique referred to

as ping-pong.

The situation where a team of synchronous agents hâve to locate a black hole in

a tree is studied in [66]. Algorithms are provided, and their efficiency is discussed.

In [95], a team of asynchronous agent with no prior knowledge of the graph must

identify a single black hole. Agents are equipped with whiteboards. It is proven that

A +1 agents are required and sufficient to identify the black hole for A the maximum

degree of a node, and that 0(n2) is required to find the black hole in a graph of size

n. With sense of direction (where each port of an edge is labelled in such way that

agents can détermine whether two edges lead to the same node), only two agents are

50

required to find the black hole in 0(n2).

Various graph environments are studied in [94]. The paper proves that the black

hole can be identified in linear time by two asynchronous agents in hypercubes, cube-

connected cycles, star graphs, wrapped butterflies, chordal rings, multidimensional

meshes and tori of restricted diameter.

In [40], robots hâve to solve the gathering problem in a graph that may contain

one or more black holes. The agents are asynchronous and anonymous, and hâve

knowledge of a bound on the size of the network. A characterisation of the situations

where the problem is solvable is presented, and upper and lower bounds are offered

for those situations.

[54] studies the black hole problem on directed graphs, where the ping-pong tech­

nique is not possible. It is shown that for asynchronous agents, at least 2A agents are

required to identify the black hole, with A the maximum in-degree of the black hole.

Is is also shown that this lower bound applies to synchronous agents. In a planar

graph with a planar embedding known to the agents, a lower bound of 2A and an

upper bound of 2A + 1 are provided.

In [117], asynchronous labelled agents starting at different locations are trying to

construct the map of a graph with multiple black holes. At each node, there is a

whiteboard. An algorithm requiring 0(nsm) moves is provided, with m the nurnber

of edges and ns the number of safe nodes.

The number of pebbles required to identify the black hole is studied in [13]. A

group of asynchronous anonymous agents are trying to find the black hole in an

unknown graph with knowledge on an upper bound on the size of the graph and the

number of edges. For 3 tokens, at least A+2 agents are required, with A the maximum

degree of a node, and an algorithm solving the black hole problem is provided. If' the

number of agents is unknown, five tokens become necessary.

51

2.5.3 Faulty Robots

Time-Varying Graphs and black holes problems discuss potential variation in the fixed

part of the environment: the graph of géométrie environment in which the robots

evolve. Problems involving faulty robots introduce the possibility of variations in

the mobile part of the environment: the robots themselves. Those variation imply

unreliability, which may significantly increase the amount of resources required for an

algorithm to solve a problem.

The notion of Byzantine faults, that became a central topic in exploration prob­

lems with unreliable robots, was first introduced in [168]. The paper introduces the

problem as follows: an army captain must make a decision based on the information

he receives from his générais. However, some of those générais may be liars attempt-

ing to make him take the wrong decision. In order for ail loyal générais to reach an

agreement, there must be more than two third of ail générais that are loyal. The

notion of Byzantine general lias later been applied to the exploration problem in the

context of Byzantine faults: a robot may behave in such way as to distribute false

information and hinder the accomplishment of a given algorithm. Similarly, asyn-

chronous Systems with Byzantine processes are studied in [111], and a weaker version

of the problem is discussed in [167].

The study of faulty robots has two principal subdivisions: the crash faults, and

the Byzantine faults. In the crash fault model, the robot may be unable to move,

communicate or sense its environment properly, but will not willingly hinder the

execution of the algorithm for other robots. In the Byzantine scénario, based on

[168], [111], and [186], the robot will actively attempt to hinder the other robots

by either changing its path, communicating false information or ignoring relevant

information.

52

Most papers studying robots operating in LCM cycles assume that during their

Look phase, robots are able to collect perfect data from the environment, and during

their Move phase, they exactly move at the expected location. [48] drops those

assumptions, and considers robots that may be expérience inaccuracy in their readings

or in their movements. Several impossibility theorems are introduced. It is shown

that robots are unable to gather in a finite number of steps. An algorithm allowing

convergence is presented, assuming bounded measurement, movement and calculation

errors.

Similarly, [2] considers the gathering problem for robots operating in LCM cycles,

and prove that ail previously known algorithms fail in the presence of either crash

faults or Byzantine faults. More so, a gathering of 3 robots, one of which is Byzantine,

is impossible in the asynchronous setting. In the synchronous setting, an algorithm

solves the gathering problem for k > 3 robots with at most one faulty robot. A

general algorithm also solves the problem if there are at least 3/ + 1 good robots,

with / the number of faulty robots.

Gravitational algorithms for robots operating in LCM cycles are studied in [47].

The paper focuses on the asynchronous setting and shows correctness of the gravita­

tional algorithm to solve the gathering problem. Analysis of its convergence rate and

resilience to crash faults is also discussed.

Gathering of labelled synchronous agents in the graph, / of which are byzantine,

is studied in [91]. Two levels of Byzantine behaviours are studied: a strong Byzantine

robot can choose its port when moving and convey arbitrary information to other

agents, whereas a weak Byzantine robot can do the same, but is unable to lie about

its label. For weak Byzantine robots, if the size of the graph is known, any number

of good agents can gather. If the size is unknown, at least / + 2 agents must be good

agents for the gathering problem to be solvable. This bound is tight. For strong

53

Byzantine agents, a lower bound of / + 1 good agents is provided, even when the

graph is known. Algorithms that ensures gathering are provided and require 2/ + 1

good agents if the size of the graph is known, and 4/ + 2 good agents if the size of

the graph is unknown. An open question left in this article is solved in [30|, where

it is determined that the minimum number of good agents required to guarantee

deterministic gathering of ail good agents, with termination, is / + 2.

In [199], a swarm of k labelled robots must solve the gathering problem while

being résilient to faults in their sensors and Byzantine agents. For small swarins, the

gathering problem is solved and is résilient to any number of Byzantine agents. For

larger swarms, an algorithm solving gathering is provided with the assumption that

the number of Byzantine agents around a good agent is bounded.

A probabilistic point of view of the gathering problem is introduced in [79]. The

paper considers a group of disoriented robots operating in LCM cycles. Deterministic

algorithms are studied under the additional assumption that robots may expérience

crash faults or Byzantine faults. A large set of scheduling strategies are considered

and lower bounds are provided.

In [31], a swarm of oblivious robots operating in LCM cycles on the line must

solve the convergence problem (that is, be located at a distance that is no more

that e apart) despite Byzantine faults. An algorithm allowing gathering for at least

2/ +1 good robots is provided for the synchronous setting, and an algorithm allowing

gathering for at least 3/ -F 1 good robots is provided for the asynchronous setting,

with / the number of Byzantine robots.

Exploration on the line by a group of n robots, / among which are faulty, is studied

in [67]. This paper focuses on crash-faults. In other words, robots may fail to see the

exit, but will not communicate false information. For n > 2/ + 2, an algorithm with

a compétitive ratio of 1 is provided. For larger /, an algorithm called proportional

54

schedule algorithm is provided, and is proven to be optimal for n = / + 1.

A variation of the patrolling problem discussed later in this survey is discussed in

[58|. The paper considers the patrolling problem by a group of k robots, / of which are

crash-faulty. The environment is a weighted graph, and the purpose of the algorithm

is to minimise the visit time by a good robot of ail nodes in the graph. An optimal

algorithm is provided for a line segment and for Eulerian graph. For cubic graph, the

problem is shown to be NP-Hard by réduction from the 3-colouring problem.

[201] présents a survey on fault-tolerance and the similar problem of fault détec­

tion.

An interesting take on fault tolérance is presented in [130], where k robots prone

to faults must explore an infinité sequence of boxes in order to find a treasure. The

authors propose non-coordinating algorithins and discuss contexts in which it may

be favourable to implement non-coordinating algorithms rather than the faster coor-

dinating algorithms. Building upon those results, [158] study a variation where the

treasure is placed uniformly at random in a finite, large number of boxes, and propose

algorithms that achieve optimal speed-up.

Resilience to sensor faults are discussed in [187], where two robots observing each

other and the environment and sharing this information can reduce odometry er-

rors and better detect obstacles, thus increasing the quality of the map they create.

Algorithms are introduced and supported by experimental results and simulations.

In [37], the exploration of a network with faulty edges by a single robot is con-

sidered. A perfectly compétitive algorithm is provided for ring environment, and for

networks modelled by Hamiltonian graphs, it is shown that the overhead (the worst-

case ratio between the cost of a given algorithm and the cost of an optimal algorithm

which knows where the faults are located) for a Depth-First Search is at most 10/9

times larger than that of a perfectly compétitive algorithm.

55

The notion of robots controlled by a market economy is used in [209] to solve the

exploration problem. Using this approach, the authors allow for dynamic inclusion

and departure of robots during the execution of the algorithm. The algorithm they

provide is résilient to communication faults.

Other Variations Involving Search by Multiple2.6

Robots

Aside from the standard exploration problem and its popular variation, the ren-

dezvous problem, many other areas of distributed computing involve autonomous

mobile robots. Similar problems may include the évacuation problem, where robots

first hâve to identify an exit (which is very similar to the exploration problem), and

must then gather at the location of this exit; the deployment problem, where robots

must form a spécifie pattern rather than gather at the same point; patrolling, where

robots must periodically explore ail sections of the environment; in some problems,

robots are heterogeneous and may hâve different speeds; in some others, robots hâve

two different speeds: one for travelling and one for searching, that is always slower

than its travelling speed. The bouncing robots problem considers robots that are

unable to control their movements, and exchange their speed when they meet one

another. Those variations are presented here because they are closely related to the

exploration problem and hâve significant commonalities.

56

Evacuation or Group Search by Collections of Mobile2.6.1

Robots

In the évacuation problem, a group of robots must first identify an exit located in

the environment, which is a problem extremely similar to the group exploration. The

additional difficulty of the évacuation problem résides in the fact that robots must

then communicate this information to each other, then gather at the location of the

exit before the problem is considered resolved.

In [61], k identical robots are placed inside a disk of unitary radius. The exit is

located somewhere on the boundary of the disk, and the robots start the execution of

the algorithm at the center of the disk. Two communication models are considered:

in the local communication model, robots can only exchange information when they

meet each other. In the wireless communication model, the information is exchanged

freely and instantly between ail robots. The goal of the algorithm is to gather ail

robots at the location of the exit. Lower bounds on the required time for both

communication models are provided for k = 2 and k = 3. Almost-tight bounds are

provided for large k. More precisely, an algorithm that ensures completion in 3 + ~ is

provided for the local communication model, and a lower bound of 3+ — 0(k~2) is

required. In the wireless communication model, an algorithm allows the évacuation

in 3 + | + 0(k~4/3) is provided, and at least 3 + f is required.

Evacuation from the line is considered in [15], where two robots with distinct

maximal speed initially placed at the same point on the infinité line must locate an

exit and gather at its location. Two forms of communication are considered: local

communication and wireless communication. For ail possible maximal speeds in the

local communication model, optimal algorithms are provided. For the wireless model,

an optimal algorithm is provided when the fastest robot is at most 6 times faster than

57

the slowest robot.

Evacuation from the line by a group of k identical robots is considered in [44].

The surprising resuit, of this paper is that the number of robots used to complété the

évacuation problem lias no impact on the time required to complété the évacuation,

that remains 9d — o(d), with d the distance from the initial location of the robots

to the exit. It is furthermore shown that the bound of 9d can be achieved with one

robot moving at unit; speed an a second robot moving at a speed no slower than 1/3.

In [61], two identical robots located at the center of a disk must evacuate it through

an exit located on its boundary. The local communication model is considered: robots

can only exchange information when they are located at the exact same location. The

paper improves on previously existing results by providing an algorithm that forces

a meeting between the robots even if the exit has not been found by either robots.

The same problem is considered under the wireless communication setting in [169].

An additional différence is that the two robots may now hâve different speeds. An

optimal algorithm is provided if the fastest robot is approx. 2.75 times faster than

the slowest robot or more. For doser speeds, upper and lower bounds are provided.

In [53], two robots are placed on a circle that contains k exits. Both robots hâve

a map of the circle, but are not aware of their starting location. The purpose of

an algorithm is to evacuate both robots as fast as possible. Robots use the wireless

communication model. Two variations are studied: in the first one, robots control

the distance that separate them at the beginning of the problem; in the second one,

they do not. Upper and lower bounds are provided for some subsets of the problem.

58

2.6.2 Patrolling

The patrolling problem is similar to the exploration problem in the sense that the

map must be fully explored. In the patrolling problem, however, this is not sufficient:

the map must be fully explored on a periodic basis, and the efficiency of any given

algorithm is measured by the maximal period of time elapsed between two visitations

of the same point, called idle time.

[107] considers the problem of patrolling a closed polygon (ring) by identical

robots, and introduce the cycling strategy, where robots always patrol in the same di­

rection, and the partition strategy, where robots choose a segment of the environment

and go back-and-forth on this segment. Efficiency of those algorithms are evaluated

for different values of k the number of robots and different visibility ranges for the

robots.

In [57], both the decidability and optimisation problem are considered. The de-

cidabilitv problem asks whether it is possible for a group of k agents to maintain

an idle time lower than a certain value r. The optimisation problem asks what is

the minimum possible idle time for a given environment and a set of k agents. In

this paper, agents hâve distinct maximal speeds, and the environment is either an

open curve (a line segment) or a closed curve (a ring). Various strategies, including

the cycling strategy, the partition strategy, and sorne newly described strategies, are

evaluated. The bounds established in this paper are later improved in [45] and [150].

The problem is applied to robots with distinct visibility range in [70], both for

robots with equal speeds and robots with different speeds. An optimal algorithm is

provided both for the closed and open environment for robots with the same speed. It

is shown that the case of robots with different speeds is fundamentally different from

the case of robots with identical speeds. An optimal algorithm is given for the case

59

of two robots with both distinct speeds and distinct visibility ranges. It is also shown

that the patrolling of general graphs with different visibility ranges is NP-Hard.

In [49], a different environment in considered: this environment includes vital

segments, that must be patrolled, and neutral segments that can be traversed by

robots as part of their patrolling, but it is not mandatory for the robots to patrol

those segments. It is proven that either the cycling strategy or patrolling strategy

can yield optimal idle time for identical robots.

[137] considers the patrolling of a graph by a single robot with constant memory.

The robots must visit every node periodically, but not necessarily every edge. The

efficiency of the algorithm is measured by the number of edges traversed before ail

points are revisited. The paper présents an algorithm arranging port numbers in such

way that the robot can revisit ail nodes in time 3.75n — 2 for n the number of nodes

in the graph.

In [14], the environment is a partial grid (a finite grid with possible missing vertices

or edges). A group of k synchronous identical robots must patrol the environment in

such way that as many robots as possible visit ail nodes in the graph on a periodical

basis, without there ever be two robots on the same edge or node at the same time.

Each robot has a visibility radius of p. The paper shows that for p = 0, the problem

is unsolvable, and at least p = 1 is required. For p = oo, it is shown that at least

k <p — q robots can visit ail nodes on a periodic basis, with p the number of vertices

and q a parameter whose value dépends on the topology of the environment.

Pursuit2.6.3

The pursuit problem is a variation of the collaborative exploration problem. In the

pursuit problem, sometimes referred to as the Cops and Robbers problem, the target

60

that niust be found it mobile and actively tries to avoid being captured, as opposed

to the collaborative exploration problem, where the target is static, or the rendezvous

problem, where the mobile agents collaborate to ensure a rendezvous. A taxonomv of

various pursuit problems is discussed in [45] and [125], with discussion about various

results. Generally, the measure of efficiency of an algorithm is the capture time of

the environment. In other words, it is the amount of time required to capture the

target in the environment by a group of robots using the given algorithm. A graph is

called cop-win if the capture is possible, and robbers-win if the capture of the target

is impossible.

In [27], the environment studied is either the finite or countably infinité graph.

The notion of capture time is explored in relation to the number of vertices of the

graph and spécial properties of the graph. The notion of capture time density is

applied to infinité graphs. It is proven that the problem: "can k cops capture a

robber in no more than t moves?" is NP-complete.

[163] introduces the notion of monotonicity for pursuit problem. A game is con-

sidered monotone if it is possible for the cops to catch the robber before the robber

reaches a place that has been previously explored by the cops. The paper shows that

two type of games are non-monotone: the game on directed graphs where the robber

is invisible and lazy, and the game on directed graphs where the robber is visible and

fast.

[133] studies scénarios where the robber is fast i.e. it can move R > 1 edges at a

time. A general upper bound is presented. For finite R, on a graph with n nodes, it

is shown that at least cops can be necessary to catch a robber. For infinité

R, the number of required cops is linear in n. For R = 1 on directed graphs, an

algorithm requiring 0(n(loglogn)2/logn) is provided.

It is shown in [124] that the minimum number of cops required to catch a robber

61

on a given graph is NP-Hard. On split graphs, the problem requires a polynomial

amount of tirne if the robber is as fast as the cops, and is NP-Hard if the robber is

twice as fast as the cops. On graphs of bounded clique width, the problem only has

a polynomial solution if the robber is at most twice as fast as the cops. On planar

graphs, there is no bound on the minimum nurnber of cops required to catch a robber

that is faster than the cops.

In [26], a variation of the cops and robbers game called the distance k cops and

robbers is presented. In this variation, cops (with c the number of cops) win if they

can get at a distance of at most k of the robber. An algorithm is given for the

decidability problem ("given k and c, can the robber be caught?"), and it is proven

that the optimisation problem ("what is the minimum number of cops required to be

at a distance at most k of the robber on the graph?") is NP-Hard.

[175| and [29] study the cops and robbers game on random graphs, based on the

fact that the required number of cops to catch the robber expressed as a function of

the average node degree of a graph forms a zigzag shape.

[6] considers a similar problem, where a single searcher is trying to catch a single

hider. The searcher can search a unit area in unit time, or can enter an "ambush

mode". The searcher wins if it the hider is inside the searched area, or if the hider

moves while the searcher is in "ambush mode". The efficiency of a given algorithm

is measured by the amount of time required before the hider is caught.

A variation of the cops and robbers game called Graph-Clear is presented in [157],

where many robbers hâve to be caught. The cops hâve access to two different actions:

the sweep actions, that allows them to catch a robber, and the block action, that

prevent a robber to use an edge of the graph. The goal is still to capture ail robbers

using as few robots as possible. It is proven that the general case of the Graph-Clear

game is NP-Hard.

62

2.6.4 Other Variations

Tether / Fuel: The exploration problem by a single robot on a graph in the presence

of a tether or with fuel is studied in [97]. The paper considers two scénarios: in the

first and more restraining one, a robot is linked to its starting position by a tether of

length /, and can therefore go no further than l away from its starting node. In the

second scénario, a robot has a limited fuel tank of capacity C, and must return to its

starting point after traversing C edges. For both scénarios, an algorithm solving the

exploration in 0(|i?|) is provided.

Freeze-Tag: [8] introduces the Freeze-Tag Problem (FTP). In this problem, a set

of robots starting at different locations are inactive. At the start of the algorithm,

a single robot is active, and is able to awaken inactive robots, rendering them active

as well. The purpose of the algorithm is to awaken ail robots as early as possible.

An active robot awakens another simply by moving to its location. On graphs, this

problem is proven to be NP-Hard, even for star graphs.

It is observed in [9] that any algorithm that is not purposefully unproductive

yields an O(logn) approximation of the optimal solution. The paper also provides an

0(l)-approximation algorithm for unweighted graphs with one robot at each node,

and explore the scénario where there is more than one robot at each node.

Colliding Robots: The problem of bouncing or colliding robots is set in a contin­

uons ring of unitary circumference. A group of robots with different initial positions

move in a fixed direction (in other words, they hâve positive or négative speeds).

Whenever two robots meet, they exchange their speeds, thus "bouncing off" one an­

other. Robots may not change their speed on their own volition, and can only gain

information by colliding with other robots. Robots hâve an internai clock that in-

forms them of the time of each of their collision, and hâve unlimited memory. In [59],

63

ail robots hâve the same constant speed. The paper characterises ail initial configu­

rations that allow ail robots to be informed of the initial position of ail other robots,

and further considers the same problem on the line segment. [69] extends the problem

on the ring by allowing robots to hâve different initial speeds. Whenever two robots

collide, their speeds are exchanged. The initial positions and velocities that allow for

ail robots to obtain knowledge of the initial position and velocity of ail other robots

are discussed. It is proven in this paper that the configuration is feasible if and only

if no robot has an initial velocity that is equal to the average of the velocities of ail

robots.

Beachcomber: In the beachcombers problem, each robot has two different speeds:

one that the robot uses to travel without searching the environment, and a slower one

where the robot performs a search of the environment. The goal of a beachcomber

algorithm is for a group of heterogeneous robots to fully search the environment. In

[55], a group of k heterogeneous robots with different walking and searching speeds

must explore a line segment. Ail robots start at one end of the line segment, and hâve

full knowledge of the number of robots in the group, and ail of their respective speeds.

In the offline scénario, robots know the length of the line segment in advance, and

in the online scénario, robots do not hâve this information. An optimal algorithm is

given for the offline scénario, and a 2-competitive algorithm is provided for the online

scénario. [17] extends the environment to the cycle, and prove that the capability for

a robot to change its direction does not help robots in their search.

2.7 Practical Results

An algorithm called the Mapping algorithm is presented in [190], and uses the notion

of hill-climbing to create maps that are maximally consistent with sensor data and

64

odometry. The algorithm tries to minimise the redundancy between the information

gathered by the group of robots, thus maximising overall utility. Real-world trials and

simulations support the daims. A similar technique is used in [34] to assign target

points to mobile robots while taking into account both the utility of the point and

the cost of reaching it.

The différence in effectiveness between random and coordinated search algorithms

by a group of mobile robots is discussed in [134] under various criteria, such as cost

effectiveness, interplay of sensor cost and uniform search coverage.

Unmanned aerial vehicles (UAVs) are used in [146] to search an area with targets

of several types (suspected, unknown). At each location, a task to be performed may

require several coordinated UAVs. Not ail UAVs hâve the same capabilities: some

hâve better searching capabilities, while other are better at taking care of tasks once

the target has been found. Algorithms that use dynamic modelling are used to solve

those tasks efficiently, and simulations support the daims.

[203] studies the amount of energy required to ensure the motion of autonomous

mobile agents. A complété energy model is présent,ed to describe the energy consump-

tion during the movements, and an optimal velocity schedule is proposed to minimise

the energy expense on uniform roads. Near optimal velocity schedule is proposed for

variable road conditions. Simulation results are provided.

A survey of various mapping strategies using a single or multiple mobile agents in

both theoretical and real-world environments is presented in [197].

[35] and [36] consider a variation of the exploration problem in an unknown en­

vironment where the robots needs to reach a certain target point before using their

scanners. Target points hâve various values based on their location (for example, a

robot will prefer a point that allows it to see around a corner), and those values are

decreased as other robots collaborate to the mapping of the same area of the envi-

65

ronment. This paper daims to be the first to consider both the cost to reach a point

and the utility of the point as part of the provided algorithm, and provides real-world

experiments to show that the algorithm significantly reduces exploration time.

66

Chapter 3

Searching the Plane with Faulty

Robots

3.1 Introduction

Searching for a target is a common task in several domains of human activity and has

been modelled as such in mathematics, theoretical computer science, and robotics in

particular. It has been studied for graphs and various géométrie domains when the

target is either mobile or stationary. The overall goal is to minimize the time required

by the searcher(s) to find the target. The robots may co-operate by exchanging

messages and using one of the following two models: wireless, in which instantaneous

communication between the robots is possible at any distance, and face-to-face (F2F),

which requires for the robots to be at the same location at the same time. In this

chapter we design fault-tolerant search algorithms for robots, some of which may hâve

either crash- or byzantine-faults, and show they are optimal despite the fact that the

robots can move with possibly distinct maximal speeds.

67

3.1.1 Preliminaries and notation

In this subsection we introduce the basic locomotive and communication models as

well as the behaviour of the robots and discuss ail necessary assumptions and notation

that will be used throughout the chapter.

There are k robots labelled ri, r2, ..., r*. They start at the same point, considered

to be the origin O in the plane and are searching for a target assumed to be at an

unknown distance d from the origin. The robots are equipped with a compass and

share a common coordinate System. They furthermore evaluate distance in the same

manner, thus having the same notion of unit length. Robots may hâve different

speeds. We say that robot r* has a maximal speed u,, for i = 1,2,..., k, and we can

assume without loss of generality that for every 1 < * < k — 1, Vi < üj+i. A robot

can choose to move with any speed that does not exceed its maximal speed or even

choose to remain completely still. Each robot has visibility range 1 and is able to

identify the target when it belongs to its visibility range.

In the general setting being studied here, k robots are searching for a target

located at an unknown location in the two-dimensional Euclidean plane and at a

priori unknown distance d from the starting location of the robots; during their search

the robots may inform each other of the location of the target, and gather there. The

design and analysis of the search algorithms takes into account the communication

models being used by the robots and the behaviour of the robots during the search

which are defined in the sequel.

Two communication models are being considered. In the wireless communica­

tion model, robots can exchange information instantly, regardless of their distance

in the Euclidean plane. In the Face-to-Face communication model, robots can ex­

change information instantly provided they are located at exactly the same point

68

in the Euclidean plane. We note that some models (e.g. the one described in [42])

use the notion of wireless communication collisions. In the wireless communication

collisions model, difficulties may arise if a robot receives multiple wireless messages

simultaneously. Our model does not consider the possibility of such collisions.

To make our présentation more intuitive we first consider and analyse search

algorithms for Non-Faulty (NF) robots, in which the robots follow the algorithm as

intended, without any violations of their protocol(s). We then analyse two scénarios

concerning the behaviour of the robots: crash faults and Byzantine faults. The choice

of the faulty robots is made by the adversary, which knows our algorithm in advance

and attempts to maximize its worst-case search time. In both cases up to / among

the k robots may be faulty, where 0 < f < k — 1. In the case of Crash-Faults (CF),

the faulty robots behave like reliable robots, but may be subject to various kinds of

faults in that they may not be able to receive information from other robots, they

may be unable to share the information they know with other robots, they inight be

unable to move, or to identify the target if it is within their visibility range. They

will always, however, follow the instructions given by the algorithm at the best of

their capabilities. They will never, for example, communicate false information, or

err from the path they were assigned.

Byzantine robots behave like robots writh crash-faults, with the différence that an

adversary may hâve them move as he sees fit; share and/or propagate true or false

information, and relay or refuse to relay information. A byzantine robot may not lie

about its own label. In both scénarios it is required for the algorithm to finish so that

every reliable robot gathers at the location of the target.

The overall goal is to solve the group search problem which is to minimize the

time required for the last non-faulty robot to reach the target, asymptotically as the

distance d tends to infinity. Our methods also solve the classical search problem which

69

requires that only the first non-faulty robot reaches the target.

3.1.2 Related work

Search has been studied extensively in mathematics, computer science, robotics, and

operations research and is generally concerned with minimizing the time to find a

hidden target under various conditions on the terrain being searched, and capabilities

of the searcher(s). When the terrain is unknown to the robots (in advance) then

the search must imply exploration [4, 82, 140J) and often involves mapping of the

environment [154, 180]. For useful surveys on search algorithms we refer the reader

to [23, 125] as well as to the book [7] which studies search games. Several papers

investigated search in géométrie environments, (e.g. [82, 140, 154]) or, similar to our

work, the two-dimensional plane, [11, 12, 103, 106, 110].

Exploring or searching the plane by a team of robots involves coordination and it is

one of the main thèmes of investigation not only in computational geometry [12, 174],

but also in robotics research [196, 206] and in distributed computing [103, 106, 110].

However, collaborative exploration may be hard even for simple environments, which

are not known in advance (e.g. see [126]). In the case, similar to one studied in

the présent chapter, when the search is completed by the arrivai of the last robot, it

happens that having more robots does not help (e.g. [44]) or that achieving optimal

search time is non-trivial (e.g. dise évacuation in [56]).

Fault tolérance in distributed computing problems has been extensively studied

in the past (see, e.g., [142, 168, 176]). However, the question of reliability has been

mostly investigated in cases where failures arise from the static éléments of the envi­

ronment (network nodes and links) rather than from its mobile components (robots).

However such malfunctions are sometimes modelled by dynamic alteration of the

70

network (e.g., [38, 164]). Failures due to mobile robots were investigated in the

context of the problems of gathering [2, 91, 191], convergence [47], flocking [207],

linear search [67], plane search by ANTS represented by finite automata [192], pa-

trolling [58], etc. Some papers investigated the case of unreliable or inaccurate robot

sensing de vices such as in [48, 145, 191].

The collection of robots that may hâve distinct speeds were used in [18] to de­

sign fast converging protocols, e.g. for gathering. [203] used varying mobile sensor

speed to achieve sensor energy efficiency. However, as in the case of [57, 150], which

considered distinct speeds for robots performing boundary patrolling, to achieve op­

timal algorithms for larger collection of robots turns out to be quite difficult. [44]

investigated a pair of distinct-speed robots searching a line, when the search time is

determined by the arrivai of the last robot. Again, besides some interesting limited

cases, a general optimal algorithm has not been proposed.

3.1.3 Outline and results

We propose and analyze search algorithms for robots some of which may be faulty in

the wireless and face-to-face communication models. In Section 3.2, we initiate our

investigations by discussing the spécial case of non-faulty robots.

We introduce an algorithm for the wireless model, and one for the F2F model,

both of which are asymptotically optimal.

In Section 3.3, we introduce the problem of robots which may be subject to crash

faults. For both the wireless and the F2F communication model, we introduce an

algorithm that is asymptotically optimal. Finally, in Section 3.4, we introduce algo­

rithms for robots with byzantine faults. In the wireless case, we présent an algorithm

that is asymptotically optimal.

71

For the F2F model, we présent two algorithms. The first one is asymptotically

2-competitive for k > 2/ + 1, while the second requires that k > 2/ + 2, but it is

asymptotically optimal when the robots hâve identical speeds.

3.2 Non-Faulty (NF) Robots

In this section, we introduce an algorithm for non-faulty robots, prove its correctness

and analyze its complexity, both for the wireless and F2F setting.

Wireless communication3.2.1

The algorithm is divided into four phases, Initialisation, Exploration, Communication,

and Gathering. In the sequel we describe them in more detail.

Initialisation phase. AU robots start at the same location, considered to be the origin

O of the plane. The robots divide the plane into angular sectors originating at O and

whose angles are proportional to robot speeds. The angle ctj of the sector covered by

for i — 1,2,...,k. Robots first move at a27TVjrt is given by the formula: a, =

distance 2 from the origin, taking position on the edge of the sector. If i is odd, the

robot goes to the left edge of its sector, and if i is even, it goes to the right edge of

its sector.

Exploration phase. Each robot searches its own sector in a zig-zag pattern, as shown

in Figure 3.1. We call a step, the part of the trajectory of a robot composed of an arc

covering the angle allocated to the robot followed by a straight line segment of length

2. When the robots are moving along the arc, they move at their maximal speed Vi,

and when they are moving in straight line, they move at the speed Vi, i.e., the speed

of the slowest robot. This ensures that ail robots begin their next step at the same

time. A robot stays in this phase until it is informed of the location of the target,

72

eitlier because it found it itself, or because a neighbour robot shared this information.

Once the location of the target is known, the robot first finishes its current step, then

enters the communication phase.

Figure 3.1: The execution of the non-faulty robots with face-to-face communication
algorithm, where r3 identifies the target, with the exception of the gathering phase.
The figure in the left describes the trajectories of the robots (one color per robot)
while the right figure describe the propagation of the information of the location of
the target (green for uninformed robots and red for informed robot).

Communication phase. In the wireless communication model, communication is in-

stantaneous, regardless of distance. As soon as a robot identifies the target, it informs

ail other robots instantly, then exeeutes its gathering phase.

Gathering phase. A robot in the gathering phase moves towards the target in a

straight line, using its maximal speecl.

3.2.2 Face-to-face communication

The face-to-face communication variation of this scénario lias the same initialisation

phase, exploration phase and gathering phase. However, as the communication can

only be done when the robots meet, the algorithm must be adapted to ensure that ail

73

robots nieet, and therefore reçoive the information about the location of the target. An

execution of the face-to-face variation of this scénario can be observed in Figure 3.1.

Note that the gathering phase is not depicted in order to make the figure clearer. The

communication phase now unfolds as follows:

Communication phase. Once a robot is aware of the location of the target, it will

share this information both with the robot on its right and with the robot on its

left before starting its gathering phase. Any given robot will meet either its left or

right neighbour at the beginning of a step, and the other neighbour at the end of the

current step, as shown in Figure 3.1. Therefore, the communication phase of a robot

consists of the execution of a step as described above, at the end of which the robot

will execute its gathering phase.

There is a spécial case to consider: if k is ocld, then r\ and 77. will hâve synchronous

patterns, and will not meet at the end of every tvvo steps. Their communication phase

will therefore unfold as follows:

1. The robot first informs the neighbour it nieets normally (that is, rx informs r2,

and r'k informs r*,_i).

2. The robot complétés another step as defined in the exploration phase.

3. The robot then stays idle for the part of the step where it moves along an arc,

and simply executes the part of the step where it moves in a straight line. In

doing so, it will meet the other robot at the end of the step.

4. The robot shares the information, then proceeds to its gathering phase.

Algorithm 1 describes the behaviour of the robots in the face-to-face communica­

tion variation. The procedure MoveLine(d/.sd. dir, v) moves the robot in direction

74

dir of distance dist at speed v and procedure MoveArc(c, a, r, v) moves the robot

at speed v along the circular arc centered in c of radius r subtending the angle a.

Algorithm 1: NonFaultyRobots
1 Initialisation phase
2 V±-Y.Uvû
3 dir 4— 0;
4 for i = 1 to k do

a* <“5

if i mod 2 = 0 then6

diri 4— dir; $4—1;
else

diri dir + a,-; ^ 4-----1;
dir 4— dir + a*;

7

8

9

10

il Exploration phase (every robot r, executes this in parallel)
12 j 4- 1;
13 while Target location unknown do

MoveLine(2, di^, fi);
MoveArc(0, ati/3, 2j, vf)-,
diri 4— dirj + a*/?;

14

15

16

6 ir- -P',17

j <- 3 +1;18

19 Communication phase (every robot rt executes this in parallel)
20 MoveArc(0, (*.$, 2j, Wj);
21 diri = diri + &iP\
22 MoveLine(2, diri, fi);
23 3 3 + 1;
24 if (i = 1 or i = k) and k mod 2 = 1 then

stay still for time Ajn/V ;
MoveLine(2, diri, vi)-,

27 Gathering phase (every robot r, executes this in parallel)
28 Go to target

25

26

Lemma 1. Algorithm 1 is correct, i.e., the target is always found and the robots

eventually gather at the location of the target, for both variations of the algorithm

(wireless communication and face-to-face communication).

P roof. In order to prove the correctness of the algorithm, we hâve to show First, that

75

the algorithm always finds the target, and second, that ail the robots can gather at

the target.

To prove the first part, we note that at the j-th step of the exploration phase,

the robots will scan an annulus where the inner circle has a radius of 2j — 2, and the

outer circle has a radius of 2j. It is obvious that the robots cover the entirety of the

annulus. Therefore, after j steps, a dise of radius 2j will hâve been entirely scanned

by ail the robots combined.

Next we prove that the robots will always gather at the target. For the wireless

variation, communication is instantaneous, and the robots are therefore informed

immedlately. They can then gather at the location of the target. We prove that the

robots are ail informed in the face-to-face communication variation as follows. As

the robots begin each step simultaneously, they are guaranteed to meet either their

left or right neighbour at the end of each step. More precisely, ail odd robots will

meet their left neighbour at the end of every even step, and their right neighbour

at the end of every odd step. The opposite is true for the even robots. The onlv

exception to this rule is the first and last robots, if there is an odd number of robots,

in which case the information is spread at the cost of at most two extra steps. By

following the algorithm, this ensures that every robot is informed of the location of

the target eventuallv, and can therefore gather at the target, which complétés the

proof of Lemma 1. □

Lemma 2. The search performed by Algorithm 1 is completed in time

4|_d/2j +d 2ir[d/2\ {[d/2j + 1)
FVl

76

for the voireless communication variation, and in time

4|_d/2j + d + 4:\k/2] 2n([d/2\ + ffc/21) {[d/2\ + \k/2] + 1)
Vv\

for the face-to-face communication variation.

Proof. First, we show the following claim.

Claim 1. The end of step j occurs at time: ^

The trajectory of a robot until step j consists of j arcs of growing radius (line 15)

as well as j segments of length 2 resulting from the linear moves from lines 14. As

robot ri uses its full speed u, for circular moves and speed v\ for straight line moves,

this takes time
2j on(2 + 44------+ 2 j)

Viv\

which is equal to:
2i + 27Tj(j + 1)

1/Vl

This ends the proof of the claim.

Suppose that the target is found at a point situated at distance d (w.l.o.g. d is

an integer) from the origin O, say by robot r,. We vvill show that this happens in

step [d/2\ of the exploration phase (the while loop from line 13). For simplicity,

we assume that the target may only be found during the circular movement of the

robots. Indeed, the union of the robots’ positions during circular movements cover

the entire plane. Hence by Claim 1, the target is found before time

2|_d/2j 27r|rf/2j (|d/2j +1)
(3.1)

VVl

Once the location of the target has been identified by a robot, the information

77

needs to be shared. Wireless communication allows this to happen instantly; face-

to-face communication requires more time. Apart from robots ri and r*, in the case

of an odd number of robots, the robots will communicate the information to their

neighbour at the end of each step, both clockwise and counter-clockwise. This takes

at most |_A;/2J extra steps if the information does not hâve to spread from rx to rk, or

the other way around and k is odd. If there is an odd number of robots, Algorithm 1

will add one extra step in the worst case (for the information to spread from ri to

rk, or the other way around), for a total of \k/2], bringing the total time by Claim 1

(including the exploration phase) to

2([d/2\ + \k/2\) 2tt([d/2\ + \k/2]) ([rf/2j + \k/2] + 1)
(3.2)

yVi

Finally, for both variations, the last robot informed (say, r*) will hâve to go back

to the location of the target. By the time r* is informed, in the wireless case, it will

be at a distance 2|_d/2j from the origin, and in the F2F case, it will be at a distance

2(|_d/2j + \ k/2~\) from the origin O, that we obtain by considering only the linear

movements of the robot. Supposing that the target is located at a point directly

opposed to r,;, then r* will hâve to cover a distance of 2|_d/2j + d in the wireless case,

and 2_d/2\ + d A 2\k/2] in the F2F case, which it will do at its maximal speed.

Therefore, the worst gathering time for the wireless case is:

2[d/2\+d
(3.3)

Vl

and the worst gathering time for the F2F model is:

2[d/2\ +d + 2\k/2)
(3.4)

ni

78

Altogether, we obtain the total time required by the wireless variation by summing

Formulas (3.1) and (3.3); whereas we obtain the total time required by the face-to-

face variation by summing Formulas (3.2) and (3.4). We conclude that the total time

for the wireless communication variation is

4|_d/2j + d 2ir[d/2\ {[d/2\ + 1)
(3.1) + (3.3)

VV\

The total time for the face-to-face communication variation is:

4|_d/2j + d + 4[fc/2] 2ir(|_d/2j + [fc/2]) (|_cZ/2J + [fc/2] + 1)(3.2) + (3.4) = VVl

This proves Lemma 2. □

Next we discuss a lower bound on any search algorithm.

Lemma 3. For any search algorithm with robots starting at the origin, before time

^ there are still some unexplored points of the plane at distance smaller than d.

Proof. As ail robots start at origin, at time 0 an area 7r of the unit circle is explored.

During one unit of time, robot r* travels a distance of at most n* and, since it has

radius of visibility 1, it can explore a new area of at most 2n,. In total, in time t

the robots can explore an area of size at most 2tV. In order to explore ail points at

distance d, the robots need to explore the new area of size tt(d2 — 1). Hence, the time

needed to explore ail points at distance at most d from the starting point O equals

at least ^d2V ^. □

To sum up we hâve proved the following theorem.

79

Theorem 1 (Non-Faulty Robots). Algorithm 1 complétés the search successfully for

k robots in asymptotically optimal worst-case time :

7ni2w+0(d2)
where d is the distance from the origin O to the target, and V is the sum of speeds of

ail robots.

3.3 Robots with Crash-Faults (CF)

In this section, we introduce an algorithm for robots with crash faults, prove its

correctness and analyse its complexity.

3.3.1 Wireless communication

The algorithm works in a fashion similar to the algorithm for non-faulty robots de-

scribed in Section 3.2, with the following différences.

Initialisation phase. Ail robots start at the same location, considered to be the

origin O of the plane. The robots divide the plane into angular sectors originating at

O and whose angles are computed from robots’ speeds as follows:

• Consider each robot, from the slowest to the (k — /)-th, and sum their speeds,

such that V = Y%=i vi-

• For each subséquent robot rk_f+j, for j from 1 to /, compare its speed to y.

If it is greater than y, set the speed of ail remaining robots (including rk-f+J)

to y. Else add Vj to V'.

80

• For each robot, set the angle a* of the sector covered by r, as follows: a* =

2irvj(f+l)

Notice that the angular sectors of ail robots now cover the plane / + 1 times.

Moreover each point of the plane belongs to the angular sectors attributed to at least

/ +1 different robots since by construction a, < 2ir. Robots then move at a distance

2 of the origin, taking position on the edge of the sector. If i is odd, the robot goes to

the left edge of its sector, and if i is even, it goes to the right edge of its sector, as it was

done in the algorithm for non-faulty robots. The Exploration and Gathering phases

are identical to the Algorithm 1, and the Communication phase is instantaneous in

the wireless model.

3.3.2 Face-to-face communication

In addition to the modification to the initialisation phase described above, the com­

munication phase is changed. It is now described as follows.

Communication phase. Once a robot identifies the location of the target, it com-

municates this location to every robot it meets (the exchange of information is still

instantaneous). For this purpose after finding the target, it executes [^] extra steps,

moving only counter-clockwise (instead of changing direction at each step). One extra

step is necessary to ensure a meeting with a robot moving in the same direction, after

an angle of 2n has been covered. A robot that learns about the location of the target

without seeing it, immediately starts its gathering phase. Since the target is seen by

at least one reliable robot, this ensures that ail robots are informed of the location of

the target.

Algorithm 2 which can be found below describes the behaviour of the robots in

the face-to-face communication variation.

81

Algorithm 2: CrashRobots
1 Initialisation phase
2 V' «- 0;
3 for i from 1 to k — / do

v'i <- Vi\4

y' <- v + vi5

e j <- 1;
7 while y > Vk-f+j do

ufc-/+i vk-f+j',

J <-j + l;

8

9

10

11 for i from k — f + j to k do

12 L ;
13 for i from k — f + j to k do
14 l y'^v'+v'i

15 dir <— 0;
16 for i from 1 to k do

2*v'i (/+!)■«i t-17 V'
if i mod 2 = 0 then

diri <— dir; <— 1;
18

19

else
diri <— dir + c^; <-----1;

dir <— dir + o^;

20

21

22

23 Exploration phase (every robot r* executes this in parallel)
24 j <r- 1;
25 while Target location unknown do

MoveLine(2, diri, v[)',
MoveArc(0, ocrf, 2j, u');
diri <— diri + «i/5;

26

27

28

t-----/3;29

j <- j +1;30

31 Communication phase (every robot r, executes this in parallel)
32 for i from 1 to [y] + 1 do

MoveLine(2, diri, u();
MoveArc(0, cij, 2j, v[)\
diri t— diri + <^0
j <-j +1;

37 Gathering phase (every robot r* executes this in parallel)
38 Go to target

33

34

35

36

82

Lemma 4. Algorithm 2 is correct, i.e., the target is always found and the robots

eventually gather at the location of the target, both for the wireless and the face-to-

face variation.

Proof. In order to prove the correctness of the algorithm, we hâve to show first, that

the algorithm always finds the target, and second, that ail the robots can gather at

the target.

To prove the first part, we note that at each step j of the exploration phase, the

robots will scan an annulus where the inner circle has a radius of 2j — 1, and the

outer circle has a radius of 2j + 1. Each point of this annulus will be scanned by

(/ + 1) different robots. Therefore, after j steps, a dise of radius 2j +1 will be entirely

scanned by (/ + 1) different robots. As ail parts of the dise are visited at least once

by a reliable robot, the target is guaranteed to be found.

We can use the proof from Lemma 1 to show that the robots will always gather

at the target for both variations, which complétés the proof of Lemma 4. □

Lemma 5. The search performed by Algorithm 2 is completed in time

4|_c?/2j +d + 27r[d/2j(|d/2j + 1) ^max j f + l-j
Vk-jVi

for the wireless communication variation and

4|rf/2J+8[gl+ii + 4)(L<i/2J+2[!l+2) fe/{ / + 1 - jr 27rif27t (^[d/2\ + 2 + 1
Vk-jaiVl

for the face-to-face communication variation.

Proof. Let Vt = Y!i=ivi and Vf = J2i=ivi f°r ail 1 < l < k. First, we show the

following claim:

83

Claim 2.
f + l-j f + 1max

o <j<f VIVk-j

Vk-I (we set l = 0 if

the inequality is false for every l > 1). First, we show that l is the value of j that

maximizes c(j) = ■ For l < j < /, we hâve: vk-j+i <

For l < j < /, we hâve:

Let 0 < l < f be the maximal value such that vk-i+i > f+i-i

Vk-i by définition of l./+i-j

/ + 1 - (j - 1)
— Vk-j + Vk-j+i < +

1
Vk-Q-l) Vk-i = Vk-i

f +1 - j f +1 - j

and so we hâve:
Vk-{j-l) Vk-j

<
f + i-U-1) - f + l-J

and

/ + 1 - {j - 1) ^ / + 1 ~ j
Vk-i

By induction on j, for every j > l, we hâve c(l) > c(j).

For 0 < j < l, we hâve: vk-j > since vk-(i-1) >

k — 1, we hâve < vi+1. Hence for 0 < j < l, we hâve :

c{j - 1) = = c(j)>
Vk-u-i)

Vk-i and for ail 1 < * <f+i-i

/
Vk-j = Vk-i + ^ vk-i > Vk-t + (l — j) (

i=j V

Vk-i f + l-J
Vk-i>

f + l-l f + l-l

and

f+l-j . f+l-jc(j) = c(f)<
Vk-i

84

We hâve shown that for 0 < j < /, we hâve c(j) < c(l).

Observe that for any i < k — l + 1, we hâve v\ = and so V(= V*. For i > k — l +1,

we hâve v\ — Vk-i . We obtain:f+i—i

)+Vi-' = (/ + 1Vk-iK = i vk-t
f + i-i f + i-i

an so :

/+!

This ends the proof of the claim.

/ + 1 / + 1-J/ + !-/ max
o<j</Vk-i Vk-:

Suppose that the target is found at a point situated at distance d from the origin

O, say by robot ri. This happens in step [d/2] of the exploration phase (the while

loop from line 25). For simplicity, we assume that the target may only be found during

the circular movement of the robots. Indeed, the union of the robots’ positions during

circular movements cover the entire plane (/ + 1) times. Consequently, the trajectory

of the robot finding the target consists of |_^/2J arcs (line 27) as well as \d/2\ segments

of length 2 resulting from the linear moves from lines 26. As r* uses its full speed for

circular moves and speed V\ for straight line moves, this takes time

2|_d/2j aj(2 + 4 H-----+ 2|_g?/2J)
v'iVl

which is equal to
2[d/2j 27t(/ + 1) [d/2j ([d/2j + 1)

(3.5)
V'Vl

Once the location of the target lias been identified by a robot, the information

needs to be shared. Wireless communication allows this to happen instantly; face-

to-face communication requires more time. The time required for the face-to-face

85

variation is calculated as follows: Once a robot identifies the location of the target,

it will execute enough steps to cover the entirety of the circle, which will require

extra steps at rnost, and we need one extra step to ensure we meet ail robots, as two

synchronised robots may move in the same direction and miss one another in the last

step. Say that the robot to identify the target also happens to be the slowest robot

rx. Hence any robot will execute at most (|_d/2j + 2 + l) steps and the total

time required for both exploration and communication phases amounts to:

2(lrf/2J+dgl + 1) , M/+l)(W2]+2fSl + l)([<j/2J+2[g1+2)
. (3.6)

1/'v\

Finally, for both variations, the last robot informed (say, r,) will hâve to go back

to the location of the target. By the time r.-t is informed, in the wireless case, it will

be at a distance 2[d/2j from the origin, and in the F2F case, it will be at a distance

at most 2 (|_d/2j + 2 [^] + l) from the origin O, that we obtain by considering only

the linear movements of the robot. Supposing that the target is located at a point

directly opposed to r*, then r* will hâve to cover a distance of 2 [d/2\ +d in the wireless

case, and 2 [\d/2\ + 2 + l) + d in the F2F case, which it will do at its maximal

speed. Therefore, the worst gathering time for the wireless case is:

2|_d/2j + d
(3.7)

Vl

and the worst gathering time for the F2F model is:

2(Ld/2J+2[g]+1)+d
(3.8)

V\

when we consider that rq is the last robot informed.

We can therefore conclude that the total required time for wireless communication

86

is

4|_d/2j + d 27r (/ + l)[d/2\([d/2\ + 1)
(3.5) + (3.7)

F'Vl

which by Claim 2 is equal to :

4|_(i/2J + d / + 1 - J+ 2ir[d/2\{[d/2\ + 1) ^max |
Vk-jVl

For for face-to-face communication, the total time is obtained by summing For­

mulas (3.6) and (3.8) we conclude that the total time is:

4[d/2j+8[g1+d + 4 2*(/ + l)(Lrf/2J+2[gl+l)(|rf/2]+2[g1+2)
(3.6) + (3.8) =

V'Vl

which by Claim 2 is equal to :

4|d/2J+8[gl-M + 4 r27ri +1)(L<i/2J+2fll+2)(|d/2J+2\-2tt
Vl «i

□

Next we discuss a lower bound on any search algorithm.

Lemma 6. Every search algorithm with f crash-faulty robots has time complexity at

least:
h (d2 — i) (/ +1 - j)max

0<7</2

Proof. For any j such that 0 < j < f, the adversary may choose the j fastest robots

rk~j+1,... ,rk to be faulty. Observe that in order to explore ail points at distance at

most d from the origin, each such point must be viewed by at least / -Fl — j other

robots. Indeed, if any such point is seen by at most / — j robots, the adversary

87

can make them ail faulty and the point remains unexplored. Therefore, the robots

(except the j fastest ones) altogether hâve to cover the area of n(cP — 1)(/ + 1 — j).

As, similarly as in Lemrna 3, in time t the robots can explore a new area of size at

most 21 (Ya=Î vi)i the time needed to complété the exploration equals:

?r(d2 - !)(/ + ! -j)
2E iZÎvi

Since the adversary can choose any j such that 1 < j < /, the lower bound is the

maximum among ail j:

Tr{d2 - !)(/ + 1 - j) (/ + 1 - j)max
o <j<f 2E Uvi

□

To sum up we hâve proved the following theorem.

Theorem 2 (Crash-Faults Robots). Algorithm 2 complétés the search sucxessfully

for k robots, including at most f of which are crash-faulty, in worst-case time

+ °(^2)7rd2 (/ + 1 - j)max
o <j<f E Uvi2

where Vi for 1 < i < k is the speed of robot r, and d is the distance from the origin O

to the target, when the communication is face-to-face. This is asymptotically optimal.

3.4 Robots witk Byzantine Faults (BF)

In this section, we introduce an algorithm for robots with weak Byzantine faults, prove

its correctness and analyse its complexity. Weak Byzantine robots may expérience

88

crash-faults, as described above. In addition to those faults, they may choose to

propagate information that will hinder the progress of the algorithm. They can lie

about everything but their own identity (a Byzantine robot couldn’t prétend to be a

healthy robot). The notion of weak Byzantine robot exists in contrast to the notion of

strong Byzantine robots, which hâve the capability to lie about everything, including

their own identity. In this thesis, we focus on weak Byzantine robots.

3.4.1 Wireless communication

The algorithm works in a fashion similar to the one for Crash-Faulty Robots for the

wireless communication model. Ail phases are in fact identical. However, in the

CF case each phase is executed once only while in the case of Byzantine faults, the

sequence of phases is iterated / + 1 times. In each itération, when a target signalled

turns out to be false, the robot responsible for its announcement is rejected and the

remaining robots reorganize and continue to search the next annulus. Eventually,

the target is found in one of the subséquent itérations or the robots eliminate ail

faulty robots and in the (/ + l)-st itération the real target is effectively found. With

respect to the CF case an extra cost is paid for the robots reorganization, between

consecutive itérations of the algorithm. The total time is asymptotically dominated

by the exploration cost, which does not increase. This is based on the fact that the

search by k robots containing at most / faulty ones is more costly than the search by

k — i robots with f — i faulty ones for i > 0

If two targets are identified at the same time, ail robots agréé on one of the targets

to visit (using any given algorithm), then go visit the other.

Lemma 7. The wireless algorithm for byzantine robots described above complétés the

89

gathering of ail reliable robots at the location of the target in time

+ 27v[d/2\{[d/2\ + 1) |mffl j2[d/2\+4(d +!)(/ + !) / + 1 - J
Vi

Proof. The total time required for ail reliable robots to gather at the location of the

target is equal to the total time required to identify the target, plus the total time

required to investigate each potential target.

The time required to identify the location of the target is again at most

2_d/2\ ttj(2 + 4 + • • • + 2 |_d/2j)
KV\

which is equal to

2|M + 2,rLd/2J(L<i/2J+l) / + 1 - j (3.9)max
o <j<f Etlvi

If the adversary décidés to place the location of ail possible targets on the last

annulus to be explored (that is, every potential target is at a distance exactly (d + 1)

of the origin), then T\ has to cover a distance of at most 4(d+1)(/ +1) before arriving

at the location of the real target.

This takes time of at most

4 (d+!)(/ + !)
(3.10)

Vl

and the total execution time is bound by

2\d/2\ + 4 (d + 1)(/ + 1) + 2ix[d/2\(_d/2\ + 1) (max (/ + 1 - 3(3.9) + (3.10) =
Vk-tV\

90

□This proves Lemma 7.

3.4.2 Face-to-face communication

We introduce the following two algorithms to solve the byzantine face-to-face com­

munication problem.

The (/ -I- l)-Confirmations Algorithm

In this algorithm, we cover each annulus 2/ + 1 times, instead of / + 1 as we did

with the crash-faulty robots. Each robot follows its own exploration path until it

receives / + 1 confirmations of the same location of the target, before switching to

the gathering phase. Specifically, we hâve:

Initialisation phase: the robots divide the plane in angular sectors, in a fashion similar

to what was done in the crash-faults scénario. Each point of the plane is covered by

2/ + 1 different robots.

Exploration phase: identical to the crash-fault scénario.

Communication phase: each robot that finds the target executes +1 extra steps,

going only counter-clockwise (instead of changing direction at every step), thus meet­

ing every other robot which is still in its exploration phase. Once this is done, they

execute their gathering phase. A robot that does not find the target stays in its

exploration phase until it is informed about the same location of the target by f + 1

incoming robots, then executes its gathering phase.

Gathering phase: the robot moves in a straight line toward the target.

Lemma 8. The algorithm described above is correct, i.e. the target is always found

and the robots eventually gather at the location of the target.

Proof. In order to prove the correctness of the algorithm, we hâve to show 1) that the

target is always found, and 2) that ail the robots are eventually informed and gather

91

at the target. To prove the first part, we note that at each step of the exploration

phase, the robots scan an annulus whose inner circle has radius 2i — 1, and the outer

circle has radius 2i + 1, with i being the current step. Each point of the annulus is

visited by 2/ + 1 robots, thus ensuring that at least (/ + 1) reliable robots see the

target. As ail points are visited at least once by (/ + 1) reliable robots, the target is

guaranteed to be found.

Once the robots hâve found the target, they start informing every other robot. As

the algorithm does not allow for a robot to deviate from its exploration course before

receiving (/ + 1) confirmations, the robots are guaranteed to meet every other robot,

and the byzantine robots will be unable to sway any reliable robot. Since each robot

that saw the target will eventually meet every other reliable robot, it is guaranteed

that every reliable robot that did not see the target directly will hear about the target

at least (/ + 1) times. Once this is doue, they hâve a confirmation of the location of

the target. □

Lemma 9. The search performed by the algorithm described above is completed in

time

4(L<i/2]+2[g]+l)+rf "27r" 2n f + 1 - 3f 4tr [d/2\ + 2 [d/2\ + 2 —
a%

+ 2+ 1 max
o <j<f Vk-jV\ ai

Proof. Suppose that the target is found at a point situated at a distance d from the

origin O, say by robot rx. This happens in step \d/2\ of the exploration phase. For

simplicity, we assume that the target may only be found during the circular movement

of the robots. Indeed, the union of the robots’ positions during circular movements

cover the entire plane (2/ + 1) times. Once the location of the target has been

identified by a robot, the information needs to be shared. The robot which holds the

information needs to go in the counterclockwise direction covering arcs of the entire

92

circle, and then one extra step to meet a robot he may hâve missed because both

robots were moving in the same direction. Consequently, we need +1 extra steps

at most. As the speed of the robot to identify the target is also at least 1+ the total

time required for both exploration and communication phase is bound by:

2(lrf/2J+2flfl+1) , ^(2/ + l)([d/2J+2[g] + l)(Ld/2j+2fg+2)
V'Vl

(3.11)

The last robot informed (say, rj) will hâve to go to the location of the target. By

the time r, is informed, it will be at a distance 2 [\d/2\ + 2 + l) from the origin

O. In the worst case, the target is located at a point directly opposed to r,, hence

r, will hâve to cover that distance plus d to reach the target, walking at its maximal

speed. Therefore, the worst gathering time (when the slowest robot r\ is the last one

informed) is bound by
2 ([d/2\ +2 r 2^1 (3.12)+ 1) + d.

ai

The total time is obtained by summing Formulas (3.11) and (3.12); we conclude

that the total time is

4(Ld/2J+2[^l + l)+d 2,r(2/+l)(ld/2j+2fÿ1+l)([<i/2J+2fgl+2)
(3.11)+ (3.12) =

V'Vl

which by Claim 2 is equal to :

4 (Lrf/2J +2 [g^l +l)+rf r 27ri)(Li/2j+2fïl+2)F47r {^_d/2\ + 2 I + l-j+ 1
Vk-jV\ ai

□This proves Lemma 9.

The Fault-Reduction Algorithm

In this algorithm, we cover each point by / + 1 robots, as we in the CF case. The

93

initialization phase and exploration phase are identical to the crash-fault scénario.

We hâve the following communication and gathering phases:

Communication phase. Once a robot finds the target, it takes circular movements in

the counter-clockwise direction, attempting to meet every robot still in its exploration

phase. It takes + 1 steps which involve straight-line moves retreating from the

origin. Once a robot that did not find the target is informed, it will itself start doing

the same counterclockwise moves to inform every other robot of a possible location of

the target. Once a robot is done with its sequence of informing moves, it will execute

its gathering phase.

Gathering phase. The robot goes to the origin, and waits until (k - f) robots are
2jl _|_i

présent there. It then waits ^ + 1 steps, and then —^— additional steps (thus en-

suring that every reliable robot arrives at the origin). Every robot that did not arrive

at the origin after this delay is immediately considered byzantine, and is therefore

ignored for the rest of the algorithm. More so, every robot that arrived ^- + H-----^—

steps earlier is also considered byzantine, and is ignored for the rest of the algorithm.

Once every reliable robot lias arrived, they ail move to the location of the potential

target. If more than one target location is identified, the robots go to the location

which was found first.

Once ail reliable robots gathered at the location of a target, and the target turns

out to be false the robots apply a procedure to identify the liar. By élimination, a

pair of robots which are contradicting each other is identified: the one that created

the message, and the one that received it. Both such robots, the one that sent the

message and the one that received it, are considered byzantine, and are ignored for the

rest of the algorithm. Note that a reliable robot may be eliminated this way, but as

two robots are contradicting each other and the remaining robots cannot collectively

identify who lies, they are both discarded from future actions.

94

Once this is done, the remaining robots re-arrange their sectors of the plane, and

restart the exploration of the next annulus. In such a way, after x false targets were

identified, and x pairs of robots were discarded as being byzantine, the annulus is

covered (/ — x + 1) times, and (k — 2x) robots are still working to continue the search.

Lemma 10. Fault-Réduction Algorithm is correct, i.e. the target is always found

and the robots eventually gather at the location of the target, under the condition that

k > 2f.

Proof. In order to prove the correctness of the algorithm, we hâve to show 1) that the

target is always found, and 2) that ail the robots are eventually informed and gather

at the target. To prove the first part, we note that at each step of the exploration

phase, the robots will scan an annulus whose inner circle lias radius 2i — 1, and the

outer circle has radius 2z + l, with i being the current step. Each point of the annulus

is visited by / + 1 different robots, thus ensuring that at least one reliable robot

sees the target. As ail points are covered by at least one reliable robot, the target

is guaranteed to be found. Once a reliable robot has found the target, it will start

informing every other robot, thus ensuring that every robot receives the information.

Byzantine robots that want to mislead the reliable robots may do so / times, thus

multiplying the number of required communication and gathering phases by / + 1.

However, each time this is done, we get rid of at least one byzantine robot. Robots

will never be de-synchronized from the rest of the swarm, since as soon as a reliable

robot is informed, it also informs every other robot, and they ail gather at the origin

within a time which is linear in d. Robots will never wait indefinitely in the origin, as

the waiting time is bound linearly in d as well. Therefore, robots can never be stalled

indefinitely, and they will eventually ail gather at the location of the real target. □

95

Lemma 11. If every robot ofthe collection has speed v = 1, then the search performed

by the Fault-Réduction Algorithm is completed in time ^T^d2 + o{d2)

Proof. The total time required by the Fault-Reduction Algorithm is equal to the sum

of the exploration time, and the communication and gathering phases, which can

both be done up to (/ + 1) times.

Each time a byzantine robot daims to hâve found a target, we will eliminate

two robots, including at least one robot which is byzantine. Therefore, for each

occurrence i of a byzantine robot declaring a false target at distance d,, we execute

a communication phase, a gathering phase, and we redistribute the next armulus to

cover between the remaining robots. The total time spend in the exploration phase

can therefore be bound by

/ + 1 / 2 1
2k ^(MiH A{d\, ^2)+- • -4 A(df-1, df) 4 A(df,d)2(k - 2/)2(As - 2) 2(*-2(/-l))

where A(a, b) represents the time required to cover an entire annulus by a robot, with

the inner circle of radius a and the outer circle of radius b. Observe that 1

for k > 2(/ 4- 1) and 1<î</ + 1. Therefore, we can bound the expression above

by:
/ + 12h A(0,d)

Consequently, we obtain that the exploration phase takes at most

27r(/ + l)Ld/2j(Ld/2j + l)2|_d/2j + (3.13)
2 k

Each time a robot daims to hâve identified a target, it must inform every other

robot, thus following counterclockwise arcs summing up to 27r. The last robot in-

96

formed must in turn cover counterclockwise arcs summing up to 2ir, then gather at

the origin. From the moment the target is identified initially, at a distance at most

d of the origin O, to the moment where ail reliable robots are gathered at the origin

O, the time elapsed is at most

2^1+2 , 2tt(/ + 1) 2 2tt(/ + 1) r 27t~i"27r" +1) dd + + 2+ 1 kkv\ «î <X\

Once every robot is at the origin, they will travel a distance of at most d, to verify

if the target is the real one. If it isn’t, the farthest robot will hâve to travel a distance

of at most 2d to take its position to résumé the exploration. This is done at speed

v = 1. As this entire process may hâve to be repeated at most / + 1 times, we can

bound the maximal amount of time required to identify the real target with:

2+1+2 2tt(/ + 1))([ïl + 1)‘i)+(/+1)4‘i(/+i) ^+1> k kVl

(3-14)

The total time is obtained by summing Formulas (3.13) and (3.14); we conclude

that the total time is

2 /r(./’ + 1) [d/2\ (|_d/2j + 1)
(3.13)+ (3.14) = 2[d/2j +

2 k
2rgi+2 227r(/ + 1) / f27r"+ (/+!)

+ (/+1)(2 k

f + 1

+ (/ + 1) k + 1
«1V\

2n(f + 1) / F2tt" ^ d'j + (/ + 1)4d+ 1
ai

2k *d2 + o(d2)

□This proves Lemma 11.

97

Observe that the lower bound of Lemma 6 for / crash-faulty robots is clearly valid

for / byzantine robots. To sum up we hâve proved the following theorem.

Theorem 3 (Byzantine Robots). In the wireless case, our algorithm complétés the

search successfully for k robots, including f byzantine ones, in worst-case time

f 7rd'2\ (/
V 2 J \o<j<f \

(/ + 1 - j) + °(^2))Tr-^k—j
Ei=i Vi

where for 1 < i < k is the speed of robot r* and d is the distance from the origin O to

the target. More so, in the face-to-face case, the (/ + 1)-Confirmations Algorithm

complétés the search successfully for k robots, including f byzantine ones such that

2/ < k, in worst-case time 2c and the Fault-Réduction Algorithm described above

for the F2F model complétés the search successfully for k robots of equal speed v = 1,

including f byzantine ones such that 2/ + 2 < k, in worst-case time ^^ + o(d2).

3.5 Additional Remarks and Conclusion

We studied search in the plane with faulty robots under two different scénarios. In the

first one, some robots can be subject to crashes, and stop working properly, whereas

in the second one, robots may be byzantine, and actively work against our goal. For

both scénarios, we considered the wireless and the F2F communication model. We

designed an algorithm which has asymptotically optimal search time, for ail of those

cases, with the exception of the byzantine F2F model. In this case, we offer two

algorithms: the first one works for any 2/ + 1 < k and is 2-competitive, and the

second one works for 2/ + 1 < k, and assumes that ail robots hâve equal speed. This

second algorithm is optimal.

The algorithms we presented consider robots with a visibility range of 1. We

98

suggest that our algorithms can be adjusted to take into account robots with visibility

range that vary from one to the other, by modifying the angular value of each robot’s

coverage sector so as to take their visibility range into account. We leave this subject

as an open problem.

99

Chapter 4

Searching for a Non-adversarial

Uncooperative Agent on a Cycle

)

Introduction4.1

Due to their fundamental nature, the problems of searching and exploration hâve

been investigated in many areas of mathematics and computer science, especially in

robotics and autonomous mobile agent computing. The robots move with certain

speeds (not necessarily the same) and the objective of the search is to find a (usually

static) target placed at an unknown location of the domain in a (provably) optimal

time. This search problem was first proposed by Bellman [20] and independently by

Beck [19].

In this chapter we consider a similar search problem concerning k mobile au­

tonomous robots which are initially located on the perimeter of a unit cycle and

which can move with maximum speed 1 on its perimeter. Unlike previous research

which considers a static target, in our work the robots are aware that a bus (non-

adversarial, uncooperative agent) is moving with constant speed, say s, along the

100

perimeter of the unit cycle but do not know its exact location and may or may not

know its direction of movement. We assume that during their search the robots can

move in any direction anywhere on the perimeter of the cycle and can also commu-

nicate wirelessly at any distance during their trajectories.

More specifically, we are interested in investigating the following search problem:

Give an algorithm which places the robots on the perimeter of the cycle and minimizes

the search time so that at least one of the robots can catch the bus. By the “robot

catching the bus” we mean that the robot and the bus are at the same location at

the same time.

Preliminaries and model of computation4.1.1

We assume that the robots are traversing a cycle (the perimeter of a disk of unit

radius). Furthermore, there is a bus which is rotating around the cycle at constant

speed s and its location is unknown to the robots. The robots can communicate

• wirelessly and when a robot finds the bus it can broadcast its location to the rest

of the robots. Note that in the single robot case (k = 1), würeless communication is

unnecessary since the search algorithm is executed by the robot alone.

The robots can move at speed at most 1 on the perimeter of the disk and can

change direction at will at any time during the search depending on the spécifications

of the algorithm. An algorithm spécifiés the initial position and trajectories of the

robots. For k robots, their movement is specified by a fc-tuple (/i(t), . ■ ■,

of k continuous functions such that fi[t) gives the précisé location of the i-th robot on

the cycle at time t, where i = 1,2,..., k. Without loss of generality we may assume

that the robots start at the same time while the bus is always in motion around the

cycle.

101

4.1.2 Related work

Our problem can be seen as a rendezvous/meeting problem with an uncooperative,

but not adversarial agent, a middle case between rendezvous and cops and robbers.

In the standard rendezvous model, ail agents fully cooperate to the common meeting

goal. Indeed. this is the case in the related paper [109) on rendezvous of two robots

with different speeds in a cycle (our problem is different in that one of the two

vehicles—namely the bus—lias a fixed speed and cannot change direction). At the

other extreme, in cops and robbers problems (e.g., see [28]), the cops hâve the same

goal of meeting the robber, but the robber is adversarial and actively tries to avoid

meeting. Here (at least for search), we are also trying to meet with an agent. However,

that agent does not cooperate, but goes doing its own business, not caring whether

it is met or not.

The underlving domain which is traversed by the robots is a continuons curve

(in our case the perimeter of a disk of unit radius). In this setting, in addition

to the rendezvous paper [109], related to our rendezvous problem is the work on

probabilistic rendezvous for robots with different speeds [160], rendezvous for multiple

robots with different speeds in [143], and rendezvous for two robots with different

speeds in arbitrary graphs [162].

Related is the literature on search involving a robot and a static exit in the séminal

papers [11, 19, 20] as well as extensive discussions and models in the books on search

problems [3], on the theory of rendezvous games [7], and on the game of cops and

robbers [28]. More recently, there is research on robot évacuation which is like search

but measures the quality of search by the time it takes the last robot to fiiid an

exit; this has been investigated in the wireless model as well as in the face-to-face

model [56]. Related papers on robot évacuation include two robots in the face-to-face

102

model [32, 62] and [68] in the wireless model when the underlying domain is a triangle

or a square.

There is also related work on gathering a collection of identical memoryless, mobile

robots in one node of an anonymous unoriented ring. Robots start from different

nodes of the ring and operate in Look-Compute-Move cycles and hâve to end up in

the same node [152], as well as oblivious mobile robots in the same location of the

plane when the robots hâve limited visibility [121].

4.1.3 Outline and results

Depending on the model being considered the robots may or may not hâve knowledge

of the direction of movement and speed of the bus. In particular, in this chapter we

détermine the search time for the following cases. The robots

1. do not know the direction of movement but know the speed of the bus, and

2. know neither the direction of movement nor the speed of the bus.

We note that if the robot knows the direction of movement of the bus, then it has

been proved in [109] that 2tt/(s + 1) is a tight bound on the search time.

In Section 4.2 we provide tight upper and lower bounds for single robot search,

while in Section 4.3 we provide tight upper and lower bounds for multiple robot search.

In both sections we consider the impact of knowing the direction of movement of the

bus. Table 4.1 summarizes the results of Section 4.2 for a single robot and Table 4.2

summarizes the results of Section 4.3 concerning multiple robots.

103

Direction Speed Search Time Theorem
Theorem 4 [109]2 7T / (s + 1)Known s

Unknown 27r/s Theorem 5s > 1
1/3 < s < 1 47r/(g + 1)Unknown Theorem 5

5 < 1/3 27r/(l — s)Unknown Theorem 5
Unknown Unknown Theorem 647r

Table 4.1: Optimal search time for a single robot of maximum speed 1. The column
“Speed” refers to what the robot knows about the speed of the bus.

SpeedDirection Search Time Theorem
2n/k(s+ 1)Known Theorem 7s

27r/ksUnknown Theorem 8s > 1
27t/k (k even)Unknown Theorem 8s < 1
27t/k (k odd) OPENUnknown s < 1
2ir/k (k even)Unknown Unknown Theorem 9

2ir/(k — 1) (k odd) OPENUnknown Unknown

Table 4.2: Optimal search time for k robots of maximum speed 1. The column “Speed”
refers to what the robots know about the speed of the bus.

4.2 One Robot

Consider the case of a single robot R and let B dénoté the bus and P, the path

followed by the robot. Throughout this section we assume that the bus is moving at

constant speed s and cannot change direction, while the robot is moving with speed

1. Our analysis is divided into three subsections depending on the knowledge the

robot has about the bus. In Subsection 4.2.1 we assume only that the robot knows

the direction of movement of the bus, in Subsection 4.2.2 the robot does not know the

direction of movement of the bus but knows its speed, while in Subsection 4.2.3 the

robot knows neither the direction nor the speed s of the bus. Table 4.1 summarizes

the results of Section 4.2 for a single robot.

104

4.2.1 Known direction of movement of the bus

In this subsection we assume that the robot knows only the direction of movement

of the bus. The following theorem was fîrst proved in [109] but we State it for com-

pleteness.

Theorem 4 ([109]). If the robot knows the direction of movement of the bus then

2tt
s + 1

is the worst-case optimal search time.

Proof. (Theorem 4) Without loss of generality assume the bus is moving in the CCW

direction. To prove the upper bound consider the following algorithm (depicted in

Figure 4.1) which is executed by the robot.

Search Algorithm (Direction Known).

1. Move along the perimeter in CW direction;

2. Stop when bus is found;

Figure 4.1: Robot search for a moving bus B. The bus is moving with speed s along
the perimeter of a cycle and the robot is moving with speed 1 searching for the bus.

105

Since the robot chooses to move in a direction opposite to the direction of move-

ment of the bus, the two will meet. The initial distance (when the robot reaches the

perimeter) between robot and bus is at most 2ir and therefore the two will meet in

time not exceeding

The proof of the lower bound follows from the work of [109|. This proves

Theorem 4. □

Unknown direction of movement but known speed of the4.2.2

bus

In this subsection we assume that the robot does not know the direction of movement

but knows the speed s of the bus.

Theorem 5. If the robot knows the speed s of the bus but does not know its direction

of movement then the optimal search time is exactly

1. 27r/s if s > 1.

2. 47t/(.s + 1) if | < s < 1.

3. 27t/(1 — s) if s < |.

Proof. (Theorem 5) We prove separately the upper and lower bounds in ail three

cases in the statement of the theorem.

Upper bounds. The upper bounds are relatively simple and we présent below three

simple algorithms.

To prove Statement 1 assume that s > 1. In the search algorithm below, the robot

stays put and waits for the bus to arrive.

106

Search Algorithm (Direction Unknown: s > 1).

1. The robot waits for the bus to arrive.

The upper bound in Statement 1 is immédiate since the bus travels with speed

s and the robot is at distance at most 2ir from the bus.

To prove Statement 2, assume that | < s < 1 and consider the following search

algorithm.

Search Algorithm (Direction Unknown: 1/3 < s < 1).

1. The robot chooses a direction and walks for time

2. If no bus found then it changes direction and walks until bus is found;

The upper bound in Statement 2 is easy since in the first part of the algorithm

the robot walks for time If it did not rneet the bus by this time it is because the

bus is moving in the same direction as the robot. Therefore at the moment the robot

changes direction, in the second part of the algorithm, it is certain that it is moving

against the bus. Therefore it will meet the bus in additional time

To prove Statement 3, assume that s < | and consider the following search algo­

rithm.

Search Algorithm (Direction Unknown: s < 1/3).

1. Robot chooses an arbitrary direction and walks until bus is found;

The upper bound in Statement 3 is easy since in the worst case the bus and

the robot are moving in the same direction with initial distance at most 2ir.

Lower bounds. Next we proceed to prove the lower bounds for ail three cases in

the statement of the theorem.

Let us introduce a visualisation that will be used in the other lower bounds as

well. The x-axis represents time and the y-axis represents positions in the circle. The

bus trajectory is then represented by a line passing though the initial position of the

107

bus, with the slope determined bv the speed and direction of the bus (let downslope

mean counterclockwise direction).

The robot’s trajectorv from time 0 until time T will be represented by a contiguous

curve P (possiblv consisting of straight line segments) in this time-space diagram. Let

ps and pe dénoté the start and end-points of P. In order for the robot to catch the

bus, its trajectorv will hâve to cross the bus lines corresponding to ail possible initial

positions, directions (and possiblv speeds, if the speed is unknown) of the bus. Such

a robot trajectorv will be called a valid one. Note that the validitv of the trajectorv

dépends on the assumptions/knowledge about the bus’s speed s, i.e. a trajectory

valid for a given s rnight not be valid for different s.

o T,

Figure 4.2: Trajectory and other concepts: u, v, u' and v' are key points. ta, t', qq
and ({ are support lines.

Consider first the case where the speed of the bus is known to be s, but its

direction is unknown. For a fîxed P, let tsa and tsb dénoté tangents of slope s touching

P from above and below, respectivelv. Since here we deal with fixed s, we will omit

respectivelv (refer tosuperscripts, and use shorthands qa and qb for tas and t

Figure 4.2).

Let z(x) dénoté the y-coordinate of line 2 at time x. Hence, 4(0) and 4(0) repre-

sent the starting positions of the buses moving at speed s that touch the trajectory

— S
b î

108

of the robot from above and from below.

Lemma 12. If the bus speed s is known but its direction is unknown, then P is valid

if and only if ta(0) — 4(0) > 2tt and qa(0) — qb(0) > 2tï

Proof. As the y axis represents the unfolded perimeter of the cycle, every point of

the cycle is represented in any segment of y-axis of length at least 27t. In particular,

the segment (4(0), 4(0)). Note that since P is contiguous, every line of slope s lving

between 4 and 4 represents a bus starting at this segment intersecting P. As the

same argument holds for direction —s, P is valid.

If (without loss of generality) 4(0) — 4(0) < 27t, there is a point in the circle not

covered by the segment (4(0), 4(0)). A bus line of slope s Crossing this point does

not intersect P, therefore P is not valid. □

Let u be the earliest (in time) of the intersections of 4 or 4 with P. Let tl be a

line of slope s at vertical distance exactly 2tt from u and lying between ta and 4- Let

u' be the earliest intersection of t' with P. Note that since t' is between 4 and 4, it

is ensured to intersect P, hence u' is well defined. Define v and v' for the slope —s

analogously (see Figure 4.2). Let us call points u, v, u', v' the key points of P.

Let P1 be a trajectory starting at the earliest of the key points, following P and

finishing at the latest key point (v to u' in Figure 4.2). We will call such trajectory

a pruned trajectory. By Lemma 12 and its construction, P' is also a valid trajectory

for s. (Note that translating a trajectory does not change its validity status, as

translations correspond to different starting time and position of the robot.)

We are now ready to prove Statement 1 of Theorem 5: Since s > 1, we immediately

get that u = v = ps. By Lemma 12, in order for P to be valid, it must touch both t'

and q' (see Figure 4.3). Note that the robot can do so in time 2it/s by simply waiting

at the starting location. Assume, on the contrary, that it moves and first touches

109

27r ta

\ a\ /
A

s \

VV/ \

' 9f>-2tt(

Figure 4.3: The case s > 1.

(without loss of generality) q' at point v'). Then the earliest it can touch t' is bv

moving towards it (counterclockwise). However, it will not be able to reach t' sooner

than q' (which Ls also moving counterclockwise, but at speed s > 1), which reaches t'

at time exactly 2ix/s.

Consider now the case s < 1. We know that we can prune the trajectory without

increasing its span or breaking its validitv. In fact, the following Lemma tells us that

it is sufficient to consider only trajectories with robot moving at full speed at ail time:

Lemma 13. Let P' be a valid pruned trajectory of span T. Then there exists a valid

trajectory P" of span at most T in which the robot always travels at full speed.

Proof Let a, b, c and d be the key points of P', ordered by time. Let ra, rb, rc and rd

be the corresponding support Unes. P' will be modified as follows (see Figure 4.4):

Figure 4.4: Speeding up pruned trajectory.

110

• consider the robot moving from c to rd at, full speed and let d! be the point,

where it reaches rd

• consider the robot moving from b to ra at full speeed back in time and let a' be

the point where it reaches ra (alternatively, a’ is the point on ra from where a

robot moving at full speed towards rb reaches b)

• finally, let d be the point where the robot moving at full speed from b to rc

reaches rc and let d" be the point where the robot moving from d at full speed

towards rd reaches it

As the support lines did not change, the trajectory a’bdd" is still valid. Note that a'

is not earlier than a and d'is not later than d. Also, as d is not later than c, then d"

is not later than d'and hence the resulting span a'd" has not increased. □

Hence, it is sufficient to consider only trajectories consisting of at most three

line segments of slope 1 and —1. In fact, it is sufficient to consider onlv one- and

two-segment trajectories:

Lemma 14. Let P be a valid pruned full-speed trajectory consisting of three segments

of alternating directions. Then there exists a valid pruned full-speed trajectory of at

most two segments with smaller span.

Proof.

Figure 4.5: Optimizing a three-segment trajectory.

111

As P has three segments, it must change direction in each of its interior key points

and each key point touches exactly one support line. Without loss of generality the

first segment is of speed 1. As P changes direction whenever it touches a support

line, the only possibility is shown in Figure 4.5. However, the trajectory a'b'c' touches

ail four support lines and hence is valid, and its span is smaller than then span od

□P.

Now we are ready to prove Statements 2 and 3. We need to consider only two

strategies:

• One segment: the robot travels in one direction until it meets the bus, or

• Two segments: the robot travels in one direction for distance 2n/(l + s) (any

two segment trajectory needs to cross from the starting support line to the

opposing one; if it reverses sooner, it can only achieve the needed 2ir séparation

between support lines by travel of 2tt/(1 — s) since reversai, at which point one

segment strategy is better), then reverses and travels until it meets the bus

In the one segment strategy, the worst case time to meet the bus is 27r/(l — s), in

the two segments strategy, it is 47r(l + s). The first is better for s < |, the latter for

s G (rj, l), which proves Statements 2 and 3. This complétés the lower bound in ail

three cases and proves Theorem 5. □

4.2.3 Robot knows neither the direction nor the speed of the

bus

In this subsection we assume that the robot knows neither the direction of movement

nor the speed of the bus.

112

Theorem 6. If the robot knows neither the speed s of the bus being used nor its

direction of movement then there is an algorithm with search time

1
2tt 1 +

5+1

Moreover, for any e > 0, it is possible to assign a speed s to the bus such that no

algorithm can achieve rendezvous with the bus in time less than 47r — |.

Proof. (Theorem 6) Consider the following search algorithm.

Search Algorithm (Direction and Speed Unknown).

1. Choose a(ny) direction and walk for at most time 27r;

2. If no bus found then reverse direction and walk until bus is found;

To prove the upper bound, note that if the algorithm failed in time to find the

bus in Step 1 it is because it is traversing the cycle in the same direction as the bus.

Therefore by reversing direction it is guaranteed that bus and robot are moving in

opposite direction. Hence, they will meet in additional time which proves the

upper bound.

To prove the lower bound, first observe that for ail s it must hold tsa(0) —1£(0) > 2n

(i.e. the width of the strip of slope s encompassing the whole P must be at least 2?r).

Consider an s for which the width w = f*(0) — tb(0) is minimized. Since w cannot

be reduced by choosing infinitesimallv smaller or larger s (i.e. rotating the strip),

there must be three support points a, b, c placed on the tangents tsa and tsb such that

the points alternate the tangent lines (two points, one each on the support lines for

s = 0, can also define a strip of minimal width, but those points would need to hâve

the same time coordinate, which is impossible, as P represents robot’s trajectory).

Without loss of generality assume a and c are on tsa and b is on tb (see Figure 4.6).

Let P be an optimal trajectory. This means that Ve > 0 there exists a bus speed

113

Figure 4.6: Lower bound for unknown bus speed. The dotted lines correspond to
robot traveling at speed 1 to/frorn b. The dashed lines show slight rotation of the
strip (if c was not on the top support line), yielding reduced width (as ôa < 6b). If a
was not on the top support line, slight rotation in other direction will yeild smaller
strip width.

and initial placement such that, the robot meets the bus not earlier than e before

e is a lower bound on the meeting time, where |Pj is the

span of the trajectory P. Let us calculate how long will it take the robot to cross

from a to b and then from b to c, as this is a lower bound on the span of P. It takes

at least 27r/(l + s) to reach b from a, and at least ^ to reach c from b (or the other

way around, depending on the direction of s and which support line has two points)

i.e altogether

completing P, i.e. |P|

2n 2tr 47TIPI =
s + 1 1 — s 1 — s2

We now indicate how to select the speeds. Note that bv the géométrie sériés

we hâve that = 47r + 47rs2+ o(s2). Therefore |P| < 47r + 47r.s2

e < 4tt — | provided that 4ns2 < | (i.e., s < yf^)-

This complétés the proof.

îexpansion of

□

114

4.3 Multiple Robots

In this section we consider the case of k robots. Throughout we assume that the

bus is moving at constant speed s and cannot change direction, while the robots are

moving with speed 1. Our analysis is divided into three subsections depending on

the knowledge the robots hâve about the bus. In Subsection 4.3.1 we assume only

that the robots know the direction of movement of the bus, in Subsection 4.3.2 the

robots do not know the direction of movement of the bus but know its speed, while

in Subsection 4.3.3 the robots know neither the direction nor the speed s of the bus.

Known direction of movement of the bus4.3.1

In this subsection the robots know the direction of movement of the bus.

Theorem 7. If the robots know the direction of movement of the bus then the search

can be completed in time
2ir

k(s + 1)

This is optimal.

Proof. (Theorem 7) If the robots know the direction of movement of the bus, say

CCW, then consider the following algorithm.

Search Algorithm (Direction Known).

1. The robots are initially placed on the perimeter of the cycle at distance

from each other.k

2. The robots move in CW direction;

Observe that at the start, the bus is located within one of these k arcs delimited

by the trajectories of the k robots. Therefore one of the robots will meet the bus in

115

its movement against the bus. It is clear that this algorithm takes time

2tt
k(s + 1)'

The proof of the lower bound follows easily from the work of [109] and is

omitted. This proves Theorem 7.

□

4.3.2 Unknown direction of movement but known speed of the

bus

In this subsection we assume that the robots do not know the direction of movement

but know the speed s of the bus.

Theorem 8. If the robots know the speed s of the bus but do not know its direction

of movement then the optimal search time is exactly

1. 2n/ks if s > 1.

2. 2n/k if s < 1 and k is even

3. Furthermore, if s < 1 and k is odd, then the lower bound is 2ix/{k — 1) and the

upper bound is

(a) % for se (^,1)

(b) £ for s < j±ï

Proof. (Theorem 8) We prove separately the upper and lower bounds for ail cases in

the statement of the theorem.

116

Upper bounds. First consider Statement 1. Assume s > 1. Consider the following

algorithm.

Search Algorithm (Direction Unknown, Speed Known s > 1).

1. The robots are initially placed on the perimeter of the cycle at distance

~ from each other and wait motionless for the bus to arrive.

It is clear that the bus will meet one of the robots in time at most

2tr
ks'

This upper bound is valid regardless of the parity of k.

Next consider Statement 2. Recall that in this case k is even. Assume s < 1.

Consider the following algorithm.

Search Algorithm (Direction Unknown, Speed Known s < 1: k even).

1. The robots are initially placed in pairs on the perimeter of the cycle

at distance y from each other;

2. The robots in each pair move in opposite directions.

For k even, the resulting distance between pairs is exactly = y- Observe that

the bus is located between two robots moving against each other. Since these two

robots will meet no later than in time ^

algorithm will be

Y, the resulting running time for this

2tr
k

Finally, consider the case of k odd. We evaluate two algorithms and choose the

best, depending on s. The first option is to use the algorithms for speed larger than

1, i.e. spread the agents evenly and wait until the bus meets you. The meeting time

is 2n/ks in such case, The second option is to use the following algorithm:

117

Figure 4.7: The algorithm for odd number of agents. Here k = 5.

Search Algorithm (Direction Unknown, Speed Known s < 1: k odd)

1. Let X = and Y =k—s k—1

2. k + 1 robots are initially placed in pairs on the perimeter of the cycle

at distance Y from each other; One robot at, a node u neighbouring

a segment of length X is then removed to bring down the number

of robots used to k (see Figure 4.7)

3. The robots in each pair move in opposite direction, the lone robot

moves awav from the X segment.

Observe that if the bus started in a F segment, two robots will be traveling towards

each other from the opposite ends of this segment and will meet it at time at most

Y/2. If the bus started in the X segment, the lone robot Crossing the X segment will

catch it in time at most X was selected so that these two times are equal:

2ir(k-s)~ 27t(1—s)Y 2ir - X k—sT — —
k - 12 k-l

2ir(k — 1)
(k — s)(k — 1) k — s

2z X
1 — s

118

For s > y5 the bound 2ir/k of the waiting algorithm is better, while for s <

this algorithm yields a better bound of

S + Vi(t)
'—s

Vi(t) + s -s

*^>i (t)
'sVi{t)-S/ // /

t = 0
S~Vi(t)

t = 0

Figure 4.8: Sizes of excluded régions. Left: case 5 > 1. Right: case s < 1.

Lower bounds. First consider the lower bound in Statement 1. Assume that s > 1.

Let Vi(t) dénoté the speed of the z-th robot at time t as it is searching for the bus.

R,ecall that always u,(i) < 1 and hence also Uj(f) < s. Further, consider the movement

of the robot at an arbitrary time dt. Let us express how much of the possible initial

bus positions can the robot exclude in time dt, i.e. if the robot does not meet the

bus at time interval dt, then the bus could not hâve started at those positions (see

Figure 4.8). Summing up the size of exluded régions for both bus directions we obt.ain

(s + Vi(t))dt + (s — Vi(t))dt = 2 sdt.

Let T be the time it takes for at least one of the robots to find the bus according

to the execution of an optimal search algorithm. Therefore in time T, the i-th robot

can cover at most, (if at everv time moment it excluded different régions) length

f
J 0

2 sdt = 2 T s

119

Thus, ail k robots taken together can cover at most a length of 2Tks, and only if ail

of them cover different areas. However, this last quantity must be at least 4zr (2n

for clockwise and another 2tt for counterclockwise bus directions, otherwise there is a

trajectory of the bus which will escape the robots’ search). It follows that 2Tks > 4ir,

which yields T > 2ir/ks. This proves the lower bound in Statement 1.

Now consider the lower bound in Statement 2. Assume that s < 1. Let Vi(t)

dénoté the speed of the i-th robot at time t as it is searching for the bus. Using a

similar argument we observe that the z-th robot in time dt covers a length equal to

(s + Vi(t))dt 4- (vi(t) — s)dt = 2Vi(t)dt.

Therefore in time T, the i-th robot covers a length

/ 2Vi{t)dt < 2T,
•/o

where the last inequality is valid since the speed of the robot never exceeds 1, It

follows that k robots can cover a length of at most 2Tk. However, this last quantity

must be at least 4zr (otherwise there is a trajectory of the bus which will escape the

robots’ search). It follows that 2Tk > 47T, which yields T > 2ir/k. This proves the

lower bound in Statement 2.

The lower bound for the case of .s < 1 and odd k follows directly from the lower

bound of Statement 2 by ignoring the last robot.

The proof of Theorem 8 is now complété.

□

Remark 1. We note the open problem arising from the fact that the lower bound in

Theorem 8 is not tight for k odd.

120

4.3.3 Robots know neither the direction nor the speed of the

bus

In this subsection we assume that the robots know neither the direction of movement

nor the speed s of the bus.

Theorem 9. If the robots know neither the direction of movement nor the speed of

the bus then the search can be completed in time

2ir 2tt
— for k even, and ------- for k odd.
/C rZ 1

Moreover, the lower bound is valid regardless of the parity of k.

Proof. (Theorem 9) The algorithm below dépends on the parity of k, the number of

robots. First we look at the upper bound.

Assume k is even. Consider the following algorithm for k even.

Search Algorithm (Direction Unknown, Speed Unknown).

1. The robots are placed along the perimeter in pairs (two robots

per position) and at consecutive distances = X’

2. The two robots in each pair move in opposite directions;

As before this algorithm complétés search in time

Assume k is odd. The algorithm is the same as above by using only k — 1 robots,

which gives the upper bound

The lower bound of 2ix/k for k even and 2ir/(k — 1) for k odd follows from the

lower bounds in Theorem 8 by setting s = 0 (in the case k is odd).

This complétés the proof of Theorem 9.

□
121

The exact answer is not known for k odd. However it is conjectured that the

search time for k robots should be the same as the search time for k — 1 robots.

Remark 2. We note the open problem arising from the fact that the lower bound ïn

Theorem 9 is not tight for k odd.

Additional Remarks and Conclusion4.4

In this chapter we considered a search problem concerning k robots searching for a

non-adversarial, uncooperative agent, called bus, which is moving with constant speed

s along the perimeter of the cycle.

122

Chapter 5

Evacuation from a Disc in the

Presence of a Faulty Robot

Introduction5.1

Searching an environment to find an exit (or target) placed at an unknown location

has been studied extensively in computer science and robotics. The searchers are au-

tonomous robots which (may) cooperate during their search by exchanging messages

so that at least one of them can find the target in minimum possible time. Another

form of search recently introduced in [56] is called évacuation and it has the additional

requirement that ail the robots must go to the exit. Thus, optimality in évacuation

is measured by the time it takes for the last robot to reach the exit, whereas in tra-

ditional search, optimality is measured by the time it takes the first robot to reach

the exit.

In this chapter we consider an évacuation problem for three robots which are able

to communicate wirelessly. Initially, the robots are located at the center of a dise of

radius one and must find an exit located on the circumference of the dise and then

123

gather at the location of the exit. We consider two scénarios in which exactlv one

robot is faulty. In the first scénario, one robot can expérience crash faults, which

prevent it from either communicating or locating the exit. In the second scénario,

one robot can expérience Byzantine faults, which allow it to lie, e.g., to daim to hâve

found an exit-where there is none- or even to fail to report (communicate) the location

of the exit to the other robots. Note that the évacuation problem is considered to

be solved when both non-faulty robots find the exit. For both scénarios, we provide

upper and lower bounds.

Preliminaries and notation5,1.1

There are three robots initially located at the center of a unit dise. The robots can

move with maximum speed 1 (thus, they may stop or change direction at no cost),

and are required to find an exit (whose location is unknown to the robots) located

somewhere on the circumference of the dise and then gather at this location as fast

as possible. A robot can find the exit only when it is in the same location as the exit.

During their search the robots employ a wireless communication model, which means

that they can exchange information instantaneously and at no cost and at any time,

no matter the distance that séparâtes them during their search.

The search problem to be studied is concerned with ail non-faulty robots evacuat-

ing from the (unknown) exit. The search task is complicated by the fact that one of

the three robots, chosen by an adversary, expériences faults, chosen by the adversary

as well. We consider two scénarios. In the first scénario, the faulty robot expériences

crash faults while in the second the robot expériences Byzantine faults. In both cases,

the goal is to minimize the time till the last non-faulty robot reaches the exit.

• CRASH-EVACUATION: A crash fault can be thought of as a passive fault rending:

124

a robot is either unable or incapable to either detect or report the exit when it

reaches it. Thus, such a robot is not expected to find the exit, only non-faulty

robots cari. However, we assume that in other aspects, a faulty robot moves

like a non-faulty robot, and thus non-faulty robots cannot detect which robots

are faulty.

• BYZANTINE-EVACUATION: A Byzantine faulty robot not only can fail to detect

or report the target even after reaching it, it can also make malicious daims

about having found the target when in fact it has not. Given the presence of

such a faulty robot, the search for the target can only be concluded when the

two non-faulty robots hâve sufficient vérification that the target has been found.

Ail the messages being transmitted by the robots are tagged with the robot’s unique

identifier, which cannot be altered.

5.1.2 Related work

Searching an environment to find an exit placed at an unknown location is a well

studied problem in computer science and robotics. The searchers are autonomous

mobile robots that may also possess partial knowledge of their environment. Many

researchers, starting with the séminal work of Bellman [20] and Beck [19], hâve studied

the optimal (length) trajectory traced by a single robot when searching for a target

placed at an unknown location on a line. The aim of the algorithmic designer is

to minimize the compétitive ratio, that is, the supremum, over ail possible target

locations, of the ratio between the distance traveled by the robot until it finds the

exit, and the distance of the exit from the robot’s starting position. For the case

of a single robot on a line, the optimal trajectory uses a zig-zag, doubling strategy

according to which if the robot fails to find the exit after travelling a certain distance

125

in a particular direction it returns to its starting position and doubles its searching

distance in the opposite direction. This trajectory has a compétitive ratio of 9 and

this can be shown to be optimal (e.g., see Baeza-Yates et al. [12]).

Several authors considered the problem of searching in the two-dimensional plane

by one or more searchers, including [11, 12]. The évacuation problem on a unit

dise for multiple robots considered in our présent work is a form of two-dimensional

search that was first considered in [56]. In that paper the authors studied évacuation

algorithms in the wireless and face-to-face communication models. New algorithms

for the face-to-face communication model were subsequently analyzed for two robots

in [611 and later in [32]. The problem has also been considered in other domains, like

triangles and squares in [68]. However, ail these papers concern évacuation only for

non-faulty robots.

One of the novelties of our current work is that we consider the two-dimensional

évacuation problem with fault tolérance. There are numerous studies of fault tolér­

ance in distributed computing, (see, e.g., [142, 168, 176]). Network failures were most

frequently related to static éléments of the networked environment (i.e., nodes and

links) as opposed to its mobile components. Malfunctions of this kind were sometimes

modelled by dynainic alteration of the network [38, 164]. Distributed computation

arising when having some of the mobile robots are faulty were investigated in the con-

text of the problems of gathering [2, 79, 91, 191 [, convergence [31, 47], flocking [207],

and patrolling [58]. Several researchers also investigated the case of unreliable or

inaccurate robot sensing devices, e.g., [48, 145, 1911. Related to our study is also the

research in [58], where a collection of robots, some of which are unreliable, perform

efficient patrolling of a fence. Most relevant to our current study for its perspective

on search and fault tolérance is the research of [67] and [60] which propose search

algorithms for faulty robots that may suffer from crash and Byzantine faults, respec-

126

tively.

5.1.3 Outline and results

An outline of this chapter can be described as follows. Section 5.2 is dedicated to

upper bounds. In Sections 5.2.1 and 5.2.2 we provide évacuation protocols along with

their (worst case) analyses for the CRASH-EVACUATION problem and the BYZANTINE-

Evacuation problem, respectively. Then, in Section 5.3 we give lower bounds for

both problerns. Section 5.4 gives a discussion of possibilities for further research.

The main results of the section are summarized in Table 5.1. Notably, since the

Problem Lower Bound Upper Bound
~ 5.082 (Theorem 12) « 6.309 (Theorem 10)Crash-Evacuation

Byzantine-Evacuation æ 5.948 (Theorem 12) « 6.921 (Theorem 11)

Table 5.1: Comparison of Crash vs Byzantine: the first column gives the type of
fault, the middle column lower bounds, and the right column upper bounds for the
corresponding type of faults.

optimal offline algorithm for both problerns CRASH-EVACUATION and BYZANTINE-

EvACUATION would hâve the robots move directly to the exit at time 1, the time

bounds of Table 5.1 can be also understood as bounds for the compétitive ratio of

the underlving online problerns.

It is interesting to compare the results obtained in our work to the case of non-

faulty robots. It is known (see [56]) that in the case of three non-faulty robots with

wireless communication we hâve a lower bound of 4.159, and an upper bound.of 4.219

for évacuation, while for two non-faulty robots 1 H- 27r/3 -|- \/3 « 4.779 is a tight upper

and lower bound for évacuation.

127

5.2 Evacuation Protocols

In this section we propose évacuation algorithms for crash and Byzantine faults,

respectively.

Evacuating with Crash-Faults5.2.1

The main contribution is as follows.

Theorem 10. CRASH-EVACUATION can be solved in tirne ~ 6.309.

We prove Theorem 10 by identifying the best among a spécial family of natural

algorithms that we call persistent. These are algorithms that force ail robots to

immediately go to the circumference of the dise, and only allow a robot to stop

exploring its segment of the dise (either by changing direction, by becoming idle or

by leaving the circumference entirely) when it receives information about the exit.

Since in this model, a faulty robot can only stay silent, any report about the exit has

to be valid. As such, once the location of the exit is received by a robot, the robot

moves along the shortest chord toward the reported exit, and évacuâtes.

We further classify persistent algorithms in two categories: the symmetric-persistent

that hâve ail the robots begin their exploration in the same direction (either ail clock-

wise or ail counter-clockwise), and the asymmetric-persistent that hâve one robot go

in a direction, and the other two robots go in the opposite direction. It turns out that

the best asymmetric-persistent algorithm outperforms the best symmetric-persistent

algorithm (and also proves Theorem 10). Nevertheless, and as a warm-up, we begin

by providing a tight analysis for the family of symmetric-persistent algorithms.

Lemma 15. The best symmetric-persistent algorithm deploys the three robots at

équidistant points on the disk (at arc-distance 47r/3/, and its performance is 1 +

128

f+ v/3.

Proof. (Lemma 15) Consider a symmetric-persistent algorithm that deploys robots

r'i,r2,r3 so that their pairwise anti-clock-wise distance is /3,7 and a respectively, as

also depicted in Figure 5.1 (where also arcs A,B,C are defined). Without loss of

generality, assume the robots move in clockwise direction.

Figure 5.1: Ail robots move counter-clockwise. Arc A includes r3 and excludes 77;
arc B includes 77 and excludes r2; and arc C includes r2 and excludes r3.

Consider the case where ri is faultv and the robots traverse the arcs depicted in

Figure 5.1. Clearly, there are two cases to consider depending on whether the exit.

is located in one of the arcs A or B, or the exit is located on arc C. If the exit is

located in one of the arcs A or B, then r3 will discover it. If the exit is located in C,

then r-2 will discover it. We say that the exit is either located at a counter-clockwise

arc distance of 0 < x < 7 from r2 if r2 discovers the exit, or a counter-clockwise arc

distance of 0 < y < a + /3 from r3 if r3 discovers the exit. Therefore, the total amount

of time required to find the exit is given by the formula

+ 2 sin) |\ sup (
f0<i<7 v

x + 2sin A) , = l+max{/(7), f(a + /?)},1+max sup
0<y<a+;3

where we define f{x) := x + 2 sin f.

129

Similarly, ifr2 or r3 is faulty, then the algorithm terminâtes in time 1+max {/(y), f{/3 + 7)}

and 1 + max {/(/3), /(a + 7)} respectively. We conclude that the best symmetrie-

adaptive algorithm would choose a, /3,7 (partitioning the perimeter of the circle, of

length 2n) so as to minimize quantity

1 + max {/(a), /(/?), /(7), /(a + 0), /(/? + 7), /(<* + 7), } (5.1)

By choosing a = (3 = 7 = expression (5.1) gives completion time 1 + ^ + x/3 as

promisea.

Finally, we argue that no values of cv, /3 and 7 respecting a, /3 and 7 > 0 and

a + P + 7 = 2ir can improve on this bound. Say, we set a > y- Then it is clear

that either a + /3>:yorQ + 7>^fi since a + /3 + 7 = 2n. Observe that function

a + f3 + 2 810^^ is increasing in a + (3, and when a + P = Y' t^ien (5-1) is upper

bounded by 1 + ^ + \/3. Observe also that function a + 7 + 2 sin is increasing in

a + 7, and when a + 7 = y, then expression (5.1) is upper bounded by 1 + y + V^-

We conciude that function (5.1) strictly increases for a > y- A similar argument

shows that function (5.1) increases if either (3 or 7 exceed y- This complétés the

proof of Lemma 15. □ □

In order to proceed with the analysis of assymetric-persistent algorithms, we need

a simple technical lemma, providing a worst case analysis for a spécial configuration

of healthy searching robots.

Lemma 16. Consider two robots at arc distance 2n — s that are about to explore an

arc of length s moving in opposing directions (toward each other). Assume also that

an exit is located somewhere at the arc of length s. Then, the worst case termination

130

time g (s) is given by the formula

,if s < 27r/32 sin(s/2)

s/2 — 7t/3 + \/3 ,otherwise.
g{s) = <

Proof. (Lemma 16) By symmetry, we may assume that the exit is found after time

x by one of the robots, where 0 < x < s/2 (see Figure 5.2). When the message is

transmitted that the exit is found, the two robots are at the endpoints of an arc of

length s — 2x, hence at chord distance 2sin(s/2 — x). Hence, the time elapsed till both

Exit

1X 2n — s

Figure 5.2: Exit found and reported after time x. Worst case is x — 0, if s < 2tï/3,
and x = s/2 — tt/3 otherwise.

robots reach the exit is x + 2sin(s/2 — x). The claim follows by the monotonicity

of the latest function with respect to x in the interval [0, s/2]. This complétés the

proof of Lemma 16.

□

We are now ready to prove Theorem 10, by determining the optimal asymmetric-

persistent algorithm.

131

Lemma 17. The best asymmetric-persistent algorithm has performance æ 6.309. The

algorithm achieving this hound deploys two robots to the same location on the dise,

which they explore in opposing directions. The third robot is deployed at arc-distance

Po from any of the robots, and starts exploring in opposite direction of the closest

robot, where 80 is the unique root of 3/3/2 + \/3 = 47t/3 + 2sin(/3/2) in the interval

[0, 2tt].

Proof. (Lemma 17) Consider an asymmetric-persistent algorithm that, deploys robots

77,77, r3 as depicted in Figure 5.3, where a, P > 0 (the case P — 0 can be easily seen

to induce worse termination time, while the case a = 0 is identical to 7 = 0).
»'i

K

r 3
;

Figure 5.3: Robots 77 and r2 move counter-clockwise; r3 moves clockwise. A excludes
the starting position of 77 and r3; B excludes the starting position of r2, but includes
the starting position of 77; C includes the starting position of both r2 and r3.

There are a number of cases as to which the faulty robot is and where the exit

is located. Ail the cases are summarized in Table 5.2, where identical cases are also

grouped together.

For each case we will détermine the worst case running time. Then we will choose

a, P, 7 so as to minimize the maximum of ail these running times.

• Case 1. After time 7, robots 77,77 will be at arc distance 7 and they will be

132

cA B
Case 2Case 1 Case 1n
Case 4Case 3 Case 4r2
Case 5Case 5 Case 6

Table 5.2: The columns indicate the location of the exit. The rows indicate the faulty
robot, ri’s initial search position is in B, r2 and r3’s initial search position are in C.

about to explore an arc of length a + (3 = 2n — 7 moving in opposing directions.

Also the exit is located somewhere at the arc of length 2n — 7. Hence, by

Lemma 16, the (worst case) total termination time will be 1 + 7 + g(2ir — 7)

which simplifies to

1 + 7 + 2 sin(7/2) ,if 7 > 47t/3

1 + 7/2 + 27r/3 + \/3 ,otherwise.
e(7) := <

Also, it is easy to see that e(7) is strictly increasing, a fact vve will use later on.

• Case 2. The setup is identical to that of Lemma 16 where the arc that holds

the exit has arc length s = 7. Hence, the (worst case) total termination time

will be 1 + ^(7), which is easily seen to be dominated by e(i) of case 1, for every

0 < 7 < 27r.

• Case 3. This situation is similar to Case 1, where (instead of 7) robots are at

distance (3 + 7, and they are moving toward each other, and in an arc segment

that does not contain the exit. Hence, the worst case termination time is equal

to e(/3 + 7). Since e(-) is strictly increasing, this case dominâtes the cost of case

1.

• Case 4- This situation is similar to Case 2, where (instead of 7) robots are at

distance /3 + 7 and they are moving toward one another and toward the segment

133

that contains the exit. The maximal total required time is therefore given by

the function 1 + g (f3 + 7), which is easily seen to be dominated by e(fi + 7) of

case 3, for ail 0 < fi + 7 < 2n.

• Case 5. We treat the case when r3 is faulty and the exit is either in C or A

together. It is clear that r2 will be the robot that finds the exit. Assume that

the exit is located at distance 0 < x < a+7 from the initial searching position of

r2 (to ensure that the exit is located in A). Then the total required search time

is given by 1 + x + 2sin f, since the distance between 77, r2 remains invariant.

Clearly, in the worst case, the total required search time is 1 + a + 7 + 2sin f.

• Case 6. This case is identical to case 5, where ri will find the exit (instead of

r2, but still fi remains their invariant distance), and where the arc that contains

the exit has length (3 (instead of a + 7). Hence, worst case termination time is

equal to 1 + fi + 2 sin |

It follows that the best asymmetric-persistent algorithm is determined by a, j3,7

that minimize

max{e(/3 + 7), 1 + a + 7 + 2sin(/3/2), 14-/3 + 2 sin(/3/2)} ,

i.e. the costs of cases 3, 5, and 6.

First we show that the promised upper bound is achievable. Indeed, we set 7 = 0,

so that a + /3 = 2n. Now we define fi0, by equating the costs of cases 3,5, i.e. as the

root of the équation e(/3) = 1 + 27T —/3 + 2sin(^/2). Numerical calculations yield that

0o ~ 2.96603, or in other words (by looking at the définition of function e(/3)), 0O is

defined as the solution to the équation 3/3/2 + \/3 = 47r/3 + 2sin(/3/2). We conclude

that 7 = 27r — /3q ~ 3.31716 < 47r/3, which induces worst termination time to be the

134

same in cases 3,5 and equal to 1 + 2tt — Pq + 2sin(/?o/2) ~ 6.30946, as promised.

Now we prove the above choices are optimal. Indeed, if P + 7 > 47t/3, then the

total termination time cannot be better than the situation where cases 3,5 induce the

same cost. Equating the resulting costs, we obtain that P + 7 + 2sin((/3 + 7)/2) =

a + 7 + 2sin(o:/2). Using that P + 7 = 2tt — a, the previous équation yields p —

2sin(/3/2) = a — 2sin(a/2), i.e that a — (3. But then 7 = 0 as well. Since P > 47t/3,

the induced cost, by case 3, is at least 1 + 47t/3 + \/3 « 6.92084.

Finally, assume that /3 + 7 < 47t/3. For anv fixed 7, the total termination time

cannot be better than the situation where cases 3,5 induce the same cost. Equating

the resulting costs, we obtain that (/? + 7)/2 + 27t/3 + \/3 = a + 7 + 2sin(/3/2). Since

27r — P — 7, the optimal choice for P should be /?7 satisfying 3/?7/2 + 7/2 + \/3 =

47r/3 + 2 sin(/37/2). Note that P1 is a fonction of 7, hence differentiating both sides

of last équation with respect to 7, and after elementary calculations, we obtain that

P'y(3/2 — cos(/37/2)) = —1/2. Since /37 > 0, we obtain that cos(/?7/2) < 1 and hence

/?/ > —1. This implies that expression P1 + 7 is strictly increasing in 7, and this

linear term appear in the termination time of case 3. Hence, choosing 7 = 0 is indeed

optimal. This concludes the proof of Lemma 17.

a =

□□

5.2.2 Evacuating in the presence of Byzantine Faults

The main contribution is as follows.

Theorem 11. Byzantine-Evacuation can be solved in time 1+y+v^ « 6.92084.

Proof. (Theorem 11) The analysis relies on Figure 5.4. Assume that ail three robots

Vk, for k G {1,2,3}, execute the main évacuation Algorithm 3.

The idea of the algorithm is for the robots to traverse the circumference of the

disk for a time of 2n/3. Depending on the calls that hâve been received, the robots

135

hâve information to either go to the exit or continue traversing the circuinference of

the disk for another period of time time y. They can now verify conflicting messages

of the correct location of the exit based on the calls that hâve been made by the other

robots so far. Details are being discussed in the sequel.

Algorithm 3: Evacuation with Byzantine Faults
1 Go to the circumference, at position
2 while Tk ’s location is not the same as the exit ’s location do

for 2e do
follow the circumference clockwise

if One robot clairns to hâve found more than one exit then
Continue execution of algorithm as though the robot remained silent

if No information about exit then
for y do

follow the circumference clockwise till exit is either found or
reported. Finish

3

4

5

6

7

8

9

if One robot daims to hâve found the exit then
Go to closest part of the segment that is claimed to contain the exit;
Explore entire segment. Finish.

if Two robots claim to hâve found the exit then
Investigate both exits. Finish.

i5 Iiiform ail robots of the location of the exit.

10
il

12

13
14

First note that one time unit is required to reach the circumference of the dise.

After y additional time units, the entire dise has been explored once. The areas

explored by the robots are contiguous but not overlapping. Observe that a Byzantine

robot that daims to hâve found more than one exit is immediately identified as faulty

by the healthy robots. Both potential exits are ignored, and the algorithm continues

as though the robot had remained silent. If a non-faulty robot finds the exit, it

immediately informs ail other robots, then stop its exploration. Say without loss

of generality that rx is healthy. If rq finds the exit during the first y part of the

exploration, then it stops and is done with the execution of its algorithm, in a time

136

s.

Figure 5.4: The initial searching position for n, r2 and r3 in the Byzantine fault.s
model

at most, 1 + y- If it does not, find an exit during the first y part of the exploration,

then we must consider three cases:

• No exit location reported: If no exit was found, then keep exploring the circum-

ference of the disk for time y. Notice that this means that the exit cannot

be in B. If the exit is in C, then ri has found the exit, and its execution is

complété in a time at most 1 + y. If the exit is in A, then we learn that r3

is Byzantine (otherwise, it would hâve claimed to hâve found the exit during

the first, 1 + y of the execution of the algorithm), and r2 will hâve correctly

identified the location of the exit (Notice that rx needs to finish exploring the

second arc C to make sure that it was r3 that lied.) Say the exit is located at an

arc distance of 0 < x < y from ri’s current position. Then 2sin| is required

for ri to reach the exit. Since this function is monotone in x for x < n, ri can

reach the exit in a total time of at most 1 + y + \/3.

• One exit location reported: If one robot other than rx daims to hâve found the

exit, we consider two situations: (1) the robot is healthy, in which case the exit

is indeed located on the segment where the announcement was made; or (2)

137

the robot is Byzantine, in which case the other two segments hâve been entirely

explored by healthy robots (and are therefore reliably proven to be empty), and

the exit is located on the segment where the announcement was made. Notice

that in both situations, the only possible location for the exit is on the segment

where the announcement was made. If the announcement was made on the

segment C, then r\ explores C immediately, for a total time of at most 1 + ^0

If the announcement was made on the segment A, then ri must first reach one

end of segment A, which requires 2 sin = \/3 (both ends of the segment are

équidistant from ri’s position), then explore the segment, for a total time of at

most 1 + ^ + \/3-

• Two exit locations reported: If both r2 and r3 claim to hâve found an exit,

then we know that one of those two daims is true. ri will investigate both

daims, starting by the closest one. Say r2 daims to hâve found the exit at a

distance x from its initial searching position, and r3 daims to hâve found the

exit at a distance y of its initial searching position. Then r\ must travel an

additional 2 sin | + 2 sin fy

for x = y = for a total time of at most 1 + y + 2\/3.

to reach both exits. This function is maximised

Observe that both robots r2 and r3 execute the same algorithm, and the maximal

time required is therefore the same. The adversary will choose the location of the exit

and the Byzantine robot in such way as to maximise the total time of execution of the

algorithm. Therefore, since \/3 < y, this algorithm solves the évacuation problem

in total time 1 + y + \/3. This complétés the proof of Theorem 11. □ □

138

5.3 Lower Bounds for Evacuation Protocols

This section is devoted to proving our main négative results.

Theorem 12. The following lower bounds are valid.

(a) Problem CRASH-EVACUATION requires time at least 5.082.

(b) Problem BYZANTINE-EVACUATION requires time at least 5.948.

The lower bound proofs for Crash and Byzantine faults, respectively, admit a

unified approach that, we detail in the form of a few preliminary lemmata below.

It is easy to observe that if we consider three robots starting from the center of a

unit dise then for any e > 0, at time 1 + y — e there is an équilatéral triangle inscribed

in the circle not ail of whose vertices hâve been explored by a robot. However, in the

main proof we will make use of an even stronger property of the three robots.

Next we define a useful property P(T), where T > 0 dénotés time, to be used in

the rest of the proof for a lower bound.

Définition 1 (Property P(T)). For any algorithm and any time less than T there

are two points on the circle at distance at least \/3 and each of which was visited at

most once by anyone of the three robots.

Since Property P (T) ensures the existence of two points at distance at least \/3

which hâve been visited at most once by the robots, a simple adversarial argument

will guarantee that T + \/3 is a lowrer bound on évacuation for Byzantine faults (see

Lemma 20), while T + \/3/2 is a lower on évacuation for Crash faults (see Lemma 19).

However, before proving these last statements, we are interested to find a T which

satisfies property P {T).

139

Note that property P(T) is monotone increasing in T, in that P(T) A T' < T =>

P(T'). Hence, the larger the value of the parameter T for which P{T) is valid the

better the lower bound that can be derived.

Lemma 18. Property P(1 + 13\/3/7) is valid.

Proof. (Lemma 18) In the sequel, to help our intuition, we prove first the weaker

statement that P(4) is valid and then we improve this to P(1 + 13\/3/7). Let us

consider some algorithm at time < T, where T = 4, and assume by contradiction

that ail points that hâve been visited at most once by a robot are at distance less

than v/3 from each other. Clearly, ail these points must lie on an arc of length less

than 27t/3. Therefore looking at the complément of this arc we find an arc of length

longer than 4ir/3. In turn, this gives rise to a regular hexagon with five of its vertices

inside this last arc each visited twice by a robot. Therefore these five vertices of

the hexagon hâve been visited ten times in total by the three robots. Since there are

three robots, it follows that at least one robot must hâve visited four of these vertices.

However this is impossible as T = 4. It follows that property P(4) is valid.

Now we dérivé the main resuit of the lemma by showing that P(1 + 13\/3/7)

is valid. We argue as in the previous paragraph, however, instead of selecting five

vertices of a regular hexagon we will choose the five points more carefullv.

As in the proof of P(4) above, let three points A, P, C be vertices of an équilatéral

triangle such that every point in the perimeter of the dise which is visited by at most

one of the three robots is in the arc clockwise between A and B.

In turn, this wdll give rise to five points on the circumference of the dise with each

of its vertices visited twice by a robot; namely choose a point D located between A

and C and a point E between B and C so that the length of arc AD is x and this is

equal to the length of arc EB (the choice of x will be based on maximizing the length

140

Figure 5.5: Evacuation of the second truth telling robot.

of a path visiting these vertices and will be made précisé in the next, paragraph).

Since there are ten visitations by three robots one of the robots rnust hâve visited

four consecutive points at least once.

We will show that visiting four vertices among A, B, C, D, E takes time at least

13\/3/7 « 3.21. If x < 7t/3 then there are 2 candidates for the shortest four-point,

walk, namely

either D-ïA-ïB-ïEovA-^D^-C^E.

Taking into account the lengths of the corresponding chords in these two paths, it,

turns out that we need to maximize the function f(x) defined by the équation below.

f(x) := min{\/3 + 4sin(x/2),2sin(x/2) + 4sin(7r/3 — x/2)}.

It is easilv seen that the maximum of / is equal to 1 + 13 \/3/7 and it is obtained at

x = 4/ arctan(l/(3\/3)). The rest of the reasoning is the same as for T = 4 in the

first paragraph of the proof. This complétés the proof of Lemma 18. □□

Proof. (Theorem 12) Now we are ready to conclude the proofs of the two parts of

141

Theorem 12 on crash and Byzantine faults, respectively.

Lower Bound for Crash-Faults The proof of Part (a) follows as a corollary of

Lemma 19 below.

Lemma 19. If property P (T) holds then we can achieve a lower bound of T + on

évacuation in the presence of a crash-faulty robot.

Proof. (Lemma 19) Identify two points A, B at distance > >/3 each of which was

visited at most once by anyone of the three robots. Say r\ is the robot that visited

neither of those points. Set the exit to be the point farthest away from r^s current

location. Clearly, at least is required for ri to reach the point. This proves

lemma 19.

□

Lower Bound for Byzantine-Faults The proof of Part (b) follows as a corollary

of Lemma 20 below.

Lemma 20. If property P{T) holds then we can achieve a lower bound of T + \/3 on

évacuation in the presence of a Byzantine robot.

Proof. (Lemma 20) Identify two points A, B at distance > \/3 each of which was

visited at most once by anyone of the three robots. Assume without loss of generality

that ri visited A. Then we hâve two possibilities to consider: either ri also visited

B, or (say) r2 visited B.

If ri visited both points, set ri to be Byzantine, then wait until either r2 or r3

visit either A or B. Once this first visit happens, claim that the exit is located at the

other point. The robot that visited the first point will require at least \/3 to reach

the other point, which proves the lemma in this case.

142

If, say, r2 visited point B, then hâve r\ claim that the exit is located at point B,

and r2 claim that the exit is located at point A (which will happen as soon as the

robots reach those points). Then r3 will hâve to visit both points to find the real exit,

since it has no means of distinguishing the reliable robot from the Byzantine robot.

Choose the first point visited by robot r3 not to hâve the exit, and set the exit at the

location of the other point. Then r3 requires at least \/3 to reach the other point,

which proves the lemma in this case as well.

Combining these two cases, this complétés the proof of Lemma 20.

□
If we note the following approximations for the quantities arising in Lemma 18:

1 + 13v/3/7 « 4.21 and 4/arctan(l/(3\/3)) « 0.76, then the proof of Theorem 12 is

complété. □□

5.4 Additional Remarks and Conclusion

In this chapter we considered the évacuation problem on a dise for three robots exactly

one of which has either crash or Byzantine faults. We analyzed the problem in both

fault scénarios and gave lower bounds as well as évacuation algorithms resulting in

upper bounds.

143

Chapter 6

Exploring Graphs with Time

Constraints by Unreliable Collection

of Mobile Robots

Introduction6.1

Alice and Bob is a busy Ottawa couple with three kids Chris, Donald and Eisa. One

day they need to pick up Eisa from the kindergarten, drive Donald to the wrestling

practice and get Chris to the train station. They also need to get groceries, pick

up wine and flowers before each store closes for a dinner party in their house. How

should Alice and Bob share these tasks to minimize the effort and complété each one

before its deadline?

An Ottawa School Bus Company needs to transport pupils to local schools before

the start of their classes. Given the harsh Canadian climate, it is the nonn rather than

exception that a number of buses fail to function on any given day and an adéquate

replacement must be planned in advance. How should the buses aliocate the tasks

144

to successfully conclude the distribution of students while respecting the timeso as

deadlines?

Throughout this chapter, the environment is modelled by a graph that must be

explored by a collection of mobile robots. The graph edges are weighted by numbers,

representing the time it takes to traverse them. Each graph node is assigned a dead-

line, representing the maximal time moment to deliver a service to this node by some

mobile robot. A number of robots may crash during their work. What is the minimal

time needed to service a given graph by a collection of k robots? What is such a time

if we assume that up to / unknown robots may crash during their work?

6.1.1 Preliminaries and notation

We are given a weighted n-node graph G = (V, E) with V its set of vertices, E its set

of edges, and a set of k mobile robots initially placed at a subset of its nodes. The

weight of an edge {vi,Vj} corresponds to the time it takes to be traversed by a robot.

Each node vt of the graph is assigned a deadline A,, which is a positive real number.

Robots walk along the edges of the graph with unit speed. The robots collaborate

attempting to explore the entire graph. However, a subset of up to / robots may turn

out to be unreliable and fail to collaborate. Unreliability refers to the robots which

may be crash faulty in that they suffer from an (unspecified) passive, omission failure

and then stop responding but are otherwise harmless. This subset of unreliable robots

may be chosen by the adversary, which is assumed to know our algorithm beforehand.

The exploration is successful if each graph node is visited before its deadline by at

least one of the reliable robots.

We assume that nodes already explored “do not block passage” and can still be

visited, even after their deadlines hâve expired, by robots on their way to reaching

145

unexplored parts of the graph.

We dénoté by t —> ri(t) the trajectory of the z-th robot as a function of the

time t, where r*(f) dénotés the position of the z-th robot in the graph at time t, for

i — 1,2.... ,k. Note that at a given time t, a robot may be located in the interior of

an edge.

By a schedule we mean a set of functions rj(f),z = 1,2,... ,k which define the

motion of the robots respecting their maximum unit speed. We say that the schedule

explores the graph if for each node u, there exists a robot rj such that rj(t*) = u,, for

some time t* < A,.

Given a time A, we study the decision problern whether the graph may be suc-

cessfully explored before time A. We also look at the optimization problern, that is,

the problern of ensuring that the reliable robots visit every node before expiration

of its deadline, and the last explored node is visited as fast as possible. If for any

schedule, the adversary can find a subset of / unreliable robots, so that any of the

remaining k — f robots fails to visit some node before its deadline, then the instance

of the problern is deemed unsolvable.

6.1.2 Related work

Searching a graph with one or more searchers has been widely studied in the mathe-

matics literature (see, e.g. [125] for a survey). There is extensive literature on linear

search (referring to searching a line in the continuous or discrète model), e.g.

[111 for optimal deterministic linear search and [81] for algorithms incorporating a

turn cost when a robot changes direction during the search. Variants of search using

collections of collaborating robots has also been investigated. The robots can employ

either wireless communication (at any distance) or face-to-face communication, where

see

146

communication is only possible among co-located robots. For example, the problem

of évacuation [61] is essentially a search problem where search is complétée! only when

the target is reached by the last robot. Linear group search in the face-to-face com­

munication model has also been studied with robots that either operate at the same

speed or with a pair of robots having distinct maximal speeds [15, 44]. Linear search

with multiple robots where sonie fraction of the robots may exhibit either crash faults

or Byzantine faults is studied in [67] and [60], respectively.

The (Directed) Rural Postman Problem (DRPP) is a general case of the Chinese

Postman Problem where a subset of the set of arcs of a given (directed) graph is ’re-

quired’ to be traversed at minimum cost. [43] présents a branch and bound algorithm

for the exact solution of the DRPP basée! on bounds computed from Lagrangian Re­

laxation. [52] studies the polyhedron associated with the Rural Postman Problem and

characterizes its facial structure. [100] gives a survey of the directed and undirected

rural postman problem and also discusses applications.

A scheduling problem considered by the research community concerns n jobs, each

to be processed by a single machine, subject to arbitrary given precedence constraints;

associated with each job j is a known processing time aj and a monotone nondecreas-

ing cost function Cj(t), giving the cost that is incurred by the completion of that

job at time t. [170] gives an efficient computational procedure for the problem of

finding a sequence which will minimize the maximum of the incurred costs. Further,

[170] also studies a class of time-constrained vehicle routing and scheduling problems

that may be encountered in several transportation/ distribution environments. In the

single-vehicle scheduling problem with time window constraints, a vehicle has to visit

a set of sites on a graph, and each site must be visited after its ready time but no

later than its deadline. [208] studies the problem of minimizing the total time taken

to visit ail sites. [135] considers the problem of determining whether there exists

147

a schedule on two identical processors that executes each task in the time interval

between its start-time and deadline and présents an 0(n3) algorithm that constructs

such a schedule whenever one exists.

The author of [25] résolves the complexity status of the well-known Traveling Re-

pairman Problera on a line (Line-TRP) with general processing times at the request

locations and deadline restrictions by showing that it is stronglv NP-complete. [178]

considers the problem of finding a lower and an upper bound for the minimum number

of vehicles needed to serve ail locations of the multiple traveling salesman problem

with time Windows in two types of precedence graphs: the start-time precedence

graph and the end-time precedence graph. [141] considers “the pinwheel”, a formal-

ization of a scheduling problem arising in satellite transmissions whereby a piece of

information is transmitted for a set duration, then the satellite proceeds with another

piece of information while a ground station receiving from several such satellites and

wishing to avoid data loss faces a real-time scheduling problem on whether a “useful”

représentation of the corresponding schedule exists.

The work of [198] is very related to our work in that jobs are located on a line.

Each job lias an associated processing time, and whose execution has to start within

a prespecified time window. The paper considers the problems of minimizing (a)

the time by which ail jobs are executed (traveling salesman problem), and (b) the

sum of the waiting times of the jobs (traveling repairman problem). Also related is

the research on Graphs with dynamically evolving links (also known as time varying

graphs) which has been explored extensively in theoretical computer science (e.g.,

see [38, 113, 164]).

148

6.1.3 Outline and results

We consider first the collections of robots which are ail reliable. We start in Section

6.2 with the case of a single robot on a line graph and we give an algorithm finding

the shortest exploration time when the robot’s starting position is given, is arbitrary,

or it is arbitrary but restrained to some subset of line nodes. In Section 6.3 we study

line exploration by a collection of robots at fixed or arbitrary positions on the line.

We observe, that these algorithms may be extended to the ring case, although their

complexity is slightly compromised.

In Section 6.4 we consider the case of unreliable robots. In one case, we show an

unexpected resuit. If k robots are at given fixed initial positions on the line and up to

/ out of k robots may turn out to be crash-faulty, the problern of finding the optimal

exploration time is NP-hard. This resuit holds even if the nodes’ deadlines may be

ignored (e.g. they are infinité for ail nodes). For ail other settings we give algorithms

finding optimal exploration times. In Section 6.5 we extend our approach to the

ring environment. However, the setting which was proven to be NP-hard for fines is

polynomial-time decidable for the ring. Finally, we show that outside the fine and

ring environment the problern becomes hard. For a graph as simple as a star, already

for the case of two robots, the exploration problern turns out to be NP-complete.

Single Robot on the Line6.2

In this section, we présent algorithms that allow a single robot to solve the optimiza-

tion problern on the fine for two cases: when the robot’s initial position is given by

an adversary, and when we hâve the possibility of choosing it ourselves.

We hâve a sequence of nodes n0 < vx < ■ ■ ■ < vn-i on the real fine, and a robot

r initially placed at initial position r(0). We dénoté by vs the starting node of the

149

robot, i.e. r(0) = vs

Observation 1. Without loss of generality we may assume that As+1 < As+2 < • • • <

An_i. Indeed, if Ak > Ak+i for some k > s we can drop node vk from considération,

since visiting vk+i before its deadline implies that vk is also visited before its deadline.

For the same reason, we can also assume that A0 > At > • ■ • > As_i.

Observation 2. Without loss of generality we may consider only the solutions which

consist of sequences that axe increasing and decreasing at alternate nodes, respectively,

i.e., sequences r(0), r(ti), r(t2), • • •, r(tp) such that 0 < r(t2i) < r(t2i+2), and 0 >

r(t2i+1) > r[t2i+f), for ail i in the appropriate range. Moreover, each turning node

r(ti) is located at some node Vj, j = 0,1,..., n — 1.

6.2.1 The snapshot graph

With these observations in mind, we define the fundamental concept of a directed,

layered snapshot graph S which will form the basis of ail subséquent algorithms.

Every node of the snapshot graph S represents a situation when a new node of

the line is visited by the robot for the first time. Consequently, each node of S is

denoted by a pair (i,j) or (i,j), where i < j, [i,j] is the interval of nodes already

explored by the robot and the node of the line marked with the bar (either i or j)

dénotés the current position of the robot.

Observe that the robot can advance its exploration in one of two ways: either by

visiting the next unexplored node to the left of the interval already explored, or by

visiting the next unexplored node to its right. These two possibilities generate the

directed edges between the nodes of the snapshot graph. The weight of such an edge

equals the time needed by the robot to traverse the path between robot positions in

both nodes. Consequently, the nodes (i,j) and (i,j) are placed at layer j — i and the

150

adjacencies in S are only between nodes of consecutive layers. Notice the following

properties of the snapshot graph (see also Fig. 6.1 below):

(0,4)

Figure 6.1: A depiction of a snapshot graph for the case of line L consisting of five
nodes. For clarity, we do not show the edge weights of the snapshot graph S in
Fig. 6.1. Notice that, for any line graph L, the weights of the directed edges (i, j) —ï
(i,j + 1) and {j,k) —» (j + 1 ,k) in its snapshot graph are equal to the weight of
the edge (j,j + 1) in the line graph L. Similarly, the weights of the directed edges
(i — 1 ,j) —» (i,j) and (i,j — 1) -» (i,j) in the snapshot graph S are equal to the
weight of the path i j in the line graph L.

• The graph S has n layers numbered from 0 to n — 1.

• There are n source nodes at the zeroth layer and 2(n — j) nodes at the jf-th

layer for each j = 1,2, •• • , n — 1. Therefore, there are 2 target nodes (on the

(n — l)-th target layer).

• The in-degree and the out-degree of each node is bounded by 2. Therefore, the

number of nodes in the graph is bounded by snapshot graph is 0(n2).

Observe that, the solution to the optimization problem for the line corresponds to

151

the shortest path from the source node representing the initial position of the robot

to one of its target nodes, which respects the time constraints of ail the nodes of L.

Given initial position of the robot6.2.2

We first présent a version of the algorithm which produces the optimal exploration

path, assuming a given starting position vs of the robot on the line. Consider the

snapshot graph S described above. In order to obtain the optimal exploration path

in the snapshot graph respecting the time constraints of L, we generate an all-targets

shortest-time tree T whose root coincides with the node (va,vs) of the snapshot

graph corresponding to the initial position vs of the robot. This is doue in the

following way.

We add a time counter time to every node of S. We set to zéro the time counter

of the initial node (v„,vs) and to oo the initial time counters of ail other nodes of

S. We then visit ail nodes of S layer by layer. Consider a visit of any such node

v, which corresponds to the first visit to node Vj of L. For each predecessor of v in

S we consider the time equaling its time counter augmented by the weight, of the edge

joining it with v. Let Min dénoté the smaller of these values (we take an arbitrary

one in the case of equality). If Min does not exceed the time constraint of Vj (i.e.

Min < Aj) we set the time constraint of v to Min and we add to T the edge from

the corresponding predecessor of v. Otherwise, the time counter of v is set to oo and

we leave v parentless.

Observe that, T is a tree, as each node has at most one parent. One of the two

target nodes of the smaller time counter defines the optimal exploration time and the

path to it in T corresponds to an optimal exploration path of L. Otherwise, there

exists no exploration path respecting the node deadlines of the line graph.

152

For any node v of S we dénoté by new(v) the index of the node of the line

G which is newly explored when arriving at v. More exactly, new(v) = j, such that

either v = (i, j) or v (j, k), for some i < j < k < n — 1.

The following procedure InitStart indicates how to initialize the time counters of

the nodes of S before running the main body of the algorithm. For each node i of

the line L, which may be a starting position of a robot, we put a node (i, i) of S to

the set A. Ail nodes of A hâve their time counters irntialized to 0.

Procedure InitStart(A, S) with A a subset of nodes of S at zeroth layer;

1 for every node v of V (S) \ A do
2 time(v) = oc;
3 for every node v of A do
4 |_ time(v) = 0;

Algorithm 4 describes the pseudo-code that formalizes the previously outlined

construction of a shortest-time tree.

Algorithm 4: Single Robot exploration on the line with given initial position
vs;
Input: A snapshot graph S and the starting position vs of the robot
Output: An exploration tree with optimal exploration times

1 InitStart ({n,,}, S);
2 for layer i = 0 to n — 1 do
3 for each arc v —> w starting at layer i do

t = time(u) + weight(v,w)]
if t < timefw) and t < Anew(w) then

time(w) = t; v = parent{w)\

4

Figure 6.2 illustrâtes the execution of Algorithm 4. The weighted line graph

containing five nodes denoted by integers from 0 to 4 is presented at the top of

Fig. 6.2. The robot is initially placed at node 1. The solid directed edges depict

the shortest-time tree respecting the deadlines (the remaining edges of the snapshot

153

graph whieh are not being used are dashed). Each node has been assigned the time

counter computed by Algorithm 4. The path of the shortest-time tree ending in the

target node represents the optimal trajectory of the robot.

3 1 2 2
O

Au = 7 A^ — 5 A-i — 6 A3 = 11 A,, = 13

(3,3) oo (1.4) oooo

2 2 2 2

* ?
(2.3) oo (2,3) oo (3.4)^ (3.4) oo

2 1
43 4 2

? > A ? f *■
(1.3) ^ (1.3)oo

\ 2 3
(0,2) oo (2.4)00 (2,4)oo

6 6 fi 12 .

X î >" > f
(1.4) 5 (1,4) oo

8 3

f p
(0,4) oo

Figure 6.2: Illustration of the execution of the line-exploration algorithm starting
from node 1.

Theorem 13. Consider a line graph G and a robot placed at its starting position vs.

Algorithm 4 correctly computes an optimal exploration path which satisfies the node

deadlines in 0(n2) time.

Proof. We show that for every node v = (i,j) (resp. v = (■i,j)) of the snapshot

graph the algorithm computes the shortest time time(v) needed to explore the interval

[i,j\ of the line graph. which respects the deadlines of its nodes by the robot starting at

vs, such that i < s < j, and ending its exploration at (resp. Vj). The proof goes by

induction on the layer. The claim is clearly true for any node (i, i) at layer 0. Suppose

154

that the claim is true for ail nodes at layers at most £ — 1. Take any node at level i,

i.e., either v — (i,i + £) or v = (i,i + £) . Consider the shortest time exploration path

ending at v. The immédiate predecessors of v in this path is a node w from layer £ — 1,

for which the shortest-time exploration path is correctly computed by the inductive

hypothesis. The time needed to reach v from w equals the time distance between

new(v) and new(w) at the line graph. If time(v) + weight(w —>• v) < Anew(w) then

the deadline of node new(w) is respected and time(w) is correctly computed lines

4-6 of Algorithm 4, otherwise the exploration time of w remains at time(w) = oo as

set in the InitStart procedure. The 0(n2) time complexity follows directly from the

properties of the snapshot graph. □

Arbitrary starting positions6.2.3

We now consider a variation of the problem when the choice of the starting position

of each robot is left to the user, or is restricted. When this choice is restricted, the

user must choose the starting position of each robot within a subset of nodes of the

line graph. We will show that Algorithm 4 also works in such a setting. We need,

however, modify the call to procedure InitStart in line 1 of Algorithm 4, so that its

first parameter equals the set of ail nodes of the line at which the robot may start.

An example of its execution is presented on Fig. 6.3, where a user may choose any

node of the line graph as the starting position of the robot.

Observe that, for any node w of the snapshot graph, the value of time(w), com­

puted by the algorithm, represents now the shortest exploration time ending at w

starting from any node of the line graph. T is now a forest with the nodes of T,

whose time counter remains at oo isolated in T (having no children or parent in T).

Corollary 1. Let A be the subset of nodes of the line graph which we can choose

155

1

Figure 6.3: Illustration of the execution of the line-exploration algorithm in the case
of arbitrary starting node. For any sub-interval [i,j] of the line, the optimal robot
trajectory exploring [i,j] is given by the cheaper among the solid directed paths
incoming to nodes (i, j) and (i, j).

for the starting position of the robot. Suppose that the first parameter of the call to

procedure InitStart in line 1 of Algorithm 4 (A) equals the set of ail nodes from zeroth

level of S uihich correspond to the nodes of A. Such version of Algorithm 4 correctly

computes in 0(n2) time an optimal exploration path of the line graph, which satisfies

the node deadlines. Moreover, for any sub-interval [i,j] of the line, the algorithm

computes an optimal robot starting position to explore [i,j], the cost (time) of such

exploration and the trajectory of the robot.

The proof of Corollary 1 is almost identical to the case of Theorem 13. Observe

that, in the inductive step, when the parent w of any node v in T is determined,

the root of the connected component of T containing v corresponds to the node of A

156

offering the shortest exploration path.

6.3 Multiple Robots on the Line

In this section we consider line exploration by a collection of k < n mobile robots. As

before we study two variants of the time optimization problem. In the first setting,

the initial positions of the robots are arbitrary, i.e. the algorithm identifies the initial

placement of the robots, which results in the shortest exploration time respecting the

node deadlines. In the second setting, the distinct initial robot positions are given in

ad varice. Both variants are solved using versions of dynamic programming. We start

with the following observation concerning the movement of the robots.

Observation 3. There exists an optimal exploration solution in which the robots

never change their initial order along the line. Moreover, the sub-intervals of the line

explored by different robots are mutually disjoint.

Proof. This is easily proven by observing that any solution that forces two robots to

cross path can be replaced by an equally efficient solution where robots turn around

instead of Crossing path. We also observe that there is no benefit to the exploration

of a single node by multiple robots (by définition of the problem). Therefore, once

two robots are located on adjacent nodes, the only efficient move for each robot is to

move away from the other. □

We use the following notation. Suppose that we need to explore an interval [i,j]

of the line respecting the deadlines of the nodes of [i,j]. For the setting when the

robots are placed at given initial positions, for any pair of indices i,j, such that

0 < i < j < n — 1, we dénoté by ThJ the optimal time of exploration of the interval

[i,j] using the robots placed within [i,j], When the initial placement of the robots

157

is left to the algorithm, for any 1 < r < k, we dénoté by the optimal time of

exploration of the interval [i,j] using r robots which may be placed at arbitrary initial

positions within [i, j].

Given initial positions6.3.1

We start with the following observation

Observation 4. Consider a line and a robot initially placed in its sub-interval [i, j].

Using Algorithm f the values Tiyj for ail 0 < i < j < n — may be computed by the

formula

Tij = min (time{(i,j)),time((i,j))) (6.1)

Let pi dénoté the initial position of robot i. We assume that we hâve 0 < p\ < P2 <

• • • < Pk < n — 1. By Observation 3 we need to partition the line into sub-intervals

[/j,rj] for i = 1.2,... ,k (with l\ = 1 and r^ = n), each one explored by a different

robot. The interval [k,ri\, explored by robot i, contains its initial position p^, but

not an initial position of any other robot. Hence edges (r*, li+1) for i = 1,..., k — 1,

that we call idle edges, are never traversed by any robot. The following formula, is

an obvions conséquence of Observation 3,

max(Tjim_i, Tmj),Tu = (6.2)min
Pq<m<pq + 1

for any i < pqipq+i < j. Indeed, the idle edge (m — 1, m), separating the sub-segments

of operation of robots q and q + 1, is chosen so as to minimize the exploration time

158

of interval

We give first an idea of our algorithm. We generate the snapshot graph, as de-

scribed in Subsection 6.2.2. Let’s use the notation p0 = — 1 and p/t+i = n. For

m = 1,..., k let Sm be the subgraph of S obtained by keeping the nodes (i,j) and

(i,j) such that pm-1 < i,j < pm+i- In the first part of our algorithm, for each robot

m, we run Algorithm 4 with inputs pm and Sm, obtaining the optimal exploration

time Tij of each line sub-interval which contains exactly one starting position

Pi, for i = 1,2,... ,k.

In the second part of the algorithm, we combine exploration times of individual

robots, in order to obtain the optimal exploration time T0j using robots initially

placed within [0,j], subsequently for each j. Let rj dénoté the number of robots

initially placed in interval [0, j] and suppose, that we computed the optimal explo­

ration times of ail intervals, which initially contain robots 1,2,...,rj — 1. When j

exceeds prj we use robot r3 and we détermine the idle edges preceding the intervals of

operation of rj, resulting in the optimal exploration times of intervals, which initially

contain robots 1,2,... ,rj.

Algorithm 5: Exploration algorithm on the line with k robots at fixed initial
positions
Input: Line L with starting robots’ positions pi,P2, ■ • -Pk

1 Construct the snapshot graph S from L\
2 for m = 1 to k do

Exécuté Algorithm 4 with inputs pm and Sm;
for every (i,j) s.t. pp-i <} < j < Pm+i do

!_ Ti>:j

3

4

5

6 for j = p2 to n — 1 do
Toj := max(T0im_i,TmJ);7 min

PTj _, <rn<pTj

Theorem 14. Algorithm 5 in 0(n2) time computes the optimal exploration of the line

159

by k robots initially placed at given initial positions 0<pi<p2<---<Pk<n — 1.

Proof. By Observation 3, we can assume that in an optimal solution, each robot

m opérâtes in an interval [lm,rm], which does not contain an initial position of any

other robot. Hence we hâve pm-1 < lm < Pm and pm < rm < pm+i- Ail pairs of

indices which verify this property are considered in line 4 of Algorithm 5. By

Theorem 13 and Observation 4 each such value Tjj is correctly computed in line 5 of

Algorithm 5.

We now prove that in line 7 the Algorithm 5 correctly computes values T0j for

n — 1. The proof goes by induction on j. For ail 0 < j < P2 the

interval [0, j] contalns a single robot, so the value Tjj is correctly computed in the

first itération of the for-loop in lines 2-5. Consider any j > P2, i.e. when the interval

[0, j] contains more than one robot, and suppose, by the inductive hypothesis, that

the values T0ti correspond to optimal times of exploration of segments [0,î], for ail

i < j . Let T* be the optimal tiine of exploration of interval [0, j], which vérifiés

the claim of Observation 3, i.e. such that there exists an idle edge (m* — 1, m*), and

Prj-i < m* A Pry During such optimal exploration, robots 1,2, ...,rj — 1 explore

interval [0, m* — 1] (using some time T*), and robot rj explores interval [m*,j] (using

max(T*, T2*). By the inductive hypothesis, we hâve T0im* < T*

and < T2*. Consequently, we hâve in line 7 of Algorithm 5

ail j = 0,1,.. * ?

time 7|). Clearly T*

7m* ,j) = max(T*,T2*) = T*(To, Tm,j) A max (7n,m*Toj - mm max
Prj —P^j

m—\i -1?

which concludes the inductive proof.

We consider now the time complexity of Algorithm 5. The snapshot graph S in

line 1 is constructed in 0(n2) time. Observe that since each node of S can only be in

two different subgraphs Si and Sj, we hâve J2i=i |W(-S»)| < 2|V(5)| = 0(n2). Hence,

160

ail the executions of line 3 of Algorithm 5 take 0(n2) amortized time. Similarly, in

line 4 of the algorithm, in ail its executions, it considers 0(n2) nodes of graph S.

Consequently the for-loop of lines 2-5 is executed in 0(n2) amortized time. As each

of 0(n) executions of the for-loop in lines 6-7 takes 0(n) time we conclude the 0{n2)

overall time complexity of Algorithm 5. □

Arbitrary initial positions6.3.2

This algorithm is also based on the dynamic programming approach for computing

the table T-j, for ail 1 < r < k and 0 < i < j < n

the optimal exploration time of the line using k robots. We use the following formula,

which works for any r, rq, r2, where ri, r2 > 1, r = rq + r2 and any 0<i<j<n — 1.

1. The values of represent

T>r) (Tirkl),Tj$) •
y L^r\j ' rv i. J (6.3)rinn max

i<k<j

Üsing Formula (6.3), the values of may be computed in a greedy manner for

the increasing values of r. As Formula (6.3) may be naturally computed in 0(n) time,

the total complexity of such a greedy approach is in 0(kn3).

We give now a more efficient algorithm computing Tq^_i. Observe first, that when

[il,il] C [*2»J2]» then < t£j2- Consequently, when computing T-ÿ, the value

of index k which minimizes mamay be found by a binary search (cf.

function OptTime).

The following observation is easy.

i J

Observation 5. Consider two fixed numbers ri,r2 of robots. If for any interval [i,j}

of the line, Tjj1^ and represent the optimal time of exploration of the interval by

r 1 and r2 robots, respectively, then function OptTime correctly computes in O(logn)

time the optimal exploration time of the interval [i,j] by r = ri + r2 robots.

161

Function OptTime(i, j, ri, r2);
1 if j — i + 1 < rx + r2 then
2 return 0

3 klow — kfâgh — j l
4 while kiow < khigh+1 do

k (k[aw + kfagh) /2,
if > < ï£> then

5

6

Lk = k7 low

else
khi g h k

io return min(max(T/^

8

9

r£L-)> max(^5lU> r£i,i));<• "■

The greedy approach would compute the values of table T^'J for any given r. Our

algorithm below comprîtes the values of when r is a power of 2 not exceeding k.

Then, using formula 6.3, tliey are combined in flog k] steps, to compute the values

of Tÿ.

Algorithm 6: ; Multiple robot line exploration with arbitrary starting po­
sitions
1 Let rb, T'b-i, - ■ ■, ro be the consecutive bits of the binary représentation of k]
2 Compute table T-j ;
3 for m = 0 to b do

r = 2m;
for ail pairs (i,j) such that 0<i<j<n — ldo
_ T-f] = OptTime(f, j,r,r);

4

5

6

7 r = 2fe;
8 for m = 1 to b do

if rb = 1 then9 —m

p = 2b~m;
for ail pairs (i,j) such that 0<i<j<n — ldo

Trj+r) = OptTim e(i,j,p,r);
r = p + r;

10

il

12

13

The following theorem proves the correctness and the complexity of Algorithm 6.

162

Theorem 15. Algorithm 6 computes in 0(n2\ogn\ogk) time the optimal time needed

by k robots to explore the line.

Proof. By Corollary 1 and Formula (6.2) the usage of Algorithm 4 in line 2 of Algo­

rithm 6 correctly computes a single robot optimal exploration time for any sub-interval

of a given line. By induction on r, using Observation 5, lines 3-6 of Algorithm 6 cor­

rectly compute the optimal exploration time of any interval [i,j] using 2m robots, for

any m, such that 2m < r.

From line 1 we hâve k — rb2b + r6_i26-1 + • • • + r02°, where b is the position of

the first 1-digit in the binary représentation of k. We prove that, at the start of each

itération of the for loop from line 8, we hâve

1. r = k — k mod 2b+l m, and

2. the table has been already computed for ail 0 < i < j < n — 1.

The proof goes by induction on m. At the start of the first itération of the loop when

m = 1, we hâve r = 2b. Then indeed the inductive condition is verified as

k-k mod 2b+l 1 = (rb2b+rb_x2b x-i----- hr020)-(rè_i26-1 6-2+.. .+r02°) = 2b = r+rb-2^

and the value of T/j J was computed previously in line 6 of the algorithm.

Suppose that the inductive condition was verified at the beginning of the m-th

itération. Suppose first that rb-m = 0. Then the i-th itération of the loop is empty

but as k mod 2b+1~m = k mod 2b+1~^m+l\ so that at the beginning of the next

itération the value of r remains unchanged, it follows that the inductive condition is

verified.

Consider now the case when rb_m = 1. Then, between the start of the m-th

and the (m + l)-st itération of the loop in lines 10 and 13 we hâve r := r + 2b~m.

163

Consequently, by the inductive assumption, we hâve at the beginning of the (m + l)-st

itération

r = k - k mod 2b+l~m + 2b~m

= (rb 2b + r6_! 2

= (rb 2b + rfc_x 2

6-1 b—m b—m+ • • • + r0 2°) — (rb-m2 + • • • + 7o2°) + 2

) = k-k mod 26+1“(m+1)6-1 b—md-----+ H-m?

The value of the table is then computed in line 12 of the algorithm, which

complétés the induction proof.

From the inductive proof it follows that at the end of the fo-th itération of the for

loop from line 8 (i.e. at the beginning of the non-existing (b+ l)-st itération) we hâve

r = k — k mod 26+1~(6+1) = k, and the table has been computed, which

complétés the proof of the correctness of the algorithm.

In line 2, the table T-j may be computed by Algorithm 4 in 0(n2) time (cf.

Fig. 6.3). As r < 2b, both for loops starting at line 3 and 8 hâve 0(log k) itérations.

Since each internai for loop from line 5 and 11, respectively, has 0(n2) itérations

calling function OptTiine of complexity O(logn) we conclude that Algorithm 6 fin-

ishes in 0(n2 lognlog k) time. This algorithm produces an optimal schedule. It is

not claimed that Algorithm 6 produces an optimal schedule in optimal time. □

164

6.4 Line Exploration with Unreliable Collections of

Robots

In this section we study the exploration problem when some of the robots may be

faulty, i.e., when they fail to realize their exploration tasks. In this case, other robots

need to help, so that eventually every node of the line is visited by some reliable robot

before its deadline. Let there be given a weighted line L, containing n nodes with

given deadlines and a collection of k robots at most / of which may turn out to be

faulty. Consider a schedule for k robots on the line L. We say that the schedule is

/-reliable in time A, if for any choice of / faulty robots by an adversary, each node

of the line is visited by at least one non-faulty robot before its deadline and before

time A.

Note that, in the case when ail robots are reliable, it is never useful to hâve more

than one robot initially placed at the same position. In the case of the presence

of unreliable robots, is may be required. Consequently, we will assume that it is

admissible for more than one robot to start from the same node of the line.

Observation 6. If there can be f faulty robots, then to successfully explore a node v

with deadline A(v), node v must be visited by at least f + 1 robots before time A(u).

It is interesting to look at the decision problem as well as the optimization problem

related to faulty agents. In the decision problem we look for an algorithm, which,

given / and A, vérifiés whether there exists an /-reliable schedule in time A. In the

optimization problem, we need an algorithm, which, for any given /, finds the minimal

time interval A, which admits some /-reliable schedule in time A. Clearly, solving

the optimization problem implies a solution to the decision problem and hardness of

the decision problem implies hardness of the optimization problem. We are interested

165

in both settings - for fixed and for arbitrary initial positions of the robots. As the

case of the arbitrary starting positions is easier we discuss this variant first.

6.4.1 Arbitrary starting positions

We prove the following theorem.

Theorem 16. Let there be given a weighted line L, containing n nodes with given

deadlines and a collection of k robots, which may be put at arbitrary starting positions

on L. For any 0 < f < k the optimization problem involving up to f faulty robots

may be solved in O (n2 log n log [) tirne.

The idea of the proof of Theorem 16 is based on the Observation 6. To obtain an

/-reliable schedule it is sufficient to partition the set of k robots into / + 1 groups

of [jrfï\ robots, where each such group explores the segment using Algorithm 6. We

show that such condition is also necessary. The time complexity follows directly from

Theorem 15.

Proof. Let A be the tirne interval satisfying the claim of the theorem, in the sense

that there exists an /-reliable schedule in time A, while for any A' < A, there does

not exist an /-reliable schedule in time A'. We show first that the necessary and

sufficient condition for the existence of such an /-reliable schedule is the following.

Condition 1: There must exist a schedule involving [yyïj robots (ail reliable), start­

ing at arbitrary initial positions on L, which solves the exploration of L in time A.

Indeed, by Observation 6 each node of the line L must be explored by at least / +1

robots. Therefore we can partition the collection of robots into / + 1 groups, each

group entirely exploring line L. The least numerous of these groups can contain no

more than , robots and this group must explore L. Conversely, if [y^\ robots

166

can explore line L in time A, we can form f + l groups of [j^ï\ robots each, executing

the same schedule and the line is explored by each of / + 1 independent groups.

Bv Theorem 15, Algorithm 6 computes the optimal time of line exploration by a

collection of robots which may be placed at arbitrary initial positions. Consequently,

the output of Algorithm 6 run for r = [yfr[\ robots exactly vérifiés Condition 1. By

Theorem 15, its time complexity is then as stated in the claim of the theorem. □

6.4.2 Given starting positions

Contrary to the case studied in the previous section, when the robots are assigned

to fixcd positions on the line, the existence of faulty robots leads to a problem which

turns out to be NP-hard. In fact, the decision problem is hard, even in the case when

ail individual deadlines may be ignored (they are ail larger than A), i.e. when the

line does not hâve any node time constraints.

More formally we are confronted with the following problem:

Exploration of the Line with Crash Faults (ELCF) problem

Instance: A line L, a multiset P of k starting positions of robots, a number of faults

/ and a time interval A.

Question: Is there an exploration strategy for the collection of k robots, which may

include up to / faulty ones, such that each node of L is visited by at least one

non-faulty robot before time A?

Theorem 17. The ELCF decision problem is NP-complete, and remains so even

if ail numerical variables are polynomially bounded. In other words, it is strongly

NP-complete.

167

The proof uses réduction from the Numerical 3-Dimensional Matching (N3DM),

which is known to be strongly NP-complete. In the N3DM problem we hâve three

sets, each containing the same number of q integers. We need to form q triples, each

one using éléments of different sets, so that the sums of ail triples are the same. We

construct an instance of the ELCF problem by setting / = q — 1 and k = 3q and

we put robots on the line in three groups of q initial positions. We chose the initial

positions of the robots in such a way, that in order to cover the line / +1 times, which

is needed by Observation 6, they must form triples, so that each triple of robots could

explore the entire line. The choice of the initial positions is made carefully, so that

the exploration is possible only if each such triple of robots corresponds to a triple of

integers that is obtained from the solution of the N3DM problem.

The proof of Theorem 17 is split into two lemmas. We first show that the ELCF

decision problem is strongly NP-hard, and then that the ELCF decision problem is

in NP.

Lemma 21. The ELCF decision problem is strongly NP-hard.

Proof. We construct a polynomial-time many to one réduction from the following

strongly NP-hard problem referenced as [SP16] in [147].

Numerical 3-Dimensional Matching (N3DM) problem

Instance: Three multisets of positive integers A = {a*, a2, ■.

{c1; c2,..., Cq}, and an integer S.

Question: Does there exist two permutations of [l,ç] such that for every

1 — i ^ Ç, ûj T b7rg(i) T c-kcO —

^q\ i B {&1, &2, ■ • • , bq}, C• 5

We construct an instance (L,P,/, A) of the ELCF problem from an instance of

N3DM as follows. Let a = maxjG[lj9](oi), b = maxje[1)9](6j) and c maxieji,,] (<*).

Let / = 45 + 6a + 66 -f- 12c and £ = 3/ — 45 — 1. L is the line of length £ (with £ + 1

168

nodes). Each edge of L has weight one. For the sake of simplicity we name i the node

of L at distance i from the leftmost node. We hâve 3q robots each corresponding to

an integer from one of the multisets A, B or C. For each i = 1,2,..., q, we put three

robots: one robot A% at node ai = ai, one robot Bt at node /% = I + 26j and one

robot Q at node 7* = 21 + 4q. The number of faults / is equal to q — 1 and the time

interval A is equal to / — 1. The construction can be done in polynomial time. We

show that the answer to the constructed instance of the ELCF problem is the same

as the answer to the original instance of N3DM.

First, assume that there exists a solution 7T£, txq to the instance of the N3DM

problem. We show that the robots can solve the corresponding instance of the ELC F

problem as follows.

Robot Ai will first move to the left until reaching node 0 (moving distance a*),

and then to the right until reaching node a\ = I — 1 — a, (moving distance I — 1 —ai).

This can be done in time A = / — 1 and thus robot Ai has visited in time ail nodes

in the interval [0, a[].

Robot will first move to the left until reaching node = a\ +1 (moving

distance a* + 2b7rB(i)) and then to the right until reaching node = 21 — \ — 2at —

2b-KB(i) (moving distance / — 1 — a*

and thus it has visited in time ail nodes in the interval [/3^B(q,ÆB(q]-

Robot C^c{i) will first move to the left until reaching node 7^^

(moving distance 2eq + 2+ 4c^c(q) and then to the right until reaching node

7lc(i) = 31 - 1 - 4oi - 46^(q - 4cTc(i) (moving distance / - 1 - 2cq - 267rs(i) - 4c*c(i)).

This can be done in time A = / — 1 and thus it has visited in time ail nodes in the

26^s(j)). This can be done in time A = / — 1

Æs(i) +1

169

interval bic(j),7£c(j)}- Observe that we hâve :

3/ — 1 — 4 aj — — 4c^c(j) = 3/ — 45 — 1 = £

Hence Circ(i) has visited in time ail nodes in the interval [Slc^,£].

A

Figure 6.4: Illustration of robots Ai, B^b^ and Cnc^ visiting ail nodes of the line.

Since [0, a\] U [/3[fi(i), #B(i)] U hlc{i)J] = [0,4 ail nodes of the line hâve been

visited in time by either Ai, B^b^ or Cnc^ for i = 1,2,...,/ + 1. It follows that

every node is visited by at least one non-faulty robot and this is a solution to the

ELCF problem.

Now assume there is a solution to the ELCF problem. Let A = {At !| 1 < i < q},

B = {Bi | 1 < i < g} and C = {Ci \ 1 < i < q}. First, we show the following claim.

Claim 3. The robots in A must, visit node 0 and they are the only robots that can do

it, the robots in ® must visit node I and they are the only robots that can do it and

the robots in C must visit node i and they are the only robots that can do it.

For i = 1,2the robots in positions /3i and 7* are too far (at distance at

least I) to reach node 0 in time smaller than A = / — 1. The robots in positions

are the only ones that can visit the node 0 and since this node must be visited by

/ +1 = q robots, they must ail visit it. Hence, the robots in positions a, cannot visit

170

in time node I which is at distance I of node 0. Similarly, the robots in positions Bi

are the only ones that can visit the node / and since this node must be visited by

/ + 1 = q robots, they must ail visit it. Similarly, the robots in positions y, are the

only ones that can visit the node 21 and so node i (since (. > 21) and since this node

must be visited by / + 1 = q robots, they must ail visit it. This ends the proof of the

claim.

For i — 1,2,..., q, let [0, a£] be the interval of nodes visited by robot Ai, [/5|, /3[]

be the interval of nodes visited by robot Bi and [7], 7[] be the interval of nodes visited

by robot Ci.

Claim 4. There are two permutations 7rjg(z) and TTc(i) such that for i = 1,2..., q,

PlB(i) = ai + 1 and Tic(i) = + L

First observe that if there is a portion of the line that is visited by more than

f + l = q robots, then it means that there are robots from two different sets (for

example, robots from sets A and B). We can then eut the trajectory of some of the

robots in order to decrease the number of robots visiting the same node. So we can

assume without loss of generality that each node is visited by exactly q robots. This

means that there is a partition of the robots into q subsets, such that every node of

the line is visited in time by exactly one robot of each subset. By the first claim, there

is one robot of each set A, ® and C in each of q subsets. Hence, for i = 1, 2,..., q,

there is a subset of robots {Atl BKg^,C%c^)} that must visit ail the nodes of the line.

Since two robots of the same subset do not visit the same node, their intervals are

disjoint. This ends the proof of the claim.

By the second claim, Robot Ai can travel a distance A to search its interval [0, a[].

Observe that Ai starts at distance from node 0. Since A > 3a > 3aj, the optimal

way for robot Ai to search its interval is to first go to the left and then to the right.

171

So, we hâve a\ = / - 1 - a*. By Claim 4, we hâve + 1 = / — a*. Robot

Bng(i) starts at distance a, + 26* from node Since A > 3a + 66 > 3(a-j + 26*),

the optimal way for robot Bi to search its interval is to first go to the left and then

to the right. So, we hâve Æ = / — 2a* — 267re(*) — 1. By the last Claim, we hâve

7tc(j) = /3[+1 = / — 2aj — 267rs(*). Robot starts at distance 2a*+ 267rB(i)+ 4c„.c(;)

from node Since A > 6a + 66 + 12c > 3(2a* + 267rB(*) + 4cOTC(j)), the optimal

*\e(d

way for robot Cj to search its interval is to first go to the left and then to the right.

Observe that since robot rnust visit node we hâve :

31 4a* 46*-sp) 4cffc,(p 1 31 45 1 \ v a* ~\~ S

Hence, t^b^c^d is a solution for the instance of the N3DM problem. □

Lemma 22. The ELCF decision problem is in NP.

Proof. We consider the verifier-based définition of NP. A certificate for the instance of

the ELCF decision problem is simply the set of the trajectories of the k robots. Each

trajectory is of length 0(n2) and hence this certificate is in 0(kn2) and so polynomial

in the size of the instance. We can check in polynomial time (by simulating the

trajectories of the robots) that every node of the line is visited before time A by at

least / + 1 robots. Thus, the certificate can be verifîed in polynomial time. □
An interested reader may observe that, given a configuration of k robots on a line

and a time A, finding what is the maximal number / of robot faults that will still

guarantee the exploration, is also strongly NP-hard.

Interestingly, we show in the following section, that the corresponding problem for

the ring environment (even its optimization version) has a polynomial time solution.

More exactly, we can polynomiallv compute the smallest time needed to explore the

172

ring by k robots placed at given initial positions, when any sub-collection of up to /

robots may turn out to be faulty.

6.5 The Ring Environment

In this section we show that most of the results for the line environment may be

adaptec! to work on the ring. However, the ELCF decision problem turns out to

hâve a polynomial-time solution for the ring.

Suppose that the ring R contains nodes 0,1, 2,..

order around R. Then every node i of the ring has a counterclockwise neighbour (i+1)

mod n and a clockwise neighbour (i — 1) mod n. Consequently, in this section, ail

the ring node indices are implicitly taken modulo n. The approach used for the ring

also starts by creating the snapshot graph, however slightly different from the one

introduced in Section 6.2.1. The nodes of the snapshot graph are of the forin (i,j) and

(i.j), where the node of the ring marked with the bar dénotés the current position

of the robot and [i,j] is the segment of the ring already explored by the robot taken

in the counterclockwise direction from i to j. Observe that, the terminal nodes of

the snapshot graph, i.e. those which correspond to the exploration of every node

of the ring, are now ail nodes (i,j) and (i, j), such that (j — i) mod n — 1, i.e. i

is the counterclockwise neighbour of j. Such snapshot graph also has 0(n2) nodes

of constant degree (see Fig. 6.5 below). Consequently, by using the argument from

Theorem 14 we hâve the following Observation.

n — 1 in that counterclockwise* 7

Observation 7. AU values of Tfor pairs (i,j), such that each pair dénotés a

counterclockwise segment around the ring containing an initial position of at most

one robot, may be computed in 0(n2) time.

Observe that, there exists an optimal solution for the ring with idle edges between

173

(0.0) (1.1) (2,2) (3.3) (4.4)

/\ /\ /\ /\ /\

Figure 6.5: Snapshot graph for a case of ring R of five nodes. Grey nodes and edges
are duplicates of other nodes at the same level (for présentation clarity). Ail last level
nodes correspond to the ring entirely explored.

initial positions of consecutive robots. By removing one such edge the ring becomes

a line-segment. Consequently, most of our observations for Unes may be applied for

rings. In particular, for the case of robots which may be placed at arbitrary initial

positions on the ring, the following Corollary is obvious.

Corollary 2. In 0(n2 lognlogfc) time it is possible to compute the optimal time of

exploration of the ring of size n by a set of k robots, which may be placed at arbitrary

initial positions.

Indeed, it is sufficient to apply Algorithm 6, in which in Unes 5 and 12 we consider

ail pairs (i, j) (rather than pairs for which i < j).

In the case of robots at given initial positions, the adaptation of the line algorithm

to the ring case is also relatively easy, with some compromise on its time complexity.

We hâve the following Proposition.

Proposition 1. T'here exists an O (n2 + logn) algorithm for computing an optimal

exploration of the ring R of size n using k mobile robots, initially placed at fixed

positions on R.

174

Proof. Take a pair i,i +1 of successive robots around the ring R for which the distance

of their initial positions is the smallest. In an optimal exploration on the segment

\pi,Pi+1] of R, one of its edges is idle. Knowing, which such edge is idle, we might

remove it frorn R converting the ring to a line segment. Then the line exploration

Algorithm 5 may be executed for such a segment. As the segment [pj,pi+1] is of size

0(n/k), one possible approach is to try ail the possibilities of making idle every edge

of [pi,Pî+1], each time running Algorithm 5 for the ring segment thus obtained. This

would resuit in overall complexity 0(n3/k).

Consider the following, more careful adaptation of Algorithm 5 for the ring. Its

first part (Unes 1-5) may be run once, computing ail values Tjj in 0(n2) time. Then

the second part (lines 6-7) are repeated 0(n/k) times, i.e. for ail segments 0(n/k)

obtained from R by removal of each possible idle edge between Pi and pi+i. Moreover,

the min computation from line 7, by Observation 5, may be computed in (logn) time.

This results in an 0(y logn) complexity of lines 6-7 hence in O (n2 + ^ logn) ring

exploration algorithm. □

We now consider unreliable robots. Similarly to the line exploration case, every

node of the environment must be explored / + 1 times by different robots before its

deadline.

Consider first the case of robots which may be placed at arbitrary initial positions

on the ring R. Suppose that we dénoté by R^+1^ a ring obtained in the following way.

We eut R at any node v, obtaining a line segment starting and ending by a copy of v.

We merge / + 1 copies of such segment, identifying the starting and the ending nodes

of consecutive copies, obtaining a segment of n(f + 1) nodes. Finally, we identify

both endpoints of such segment obtaining a ring R^+l\ Observe that, covering R

by k robots’ exploration trajectories, so that each node of R is visited / + 1 times,

175

is équivalent to exploring using k robots, so that each of its nodes is visited

(once) before its deadline. As the size of R^+1^ is in 0(nf), from Corollary 2 we get

Corollary 3. Suppose that in an n-node ring we can place at arbitrary initial positions

k robots, which may include up to f faulty ones. In 0(n2f2 log £;(logn + log/)) time

it is possible to compute the optimal time of exploration of the ring.

If the initial positions of the robots on the ring are given in advance, contrary to

the case of the line segment, it is possible to décidé in polynomial time whether there

exists an /-reliable schedule in any given time A.

Proposition 2. Consider a ring R of size n and k robots placed at given initial

positions at the nodes of S. For any given time A there is a polynomially-bounded

algorithm that décidés whether ring R may be explored by its robots within time A.

Proof. Create ring R^+1^ formed of / +1 copies of R, thus obtaining k(f +1) possible

starting positions for k robots. We need to find an exploration of ring in time T

using k robots, which may be placed at k(f+1) starting positions. If such explorations

are possible, then there exists one, for which each robot covers a disjoint segment of

R^+1\ with idle edges separating them. Consider one such edge and remove it from

R(f+1\ obtaining a segment S of size n(f + 1) — 1. The set of k robots explore S in

time T. As the chosen idle edge belongs to some copy of ring R, it is sufficient to

consider n segments 50, Si,..., S„_ i of size n(f + 1) — 1 and check whether one of

them may be explored in time T.

From the corresponding snapshot graph, we compute first for any position i on the

ring R f+l\ the value P(i) denoting the largest position j, in the counterclockwise

direction around R^+1\ such that a robot placed at a permitted initial position

can explore in time T the segment [i, j] of ring R^+lf Consider now an algorithm

176

deciding for any given segment Sm, where rn = 0,1..

explored in time T by some set of k robots, each of which may be placed at any of

the given k(f + 1) starting positions. Starting from the initial endpoint of Sm, for ail

consecutive values of r = 1,2,..., k, we compute the largest index irSm, such that the

initial sub-segment of Sm ending at node irSm may be explored by a set of r robots in

time T. We can prove by induction on r that

n — 1, whether Sm may be')

?s+1 = p(irs +i)
•Jm v ‘Jm '

If igm reaches (or exceeds) the last node of segment Sm, then Sm is explorable by k

robots in time T.

We repeat the procedure for ail segments Sm. As ring is possible to be

explored at time T if and only if one of the segments Sm may be explored in time T

this concludes the proof.

□

6.6 NP-hardness for Star Graphs

We gave exploration algorithms for Unes and rings with time constraints on the nodes.

It is easy to see that the exploration problem is hard for graphs, even for the case of a

single robot and a graph with edges of unit length. Indeed, for a graph on n nodes, by

setting ail its node deadlines to n — 1, an instance of exploration problem is équivalent

to finding a Hamiltonian path. However, we show below that the exploration problem

is hard for graphs as simple as stars and already for two mobile robots.

Proposition 3. The exploration problem respecting node deadlines for given start­

ing positions of the robots is NP-hard. This problem is also NP-hard if the starting

177

positions are arbitrary.

Proof. We accomplish the réduction from the Partition Problem [136].

Partition problem

Instance: A sets of q of positive integers A = {ai, a2,..., aq}

Question: Does there exist a partition of set A into two subsets of equal sum.

We construct a polynornial-time réduction from the Partition problem. Consider

an instance of the partition problem with the set A = {ai, 02,.. aj. Let £i=i a* =

2cr. We design the corresponding instance of the star exploration problem. Consider

a star consisting of q + 4 edges ei, e2,..., eg+4. Let the weight w of each edge be such

that w(ei) = ai, for i = 1,2,..., q, and w(eq+1) = w(eq+2) = w(eq+3)

Take two mobile robots 1 and 2 and put them at the starting positions at the endpoints

of edges eg+i and eg+2, different from the centre of the star. Let the deadline of each

node of the star be A(ej) = 10<7, for i = 1, 2,..., q + 4. Note that the sum of the

weights of ail edges of the star equals 18a. Further, observe that each robot has to

end its route at one of the edges eg+3 and eq+4. Indeed, otherwise one of the edges

eq+3 or eg+4 would be traversed twice (by the same robot in both directions) and the

sum of the trajectories of both robots would exceed 22a. Hence one of the robots

would arrive to its last node after time lia and its deadline would not be met.

' 5

w(eq+4) = 4a.

Consequently, robots must traverse once both edges eg+i and eg+2 at the beginning

of their respective routes and finish the routes by traversing edges eg+3 and eg+4. Each

of the remaining edges e*, for i = 1,2,..., q, must be traversed in both directions and

the sum of the robot route lengths is at least 4 ■ 4a + 1 w{ei) = 20a. In order for

both robots to reach their last nodes within their deadline time of 10a, each of them

must traverse the subset of edges of total length a. This requires solving the given

instance of the partition problem.

178

It is easy to see that the above réduction works not only for the star exploration

from given starting positions, but also from arbitrarv ones. □

6.7 Additional Remarks and Conclusion

We studied the question of exploring graphs with time constraints by collections of

unreliable robots. When ail robots are reliable we used dynamic programming to give

efficient exploration algorithms for line graphs and rings. We showed, however, that

the problem is NP-hard for graphs as simple as stars. We showed how to extend, in

most cases, our solutions to unreliable collections of robots.

One of our results is quite unexpected and important. Suppose that a collection

of robots, placed on a line, may contain an unknown subset of robots (of bounded

size), which turn out to be crash faulty. Verifying whether it is possible to explore

the line within a given time bound is an NP-hard problem. The same problem on the

ring has a polynomial-time solution.

An interested reader may observe that our positive results imply the possibility

to compute the resilience of the configuration, i.e. given a time A, to find the largest

value /, such that there exists a schedule assuring exploration when any set of /

robots turns out to be unreliable.

In this section, we did not actually produce schedules for our robots, but we

only computed the optimal times when such schedules may be completed. However,

from our work it is implicitly clear how to generate such schedules. We proved the

optimality of the schedules but we did not prove the optimality of our algorithms.

One of the possible open problems is to attempt to design algorithms of better time

complexity.

179

Chapter 7

Conclusion and Future Work

The purpose of our thesis was to study various exploration problems using mobile

agents. These problems concern both géométrie and graph environments. We were

especially interested in situations where robots may expérience faults, be they crash

faults or Byzantine faults. We also considered cases where robots had different speeds.

Our contribution covered four spécifie topics. Chapter 3 focused on exploration of

the two-dimensional Euclidean plane by a group of k robots. Three main variations

were studied: in the first variation, robots were ail reliable. In the second variation. /

robots could expérience crash-faults. In the third variation, / robots could expérience

Byzantine faults. For ail variations, we introduced algorithms for two communication

models: wireless and face-to-face. We also discussed upper and lower bounds: ail

those algorithms are asymptotically optimal, with the exception of the byzantine face-

to-face model, where our algorithm is only optimal if 2/ + 1 < k. A natural extension

of our work is to consider collections of robots with possibly distinct visibility ranges.

An interesting open question concerns exploration of polygonal environments using

robots with bounded or unlimited visibility ranges.

In chapter 4, we studied the best way for one or multiple robots to intercept a

180

bus travelling alongside the circumference of a circle of unit length, and we provided

algorithms for various circumstances: when the speed of the bus was either known or

unknown, and when its direction was either known or unknown. Our work also opens

several possibilities for further work, such as:

• bus with non-constant speed (i.e. known only upper and lower bound);

• bus with known movement function (e.g. f{t), where f(t) gives the speed of

the bus at time t), but unknown initial location and direction (determined by

the sign at /(£));

• bus time shift (e.g. knowing that the bus moves according to f(t + to), for some

t0, but not knowing t0)\

• agents with different and possibly non-constant speeds;

• other domains, like trees or arbitrary graphs; and

• different communication model (e.g. face-to-face, or limited visibility).

Chapter 5 studied the problem of évacuation on a dise. We studied two vari­

ations: crash-faults and Byzantine faults under the wireless communication model.

We evaluated the efhciency of the algorithm by measuring the time elapsed before

ail reliable robots gather at the location of the exit. Our work focused on providing

upper and lower bounds for the case of 3 robots, 1 of which is faulty. There are several

challenging open problems, such as:

• closing the gaps between the upper and lower bounds for either robot fault

(either crash or Byzantine) model with wireless communication, as presented in

our work;

181

• exploring other types of communication models (e.g. face-to-face, or even lim­

itée! visibility);

• identifying the upper and lower bounds for more than three robots, / of which

may be faulty, and dérivé asymptotic bounds similar to the results of [56]; and

• exploring robots with different maximal speeds.

Despite the fact that obtaining tight bounds for évacuation problems are known often

to lead to functions which can be a challenge to optimize, the algorithmic insights

derived by this interaction between robot mobility and communication can lead to

rewarding applications of distributed computing in search and évacuation.

In chapter 6, we studied exploration problems in graphs with deadlines on nodes.

We studied various graphs (line, ring, star) with one, then multiple robots. We

discussed the complexity of algorithms that solved this problem, and evaluated the

impact of crash faults on the complexity of the problems. This leaves some open

problems, such as:

• designing algorithms of better time complexity;

• studying the feasibility of the exploration of the star graph by a single robot in

polynomial time;

• the case of a single robot in a tree with node deadlines; and

• identifying the smallest (or simplest) class of graphs for which the exploration

by a single robot is hard.

182

Bibliography

[1] Y. Afek, R. Kecher, and M. Sulamy. Optimal and résilient pheromone utilization

in ant foraging. arXiv preprint arXiv:1507.00772, 2015.

[2] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous

mobile robots. SI AM Journal on Computing, 36(1) :56—82, 2006.

[3] R. Ahlswede and I. Wegener. Search problems. Wiley-Interscience, 1987.

[4] S. Albers and M. R. Henzinger. Exploring unknown environments. SI AM

Journal on Computing, 29(4) : 1164—1188, 2000.

[5] S. Albers, K. Kursawe, and S. Schuierer. Exploring unknown environments with

obstacles. Algorithmica, 32(1): 123—143, 2002.

[6] S. Alpern, R. Fokkink, S. Gai, and M. Timmer. On search games that include

ambush. SI AM Journal on Control and Optimization, 51(6):4544-4556, 2013.

[7] S. Alpern and S. Gai. The theory of search games and rendezvous. Springer,

2003.

[8] E. M. Arkin, M. A. Bender, S. P. Fekete, J. S. B. Mitchell, and M. Skutella.

The freeze-tag problem: how to wake up a swarm of robots. In Proceedings

183

of the thirteenth annual ACM-SIAM symposium, on Discrète algorithms, pages

568-577. Society for Industrial and Applied Mathematics, 2002.

[9] E. M. Arkin, M. A. Bender, and D. Ge. Improved approximation algorithms for

the freeze-tag problem. In Proceedings of the fifteenth annual ACM symposium

on Parallel algorithms and architectures, pages 295-303. ACM, 2003.

[10] S. Azad. Foraging Algorithms for Robotic Swarms. PhD thesis, Concordia

University Montréal, Québec, Canada, 2015.

[11] R. Baeza Yates, J. Culberson, and G. Rawlins. Searching in the plane. Infor­

mation and Computation, 106(2):234—252, 1993.

[12] R. Baeza-Yates and R. Schott. Parallel searching in the plane. Computational

Geometry, 5(3):143—154, 1995.

[13] B. Balamohan, S. Dobrev, P. Flocchini, and N. Santoro. Exploring an unknown

dangerous graph with a constant number of tokens. Theoretical Computer Sci­

ence, 610:169-181, 2016.

[14] R. Baldoni. F. Bonnet, A. Milani, and M. Raynal. On the solvability of anony-

mous partial grids exploration by mobile robots. In International Conférence

On Principles Of Distributed Systems, pages 428-445. Springer, 2008.

[15] E. Bampas. J. Czyzowicz, L. Gasieniec, D. Ilcinkas, R. Klasing, T. Kociumaka,

and D. Pajak. Linear search by a pair of distinct-speed robots. In SIROCCO,

pages 195-211. LNCS, 2016.

[16] E. Bampas, J. Czyzowicz, L. Gasieniec, D. Ilcinkas, and A. Labourel. Almost

optimal asynchronous rendezvous in infinité multidimensional grids. In Inter­

national Symposium on Distributed Computing, pages 297-311. Springer, 2010.

184

[17] E. Bampas, J. Czyzowicz, D. Ilcinkas, and R. Klasing. Beachcombing on strips

and islands. In International Symposium on Algorithms and Experiments for

Sensor Systems, Wireless Networks and Distributed Robotics, pages 155-168.

Springer, 2015.

[18] J. Beauquier, J. Burman, J. Clement, and S. Kutten. On utilizing speed in

networks of mobile agents. In Proceeding of the 29th ACM SIGACT-SIGOPS

Symposium on Principles of distributed computing, pages 305-314. ACM, 2010.

[19] A. Beck. On the linear search problem. Israël Journal of Mathematics, 2(4):221

228, 1964.

[20] R. Bellman. An optimal search. Siam Review, 5(3):274-274, 1963.

[21] M. A. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power of a

pebble: Exploring and mapping directed graphs. In Proceedings of the thirtieth

annual ACM symposium on Theory of computing, pages 269-278. ACM, 1998.

[22] M. A Bender and D. K. Slonim. The power of team exploration: Two robots

can learn unlabeled directed graphs. In Foundations of computer science, 1994

proceedings., 35th annual symposium on, pages 75-85. IEEE, 1994.

[23] S. J. Benkoski, M. G. Monticino, and J. R. Weisinger. A survey of the search

theory literature. Naval Research Logistics (NRL), 38(4):469-494, 1991.

[24] S. N. Bhatt, S. Even, D. S. Greenberg, and R. Tayar. Traversing directed

eulerian mazes. J. Graph Algorithms Appi, 6(2): 157-173, 2002.

[25] S. Bock. Solving the traveling repairman problem on a line with general Process­

ing times and deadlines. European Journal of Operational Research, 244(3):690-

703, 2015.

185

[26] A. Bonato, E. Chiniforooshan, and P. Pralat. Cops and robbers from a distance.

Theoretical Computer Science, 411(43):3834-3844, 2010.

[27] A. Bonato, P. Golovach, G. Hahn, and J. Kratochvü. The capture time of a

graph. Discrète Mathematics, 309(18):5588—5595, 2009.

[28) A. Bonato and R. Nowakowski. The game of cops and robbers on graphs. AMS,

2011.

[29] A. Bonato, P. Pralat, and C. Wang. Pursuit-evasion in models of complex

networks. Internet Mathematics, 4(4):419-436, 2007.

[30] S. Bouchard, Y. Dieudonné, and B. Ducourthial. Byzantine gathering in net­

works. Distributed Computing, 29(6):435-457, 2016.

[31] Z. Bouzid, M. G. Potop-Butucaru, and S. Tixeuil. Optimal byzantine-resilient

convergence in uni-dimensional robot networks. Theoretical Computer Science,

411 (34-36) :3154-3168, 2010.

[32] S. Brandt, F. Laufenberg, Y. Lv, D. Stolz, and R. Wattenhofer. Collaboration

without communication: Evacuating two robots from a disk. In Algorithms and

Complexity - lOth International Conférence, CI AC 2017, Athen, Greece, May

24-26, 2017. Proceedings, 2017.

[33] P. Brass, F. Cabrera-Mora, A. Gasparri, and .1. Xiao. Multirobot tree and graph

exploration. IEEE Transactions on Robotics, 27(4):707-717, 2011.

[34] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative multi­

robot exploration. In Robotics and Automation, 2000. Proceedings. ICRA ’OO.

IEEE International Conférence on, volume 1, pages 476-481. IEEE, 2000.

186

[35] W. Burgard, M. Moors, and F. Schneider. Collaborative exploration of unknown

environments with teams of mobile robots. In Advances in plan-based control

of robotic agents, pages 52-70. Springer, 2002.

[36] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider. Coordinated multi-

robot exploration. IEEE Transactions on robotics, 21(3):376—386, 2005.

[37] D. Caissy and A. Pelc. Exploration of faulty hamiltonian graphs. International

Journal of Foundations of Computer Science, 27(07):809-827, 2016.

[38] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying

graphs and dynamic networks. In Ad-hoc, mobile, and wireless networks, LNCS,

volume 6811, pages 346-359. Springer, 2011.

[39] J. Chalopin, S. Das, and A. Kosowski. Constructing a map of an anonymous

graph: Applications of universal sequences. In International Conférence On

Principles Of Distributed Systems, pages 119-134. Springer, 2010.

[40] J. Chalopin, S. Das, and N. Santoro. Rendezvous of mobile agents in unknown

graphs with faulty links. In International Symposium on Distributed Com,puting,

pages 108-122. Springer, 2007.

[41] J. Chalopin, Y. Dieudonné, A. Labourel, and A. Pelc. Rendezvous in networks

in spite of delay faults. Distributed Computing, 29(3): 187-205, 2016.

[42| B. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. Deterministic

broadcasting in ad hoc radio networks. Distributed computing, 15(l):27-38,

2002.

187

[43] N. Christofides, V. Campos, A. Corberân, and E. Mota. An algorithm for the

rural postman problem on a directed graph. Mathematical Programming Study,

26:155-166, 1986.

[44] M. Chrobak, L. Gasieniec, Gorry T., and R. Martin. Group search on the line.

In Proceedings of SOFSEM 2015, LNCS 8939, pages 164-176. Springer, 2015.

[45] T. H. Chung, G. A. Hollinger, and V. Isler. Search and pursuit-evasion in mobile

robotics. Autonomous robots, 31 (4):299, 2011.

[46] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing

by mobile robots: Gathering. SIAM Journal on Computing, 41(4):829-879,

2012.

[47] R. Cohen and D. Peleg. Convergence properties of the gravitational algorithm

in asynchronous robot Systems. SIAM Journal of Computing, 41(1): 1516—1528,

2005.

[48] R. Cohen and D. Peleg. Convergence of autonomous mobile robots with inae-

curate sensors and movements. SIAM Journal on Computing, 38(1):276—302,

2008.

[49] A. Collins, J. Czyzowicz, L. Gasieniec, A. Kosowski, E. Kranakis, D. Krizanc,

R. Martin, and O. Morales Ponce. Optimal patrolling of fragmented boundaries.

In Proceedings of the twenty-fifth annual ACM symposium on Parallelism in

algorithms and architectures, pages 241-250. ACM, 2013.

[50] A. Collins, J. Czyzowicz, L. Gasieniec, A. Kosowski, and R. Martin. Syn-

chronous rendezvous for location-aware agents. In International Symposium on

Distributed Computing, pages 447-459. Springer, 2011.

188

[51] A. Collins, J. Czyzowicz, L. Gasieniec, and A. Labourel. Tell me where i am so

i can meet you sooner. In International Colloquium on Automata, Languages,

and Programming, pages 502-514. Springer, 2010.

[52] A. Corberân and J. M. Sanchis. A polyhedral approach to the rural postman

problem. European Journal of Operational Research, 79(1):95—114, 1994.

[53] J. Czyzowicz, S. Dobrev, K. Georgiou, E. Kranakis, and F. MacQuarrie. Evacu-

ating two robots from multiple unknown exits in a circle. Theoretical Computer

Science, 2016.

[54] J. Czyzowicz, S. Dobrev, R. Krâlovic, S. Miklik, and D. Pardubskâ. Black hole

search in directed graphs. In International Colloquium on Structural Informa­

tion and Communication Complexity, pages 182-194. Springer, 2009.

[55] J. Czyzowicz, L. Gasieniec, K. Georgiou, E. Kranakis, and F. MacQuarrie. The

beachcombers’ problem: walking and searching with mobile robots. Theoretical

Computer Science, 608:201-218, 2015.

[56] J. Czyzowicz, L. Gasieniec, T. Gorry, E. Kranakis, R. Martin, and D. Pajak.

Evacuating robots from an unknown exit located on the perimeter of a dise. In

DISC 201f. Springer, Austin, Texas, 2014.

[57] J. Czyzowicz, L. Gasieniec, A. Kosowski, and E. Kranakis. Boundary patrolling

by mobile agents with distinct maximal speeds. In ES A, pages 701-712, 2011.

[58] J. Czyzowicz, L. Gasieniec, A. Kosowski, E. Kranakis, D. Krizanc, and N. Taleb.

When patrolmen become corrupted: Monitoring a graph using faulty mobile

robots. In Algorithms and Computation - Proceedings of 26th International

Symposium, ISAAC 2015, pages 343-354, 2015.

189

[59] J. Czyzowicz, L. G^sieniec, A. Kosowski, E. Kranakis, O. Morales-Ponce, and

E. Pacheco. Position discovery for a System of bouncing robots. Information

and Computation, 244:122-133, 2015.

[60] J. Czyzowicz, K. Georgiou, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny,

and S. Shende. Search on a line by byzantine robots. In 27th International

Symposium on Algorithms and Computation, ISAAC 2016, December 12-14,

2016, Sydney, Australia, pages 27:1-27:12, 2016.

[61] J. Czyzowicz, K. Georgiou, E. Kranakis, L. Narayanan, J. Opatrny, and

B. Vogtenhuber. Evacuating robots from a dise using face to face commu­

nication. In Proceedings of CIAC 2015, LNCS, volume 9079, pages 140-152.

Springer, Paris, France, 2015.

[62] J. Czyzowicz, K. Georgiou, E. Kranakis, L. Narayanan, J. Opatrny, and

B. Vogtenhuber. Evacuating using face-to-face communication. Proceedings

CIAC 2015 (also CoRR), abs/1501.04985, 2015.

[63] J. Czyzowicz, D. Ilcinkas, A. Labourel, and A. Pelc. Asynchronous deterministic

rendezvous in bounded terrains. In International Colloquium on Structural

Information and Communication Complexity, pages 72-85. Springer, 2010.

[64] J. Czyzowicz, D. Ilcinkas, A. Labourel, and A. Pelc. Worst-case optimal ex­

ploration of terrains with obstacles. Information and Computation, 225:16-28,

2013.

[65] J. Czyzowicz, A. Kosowski, and A. Pelc. How to meet when you forget: log-

space rendezvous in arbitrary graphs. Distributed Computing, 25(2):165—178,

2012.

190

[66] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black

hole in synchronous tree networks. Combinatorics, Probability and Computing,

16(4) :595—619, 2007.

[67] J. Czyzowicz, E. Kranakis, D. Krizanc, Narayanan. L., and J. Opatrny. Search

on a line with faulty robots. In Proceedings of the 2016 ACM Symposium on

Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-

28, 2016, pages 405-414, 2016.

[68] J. Czyzowicz, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and

S. Shende. Wireless autonomous robot évacuation from équilatéral triangles

and squares. In Ad-hoc, Mobile, and Wireless Networks - lfth International

Conférence, ADHOC-NOW 2015, Athens, Greece, June 29 - July 1, 2015, Pro­

ceedings, pages 181-194, 2015.

[69] J. Czyzowicz, E. Kranakis, and E. Pacheco. Localization for a System of colliding

robots. Distributed Computing, 28(4):245—252, 2015.

[70] J. Czyzowicz, E. Kranakis, D. Pajak, and N. Taleb. Patrolling by robots

equipped with visibilitv. In International Colloquium on Structural Informa­

tion and Communication Complexity, pages 224-234. Springer, 2014.

[71] J. Czyzowicz, A. Pelc, and A. Labourel. How to meet asynchronously (almost)

everywhere. ACM Transactions on Algorithms (TALG), 8(4):37, 2012.

[72] G. D’Angelo, G. Di Stefano, and A. Navarra. How to gather asynchronous obliv-

ious robots on anonymous rings. In International Symposium on Distributed

Computing, pages 326-340. Springer, 2012.

191

[73] G. D’Angelo, A. Navarra, and N. Nisse. Robot Searching and Gathering on

Rings under Minimal Assumptions. PhD thesis, INRIA, 2013.

[74] G. D’Angelo, A. Navarra, and N. Nisse. Gathering and exclusive searching on

rings under minimal assumptions. In International Conférence on Distributed

Computing and Networking, pages 149-164. Springer, 2014.

[75] S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. Map construction

of unknown graphs by multiple agents. Theoretical Computer Science, 385(1-

3):34-48, 2007.

[76] S. Das, P. Flocchini, A. Nayak, and N. Santoro. Distributed exploration of an

unknown graph. In International Colloquium on Structural Information and

Communication Complexity, pages 99-114. Springer, 2005.

[77] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. The power

of lights: Synchronizing asynchronous robots using visible bits. In Distributed

Computing Systems (ICDCS), 2012 IEEE 32nd International Conférence on,

pages 506-515. IEEE, 2012.

[78] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U. Vaccaro.

Asynchronous deterministic rendezvous in graphs. Theoretical Computer Sci­

ence, 355(3):315-326, 2006.

[79) X. Défago, M. Gradinariu, S. Messika, and P.R. Parvédy. Fault-tolerant and

self-stabilizing mobile robots gathering. In Proceedings of DISC 2006, pages

46-60, 2006.

[80] B. Degener, B. Kempkes, T. Langner, F. Meyer auf der Heide, P. Pietrzyk,

and R. Wattenhofer. A tight runtime bound for synchronous gathering of

192

autonomous robots with limited visibility. In Proceedings of the twenty-third

annual ACM symposium on Parallelism in algorithms and architectures, pages

139-148. ACM, 2011.

[81] E. D. Demaine, S. P. Fekete, and S. Gai. Online searching with turn cost.

Theoretical Computer Science, 361 (2) :342—355, 2006.

[82] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown envi­

ronment. In Proceedings of FOCS, pages 298-303. IEEE, 1991.

[83] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. In Foundations

of Computer Science, 1990. Proceedings., 31st Annual Symposium on, pages

355-361. IEEE, 1990.

[84] D. Dereniowski, Y. Disser, A. Kosowski, D. Paj^k, and P. Uznanski. Fast col­

laborative graph exploration. Information and Computation, 243:37-49, 2015.

[85| D. Dereniowski, R. Klasing, A. Kosowski, and L. Kuszner. Rendezvous of

heterogeneous mobile agents in edge-weighted networks. In International Col-

loquium on Structural Information and Communication Complexity, pages 311-

326. Springer, 2014.

[86] D. Dereniowski and A. Pelc. Drawing maps with advice. Journal of Parallel

and Distrihuted Computing, 72(2):132—143, 2012.

[87] A. Dessmark, P. Fraigniaud, D. R. Kowalski, and A. Pelc. Deterministic ren­

dezvous in graphs. Algorithmica, 46(1):69—96, 2006.

[88] A. Dessmark and A. Pelc. Optimal graph exploration without good maps.

Theoretical Computer Science, 326(l-3):343-362, 2004.

193

[89] G. A. Di Luna, P. Flocchini, S. G. Chaudhuri, F. Poloni, N. Santoro, and

G. Viglietta. Mutual visibility by luminous robots without collisions. Informa­

tion and Computation, 2016.

[90] Y. Dieudonné and A. Pelc. Anonymous meeting in networks. Algorithmica,

74(2):908-946, 2016.

[91] Y. Dieudonné, A. Pelc, and D. Peleg. Gathering despite mischief. ACM Trans­

actions on Algorithms (TALG), 11 (1): 1, 2014.

[92] Y. Dieudonné, A. Pelc, and V. Villain. How to meet asynchronously at poly­

nomial cost. SIAM Journal on Computing, 44(3):844-867, 2015.

[93] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with little

memory. In Proceedings of the thirteenth annual ACM-SIAM symposium on

Discrète algorithms, pages 588-597. Society for Industrial and Applied Mathe-

matics, 2002.

[94] S. Dobrev, P. Flocchini, R. Krâlovic, P. Ruzicka, G. Prencipe, and N. Santoro.

Black hole search in common interconnection networks. Networks, 47(2) :61—71,

2006.

[95] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole

in arbitrary networks: Optimal mobile agents protocols. Distributed Computing,

19(1):1—99999, 2006.

[96] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration as graph

construction. IEEE transactions on robotics and automation, 7(6):859-865,

1991.

194

[97] C. A Duncan, S. G. Kobourov, and V. S. Kumar. Optimal constrained graph

exploration. ACM Transactions on Algorithms (TALG), 2(3):380-402, 2006.

[98] C. Dutta, G. Pandurangan, R. Rajaraman, Z. Sun, and E. Viola. On the

complexity of information spreading in dynamic networks. In Proceedings of the

Twenty-Fourth Annual ACM-SIAM Symposium on Discrète Algorithms, pages

717-736. SIAM, 2013.

[99] M. Dynia, J. LopuszaNski, and C. Schindelhauer. Why robots need maps. In

International Colloquium on Structural Information and Communication Com­

plexity, pages 41-50. Springer, 2007.

[100] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part ii: The

rural postman problem. Operations research, 43(3):399-414, 1995.

[101] Y. Elor and A. M. Bruckstein. Uniform multi-agent deployment on a ring.

Theoretical Computer Science, 412(8-10):783—795, 2011.

[102] S. Elouasbi and A. Pelc. Deterministic rendezvous with détection using beeps.

International Journal of Foundations of Computer Science, 28(01):77—97, 2017.

[103] Y. Emek, T. Langner, D. Stolz, J. Uitto, and Wattenhofer R. How many ants

does it take to find the food? Theor. Comput. Sci., 608:255-267, 2015.

[104| Y. Emek, T. Langner, D. Stolz, J. Uitto, R. Wattenhofer, and I. Technion.

Towards more realistic ants.

[105] Y. Emek, T. Langner, J. Uitto, and R. Wattenhofer. Ants: Mobile finite State

machines. arXiv preprint arXiv:1311.3062, 2013.

[106] Y. Emek, T. Langner, J. Uitto, and R. Wattenhofer. Solving the ANTS prob­

lem with asvnchronous finite State machines. In Automata, Languages, and

195

Programming - J^lst International Colloquium, ICALP 2014, Copenhagen, Den-

mark, July 8-11, 2014, Proceedings, Part II, pages 471-482, 2014.

[107] P. Fazli, A. Davoodi, and A. K. Mackworth. Multi-robot repeated area coverage.

Autonomous robots, 34(4):251-276, 2013.

[108] O. Feinerman and A. Korman. Memory lower bounds for randornized collab­

orative search and implications for biology. In International Symposium on

Distributed Computing, pages 61-75. Springer, 2012.

[109] O. Feinerman, A. Korman, S. Kutten, and Y. Rodeh. Fast rendezvous on a cycle

by agents with different speeds. In Distributed Computing and Networking - 15th

International Conférence, ICDCN 2014, Coimbatore, India, January 4-7, 2014-

Proceedings, pages 1-13, 2014.

[110] O. Feinerman, A. Korman, Z. Lotker, and J. S. Sereni. Collaborative search on

the plane without communication. In Proceedings of the 2012 ACM symposium

on Principles of distributed computing, pages 77-86. ACM, 2012.

[111] M. 3. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed

consensus with one faulty process. Journal of the ACM (JACM), 32(2):374-382,

1985.

[112] R. Fleischer and G. Trippen. Exploring an unknown graph efficiently. In Euro

pean Symposium on Algorithms, pages 11-22. Springer, 2005.

[113] P. Flocchini. Time-varying graphs and dynamic networks. In 2015 Summer

Solstice: 7th International Conférence on Discrète Models of Complex Systems,

2015.

196

[114] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Computing without commu-

nicating: Ring exploration by asynchronous oblivious robots. In International

Conférence On Principles Of Distributed Systems, pages 105-118. Springer,

2007.

[115] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Remembering without mem-

ory: Tree exploration by asynchronous oblivious robots. In International Collo-

quium on Structural Information and Communication Complexity, pages 33-47.

Springer, 2008.

[116] P. Flocchini, D. Ilcinkas, and N. Santoro. Ping pong in dangerous graphs:

Optimal black hole search with pebbles. Algorithmica, 62(3-4):1006-1033, 2012.

[117] P. Flocchini, M. Kellett, P. Mason, and N. Santoro. Map construction and

exploration by mobile agents scattered in a dangerous network. In Parallel &

Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on

pages 1-10. IEEE, 2009.

[118] P. Flocchini, B. Mans, and N. Santoro. Exploration of periodically varying

graphs. In International Symposium on Algorithms and Computation, pages

534-543. Springer, 2009.

[119] P. Flocchini, B. Mans, and N. Santoro. On the exploration of time-varying

networks. Theoretical Computer Science, 469:53-68, 2013.

[120] P. Flocchini, G. Prencipe, N. Santoro, and G. Viglietta. Distributed computing

by mobile robots: uniform circle formation. Distributed Computing, pages 1-45,

2014.

197

[121] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of

asynchronous robots with limited visibility. Theoretical Computer Science,

337(1):147- 168, 2005.

[122] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern

formation by asynchronous, anonymous, oblivious robots. Theoretical Computer

Science, 407(1-3):412-447, 2008.

[123] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous of two

robots with constant memory. In SIROCCO, pages 189-200. Springer, 2013.

[124] F. V. Fomin, P. A. Golovach, J. Kratochvü, N. Nisse, and K. Suchan. Pursuing

a fast robber on a graph. Theoretical Computer Science, 411(7): 1167-1181,

2010.

[125] F. V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed

graph searching. Theoretical Computer Science, 399(3) :236-245, 2008.

[126] P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and Pelc A. Collective tree explo­

ration. Networks, 48(3): 166-177, 2006.

[127] P. Fraigniaud and D. Ilcinkas. Digraphs exploration with little memory. In

Annual Symposium on Theoretical Aspects of Computer Science, pages 246-

257. Springer, 2004.

[128] P. Fraigniaud. D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration

by a finite automaton. Theoretical Computer Science, 345(2-3):331-344, 2005.

[129] P. Fraigniaud, D. Ilcinkas, S. Rajsbaum, and S. Tixeuil. Space lower bounds for

graph exploration via reduced automata. In International Colloquium on Struc-

198

tural Information and Communication Complexity, pages 140-154. Springer,

2005.

[130] P. Fraigniaud, A. Korman, and Y. Rodeh. Parallel exhaustive search without

coordination. arXiv preprint arXiv: 1511.004 86, 2015.

[131| P. Fraigniaud and A. Pelc. Deterministic rendezvous in trees with little mem-

ory. In International Symposium on Distributed Computing, pages 242-256.

Springer, 2008.

[132] P. Fraigniaud and A. Pelc. Decidability classes for mobile agents comput­

ing. In Latin American Symposium on Theoretical Informatics, pages 362-374.

Springer, 2012.

[133] A. Frieze, M. Krivelevich, and P. Loh. Variations on cops and robbers. Journal

of Graph Theory, 69(4):383-402, 2012.

[134] D. W. Gage. Randomized search strategies with imperfect sensors. In Optical

Tools for Manufactunng and Advanced Automation, pages 270-279. Interna­

tional Society for Optics and Photonics, 1994.

[135] M. R. Garey and D. S. Johnson. Two-processor scheduling with start-times and

deadlines. SI AM Journal on Computing, 6(3):416-426, 1977.

[136] M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. W.

H. Freeman New York, 2002.

[137] L. Gqsieniec, R. Klasing, R. Martin, A. Navarra, and X. Zhang. Fast periodic

graph exploration with constant memory. Journal of Computer and System

Sciences, 74(5):808-822, 2008.

199

1138] L. Gasieniec, A. Pelc, T. Radzik, and X. Zhang. Tree exploration with logarith-

mic memory. In Proceedings ofthe eighteenth annual ACM-SIAM symposium on

Discrète algorithms, pages 585-594. Society for Industrial and Applied Mathe-

inatics, 2007.

[139] M. Ghaffari, C. Musco, T. Radeva, and N. Lynch. Distributed house-hunting

in ant colonies. In Proceedings of the 2015 ACM Symposium on Principles of

Distributed Computing, pages 57-66. ACM, 2015.

[140] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The polygon exploration

problem. SI AM Journal on Computing, 31 (2) :577—600, 2001.

[141] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel. The pinwheel: A real-

time scheduling problem. In System Sciences, 1989. Vol. II: Software Track,

Proceedings ofthe Twenty-Second Annual Hawaii International Conférence on,

volume 2, pages 693-702. IEEE, 1989. Also, in Handbook of Scheduling Algo­

rithms, Models, and Performance Analysis, CRC Press, 2004.

[142] J. Hromkovic, R. Klasing, B. Monien, and R. Peine. Dissémination of informa­

tion in interconnection networks (broadcasting & gossiping). In Combinatorial

network theory, pages 125-212. Springer, 1996.

[143] E. Huus and E. Kranakis. Rendezvous of many agents with different speeds in

a cycle. In Ad-hoc, Mobile, and Wireless Networks - lfth International Con­

férence, ADHOC-NOW 2015, Athens, Greece, .lune 29 - July 1, Proceedings,

pages 195-209, 2015.

[144] T. Izumi, Y. Katayama, N. Inuzuka, and K. Wada. Gathering autonomous

mobile robots with dynamic compassés: An optimal resuit. In International

Symposium on Distributed Computing, pages 298-312. Springer, 2007.

200

[145] T. Izumi, S. Souissi, Y. Katayama, N. Inuzuka, X. Défago, K. Wada, and M. Ya­

mashita. The gathering problem for two oblivious robots with unreliable com­

passés. SIAM Journal on Computing, 41 (1):26—46, 2012.

[146] Y. Jin, Y. Liao, A. A Minai, and M. M. Polycarpou. Balancing search and target

response in cooperative unmanned aerial vehicle (uav) teams. IEEE Transac­

tions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36(3):571-587,

2005.

[147] D. S. Johnson. The NP-completeness column: an ongoing guide. Journal of

Algorithms, 6(3):434-451, 1985.

[148] B. Kalyanasundaram and K. R. Pruhs. Constructing compétitive tours from

local information. Theoretical Computer Science, 130(1) : 125—138, 1994.

[149] M. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment:

An optimal randomized algorithm for the cow-path problem. Information and

Computation, 131 (1) :63—79, 1996.

[150] A. Kawamura and Y. Kobayashi. Fence patrolling by mobile agents with distinct

speeds. In Distributed Computing, volume 28:2, pages 147-154, 2015.

[151] R. Klasing, A. Kosowski, and A. Navarra. Taking advantage of symmetries:

Gathering of many asynchronous oblivious robots on a ring. Theoretical Com­

puter Science, 411(34-36):3235-3246, 2010.

[152] R. Klasing, E. Markou, and A. Pelc. Gathering asynchronous oblivious mobile

robots in a ring. Theoretical Computer Science, 390(l):27-39, 2008.

[153] R. Klein. Walking an unknown Street with bounded détour. Computational

Geometry, 1(6) :325—351. 1992.

201

[154] .J. Kleinberg. On-line search in a simple polygon. In Proceedings of SODA,

pages 8-15. SIAM, 1994.

[155] J. M. Kleinberg. The localization problem for mobile robots. In Foundations

of Computer Science, 199f Proceedings., 35th Annual Symposium on, pages

521-531. IEEE, 1994.

[156] S. Koenig, C. Tovey, and W. Halliburton. Greedy mapping of terrain. In

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International

Conférence on. volume 4, pages 3594-3599. IEEE, 2001.

[157] A. Kolling and S. Carpin. Pursuit-evasion on trees by robot teams. IEEE

Transactions on Robotics, 26(1):32—47, 2010.

[158] A. Korman and Y. Rodeh. Parallel linear search with no coordination for a

randomly placed treasure. arXiv preprint arXiv:1602.04952, 2016.

[159] D. R. Kowalski and A. Malinowski. How to meet in anonymous network. The-

oretical Computer Science, 399(1-2) : 141—156, 2008.

[160] E. Kranakis, D. Krizanc, F. MacQuarrie, and S. Shende. Randomized ren-

dezvous algorithms for agents on a ring with different speeds. In Proceedings of

the 2015 International Conférence on Distributed Computing and Networking,

ICDCN 2015, Goa, India, January pages 9:1-9:10, 2015.

[161] E. Kranakis, D. Krizanc, and P. Morin. Randomized rendez-vous with limited

memory. In Latin American Symposium on Theoretical Informa,tics, pages 605-

616. Springer, 2008.

1162] E. Kranakis, E. Krizanc, D. Markou, A. Pagourtzis, and F. Ramirez. Two

different speeds sufRce for rendezvous in arbitrary graphs. In Proceedings of

202

the 43rd International Conférence on Carrent Prends in Theory and Practice of

Computer Science (SOFSEM) January 16-20, Lero-Limerick, Ireland, 2017.

[163] S. Kreutzer and S. Ordyniak. Digraph décompositions and monotonicity in

digraph searching. In International Workshop on Graph-Theoretic Concepts in

Computer Science, pages 336-347. Springer, 2008.

[164] F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic

networks. In Proceedings of the forty-second ACM symposium on Theory of

computing, pages 513-522. ACM, 2010.

[165] A. Kumar, S. Sharma, R. Tiwari, and S. Majumdar. Area exploration by

flocking of multi robot. Procedia Engineering, 41:377-382, 2012.

[166] S. Kwek. On a simple depth-first search strategy for exploring unknown graphs.

In Workshop on Algorithms and Data Structures, pages 345-353. Springer, 1997.

[167] L. Lamport. The weak byzantine générais problem. Journal of the ACM

(JACM), 30(3):668-676, 1983.

[168] L. Lamport, R. Shostak, and M. Pease. The byzantine générais problem. ACM

Transactions on Programming Languages and Systems (TOPLAS), 4(3):382-

401, 1982.

[169] I. Lamprou, R. Martin, and S. Schewe. Fast two-robot disk évacuation with

wireless communication. In International Symposium on Distributed Comput­

ing, pages 1-15. Springer, 2016.

[170] E. L. Lawler. Optimal sequencing of a single machine subject to precedence

constraints. Management science, 19(5):544-546, 1973.

203

[171] C. Lenzen, N. Lynch, C. Newport, and T. Radeva. Trade-offs between sélection

compiexity and performance when searching the plane without communication.

In Proceedings of the 2014 ACM symposium on Principles of distributed com­

puting, pages 252-261. ACM, 2014.

[172] A. Q. Li, F. Amigoni, and N. Basilico. Searching for optimal off-line exploration

paths in grid environments for a robot with limited visibility. In A A AI, 2012.

[173] A. Lôpez-Ortiz and S. Schuierer. On-line parallel heuristics, processor schedul-

ing and robot searching under the compétitive framework. Theoretical Computer

Science, 310(1-3):527-537, 2004.

[174] A. Lopez-Ortiz and G. Sweet. Parallel searching on a lattice. In Proceedings of

the 13th Canadian Conférence on Computational Geometry, 2001.

[175] T. Luczak and P. Pralat. Chasing robbers on random graphs: Zigzag theorem.

Random Structures & Algorithms, 37(4):516-524, 2010.

[176] N. A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[177] N. Megow, K. Mehlhorn, and P. Schweitzer. Online graph exploration: New

results on old and new algorithms. Theoretical Computer Science, 463:62-72,

2012.

[178] S. Mitrovic-Minic and R. Krishnamurti. The multiple traveling salesman prob-

lem with time Windows: Bounds for the minimum nurnber of vehicles. Simon

Fraser University TR-2002-11, 2002.

[179j C. O’Brien. Solving ANTS with loneliness détection and constant memory. PhD

thesis, Massachusetts Institute of Technology, 2015.

204

[180] C. H Papadimitriou and M. Yannakakis. Shortest paths without a map. In

Proceedings of ICALP, LNCS, volume 372, pages 610-620. Springer, 1989.

[181] A. Pelc. Deterministic rendezvous in networks: A comprehensive survey. Net­

works, 59(3):331-347, 2012.

[182] M. Potop-Butucaru, M. Raynal, and S. Tixeuil. Distributed computing with

mobile robots: an introductory survey. In Network-Based Information Systems

(NBiS), 2011 lfth International Conférence on, pages 318-324. IEEE, 2011.

[183] G. Prencipe. Impossibility of gathering by a set of autonomous mobile robots.

Theoretical Computer Science, 384(2-3) :222—231, 2007.

[184] G. Prencipe and N. Santoro. Distributed algorithms for autonomous mobile

robots. In Fourth IFIP International Conférence on Theoretical Computer

Science-TCS 2006, pages 47-62. Springer, 2006.

[185] O. Reingold. Undirected connectivity in log-space. Journal of the ACM

(JACM), 55(4):17, 2008.

[186] R.. Reischuk. A new solution for the byzantine générais problem. Information

and Control, 64(l-3):23-42, 1985.

[187] I. M. Rekleitis, G. Dudek, and E. E. Milios. Multi-robot collaboration for robust

exploration. In Robotics and Automation, 2000. Proceedings. ICRA ’OO. IEEE

International Conférence on, volume 4, pages 3164-3169. IEEE, 2000.

[188] N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, and F. Amblard.

Time-varying graphs and social network analysis: Temporal indicators and met-

rics. arXiv preprint arXiv:1102.0629, 2011.

205

[189] W. Sheng, Q. Yang, J. Tan, and N. Xi. Distributed multi-robot coordination

in area exploration. Robotics and Autonomous Systems, 54(12):945—955, 2006.

[190] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun,

and H. Younes. Coordination for multi-robot exploration and mapping. In

AAAI/IAAI, pages 852-858, 2000.

[191] S. Souissi, X. Défago, and M. Yamashita. Gathering asynchronous mobile robots

with inaccurate compassés. Principles of Distributed Systems, pages 333-349,

2006.

[192] Langner T., Uitto .J., Stolz D., and Wattenhofer R. Fault-tolerant ANTS. In

Distributed Computing - 28th International Symposium, DISC 2014, Austin,

TX, USA, October 12-15, 2014■ Proceedings, pages 31-45, 2014.

[193] A. Ta-Shma and U. Zvvick. Deterministic rendezvous, treasure hunts and

strongly universal exploration sequences. In Proceedings of the eighteenth an-

nual ACM-SIAM symposium on Discrète algorithms, pages 599-608. Society for

Industrial and Applied Mathematics, 2007.

[194] C. J. Taylor and D. J. Kriegman. Vision-based motion planning and exploration

algorithms for mobile robots. IEEE Transactions on robotics and Automation,

14(3)417-426, 1998.

[195] H. Thimbleby. The directed chinese postman problem. Software: Practice and

Expérience, 33(11):1081—1096, 2003.

[196] S. Thrun. A probabilistic on-line mapping algorithm for teams of mobile robots.

The International Journal of Robotics Research, 20(5):335-363, 2001.

206

[197] S. Thrun et al. Robotic mapping: A survey. Exploring artificial intelligence in

the new millennium, 1:1-35, 2002.

[198] J. N. Tsitsiklis. Spécial cases of traveling salesman and repairman problems

with time Windows. Networks, 22(3):263—282, 1992.

[199] L. A. Tychonievich and J. P. Cohoon. Coalescing swarms of limited capacity

agents: Meeting and staying together(without trust). IAENG International

Journal of Computer Science, 39(3):254-260, 2012.

[200] G. Viglietta. Rendezvous of two robots with visible bits. In International Sym­

posium on Algorithms and Experiments for Sensor Systems, Wireless Networks

and Distributed Robotics, pages 291-306. Springer, 2013.

[201] M. L. Visinsky, J. R. Cavallaro, and I. D. Walker. Robotic fault détection and

fault tolérance: A survey. Reliability Engineering & System Safety, 46(2): 139-

158, 1994.

[202] I. A Wagner, Y. Altshuler, V. Yanovski, and A. M. Bruckstein. Cooperative

cleaners: A study in ant robotics. The International Journal of Robotics Re­

search, 27(1) : 127—151, 2008.

[203] G. Wang, M. J. Irwin, H. Fu, P. Berman, W. Zhang, and T. La Porta. Opti-

mizing sensor movement planning for energy efficiency. ACM Transactions on

Sensor Networks, 7(4) :33, 2011.

[204] K. Wehmuth, A. Ziviani, and E. Fleury. A unifying model for representing

time-varying graphs. arXiv preprint arXiv:lf02.3f88, 2014.

207

[205] M. Yamashita and I. Suzuki. Characterizing géométrie patterns formable by

oblivious anonymous mobile robots. Theoretical Computer Science, 411(26-

28):2433-2453, 2010.

[206] B. Yamauchi. Frontier-based exploration using multiple robots. In Proceedings

of 2nd international conférence on Autonomous agents, pages 47-53. ACM,

1998.

[207] Y, Yang, S. Souissi, X. Défago, and M. Takizawa. Fault-tolerant flocking for a

group of autonomous mobile robots. Journal of Systems and Software, 84(1) :29—

36, 2011.

[208] G. H. Young and C.-L. Chan. Single-vehicle scheduling with time window

constraints. Journal of Scheduling, 2(4) : 175—187, 1999.

[209] R. Zlot, A. Stentz, M. B. Dias, and S. Thayer. Multi-robot exploration

trolled by a market economy. In Robotics and Automation, 2002. Proceed­

ings. ICRA ’02. IEEE International Conférence on, volume 3, pages 3016-3023.

con-

IEEE, 2002.

208

