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Abstract

We introduce and study search problems for collections of mobile robots. Through- 

out our work, we consider cases where robots may expérience various type of faults, 

which may hinder the progress of the algorithm and require novel ways to solve the 

problem. We first discuss the search and exploration problem in the Euclidian plane, 

where a group of k robots with various maximal speeds, among which up to / may 

be faulty, hâve to discover a target and gather at its location, using various com­

munication models. We then discuss the problem of search for a non-adversarial, 

uncooperative robot on the cycle, based on various prémisses regarding the informa­

tion available to the robots. We also consider the évacuation problem on the dise 

in the presence of faulty robots. In the évacuation problem, the robot finding a tar­

get point (exit) on the boundary of the environment must communicate it to other 

robots, which then ail need to move to the exit (evacuate). Finally, we consider the 

problem of exploring various types of graphs in the presence of time constraints: each 

node has to be visited before a certain moment in time for the algorithm to succeed. 

We discuss the complexity of the exploration, based on the number of robots, the 

presence or absence of faults, and the topology of the graph.

For ail problems, we introduce algorithms to solve the problem, and discuss their 

efficiency.
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Chapter 1

Introduction

1.1 Motivation

The area of search problems using mobile robots1 is well-studied in the realm of 

theoretical computer science, from classical algorithms such as Dijkstra’s algorithm 

to find the shortest path to the famous Traveling Salesperson Problem. Those hâve 

direct real-world applications, be it to find the fastest route for a car trip, as is 

implemented by software such as Google Map, or the best way for a postman to 

complété their itinerary. The case of exploration of geometrical environments is itself 

well-studied and has a plethora of real-world applications, ranging from patrolling of 

an area using unmanned aerial vehicles (UAV) to exploration of new environments, 

such as the exploration by the Mars Rover. It is but a natural extension to this setting 

to consider faulty agents: robots in charge of any given exploration may stop working, 

or provide unreliable data at any time. Under more adversarial conditions, a robot 

may be hacked by an adversary and start acting erratically or contrary to the intention 

of its original programming. As such, building for resilience is a necessary form of 

Tn this thesis, the words robot and agent are used indiscriminately.
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précaution in many real-world areas. This is reflected in our theoretical world by 

discussing problerns where agents may expérience crash-faults and Byzantine faults.

Objective and Methodology1.2

The purpose of this thesis will be to study various exploration problerns using mobile 

agents. For these problerns, we intend to find algorithms that solve the problem using 

optimal resources (time, number of steps, number of required agents, percentage of 

the agents that hâve to be reliable, etc.), and to establish their efficiency using lower 

and upper bound proofs.

An algorithm solves an exploration problem by producing a schedule that will be 

followed by the agents. This schedule lias to ensure that the objective of the problem 

is met (be it complété exploration, rendezvous, évacuation, etc.), with respect to the 

constraints of the problem. Our goal is to achieve efficiency, which can be defined as 

minimal usage of time, of the agent’s energy, or in certain cases, a compétitive ratio, 

which is defined as the ratio between the total cost required by an on-line algorithm 

and the best-case cost to solve the problem offline. We focus on the correctness of 

produced schedules, and on the efficiency (and sometimes optimality) of said sched- 

ules. We also discuss the correctness and efficiency of the algorithms producing those 

schedules.

The methods used to offer these solutions include oracle and adversarial argu­

ments, proofs of NP-Completeness by Karp réduction, proofs by induction and con­

tradiction and proof by exhaustive considération of ail possible cases.
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1.3 Models Studied

The work presented in this thesis revolves around a few main concepts: mobile agents, 

searching, tolérance to faults and communication.

Ail our work is related to the use of mobile agents. In this thesis, we use the terms 

"mobile agent" and "robot" indiscriminately. It refers to an entity modelled as a sin­

gle point in the géométrie environment. A mobile agent has four main capabilities: 

(1) movement: an agent may traverse the environment in which it is located; (2) per­

ception: a mobile agent is equipped with sensors that allow it to register information 

located in its environment; (3) computation: an agent can make independent calcu­

lations. In this thesis, we assume that an agent has access to unlimited memory; (4) 

communication: depending on the model, an agent is either equipped with a device 

similar to a broadeasting station, that allows it to communicate wirelessly with every 

other agent, or a simple device that allows it to exchange information when at some 

time it is located at the same point of the environment as another agent.

The main objective of the algorithms presented here is to search the environment 

for a given target. In a part of our work, this target is mobile, and in other parts, 

it is motionless. The search may be conducted by multiple robots, and it may be 

required that every robot complétés the search for the algorithm to accomplish its 

goal. Search differs from exploration in the sense that it does not alwavs require for 

a single robot or a group of robots to visit every point of the environment (which 

may, in some cases, be infinité). A part of our work focuses on évacuation, which is 

sometimes referred to as group search.

Every part of this work includes robots that may be faulty, to a various degree. 

Three main type of faults are discussed in this paper: uncooperative, crash faults 

and byzantine faults. An uncooperative robot is completely outside the control of

11



the algorithm, and though it will not try to hamper the progress of the algorithm, 

it will not help it in any way either. Specifically, we use the concept of bus: a non- 

adversarial, uncooperative mobile agent that moves at its maximum speed along a 

predefined route. It does not deviate from its path, nor slow down for any reason. 

A robot experiencing crash fault may stop working at any moment, as chosen by 

an adversary. The robot may stop moving, communicating, searching or listening 

to other robots’ communication. It, does not, however, gain additional capabilities, 

such as the capability to transmit false information. A robot experiencing byzantine 

faults is similar to a robot experiencing crash faults, but also has the capability to 

transmit false information, deviate from its assigned path, stop exploring or stop 

communicating. When communicating, however, wc consider that ail information 

given by the robot is signed to its identity. It is therefore impossible for the robot to 

prétend to be another agent. A byzantine robot will act in an adversarial way, trying 

to hamper the progress of the algorithm to the best of its capacities. The objective 

of the algorithms presented in this thesis is to build a resilience to those faults. We 

use the term "reliable robot" to refer to a robot that does not expérience faults.

Our algorithms consider two main communication models: the face-to-face (F2F) 

and the wireless communication model. In the face-to-face communication setting, 

agents may exchange any amount of information at no cost (instantaneous commu­

nication), but orilv when at the same moment in time they are located at the saine 

point in the environment, whereas in the wireless communication setting, agents may 

exchange any amount of information at no cost (instantaneous communication), re- 

gardless of the respective location of the agents in the environment.
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1.4 Thesis Results

The purpose of this thesis is to study various exploration problems using a group of k 

mobile robots. We are particularly interested in the scénario where some robots are 

unreliable, i.e. f < k robots may expérience faults.

In the first part of our work, a collection of k robots, initially placed at the origin 

of the plane, are searching for a stationary target. Each robot has a unit visibility 

range and can move no faster than its maximal speed Vi, for i = 1,2,...,k. We 

consider two communication models: wireless, in which a message sent by a robot 

can reach ail other robots immediately, regardless of their positions, and face-to-face, 

in which robots can only exchange information when they are meeting. We assume 

that up to f < k robots may be unreliable. We consider two models of unreliability: 

(1) crash faults, in which we deal with an absence of some of the robots’ capacities 

(communication, perception, motion, etc.), and (2) Byzantine faults, in which the 

robots may be malicious in that they may lie (e.g., transmitting wrong information).

The goal is to minimize the group search (also known as évacuation) time, which 

is equal to the time of arrivai to the target of the last reliable robot. This is expressed 

as a function of d, the distance from the origin to the target.

Our proposed algorithms for crash faults are asymptotically optimal in d in both 

communication models. For byzantine faults, we propose an algorithm which is 

asymptotically optimal for the wireless model. In the F2F model, we propose two 

algorithms: the first one has a compétitive ratio of 2, while the second algorithm 

works for k > 2/ + 2 and is optimal when the robots’ speeds are ail equal.

Our results also extend to the traditional search model which measures the time

of arrivai to the target of the first reliable robot.

The second part of our work assumes that k robots are placed on the perimeter of
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a unit (radius) disk at a position of our choosing and can move with maximum speed 

1. A non-adversarial, uncooperative agent, called bus is moving with constant speed 

s along the perimeter of the cycle. The robots are searching for the moving bus but 

do not know its exact location; during the search the robots can move anywhere on 

the perimeter of the cycle and can communicate wirelessly. We give algorithms which 

minimize the worst-case search time required for at least one of the robots to find the 

bus.

We obtain the following results for one robot. 1) If the robot knows the speed s 

of the bus but does not know its direction of movement then the optimal search time 

is shown to be exactly la) 27t/s if s > 1, lb) 47r/(s + 1) if 1/3 < s < 1, and le) 

27t/(1 — s) ifs < 1/3. 2) If the robot does not know neither the speed nor the direction 

of movement of the bus then there is an algorithm with search time 27r(l + Tpj), and 

for any e > 0, it is possible to assign a speed s to the bus such that no algorithm can 

achieve rendezvous with the bus in time less than 47T —

We also generalize these results to k > 2 robots and prove analogous tight up- 

per and lower bounds depending on the knowledge the robots hâve about the speed 

and direction of movement of the bus, provided that the robots can communicate 

wirelessly.

The third part of our work considère the évacuation problem on a circle for three 

robots, at most one of which is faulty. The three robots search for an exit placed at 

an unknown location on the perimeter of the circle. During the search, robots can 

communicate wirelessly at any distance. The goal is to minimize the time it takes 

the last non-faulty robot to reach the exit.

Our main contributions are two highly efficient and non intuitive évacuation pro- 

tocols for the non-faulty robots to reach the exit in two well-studied fault-models, 

Crash and Byzantine. Moreover, we complément our positive results bv lower bounds
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in both models. A summary of our results reads as follows:

• Case of Crash Faults: Lower Bound sa 5.082; Upper Bound ~ 6.309,

• Case of Byzantine Faults: Lower Bound « 5.948; Upper Bound « 6.921,

For comparison, it is known (see [56]) that in the case of three non-faulty robots with 

wireless communication we hâve a lower bound of 4.159, and an upper bound of 4.219 

for évacuation, while for two non-faulty robots 1 + 27t/3 + v/3 ~ 4.779 is a tight upper 

and lower bound for évacuation.

In the fourth part of this thesis, a graph environment must be explored by a 

collection of mobile robots. Sonie of the robots, a priori unknown, may turn out 

to be unreliable. The graph is weighted and each node is assigned a deadline. The 

exploration is successful if each node of the graph is visited before its deadline by a 

reliable robot. The edge weight corresponds to the time needed by a robot to traverse 

the edge. Given the number of robots which may crash, is it possible to design an 

algorithm, which will always guarantee the exploration, independently of the choice 

of the subset of unreliable robots by the adversary? We find the optimal time, during 

which the graph may be explored. Our approach permits to find the maximal number 

of robots, which may turn out to be unreliable, and the graph is still guaranteed to 

be explored.

We concentrate on line graphs and rings, for which we give positive results. We 

start with the case of collections involving only reliable robots. We give algorithms 

which find the optimal times needed for exploration when the robots are assigned to 

fixed initial positions as well as when such starting positions may be determined by 

the algorithm. We extend our considération to the case when some number of robots 

may be unreliable. Our most surprising resuit is that solving the line exploration 

problem with robots at given positions, which may involve crash-faulty ones, is NP-
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hard, while the same problem has polynomial solutions for a ring and for the case 

when the initial positions of the robots on the line are arbitrary.

The exploration problem is shown to be NP-hard for star graphs, even when the 

collection consists of only two reliable robots.

1.5 Thesis Outline

In chapter 2, we introduce a survey of the literature concerning mobile agents. We fur- 

ther divided the chapter according to the main focus of the papers surveyed, starting 

with general search and exploration problems. We then discuss search and explo­

ration using multiple robots. Next, we survey rendezvous and gathering games, then 

introduce papers where the environment may change over time. We then présent a 

section attempting to introduce the most important variations of problems involving 

search by multiple robots, and discuss the state of the art for those problems. We 

finally discuss some practical applications of this research.

In chapter 3, we introduce the exploration of the plane with multiple robots. We 

first discuss the case of non-faulty robots, then extend our model to include crash- 

faults, and finally, byzantine faults. For ail cases, we discuss both the face-to-face and 

the wireless communication model. Algorithms as well as upper and lower bounds 

are presented for ail cases.

In chapter 4, we discuss the problem of searching a ring for a non-adversarial, 

uncooperative mobile agent. We first discuss the case of search using a single robot, 

then généralisé this situation to multiple robots, providing algorithms and bounds 

based on various conditions (prior knowledge of the speed of the bus relative to the 

speed of the robot; prior knowledge of the direction; number of robots at our disposai).

In chapter 5, we discuss the problem of evacuating a dise in the presence of faulty
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robots. We consider the case of 3 robots, one of which can be either crash faulty or 

byzantine faulty, under the wireless communication model. For both fault models, 

we provide proofs of lower bounds, and non-trivial efficient algorithms.

In chapter 6, we discuss the problem of exploring graphs with time constraints by 

unreliable robots. We start by providing an algorithm based on dynamic programming 

to offer a solution to the problem of a single robot on the line, then apply the same 

logic to multiple robots on the line, for both given and arbitrary starting positions. 

We then discuss the case where some robots may expérience crash faults. We discuss 

the ring environment and prove that such an exploration on graphs as simple as the 

star graph in NP-hard.

In chapter 7, we conclude and discuss open problems and interesting variations to 

the situations we presented in this thesis.

1.6 Publications

Publications upon which this thesis is based

Referred Conférence Papers

1. J. Czyzowicz, M. Godon, E. Kranakis, A. Labourel, E. Markou. Exploring 

Graphs with Time Constraints by Unreliable Collections of Mobile Robots. In 

Proceedings of SOFSEM 2018, 44th International Conférence on Current Trends 

in Theory and Practice of Computer Science, January 29 - February 2, 2018, 

Krems an der Donau, Austria, Springer LNCS.

2. J. Czyzowicz, S. Dobrev, M. Godon, E. Kranakis, T. Sakai, .1. Urrutia. Search- 

ing for a Non-adversarial, Uncooperative Agent on a Cycle. In proceedings of 

Algosensors 2017, 13th International Symposium on Algorithms and Experi-
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ments for Wireless Networks, September 7-8, Vienna, Austria, Springer LNCS.

3. J. Czyzowicz, K. Georgiou, M. Godon, E. Kranakis, D. Krizanc, W. Rytter, 

M. Wlodarczyk. Evacuation from a Disc in the Presence of a Faulty Robot. In 

proceedings of SIROCCO 2017, 19-22 .lune 2017, Porquerolles, France, Springer

LNCS.

Submitted papers

1. J. Czyzowicz, M. Godon, E. Kranakis, A. Labourel, Searching the Plane with

Faulty Robots, to appear.
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Chapter 2

Survey of Literature

2.1 Introduction

The exploration problem has been central in the world of theoretical computer science 

for the past üfty years. This problem has known plenty of variations. In its most 

simple form, a single robot is exploring either a géométrie environment or a graph 

in search of a treasure hidden somewhere within the environment. A very similar 

problem is often to explore the environment in its totality. In this survey, we will 

consider the exploration problem and some of its most popular variations.

2.2 Searching and Exploration by a Single Robot

The simplest variation of the exploration problem considers a single robot in an 

environment that can either be a graph (e.g. ring, tree, general graph) or a géométrie 

environment (two-dimensional space, sometimes represented as polygons or a grid) is 

tasked with the exploration of the totality of this environment, sometimes with the 

purpose of drawing a map of this environment.
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In some variations of this problem, the entire map of the environment can’t be 

drawn, and the knowledge of the environment is then given by a so-called quotient 

graph (a quotient graph regroups ail nodes in sets of équivalence classes, which in 

certain variations of the exploration problem is the most information a robot exploring 

an unknown graph environment can gather). In some instances of the problem, this 

exploration includes the traversai of ail edges of a graph; in others, the visitation of ail 

nodes is sufficient. In a géométrie environment, a robot has an additional attribute: 

visibility. This visibility can either be unitary (or otherwise limited) or unlimited.

The efficiency of algorithms proposed use mostly two metrics: the nurnber of edges 

traversed, and the amount of memory required by a robot.

Graph Environment2.2.1

In the graph environment, the exploration problem is usually resolved when the robot 

has explored ail edges of the graph. The common measure of efficiency of a given 

algorithm is its compétitive ratio: the ratio between the amount of edge traversais re­

quired by an agent following the algorithm and the minimal amount of edge traversais 

required by an robot with perfect knowledge of the environment.

In [83], a single robot has for goal the exploration of a directed, strongly connected 

graph. The robot is able to differentiate a new point from one it has already visited, 

and can correctly identify the degree of each node it visits. The efficiency of the 

algorithm is measured by the ratio of edge traversed without prior knowledge of the 

graph compared to the minimal amount of edge traversais required with knowledge 

of the graph. The authors of [83] provide a tight bound of 2 for Eulerian graphs, 

and prove that this ratio is unbounded when the deficiency (the smallest number of 

edges that hâve to be added to the graph in order to make it Eulerian) of the graph is
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unbounded. The authors also provide an algorithm with a number of edge traversais 

that is exponential in the deficiency of the graph.

A different measure of the efficiency of the algorithm is used in [112], where the 

efficiency of a robot exploring ail edges of a directed, strongly connected graph is mea- 

sured using a compétitive ratio between the number of edges traversed by the robot 

and the minimal number of edge traversais required by a robot with full knowledge 

of the graph. The authors claim to introduce the first deterministic online algorithm 

with a compétitive ratio polynomial in d the deficiency of the graph.

[88| considers the task of exploring ail edges of an undirected connected graph by 

a single robot traversing as few edges as possible. The quality of a given algorithm 

is measured by the ratio between the number of edges traversed and the minimal 

number of edge traversais given knowledge of the graph. Such a ratio is referred to 

as the overhead of the algorithm for a given class of graphs when maximised over ail 

possible starting nodes of the graph for this given class of graphs. The paper considers 

three possible scénarios: in the first one, the robot knows nothing about the graph; 

in the second, the robot has an isométrie map of the graph without spécification 

about the starting point; and in the third one, the robot is also aware of its starting 

point. For various classes of graphs, an algorithm is provided, often with an optimal 

overhead.

The first sub-exponential algorithm to explore an unknown environment repre- 

sented as a directed, strongly connected graph is provided in [4], where an algorithm 

with a bound of d°(logd^m is provided, with d the deficiency of the graph and m the 

number of edges. The authors also show that their algorithm is optimal by proving a 

matching lower bound for this variation of the exploration problem.

Simple Depth-First search (DFS) algorithms hâve been used to explore graphs in 

[166], with the number of edge traversais used as a measure for the efficiency of the
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algorithm. They establish an upper bound of min(mn,dri2 + m) edge traversais, with 

d being the defieiency of the graph, m edges and n nodes.

DFS algorithme are also used in [128], where a robot has to solve the exploration 

problem (traverse ail edges) in an unlabelled graph with no prior knowledge of the 

graph. In particular, there is no knowledge about the size of the graph. It is shown 

that a robot with constant memory K is unable to explore certain graphs with a 

maximum degree d\d > 3 and K+1 nodes. Moreover, a robot needs at least Q(D log d) 

bits of memory to explore a graph of diameter D and maximum degree d, and this is 

a tight bound.

In [93], the task of exploring a tree of maximum degree A is given to a robot that 

has a limited memory. It is observed that 0(log A) bits of memory are required to 

explore such tree if stopping is not required (that is, the robot does not hâve to stop at 

the completion of the exploration). If stopping is required, it is shown that bounded 

memory is not sufficient. Moreover, the authors show that ül(logloglogn) bits of 

memory are required for some trees with n vertices. Finally, the paper considers 

a variation of the problem where the robot has to return to its starting node after 

exploration, and show that at least fî(logn) bits of memory are required to do so. An 

algorithm that matches this bound is provided in [138], thus solving the exploration 

of trees with O(logn) bits of memory.

The exploration problem is presented in a different light in [195], under the naine 

of Chinese Postman Problem (CPP), and a variation for directed graph, the Directed 

Chinese Postman Problem (DPP). The standard définition of this problem requires 

for the agent to return to its original position after exploring ail of the edges; the 

paper also introduces the Open Chinese Postman Problem, where the requirement 

of returning to the original position is dropped. The paper offers algorithms that 

résolves ail those problems, but without optimising the amount of memory used.
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Memory concerns are considered in [127], where it is shown, for a directed graph 

with n nodes of maximum out-degree d, that a minimum of fi(nlogd) bits of memory 

are required by an agent to complété the exploration of the graph. The paper provides 

an algorithm that solves the problem with 0(nd\ogn) bits.

In [39], a robot in an undirected graph has to visit ail edges, then return to 

its starting point. The efficiency of the algorithm is measured by the number of 

edges traversed. Alternatively, the efficiency is measured by the minimal amount of 

memory required by the robot. In this paper, the robot knows a bound n on the 

size of the graph, and a bound d on the maximal degree of a node. The paper offers 

two algorithms, both aiming to improve the upper bound established in [65]. The 

first algorithm aims at a minimal number of edge traversais while the second tries to 

minimise the required amount of memory for the robot. Both algorithms represent 

an improvement compared to the upper bound established in [65].

[86] explores the information required by a robot in order to draw a complété or 

partial map of a graph. A complété map of a graph is understoocl to be an isomorphic 

copy of the map including its port numbers, and a partial map is understood to be a 

spanning tree with port numbers. The robot is forced to use a deterministic algorithm, 

and is unable to mark nodes in any way. It is proven that this map drawing is possible 

without, further information if the graph is a tree. Otherwise, some bits of information, 

called advice, are required for the robot to construct either the complété or partial 

map. The paper establishes that the minimal size of the advice is linked to the number 

of nodes n of the graph, the number of edges m of the graph, and the multiplicity //. 

of the graph, that is, the number of nodes that hâve an identical view of the graph. 

Bounds on the minimal size of the advice for both the construction of a partial and 

complété map are provided. Tight bounds are provided for fj, = 1.

In [177], a robot in a connected weighted unlabelled undirected unknown graph
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has to visit ail nodes of the graph, without necessarily having to visit ail edges. The 

robot only learns the weight of ail edges when it is located in a node adjacent to 

those edges. The paper builds upon the work of [148], that presented an improved 

DFS algorithm that was 16-competitive on planar graphs. [177] prove that the afore- 

mentioned algorithm does not hâve constant compétitive ratio on general graphs. 

Furthermore, the paper provides a constant compétitive algorithm for general graphs 

with a bounded number of distinct weights.

Géométrie Environment2.2.2

In an interesting amalgam between the exploration problem and the illumination 

problem, [153] considère the problem of a single robot starting at an arbitrary vertex 

of a polygon and trying to find the shortest path inside the polygon that reaches 

a different arbitrary vertex, and provide an algorithm that is linear in the shortest 

distance between those two vertices, while also providing a 1.41 compétitive ratio as 

a lower bound (the quotient between the distance travelled by the algorithm and the 

shortest path for their problem given knowledge of the environment).

A very similar problem was studied in [82], where an agent is tasked with the 

création of the map of a room filled with obstacles. The proposed algorithm is mea- 

sured by the compétitive ratios between the distance required by the algorithm and 

the optimal distance, given knowledge of the environment. They show that there are 

no algorithms guaranteeing a compétitive ratio for general rooms with obstacles, yet 

provide an algorithm for a room with a bounded number of obstacles. This bound is 

further improved in [154], which also provides an algorithm that is within a constant 

factor of optimal in the worse-case for arbitrary rooms with unbounded number of 

polygons.
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[64] explores a similar problem: a robot bas to explore a terrain with obstacles, 

both represented as polygons. Two scénarios are considered: in the first one, the 

robot has unlimited vision (though blocked by obstacles) whereas in the second one, 

the robot has a unitary vision range. The robot is tasked with the full exploration of 

the environment, and the efficiency of the algorithm used is measured based on the 

length of the trajectory of the robot. For both cases, an upper bound and tight lower 

bound are provided.

An interesting twist to this problem is considered in [155], where a robot attempts 

to localise itself in a géométrie environment priorly known. They refer to this problem 

as the location problem, and builds upon the algorithms provided in [11]. The article 

also raises the question of landmark placement in an environment in order to simplify 

further attempts at localisation. A landmark is a point in the environment that 

can be used by a robot to localise itself. The algorithm provided in the paper is 

asymptotically better than the one discussed in [11].

The concept of unknown environment with landmarks is referred to as the bound- 

ary place graph in [194], Using an algorithm that focuses on incrémental construction 

of the environment, the authors manage to identify ail landmarks in the environment. 

The algorithm described in the paper has been implemented in a mobile robots plat- 

form, thus proving the possibility to correctly explore an environment without the 

need for GPS-like Systems or metric représentation of the environment.

The search for a target located at an unknown location in a one-dimensional 

environment (the line) is known as the cow-path problem, or linear search problem, 

as introduced in [19], which proves that a minimum distance of fi(9d), with d the 

original distance between the robot and a treasure, is required for a robot on a line 

to find the treasure.

The problem of exploration on the line by a single robot is considered in [81]
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with an additional assumption: whereas most algorithms allow the robot to change 

its direction without cost, this paper adds a cost of d to each change of direction of 

the robot. An algorithm solving the problem in cost 9 ■ OPT + 2d, with OPT the 

optimal time with knowledge of the location of the target. The notion of turn cost is 

also applied to exploration on the star graph, and an algorithm solving this problem 

in optimal time is provided, with matching lower bound. Randomised strategies are 

discussed.

[149] considers randomised solutions to this problem, and conclude that the ran- 

dom algorithm they provide is optimal, using the total distance covered by the robot 

as measurement for the performance of their algorithm. The authors furthermore ob­

serve that their algorithm is almost twice as efficient as any deterministic algorithm.

A lower bound of fl(v/n)-competitive is proven for both deterministic and ran- 

domised algorithms in polygonal environments in [5], and is generalised to tri-dimensional 

rectilinear polyhedra without obstacles.

Simple greedy algorithms are used to explore unknown terrains in [156], and even 

though they do not yield optimal results (as is to be expected), they offer acceptable 

results. The authors discuss applications and advantages of the usage of such an algo­

rithm, and observe that it can take advantage of prior knowledge of the environment, 

and offer the possibility to be applied to multiple robots acting in coopération.

An A* approximation algorithm is used in [172] to détermine the path followed 

by a robot with limited visibility in an unknown environment discretised as a two- 

dimensional grid. Experimental results are provided to discuss the efhciency of the 

algorithm.
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2.3 Collective Search and Exploration

The search and exploration problems were studied under many variations, and some 

of those involve multiple robots. The classical problem of exploration can be mod- 

ified by the addition of one or more robots. Sometimes, a graph that could not be 

entirely mapped with the use of a single robot can now be completely recognised by 

a team of collaborating robots. The presence of multiple robots allows for varions 

strategies, such as the introduction of immovable robots that serve as markers to help 

another robots orientate in a given environment. Those immovable robots are often 

referred to as pebbles, or sometimes, when they can store and share information, 

as whiteboards. The presence of multiple robots introduces a new variable for the 

studied problem, that is, the communication between autonomous robots. The four 

most studied variations of a communication model are the face-to-face communica­

tion, where robots can only share information when they are located at the exact 

same location; the wireless communication, where robots can freely exchange com­

munication with no regard to their respective location; the pebble communication, 

where robots are unable to communicate, but may leave markers on the ground that 

contain no information; and finally, the whiteboard communication, where robots 

may leave markers on the ground that do contain a certain amount of information 

that can be read by other robots.

The ring environment is discussed in [114], where a group of k identical robots are 

tasked with the exploration of ail nodes of a ring of size n. In this model, robots are 

equipped with sensors, but are unable to communicate. Each node must be visited 

by at least one robot, and ail robots must décidé to remain iclle for the algorithm to 

be completed. It is shown that this problem is impossible if k and n are co-prirne 

(the only common divisor between k and n is 1). The authors also show that the

27



minimum number of robots required to explore a ring of size n is O(logn).

[22] considers the exploration of a graph environment with two robots, and provide 

an algorithm, called the homing-sequence algorithm, to accomplish this in a time 

that is polynomial in n the number of nodes. They compare the performances of this 

algorithm to a random walk algorithm, and conclude that the random algorithm has 

better performances than the homing-sequence algorithm.

In [99], a group of robots equipped with wireless communication are tasked with 

the exploration of ail nodes in a graph, and must then return to their initial position. 

The robots hâve no prior knowledge of the graph. The efficiency of the algorithm is 

given by the compétitive ratio between the total time required by the algorithm and 

the smallest amount of time required, given knowledge of the graph. A lower bound of 

Q(log/c/loglogfc) with k the number of robots is introduced for the compétitive ratio 

of any given deterministic algorithms. Using the number of edges traversed instead 

of the elapsed time, the authors présent an algorithm with a compétitive ratio of 

(4 — 2/k) on trees.

A linear algorithm for the exploration of ail nodes of a graph by a group of 

robots is provided in [84]. More precisely, the paper considers a scénario in which a 

group of robots can explore a n-node graph located at a distance at most D of the 

starting point of the robots in O(D), if the number of agents k is polynomial in D 

and n (k = Dn1+e < n2+e for any e > 0). This algorithm works even with a local 

communication model in which robots can only exchange information when they are 

located at the sanie node.

[132] classifies decision problems for multiple robots in a graph environment using 

deterministic algorithms. It is proven that the class of ail problems that can be 

verified with a certificate is much wider than the class of ail decidable problems in 

this context, and the paper shows the existence of a Mobile-Agent Vérifiable-complété
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problem.

An alternative communication model is discussed in [189], where robots with wire- 

less communication hâve a limited range of communication. An algorithm based on 

a distributed bidding model is introduced, using two measures: (1) the distance be- 

tween robots, and (2) a map synchronisation mechanism; both of which are meant to 

reduce the amount of information exchanged between robots. Simulations are used 

to measure the efficiency of the algorithm.

A similar bidding model is used in [165], to the différence that in this paper, com­

munication is impossible between robots. More so, [165] is concerned with collision 

between robots, and the bidding value function used to détermine the path of ail 

robots also aims at avoiding collisions.

Exploration Using Pebbles and Whiteboards2.3.1

A popular variation of the exploration problem sets either a single robot or a group of 

robots in a graph environment that they must fully explore. In addition to their own 

capabilities, robots can be equipped with one or more pebbles: movable devices that 

are used to uniquely identify a node or an edge. Alternatively, an environment in 

which everv node is equipped with a whiteboard is considered. Pebbles were a single 

unary bit of information; whiteboards serve as bookkeeping devices, and as such, are 

able to conserve a certain number of bits of information.

The problem of graph exploration using a single robot equipped with pebbles 

is discussed in [21]. The paper considers an unlabelled strongly connected directed 

general graph. It is shown that robot with knowledge of an upper bound on the 

number of nodes of the graph can explore it using only one pebble. If this assumption 

is dropped (that is, the robot has no prior knowledge of the graph), then at least
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Sl(log logn) pebbles are required and are sufficient for the complété exploration of 

the graph.

[129| first considers the problem of exploration of ail edges of a graph with a group 

q of non-collaborative A'-state robots, and show that there is a graph of size O(qK) 

that cannot be explored by any robot frorn the group. By applying this principle, 

the authors consider the problem of exploration with stop (the robot has to stop its 

exploration once it is done), and provide the robot with a single pebble. For graphs 

of size at most n, a robot with fl(logn) bits of rnemory can solve the exploration 

problem with stop. The authors also prove that there is an algorithm to solve the 

exploration problem with stop requiring a robot with O(DlogA) bits of memory, 

with D the diameter of the graph and A the maximal node-degree in the graph.

[96] considers the exploration of a graph by a single robot equipped with one or 

more pebbles in the absence of any further information about the graph, and provide 

experimental results to show the correctness of the exploration algorithm provided.

A variation on the standard pebble model is presented in [24], where a single 

robot represented as a Finite State Automaton is tasked with the exploration of an 

unknown cîirected graph. Rather than placing a pebble, however, the robot can, at 

every node, place a pebble on one of the exit ports of the nodes, thus serving as 

traffic signais. Two algorithms are studied: the first one solving the exploration in 

0(|V| |-C|) edge traversais; and the second one traversing every edge three times.

In [127], it is established that a robot with no memory is unable to achieve the 

exploration of a directed graph. In order to alleviate this problem, the authors provide 

an algorithm that adds to every node of out-degree d a whiteboard with a memory 

of size O(logd), and prove that this bound is tight for an agent with constant-size

memory.

The exploration of a graph by a group of robots with the help of whiteboards which
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serve as communication devices is considered in [33]. Tree and graph exploration 

are examined and results are corroborated with simulation results. In this paper, 

whiteboards are not immovable devices fixed at a given node, but are rather devices 

that can be moved freely by the robots and can be dropped at any node.

A slight variation of the exploration with whiteboard problem is presented in [75]. 

In this instance of the problem, a group of k robots hâve to build identically labelled 

maps of a n-nodes graph. They are unable to communicate directly, but can freely 

read and write on whiteboards located at everv node. In some cases, this problem is 

shown to be unsolvable. An algorithm that solves the problem is presented under the 

assumption that n and k are co-prime.

[76] is also interested in the problem of common map building by a group of robots 

in an unknown graph. The paper provides the robots with either the number of nodes 

n in the graph, or the number of robots k. The efficiency of an algorithm is measured 

by the total number of edge traversais by ail the robots. Respecting the condition 

established in [75] that n and k hâve to be co-prime, the algorithm provided solves 

the problem in O (km) with m the number of edges of the graph.

The exploration of the tree by a group of robots is considered in [126]. It is stated 

that scheduling an optimal collective exploration is NP-Hard, even when the tree is 

known. Algorithms are provided for the exploration by a group of robots under three 

conditions: in the first one, robots benefit from perfect wireless communication; in 

the second one, robots can use whiteboards located at every node to communicate; 

and in the third one, robots are completely unable to exchange information.
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2.3.2 ANTS

The problem of Ants Nearby Treasure Search (ANTS), first introduced in [110], is a 

généralisation of the cow-path problem. The authors of [110] describe the problem 

as follows: a group of k identical agents are initially placed at the origin of a two- 

dimensional infinité grid. Somewhere on this grid, at distance D of the starting 

position is a treasure hidden by an adversary. The objective of any given algorithm 

is to find this treasure as fast as possible. Communication settings vary, but are 

generally limited; sometimes communication is altogether impossible. The robots do 

not necessarily start the execution of their algorithm at the same time. In this first 

paper, the authors show that the time required to find the treasure is Q(D + D2/k), 

and they provide an algorithm that matches this bound under the condition that the 

robots are aware of the value of k. They also présent a tight bound for the compétitive 

penality that must be paid to compensate for the lack of knowledge of k by the robots.

A variation of the ANTS problem is provided in [106] and [105], where the robots 

are represented as asynchronous randomised Finite State Automaton: they possess 

constant-size memory, and can communicate locally (when two robots are at the 

same point of the grid) through constant-size messages. They show that those re­

strictions do not diminish the performance of the robots, and provide an algorithm 

that matches the bound provided in [110]. This variation is further explored in [103], 

where the minimum number of robots required to accomplish various exploration scé­

narios are discussed. Those scénarios consider different computational capabilities for 

the robots, as well as different tirning parameters. For ail scénarios, upper and lower 

bounds are provided.

Communication between robots is further restricted in [179], where the only form 

of communication allowed is lonehness détection, where a robot located at a node is

32



able to tell whether it is alone or shares the node with one or more other robot. In 

this context, robots are still represented as Finite State Automaton, thus possessing 

constant-size memory. An algorithm solving the ANTS problem under such circurn- 

stances is provided, flnding the treasure in time 0(D logk + D2/k), thus beating the 

lower bound for agents that are unable to communicate.

[108] explores the relationship between the memory of the robots and the running 

time performances of the algorithm. More specifically, for various time performances, 

the paper establishes a lower bound on the memory size of the robot.

A new metric to evaluate the performance of an algorithm is introduced in [171]. 

This metric, called the sélection complexity, represents how likely a given algorithmic 

strategy is to arise in nature due to sélective pressures[171]. For this metric, an 

algorithm working in asymptotically optimal time, taking the fineness of available 

probabilities into account.

A variation of the problem called ant colony house-hunting is introduced in [139]. 

The objective of the algorithm is to explore a terrain nearby the origin in order to 

find a location that is regarded as "best". In order to do this, ail robots must share 

the task of exploring the environment, then corne to a consensus and rnove to the 

chosen location. The paper shows that a time of at least fl(logn) with n the number 

of robots is required for the formation of a consensus. Two algorithms are provided 

to solve this problem: the first one runs in optimal time O(logn), but is described as 

non characteristic of natural ant behaviour. The second one runs in time O(klogn) 

and is simpler and doser to the natural behaviour of ants.

Animal metaphors similar to the ANTS problem are used in [202], where a group of 

robots equipped with constant-size memory is tasked with the cleaning of a dirty floor 

represented as a non-convex région of Z2 that may include obstacles. Interestingly, 

in this scénario, the only mean of communication of the robots is the cleanness of the
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floor itself. Experimental results are provided.

At the intersection between ANTS problems and problems using whiteboards is 

[1] : in this paper, k robots modelled as either Finite State Autornata or Turing 

Machines located at the origin of an infinité two-dimensional grid are tasked with the 

identification of a treasure hidden at a distance D from their starting location. Each 

robot is able to place information, referred to as pheromone, at its current location. 

This pheromone can then be read by other robots, thus allowing communication. For 

robots modelled as FSM, fl(D) pheromones are needed for the identification of the 

treasure; this bound lowers to fî(k) when the robots are modelled as TM. Algorithms 

matching those bounds are provided, and solve the problem in 0(D + D2/k), which 

is proven to be optimal. The pheromones are also used as fault-tolerance mechanism, 

which will be discussed later on.

Faults are introduced in the ANTS problem in [192] and [104]. In this variation 

of the problem, up to / robots may be faulty and stop working at an arbitrary time. 

The authors présent an algorithm that is able to detect and recover from failures, and 

that performs in time 0(D + D'2/n + Df ) with D the distance to the treasure and n 

the nurnber of robots.

[10] adapt the exploration problem to require one more step before the completion 

of any algorithm. Once robots hâve identified their target on the grid, they must 

communicate this information to other robots, then transport the treasure back to 

the nest. Five algorithms are provided for the exploration phase, and their compétitive 

ratio is discussed. Simulation data is provided to support findings.
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2.4 Search, Rendezvous and Gathering Games

One of the most common variation of the group search problem is the rendezvous 

problem [7]. In the rendezvous problem, two agents located at distinct starting po­

sition are tasked with meeting one another. This is significantly different from the 

exploration problem, where the target was immovable, or from the cops and robbers 

problem (discussed later), where the target is actively trying to avoid being caught. 

In this variation of the problem, both agents collaborate in order to ensure a meeting. 

This problem has been studied under many variations: graph and géométrie environ­

ment, synchronous and asynchronous movements of the robots, variable starting time 

and moment of apparition in the environment, memory restrictions for the robots, 

presence or absence of a common compass, randomised or deterministic algorithms, 

and limited visibility in the géométrie environment are some of the most common 

variations. The problem of ensuring a meeting between n robots is known as the 

gathering problem.

2.4.1 Rendezvous and Gathering

[131] studies the amount of memory that is required for two robots to meet in a tree. 

It is first established that rendezvous is only possible if the initial position of the 

agents is not symmetrical. For a tree of size n, it is shown that 0(logn) bits are 

required and sufficient to ensure the rendezvous. The paper further shows that it is 

impossible for two robots represented as Finite State Automaton to rendezvous in ail 

bounded degree trees.

In [16], two asynchronous robots are located in an infinité grid of dimension S > 0 

embedded in the Euclidean space. Both robots share a common compass and are 

both equipped with a GPS-like device - in other words, they are both aware of their
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respective position comparée! to the origin, and share the orientation of the spaces 

on ail dimensions. An algorithm ensuring the rendezvous in time 0(dspolylogd), 

which is close to the lower bound il(d5). Furthermore, this problem is expanded by 

providing the robots with a visibility radius. This visibility radius may be different 

for both robots, and the condition for the rendezvous is that both robots are within 

the visibility radius of the other. An algorithm allowing asynchronous rendezvous in 

0((fYpolylog(f)) with r = min(ri,r2) is provided.

[63] models an unknown bounded terrain as a polygon in which two robots hâve 

to meet. An adversary détermines the walk of the robot (that is, the adversary does 

not choose the path of the robot, but chooses the speed at, which the robot travels 

it, with the possibility of using négative speed). Algorithms that ensure rendezvous 

are provided for the following conditions: the presence or absence of obstacles in the 

environment; robots having agreeing or disagreeing compassés; and robots having a 

prior map of the environment with information about their exact starting position or 

not. The efficiencv of the algorithm is determined by the length of the longest path. 

Lower bounds are provided for ail conditions, and ail bounds are shown to be tight.

In [78], labelled asynchronous robots hâve to meet in an unknown anonymous 

graph. As for almost every asynchronous rendezvous problem, rendezvous is allowed 

inside the edges. The efficiency of an algorithm is measured by the number of edge 

traversais required before the rendezvous happens. The first case studied in the paper 

is the infinité line: in this case, the rendezvous can be ensured after 0(D|Lmin|2) with 

D the original distance between the robots and Lmin the smallest label of a robot, 

provided that D is known. If D is unknown, 0((D + |Lmax|)3) is required. The 

second case studied is the ring, on which those bounds are still valid. An optimal 

algorithm requiring 0(n\Lmiri\) is also provided when n is known and 0(n\Lmax\) for 

n unknown. Finally, for arbitrary graphs, it is shown that the rendezvous is possible
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with knowledge of an upper bound on the size of the graph, and an optimal algorithm 

requiring 0(D\Lmin\) is provided, requiring prior knowledge of the topology of the 

graph and the initial positions of both robots.

[92] considers the rendezvous problem in an unknown graph by asynchronous 

labelled agents. The performance of an algorithm is measured by the number of edge 

traversais required before the rendezvous happens. [92] is the first paper to provide 

an algorithm polynomial in the size of the graph and the size of the smaller label.

The use of Universal Traversai Sequences and Universal Exploration Sequences 

to solve rendezvous problems with asynchronous labeled robots are first introduced 

in [193], and are used to improve previouslv existing upper bounds for this problem. 

This paper is based on the work of [185].

The problem of rendezvous by synchronous anonymous agents in a graph is studied 

in [65] in relationship with the minimum amount of memory required by the robots 

for the rendezvous to be possible, using the results discussed in [193]. It is shown 

that 0(logn) bits of memory are required and sufhcient to ensure rendezvous on a 

graph of size n. This holds even if the agents do not appear on the graph at the saine 

moment.

A survey of deterministic rendezvous algorithms in graphs is presented in [181].

In [71], two labelled asynchronous robots hâve to meet in a possibly infinité eon- 

nected graph or in an unknown terrain in the plane. A deterministic algorithm ensures 

the rendezvous under the following sine qua non conditions: in the graph, only con- 

nectedness is required. In the géométrie scénario, it is required that the terrain is 

closed, the robots start at interior points of the terrain, and the starting point of the 

agents hâve rational coordinates.

A corrélation between required time and required memory is made in [161], where 

two synchronous non-labelled robots hâve to meet on the anonymous, oriented ring.
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It is shown that robots with 21 States can rendezvous on an n nodes ring in time 

0{n2/2t + 2*), and any pair of robots with t/2 States require at least Q(n2/2J) to 

ensure rendezvous. It is furthermore observed that 0(loglogn) bits or memory are 

required to ensure meeting in linear time.

In [41], synehronous labelled robots are trying to meet in a graph of size n, without 

bounds on the size of n. Robots know their own label, but not the label of the other 

robot. Furthermore, the notion of delay fault is introduced: at each round, it is 

possible for a robot to be subject to a delay fault, in which case the agent will remain 

idle for the entirety of the round. The robot is aware of the fault, and can react 

accordingly. Three fault scénarios are considered: the random scénario (at each round, 

robots hâve a probability 0 < p < 1 of being delayed); the unbounded adversarial 

scénario (an adversary may delay the agents indcfinitely); and the bounded adversarial 

scénario (an adversary may delay a robot for at most c consecutive rounds), and c 

is unknown to the robots. The performance of any given algorithm is measured by 

the number of edges traversed. For random faults, an algorithm polynomial in n 

and polylogarithmic in the larger label L is provided. It is shown that rendezvous 

is not possible in the unbounded adversarial scénario, even on rings. Finally, for 

bounded adversarial faults, an algorithm polynomial in n and logarithmic in c and L 

is provided.

Rendezvous between heterogeneous robots is studied in [85]. Heterogeneous is 

understood as follows: the environment is a weighted connected graph; however, the 

weights are not the sarne for both agents. Agents hâve full knowledge of the graph, 

as well as their own starting position and the starting position of the other robot. 

They are now aware of the cost of edge traversais for the other robot, and hâve to 

ensure a rendezvous for an edge-traversal cost that is as low as possible. Meeting is 

allowed both in an edge an in a node. The efficiency of the algorithm is measured
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as the ratio between the required time and the optimal required time for the offline 

scénario, where the robots hâve knowledge both of their own costs for edge traversais 

and the cost for the other robot. An algorithm ensures rendezvous in an n-nodes 

graph in 0{nTopt), where rop4 is the optimal offline time. It is furthermore shown 

that if the agents hâve the capability to exchange n bits of information at the start 

of the algorithm, this bound can be lowered to 0(2^).

In [50], rendezvous of two anonymous synchronous robots that are aware of their 

own starting position is studied for two environments: the graph environment and 

the géométrie environment. The efficiency of algorithms is measured by the num- 

ber of synchronous rounds that pass before the rendezvous happens. As for most 

synchronous studies, rendezvous must happen in a node, and is not allowed inside 

and edge. Is is shown that on the line, the tree and in multi-dimensional Euclidean 

spaces and grids, agents can rendezvous in 0(d) with d the initial distance between 

the agents. In ail n-node graphs, the rendezvous can happen in 0(d log2 n), and there 

exists an infinité family of graphs in which rendezvous in this setting requires at least

u(d).

Rendezvous of asynchronous agents with limited (unit) visibility in the two-dimensional 

Euclidean space is discussed in [51]. The paper considère agents equipped with a 

common compass, and are aware of their own starting position (given by a set of 

coordinates). The efficiency of an algorithm is measured by the sum of both agents’ 

travelling length. Rendezvous is considered achieved when both agents are within 

line of sight of one another. An algorithm solving this problem in 0(d2+e), with d 

the distance between the agents, is provided.

[87] considère the rendezvous for synchronous labelled agents in the graph. The 

paper studies two scénarios: in the first one, both agents start the execution of their 

algorithm simultaneously, and in the second one, there is a delay chosen by and

39



adversary between the start of the algorithm of one robot and the apparition of the 

second robot on the graph. The efficiency of an algorithm is measured by the nurnber 

of steps from the apparition of the second robot to the rendezvous for a given initial 

configuration. In trees, it is shown that 0(n + log l) is required, with l the smallest 

label, for arbitrary startup time. On a ring with simultaneous startup, 0(Dlog/) 

is required, with D the initial distance between the agents. On general graphs, an 

algorithm that ensures rendezvous in time linear in n, r and logarithmic in l is 

provided, with r the delay between the start of the first robot and the apparition of 

the second robot.

1159] studies the gathering problem for k labelled synchronous robots in a con- 

nected graph with possible delay in the startup time. It is shown that this is no hardcr 

than the same problem for two robots, and an algorithm is provided to support this 

claim. The efficiency of the algorithm is measured by the nurnber of steps required be- 

fore ail robots meet. An asymptotically optimal algorithm working in 0(n\ogl) with 

l the smallest label is provided for the ring environment, and an algorithm polynomial 

in n and l and indépendant of r the différence between startup times is provided for 

general graphs, thus improving the bound presented in [87].

In [90], the gathering problem for synchronous anonymous robots in the graph 

is studied. The nurnber of robots k is unknown. Ail gatherable configurations are 

identified, and two universal gathering algorithms are provided. Those algorithms 

allow the gathering to happen for ail configurations in which such gathering is possible.

[173] studies the problem of searching m concurrent rays by a group of p robots, in 

order to identify a treasure located on one of the rays. The efficiency of an algorithm 

is measured by the ratio of time required by an algorithm without knowledge of the 

location of the treasure to time required with prior knowledge of its location. An 

optimal algorithm achieving a compétitive ratio of 1 + 2/(m/p — l)(m/(m — p))m^v
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is provided.

2.4.2 Look, Compute, Move Model

We consider robots modelled as points in their environment that are continuously ob- 

taining information from their surroundings, and move either in synchronous fashion, 

or hâve their walk controlled by an adversary, which means that though the path they 

would take is determined by the algorithm and could not be steered from, the speed 

they use to walk on it is controlled by an adversary (which could use négative speeds 

as well) at ail time, provided that they covered the entirety of the path. The following 

papers consider a different model: in this model, robots will in turn obtain informa­

tion about their surroundings, often obtaining information with perfect visibility of 

the entirety of the environment (LOOK), use a deterministic algorithm to décidé of 

their next destination (COMPUTE), and fînally, move in a given direction (MOVE). 

The notion of synchronism is different here as well: for robots to be asynchronous 

means that they execute their LCM cycles independently from one another. If they 

are synchronous, they start each LCM cycle exactly at the same time. This model 

also allows for the introduction of a new synchronism pattern: the semi-synchronous 

model.

The problem of searching the plane by a mobile agent has first been identified 

as a field of study in [11]. The model used can be considered a precursor to the 

Look-Compute-Move (LCM) model that will be discussed later on. In this paper, a 

mobile robot is tasked with a search problem in an unknown, unbounded environment, 

and its performances are evaluated by considering the total distance covered between 

every probe position taken. Various scénarios are explored, with varying level of a 

priori information given to the robot, such as the distance to the target and the
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general direction of the target. The paper also examines the possibiiity of errors in 

the interprétation of the environment by the robot.

The gathering problem for asynchronous robots operating in LCM cycles is studied 

in [72]. Robots are equipped with multiplicity détection: during their Look phase, 

they see if any node is occupied by zéro robots, one robot, or two or more robots 

(without knowing the spécifie amount). This paper identifies the initial configura­

tions in which the gathering problem can be solved, and provides an algorithm that 

generates a solution whenever possible.

The graph exploration problem by a swarm of robots operating in asynchronous 

LCM cycles is studied in [115]. In a given laps of time, the swarm of robots rnust 

explore ail nodes, then put an end to their activities (quiescent State). The efficiency 

of the algorithm is measured by the number of robots required to complété the explo­

ration in the given time. It is shown the even in n-node trees with a maximum degree 

of 4, fi(n) robots are necessary to complété the exploration. If the maximum degree

) robots are sufficient, and this solution is asymptoticallylogre
log log nof the tree is 3, 0( 

optimal.

[191] studies rendezvous of two asynchronous oblivious anonymous robots in the 

two-dimensional Euclidean space in the absence of a common coordinate System. An 

algorithm that allows for rendezvous in a finite number of cycle is provided under the 

assumption that the compassés differ from at much 7r/4.

Based on the fact that rendezvous between two semi-synchronous robots is trivially 

solvable when their coordinate Systems are consistent, [145] explores the magnitude 

of consistency between coordinate Systems required robots to ensure rendezvous in 

the semi-synchronous and asynchronous model. In the paper, robots hâve unreliable 

compassés: their bearings may deviate from an absolute reference direction. From 

there, two scénarios are considered: in the first one, the compass is static, and the
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déviation remains the same throughout the execution of the algorithm. In the second 

the compass is dynarnic, and the déviation may vary at the start of every new 

LCM cycle. For robots with static compass in both the semi-synchronous and asyn- 

chronous setting, a déviation of $ < 7r/2 allows for a rendezvous; a déviation of at 

most <F < 7r/4 is required for semi-synchronous with dynarnic compassés to meet; and 

a déviation of at most $ < 7r/6 is required for asynchronous with dynarnic compassés 

to meet.

one

In a similar fashion, [144] considers gathering of more than two robots with un- 

reliable compassés, both for the case of static and dynarnic compassés, under the 

semi-synchronous setting. An algorithm allowing gathering is provided for a compass 

that accepts déviations of up to 7t/2 — e, with e > 0. This algorithm is proven to be 

optimal.For any déviation greater than 7t/2, it is proven that no algorithm can ensure 

either rendezvous or gathering.

[200] considers anonymous, oblivious robots operating in LCM pattern with an 

interesting added feature: both robots carry coloured lights that are visible to both 

robots. They are placed either in the plane or on a line, and their purpose is to 

reduce (or increase) the distance between them bv a constant factor without using 

distance information. A solution is provided with spécifications on the number of 

colours required to ensure rendezvous. Every synchronism model is explored. In the 

asynchronous model, three colours are enough to ensure rendezvous for any initial 

configuration.

In [123], anonymous robots hâve to meet in the plane under the asynchronous 

setting. Two settings are studied: in the first one, robots are incapable of remembering 

the layout of the environment in their previous cycle, but can communicate with 

constant-size messages (finite-communication model), and in the second, robots can 

remember the layout of the environment in their previous cycle using constant-size
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memory, but are unable to communicate{ finite-state model). Those settings can be 

modelled as robots carrying lights: in the finite-communication model, robots can 

only see the other robot’s light, whereas in the finite-state model, robots can only 

see their own. It is shown that finite-communication model allows rendezvous for

asynchronous robots, and finite-state model allows rendezvous for semi-synchronous

robots.

The relationship between synchronism models is studied in [77], under the as- 

sumption that robots are equipped with lights of different colours that are persistent 

- that is, the light is not automatically reset at the end of each LCM cycle. It is 

shown that asynchronous robots with a constant number of colours are more pow- 

erful than semi-synchronous robots without colours. Furthermore, it is shown that 

there is no différence between asynchronous and semi-synchronous robots when they 

are equipped with visible lights. Asynchronous robots with visible lights are also more 

powerful than synchronised robots under the assumption that they hâve the ability 

to remember a single snapshot of the graph.

Census of the capability of robots operating in LCM cycles under synchronous, 

semi-synchronous and asynchronous settings are presented in [184] and [182], and the 

problems of rendezvous, gathering and pattern formation are discussed.

Gathering in the ring environment is discussed in [152], under the asynchronous 

setting. It is shown that for an odd number of robots, gathering is only possible if 

their initial configuration is not periodic, and an algorithm is provided to solve the 

gathering problem. For even number of robots, the feasibility is decided except for 

one type of symmetrical initial configurations, and algorithms that ensure gathering 

are provided.

The impact of svmmetries on gathering possibilities for asynchronous robots in 

the graph are studied in [151]. On an undirected ring with at least 18 robots, it is
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proven that an approach that focuses on preserving symmetries solves the gathering 

problem for ail starting positions when the gathering is feasible.

[46| studies the gathering problem for oblivious asynchronous disoriented (no com- 

mon compass) robots operating in LCM cycles in the two-dimensional Euclidean 

space. The paper solves the gathering problem for n > 2 robots for any initial con­

figuration, even under such weak assumptions.

In [183], the minimal assumptions required for anonymous oblivious robots with- 

out communication to gather in the two-dimensional Euclidean space are studied. 

It is shown that in the synchronous case, robots require either multiplicity détec­

tion or infinité time, and in the asynchronous case, robots require either multiplicity 

détection, a common compass, unbounded memory or infinité time in order to meet.

The assumption of unlimited visibility is dropped in [121]. The paper considère 

the gathering problem for asynchronous oblivious robots operating in LCM cycles. 

The paper provides an algorithm that allows gathering in a finite amount of time foi- 

robots with limited visibility, provided that they share a common compass. From this 

resuit, the authors show that orientation is as powerful as instantaneous movement 

with respect to gathering.

Similarly, in [80], the gathering problem with synchronous robots with limited 

visibility in the two-dimensional Euclidean space is considered. The robots rnust, 

when choosing their next move, ensure that the unit disk graph defined by the view- 

ing range of the robots remains connected at ail time. An algorithm that ensures 

gathering in time 0(n2) is provided for the gathering.

In [74] and [73], oblivious robots operating in LCM cycles are placed on the discrète 

ring. They are asynchronous, and during their Move phase, they can décidé either 

to stay in place or to move to an adjacent node. Two problems are considered: 

the gathering problem, and the exclusive searching problem, in which ail edges are
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either traversée!, or both nodes adjacent to an edge are occupied, without two robots 

ever occupving the same node. A description of the initial configurations that allow 

resolution of those two problems is provided, and algorithms solving the problems are 

provided.

The notion of rendez-vous with détection is explored in [102], where two agents 

hâve to meet in a graph and then become aware of this meeting. They must then 

déclaré sirnultaneously that the meeting took place, then stop. This paper uses the 

synchronous model. Two variations are considered: the local beeping model, and the 

global beeping model. Feasibility is discussed under various prémisses, and algorithms 

are provided when possible.

2.4.3 Deployment

Rendezvous and gathering problems can be seen as a spécifie subset of a larger prob- 

lem: the pattern formation problem. In the pattern formation problem, a group of 

k > 2 robots must form a spécifie pattern. This includes rendezvous, but also the 

formation of a regular k-gon, a formation in which no more than two robots form a 

line, a formation in which robots are équidistant, etc.

In [89], robots operating in LCM cycles are located in the two-dimensional Eu- 

clidean spaee. Two robots can only see one another if there is no other robot between 

theni. Their purpose is to develop a formation in which ail robots can see ail other 

robots, in a finite laps of time. This problem is called the Mutual Visibility Problem. 

Each robot is equipped with visible lights that can take up to c different colours. 

Various scénarios are considered: robots with prior knowledge of their environment, 

number of available colours, and synchronism of the robots. It is proven that in the 

semi-synchronous case, the Mutual Visibility Problem can be solved without collision
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with c = 2, and with c = 3 if the robots are asynchronous.

[101] considers the even deployment of oblivious agents with no prior knowledge 

of the environment on the discrète ring. The size of the swarm is unknown as weli. 

Two variations of this problem: the first one, called dynamical uniform deployment, 

requires for the agents to spread evenly, then keep moving as they hold this formation. 

The second variation, called quiescent spread, requires for the agents to stop moving 

once they are evenly spread. For the first variation, it is shown that the problem can 

only be resolved if either the ring is oriented, or the agents hâve a visibility range 

of at least [n/k\. An optimal algorithm is proposed for an oriented ring and agents 

with a visibility range of at least \n/k\. For the second variation, the problem cannot 

be solved if the agent can only measure the distance to its two neighbours.

In [120], a set of n ^ 4 asynchronous anonymous oblivious robots with no common 

compass must arrange themselves to form a regular n-gon. This problem is called the 

uniform circle formation problem. The paper proves that this problem can be solved 

without any further assumption for any initial configuration.

Arbitrary pattern formation is studied in [122], where asynchronous oblivious 

robots working in LCM cycles operating in the two-dimensional Euclidean space must 

form a pattern that is given in advance. It is show that without common compass, 

this task is impossible. With a compass, an odd number of robots can solve this 

problem, but not an even number of robots. With two different compassés (say, one 

pointing North and one pointing East), then an even number of robots can solve the 

problem.

In [205], robots operating in LCM cycles must form a predetermined pattern. It 

is shown that oblivious robots can form any pattern non-oblivious robots can, with 

the exception of two robots trying to form a point, which is only possible if the robots 

are not oblivious. The paper therefore proves that memory is not useful in the task
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of pattern formation, apart from the aforementioned exception.

Varying Environments2.5

So far, situations in which the environment was static were considered. In this section, 

we consider variations where the environment may présent a danger or be destructive 

or misleading. We study time-varying graph, where the edges between nodes appear 

and disappear; environment with black holes, where some nodes or edges of a graph 

immediately destroy any robot that travels it; and scénarios where the agents them- 

selves may be subject to faults. Two main type of faults are generally considered: in 

the crash fault scénario, robots may lose the capability to move, communicate or sense 

their environment correctly. In the Byzantine fault scénario, robots controlled by an 

adversary may décidé to purposefully share wrong information and fail to convey the 

appropriate information, or may change their path arbitrarily. Those situations call 

for algorithms that include an element of resilience, and hâve a significant impact on 

the feasibility and bounds of many well-studied problems.

Time-Varying Graphs2.5.1

Time-varying graphs (TVG) are graphs whose edges may be existent or non-existent, 

as a factor of time. In most TVG, there is a cycle that dictâtes the moments where 

edges are existing and non-existing, that repeats itself periodically. [38] présents an 

effort to unify concepts, formalisms and results concerning various aspects of TVG, 

ail the while providing a hierarchical classification of those variations.

In [118], the exploration problem by a single robot on a periodically varying graph 

is studied. The edges of the graph go from existing to non-existing on an unknown, 

periodic basis. Various scénarios are considered, depending on knowledge of the
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length of the longest route, memory of the robot, knowledge of a bound on the size 

of the graph and uniformity of the length of the routes. Necessary conditions for the 

exploration problem to be solvable are established.

[188] model social networks as time-varying graphs in order to provide tools to 

understand and evaluate their dynamics, and use this perspective to model concepts 

such as distance and connectivity.

[204] proposes a model of TVG that has asymptotic memory complexity in the 

order of complexity of the set of edges, and can be used to represent many previously 

existing models, while being intrinsically able to model cyclical behaviour as well.

The spreading of k tokens of information to ail nodes of a TVG is studied in [98|. In 

this model, each round, each node is able to broadcast one token of information to ail 

its neighbours. The problem is solved in 0(n + k) in static graphs of size n. The paper 

shows that at least Cl(nk/ log n + n) rounds are required for the information to spread 

to every node for any randomised algorithm when the adversary is strongly adaptive, 

i.e. the adversary chooses the available edges with knowledge of the information that 

will be disseminated by every node. The weakly adaptive model forces the adversary 

to choose the layout of the network first, then allows the algorithm to choose whieh 

token of information to broadcast, and for this model, an algorithm spreads ail token 

of information to ail nodes in 0((n + k) log n log k) rounds with high probability. If 

the entire sequence of graph layout is known in advance, an algorithm solves the 

problem in 0((n + k) log2 n).

In [119], the exploration problem is studied for carrier graphs, where the edges 

between nodes only exist at unknown periodic times. Conditions required for the 

problem to be solvable are established. Lower bounds for the amount of time required 

are presented, and matching upper bounds are provided.
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2.5.2 Black Holes

In the black hole problem, a team of agents must identify a black hole on a graph. 

A black hole refers to a node or an edge that will instantly destroy any robot that 

travels on it without leaving any trace. The purpose of any algorithm trying to solve 

this problem is to identify the location of the black hole without entering it. The 

efficiency of an algorithm is usually measured in one of three ways: either by the 

amount of robots required to identify the black hole; by the time required before the 

black hole is found; or by the amount of additional resources required (pebbles and 

whiteboards being the most common example). In the usual scénario, ail agents hâve 

the saine starting location. Variations of this problem include synchronism between 

agents, possibility to use a pebble or a whiteboard, prior knowledge of the topology 

of the graph and memory of each agent.

[116] examines the use of pebbles in the search for a black hole in a graph of known 

topology by two asynchronous agents. It is proven that the pebble model has the exact 

same complexity as the whiteboard model. Furthermore, two agents equipped with 

one pebble each can locate the black hole in 0(nlogn), using a technique referred to

as ping-pong.

The situation where a team of synchronous agents hâve to locate a black hole in 

a tree is studied in [66]. Algorithms are provided, and their efficiency is discussed.

In [95], a team of asynchronous agent with no prior knowledge of the graph must 

identify a single black hole. Agents are equipped with whiteboards. It is proven that 

A +1 agents are required and sufficient to identify the black hole for A the maximum 

degree of a node, and that 0(n2) is required to find the black hole in a graph of size 

n. With sense of direction (where each port of an edge is labelled in such way that 

agents can détermine whether two edges lead to the same node), only two agents are
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required to find the black hole in 0(n2).

Various graph environments are studied in [94]. The paper proves that the black 

hole can be identified in linear time by two asynchronous agents in hypercubes, cube- 

connected cycles, star graphs, wrapped butterflies, chordal rings, multidimensional 

meshes and tori of restricted diameter.

In [40], robots hâve to solve the gathering problem in a graph that may contain 

one or more black holes. The agents are asynchronous and anonymous, and hâve 

knowledge of a bound on the size of the network. A characterisation of the situations 

where the problem is solvable is presented, and upper and lower bounds are offered 

for those situations.

[54] studies the black hole problem on directed graphs, where the ping-pong tech­

nique is not possible. It is shown that for asynchronous agents, at least 2A agents are 

required to identify the black hole, with A the maximum in-degree of the black hole. 

Is is also shown that this lower bound applies to synchronous agents. In a planar 

graph with a planar embedding known to the agents, a lower bound of 2A and an 

upper bound of 2A + 1 are provided.

In [117], asynchronous labelled agents starting at different locations are trying to 

construct the map of a graph with multiple black holes. At each node, there is a 

whiteboard. An algorithm requiring 0(nsm) moves is provided, with m the nurnber 

of edges and ns the number of safe nodes.

The number of pebbles required to identify the black hole is studied in [13]. A 

group of asynchronous anonymous agents are trying to find the black hole in an 

unknown graph with knowledge on an upper bound on the size of the graph and the 

number of edges. For 3 tokens, at least A+2 agents are required, with A the maximum 

degree of a node, and an algorithm solving the black hole problem is provided. If' the 

number of agents is unknown, five tokens become necessary.
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2.5.3 Faulty Robots

Time-Varying Graphs and black holes problems discuss potential variation in the fixed 

part of the environment: the graph of géométrie environment in which the robots 

evolve. Problems involving faulty robots introduce the possibility of variations in 

the mobile part of the environment: the robots themselves. Those variation imply 

unreliability, which may significantly increase the amount of resources required for an 

algorithm to solve a problem.

The notion of Byzantine faults, that became a central topic in exploration prob­

lems with unreliable robots, was first introduced in [168]. The paper introduces the 

problem as follows: an army captain must make a decision based on the information 

he receives from his générais. However, some of those générais may be liars attempt- 

ing to make him take the wrong decision. In order for ail loyal générais to reach an 

agreement, there must be more than two third of ail générais that are loyal. The 

notion of Byzantine general lias later been applied to the exploration problem in the 

context of Byzantine faults: a robot may behave in such way as to distribute false 

information and hinder the accomplishment of a given algorithm. Similarly, asyn- 

chronous Systems with Byzantine processes are studied in [111], and a weaker version 

of the problem is discussed in [167].

The study of faulty robots has two principal subdivisions: the crash faults, and 

the Byzantine faults. In the crash fault model, the robot may be unable to move, 

communicate or sense its environment properly, but will not willingly hinder the 

execution of the algorithm for other robots. In the Byzantine scénario, based on 

[168], [111], and [186], the robot will actively attempt to hinder the other robots 

by either changing its path, communicating false information or ignoring relevant 

information.
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Most papers studying robots operating in LCM cycles assume that during their 

Look phase, robots are able to collect perfect data from the environment, and during 

their Move phase, they exactly move at the expected location. [48] drops those 

assumptions, and considers robots that may be expérience inaccuracy in their readings 

or in their movements. Several impossibility theorems are introduced. It is shown 

that robots are unable to gather in a finite number of steps. An algorithm allowing 

convergence is presented, assuming bounded measurement, movement and calculation

errors.

Similarly, [2] considers the gathering problem for robots operating in LCM cycles, 

and prove that ail previously known algorithms fail in the presence of either crash 

faults or Byzantine faults. More so, a gathering of 3 robots, one of which is Byzantine, 

is impossible in the asynchronous setting. In the synchronous setting, an algorithm 

solves the gathering problem for k > 3 robots with at most one faulty robot. A 

general algorithm also solves the problem if there are at least 3/ + 1 good robots, 

with / the number of faulty robots.

Gravitational algorithms for robots operating in LCM cycles are studied in [47]. 

The paper focuses on the asynchronous setting and shows correctness of the gravita­

tional algorithm to solve the gathering problem. Analysis of its convergence rate and 

resilience to crash faults is also discussed.

Gathering of labelled synchronous agents in the graph, / of which are byzantine, 

is studied in [91]. Two levels of Byzantine behaviours are studied: a strong Byzantine 

robot can choose its port when moving and convey arbitrary information to other 

agents, whereas a weak Byzantine robot can do the same, but is unable to lie about 

its label. For weak Byzantine robots, if the size of the graph is known, any number 

of good agents can gather. If the size is unknown, at least / + 2 agents must be good 

agents for the gathering problem to be solvable. This bound is tight. For strong
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Byzantine agents, a lower bound of / + 1 good agents is provided, even when the 

graph is known. Algorithms that ensures gathering are provided and require 2/ + 1 

good agents if the size of the graph is known, and 4/ + 2 good agents if the size of 

the graph is unknown. An open question left in this article is solved in [30|, where 

it is determined that the minimum number of good agents required to guarantee 

deterministic gathering of ail good agents, with termination, is / + 2.

In [199], a swarm of k labelled robots must solve the gathering problem while 

being résilient to faults in their sensors and Byzantine agents. For small swarins, the 

gathering problem is solved and is résilient to any number of Byzantine agents. For 

larger swarms, an algorithm solving gathering is provided with the assumption that 

the number of Byzantine agents around a good agent is bounded.

A probabilistic point of view of the gathering problem is introduced in [79]. The 

paper considers a group of disoriented robots operating in LCM cycles. Deterministic 

algorithms are studied under the additional assumption that robots may expérience 

crash faults or Byzantine faults. A large set of scheduling strategies are considered 

and lower bounds are provided.

In [31], a swarm of oblivious robots operating in LCM cycles on the line must 

solve the convergence problem (that is, be located at a distance that is no more 

that e apart) despite Byzantine faults. An algorithm allowing gathering for at least 

2/ +1 good robots is provided for the synchronous setting, and an algorithm allowing 

gathering for at least 3/ -F 1 good robots is provided for the asynchronous setting, 

with / the number of Byzantine robots.

Exploration on the line by a group of n robots, / among which are faulty, is studied 

in [67]. This paper focuses on crash-faults. In other words, robots may fail to see the 

exit, but will not communicate false information. For n > 2/ + 2, an algorithm with 

a compétitive ratio of 1 is provided. For larger /, an algorithm called proportional
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schedule algorithm is provided, and is proven to be optimal for n = / + 1.

A variation of the patrolling problem discussed later in this survey is discussed in 

[58|. The paper considers the patrolling problem by a group of k robots, / of which are 

crash-faulty. The environment is a weighted graph, and the purpose of the algorithm 

is to minimise the visit time by a good robot of ail nodes in the graph. An optimal 

algorithm is provided for a line segment and for Eulerian graph. For cubic graph, the 

problem is shown to be NP-Hard by réduction from the 3-colouring problem.

[201] présents a survey on fault-tolerance and the similar problem of fault détec­

tion.

An interesting take on fault tolérance is presented in [130], where k robots prone 

to faults must explore an infinité sequence of boxes in order to find a treasure. The 

authors propose non-coordinating algorithins and discuss contexts in which it may 

be favourable to implement non-coordinating algorithms rather than the faster coor- 

dinating algorithms. Building upon those results, [158] study a variation where the 

treasure is placed uniformly at random in a finite, large number of boxes, and propose 

algorithms that achieve optimal speed-up.

Resilience to sensor faults are discussed in [187], where two robots observing each 

other and the environment and sharing this information can reduce odometry er- 

rors and better detect obstacles, thus increasing the quality of the map they create. 

Algorithms are introduced and supported by experimental results and simulations.

In [37], the exploration of a network with faulty edges by a single robot is con- 

sidered. A perfectly compétitive algorithm is provided for ring environment, and for 

networks modelled by Hamiltonian graphs, it is shown that the overhead (the worst- 

case ratio between the cost of a given algorithm and the cost of an optimal algorithm 

which knows where the faults are located) for a Depth-First Search is at most 10/9 

times larger than that of a perfectly compétitive algorithm.
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The notion of robots controlled by a market economy is used in [209] to solve the 

exploration problem. Using this approach, the authors allow for dynamic inclusion 

and departure of robots during the execution of the algorithm. The algorithm they 

provide is résilient to communication faults.

Other Variations Involving Search by Multiple2.6

Robots

Aside from the standard exploration problem and its popular variation, the ren- 

dezvous problem, many other areas of distributed computing involve autonomous 

mobile robots. Similar problems may include the évacuation problem, where robots 

first hâve to identify an exit (which is very similar to the exploration problem), and 

must then gather at the location of this exit; the deployment problem, where robots 

must form a spécifie pattern rather than gather at the same point; patrolling, where 

robots must periodically explore ail sections of the environment; in some problems, 

robots are heterogeneous and may hâve different speeds; in some others, robots hâve 

two different speeds: one for travelling and one for searching, that is always slower 

than its travelling speed. The bouncing robots problem considers robots that are 

unable to control their movements, and exchange their speed when they meet one 

another. Those variations are presented here because they are closely related to the 

exploration problem and hâve significant commonalities.
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Evacuation or Group Search by Collections of Mobile2.6.1

Robots

In the évacuation problem, a group of robots must first identify an exit located in 

the environment, which is a problem extremely similar to the group exploration. The 

additional difficulty of the évacuation problem résides in the fact that robots must 

then communicate this information to each other, then gather at the location of the 

exit before the problem is considered resolved.

In [61], k identical robots are placed inside a disk of unitary radius. The exit is 

located somewhere on the boundary of the disk, and the robots start the execution of 

the algorithm at the center of the disk. Two communication models are considered: 

in the local communication model, robots can only exchange information when they 

meet each other. In the wireless communication model, the information is exchanged 

freely and instantly between ail robots. The goal of the algorithm is to gather ail 

robots at the location of the exit. Lower bounds on the required time for both 

communication models are provided for k = 2 and k = 3. Almost-tight bounds are 

provided for large k. More precisely, an algorithm that ensures completion in 3 + ~ is 

provided for the local communication model, and a lower bound of 3+ — 0(k~2) is 

required. In the wireless communication model, an algorithm allows the évacuation 

in 3 + | + 0(k~4/3) is provided, and at least 3 + f is required.

Evacuation from the line is considered in [15], where two robots with distinct 

maximal speed initially placed at the same point on the infinité line must locate an 

exit and gather at its location. Two forms of communication are considered: local 

communication and wireless communication. For ail possible maximal speeds in the 

local communication model, optimal algorithms are provided. For the wireless model, 

an optimal algorithm is provided when the fastest robot is at most 6 times faster than
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the slowest robot.

Evacuation from the line by a group of k identical robots is considered in [44]. 

The surprising resuit, of this paper is that the number of robots used to complété the 

évacuation problem lias no impact on the time required to complété the évacuation, 

that remains 9d — o(d), with d the distance from the initial location of the robots 

to the exit. It is furthermore shown that the bound of 9d can be achieved with one 

robot moving at unit; speed an a second robot moving at a speed no slower than 1/3.

In [61], two identical robots located at the center of a disk must evacuate it through 

an exit located on its boundary. The local communication model is considered: robots 

can only exchange information when they are located at the exact same location. The 

paper improves on previously existing results by providing an algorithm that forces 

a meeting between the robots even if the exit has not been found by either robots.

The same problem is considered under the wireless communication setting in [169]. 

An additional différence is that the two robots may now hâve different speeds. An 

optimal algorithm is provided if the fastest robot is approx. 2.75 times faster than 

the slowest robot or more. For doser speeds, upper and lower bounds are provided.

In [53], two robots are placed on a circle that contains k exits. Both robots hâve 

a map of the circle, but are not aware of their starting location. The purpose of 

an algorithm is to evacuate both robots as fast as possible. Robots use the wireless 

communication model. Two variations are studied: in the first one, robots control 

the distance that separate them at the beginning of the problem; in the second one, 

they do not. Upper and lower bounds are provided for some subsets of the problem.
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2.6.2 Patrolling

The patrolling problem is similar to the exploration problem in the sense that the 

map must be fully explored. In the patrolling problem, however, this is not sufficient: 

the map must be fully explored on a periodic basis, and the efficiency of any given 

algorithm is measured by the maximal period of time elapsed between two visitations 

of the same point, called idle time.

[107] considers the problem of patrolling a closed polygon (ring) by identical 

robots, and introduce the cycling strategy, where robots always patrol in the same di­

rection, and the partition strategy, where robots choose a segment of the environment 

and go back-and-forth on this segment. Efficiency of those algorithms are evaluated 

for different values of k the number of robots and different visibility ranges for the 

robots.

In [57], both the decidability and optimisation problem are considered. The de- 

cidabilitv problem asks whether it is possible for a group of k agents to maintain 

an idle time lower than a certain value r. The optimisation problem asks what is 

the minimum possible idle time for a given environment and a set of k agents. In 

this paper, agents hâve distinct maximal speeds, and the environment is either an 

open curve (a line segment) or a closed curve (a ring). Various strategies, including 

the cycling strategy, the partition strategy, and sorne newly described strategies, are 

evaluated. The bounds established in this paper are later improved in [45] and [150].

The problem is applied to robots with distinct visibility range in [70], both for 

robots with equal speeds and robots with different speeds. An optimal algorithm is 

provided both for the closed and open environment for robots with the same speed. It 

is shown that the case of robots with different speeds is fundamentally different from 

the case of robots with identical speeds. An optimal algorithm is given for the case
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of two robots with both distinct speeds and distinct visibility ranges. It is also shown 

that the patrolling of general graphs with different visibility ranges is NP-Hard.

In [49], a different environment in considered: this environment includes vital 

segments, that must be patrolled, and neutral segments that can be traversed by 

robots as part of their patrolling, but it is not mandatory for the robots to patrol 

those segments. It is proven that either the cycling strategy or patrolling strategy 

can yield optimal idle time for identical robots.

[137] considers the patrolling of a graph by a single robot with constant memory. 

The robots must visit every node periodically, but not necessarily every edge. The 

efficiency of the algorithm is measured by the number of edges traversed before ail 

points are revisited. The paper présents an algorithm arranging port numbers in such 

way that the robot can revisit ail nodes in time 3.75n — 2 for n the number of nodes 

in the graph.

In [14], the environment is a partial grid (a finite grid with possible missing vertices 

or edges). A group of k synchronous identical robots must patrol the environment in 

such way that as many robots as possible visit ail nodes in the graph on a periodical 

basis, without there ever be two robots on the same edge or node at the same time. 

Each robot has a visibility radius of p. The paper shows that for p = 0, the problem 

is unsolvable, and at least p = 1 is required. For p = oo, it is shown that at least 

k <p — q robots can visit ail nodes on a periodic basis, with p the number of vertices 

and q a parameter whose value dépends on the topology of the environment.

Pursuit2.6.3

The pursuit problem is a variation of the collaborative exploration problem. In the 

pursuit problem, sometimes referred to as the Cops and Robbers problem, the target

60



that niust be found it mobile and actively tries to avoid being captured, as opposed 

to the collaborative exploration problem, where the target is static, or the rendezvous 

problem, where the mobile agents collaborate to ensure a rendezvous. A taxonomv of 

various pursuit problems is discussed in [45] and [125], with discussion about various 

results. Generally, the measure of efficiency of an algorithm is the capture time of 

the environment. In other words, it is the amount of time required to capture the 

target in the environment by a group of robots using the given algorithm. A graph is 

called cop-win if the capture is possible, and robbers-win if the capture of the target 

is impossible.

In [27], the environment studied is either the finite or countably infinité graph. 

The notion of capture time is explored in relation to the number of vertices of the 

graph and spécial properties of the graph. The notion of capture time density is 

applied to infinité graphs. It is proven that the problem: "can k cops capture a 

robber in no more than t moves?" is NP-complete.

[163] introduces the notion of monotonicity for pursuit problem. A game is con- 

sidered monotone if it is possible for the cops to catch the robber before the robber 

reaches a place that has been previously explored by the cops. The paper shows that 

two type of games are non-monotone: the game on directed graphs where the robber 

is invisible and lazy, and the game on directed graphs where the robber is visible and 

fast.

[133] studies scénarios where the robber is fast i.e. it can move R > 1 edges at a 

time. A general upper bound is presented. For finite R, on a graph with n nodes, it 

is shown that at least cops can be necessary to catch a robber. For infinité

R, the number of required cops is linear in n. For R = 1 on directed graphs, an 

algorithm requiring 0(n(loglogn)2/logn) is provided.

It is shown in [124] that the minimum number of cops required to catch a robber
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on a given graph is NP-Hard. On split graphs, the problem requires a polynomial 

amount of tirne if the robber is as fast as the cops, and is NP-Hard if the robber is 

twice as fast as the cops. On graphs of bounded clique width, the problem only has 

a polynomial solution if the robber is at most twice as fast as the cops. On planar 

graphs, there is no bound on the minimum nurnber of cops required to catch a robber 

that is faster than the cops.

In [26], a variation of the cops and robbers game called the distance k cops and 

robbers is presented. In this variation, cops (with c the number of cops) win if they 

can get at a distance of at most k of the robber. An algorithm is given for the 

decidability problem ("given k and c, can the robber be caught?"), and it is proven 

that the optimisation problem ("what is the minimum number of cops required to be 

at a distance at most k of the robber on the graph?") is NP-Hard.

[175| and [29] study the cops and robbers game on random graphs, based on the 

fact that the required number of cops to catch the robber expressed as a function of 

the average node degree of a graph forms a zigzag shape.

[6] considers a similar problem, where a single searcher is trying to catch a single 

hider. The searcher can search a unit area in unit time, or can enter an "ambush 

mode". The searcher wins if it the hider is inside the searched area, or if the hider 

moves while the searcher is in "ambush mode". The efficiency of a given algorithm 

is measured by the amount of time required before the hider is caught.

A variation of the cops and robbers game called Graph-Clear is presented in [157], 

where many robbers hâve to be caught. The cops hâve access to two different actions: 

the sweep actions, that allows them to catch a robber, and the block action, that 

prevent a robber to use an edge of the graph. The goal is still to capture ail robbers 

using as few robots as possible. It is proven that the general case of the Graph-Clear 

game is NP-Hard.
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2.6.4 Other Variations

Tether / Fuel: The exploration problem by a single robot on a graph in the presence 

of a tether or with fuel is studied in [97]. The paper considers two scénarios: in the 

first and more restraining one, a robot is linked to its starting position by a tether of 

length /, and can therefore go no further than l away from its starting node. In the 

second scénario, a robot has a limited fuel tank of capacity C, and must return to its 

starting point after traversing C edges. For both scénarios, an algorithm solving the 

exploration in 0(|i?|) is provided.

Freeze-Tag: [8] introduces the Freeze-Tag Problem (FTP). In this problem, a set 

of robots starting at different locations are inactive. At the start of the algorithm, 

a single robot is active, and is able to awaken inactive robots, rendering them active 

as well. The purpose of the algorithm is to awaken ail robots as early as possible. 

An active robot awakens another simply by moving to its location. On graphs, this 

problem is proven to be NP-Hard, even for star graphs.

It is observed in [9] that any algorithm that is not purposefully unproductive 

yields an O(logn) approximation of the optimal solution. The paper also provides an 

0(l)-approximation algorithm for unweighted graphs with one robot at each node, 

and explore the scénario where there is more than one robot at each node.

Colliding Robots: The problem of bouncing or colliding robots is set in a contin­

uons ring of unitary circumference. A group of robots with different initial positions 

move in a fixed direction (in other words, they hâve positive or négative speeds). 

Whenever two robots meet, they exchange their speeds, thus "bouncing off" one an­

other. Robots may not change their speed on their own volition, and can only gain 

information by colliding with other robots. Robots hâve an internai clock that in- 

forms them of the time of each of their collision, and hâve unlimited memory. In [59],
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ail robots hâve the same constant speed. The paper characterises ail initial configu­

rations that allow ail robots to be informed of the initial position of ail other robots, 

and further considers the same problem on the line segment. [69] extends the problem 

on the ring by allowing robots to hâve different initial speeds. Whenever two robots 

collide, their speeds are exchanged. The initial positions and velocities that allow for 

ail robots to obtain knowledge of the initial position and velocity of ail other robots 

are discussed. It is proven in this paper that the configuration is feasible if and only 

if no robot has an initial velocity that is equal to the average of the velocities of ail 

robots.

Beachcomber: In the beachcombers problem, each robot has two different speeds: 

one that the robot uses to travel without searching the environment, and a slower one 

where the robot performs a search of the environment. The goal of a beachcomber 

algorithm is for a group of heterogeneous robots to fully search the environment. In 

[55], a group of k heterogeneous robots with different walking and searching speeds 

must explore a line segment. Ail robots start at one end of the line segment, and hâve 

full knowledge of the number of robots in the group, and ail of their respective speeds. 

In the offline scénario, robots know the length of the line segment in advance, and 

in the online scénario, robots do not hâve this information. An optimal algorithm is 

given for the offline scénario, and a 2-competitive algorithm is provided for the online 

scénario. [17] extends the environment to the cycle, and prove that the capability for 

a robot to change its direction does not help robots in their search.

2.7 Practical Results

An algorithm called the Mapping algorithm is presented in [190], and uses the notion 

of hill-climbing to create maps that are maximally consistent with sensor data and
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odometry. The algorithm tries to minimise the redundancy between the information 

gathered by the group of robots, thus maximising overall utility. Real-world trials and 

simulations support the daims. A similar technique is used in [34] to assign target 

points to mobile robots while taking into account both the utility of the point and 

the cost of reaching it.

The différence in effectiveness between random and coordinated search algorithms 

by a group of mobile robots is discussed in [134] under various criteria, such as cost 

effectiveness, interplay of sensor cost and uniform search coverage.

Unmanned aerial vehicles (UAVs) are used in [146] to search an area with targets 

of several types (suspected, unknown). At each location, a task to be performed may 

require several coordinated UAVs. Not ail UAVs hâve the same capabilities: some 

hâve better searching capabilities, while other are better at taking care of tasks once 

the target has been found. Algorithms that use dynamic modelling are used to solve 

those tasks efficiently, and simulations support the daims.

[203] studies the amount of energy required to ensure the motion of autonomous 

mobile agents. A complété energy model is présent,ed to describe the energy consump- 

tion during the movements, and an optimal velocity schedule is proposed to minimise 

the energy expense on uniform roads. Near optimal velocity schedule is proposed for 

variable road conditions. Simulation results are provided.

A survey of various mapping strategies using a single or multiple mobile agents in 

both theoretical and real-world environments is presented in [197].

[35] and [36] consider a variation of the exploration problem in an unknown en­

vironment where the robots needs to reach a certain target point before using their 

scanners. Target points hâve various values based on their location (for example, a 

robot will prefer a point that allows it to see around a corner), and those values are 

decreased as other robots collaborate to the mapping of the same area of the envi-
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ronment. This paper daims to be the first to consider both the cost to reach a point 

and the utility of the point as part of the provided algorithm, and provides real-world 

experiments to show that the algorithm significantly reduces exploration time.
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Chapter 3

Searching the Plane with Faulty

Robots

3.1 Introduction

Searching for a target is a common task in several domains of human activity and has 

been modelled as such in mathematics, theoretical computer science, and robotics in 

particular. It has been studied for graphs and various géométrie domains when the 

target is either mobile or stationary. The overall goal is to minimize the time required 

by the searcher(s) to find the target. The robots may co-operate by exchanging 

messages and using one of the following two models: wireless, in which instantaneous 

communication between the robots is possible at any distance, and face-to-face (F2F), 

which requires for the robots to be at the same location at the same time. In this 

chapter we design fault-tolerant search algorithms for robots, some of which may hâve 

either crash- or byzantine-faults, and show they are optimal despite the fact that the 

robots can move with possibly distinct maximal speeds.
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3.1.1 Preliminaries and notation

In this subsection we introduce the basic locomotive and communication models as

well as the behaviour of the robots and discuss ail necessary assumptions and notation 

that will be used throughout the chapter.

There are k robots labelled ri, r2, ..., r*. They start at the same point, considered 

to be the origin O in the plane and are searching for a target assumed to be at an 

unknown distance d from the origin. The robots are equipped with a compass and 

share a common coordinate System. They furthermore evaluate distance in the same 

manner, thus having the same notion of unit length. Robots may hâve different 

speeds. We say that robot r* has a maximal speed u,, for i = 1,2,..., k, and we can 

assume without loss of generality that for every 1 < * < k — 1, Vi < üj+i. A robot 

can choose to move with any speed that does not exceed its maximal speed or even 

choose to remain completely still. Each robot has visibility range 1 and is able to 

identify the target when it belongs to its visibility range.

In the general setting being studied here, k robots are searching for a target 

located at an unknown location in the two-dimensional Euclidean plane and at a 

priori unknown distance d from the starting location of the robots; during their search 

the robots may inform each other of the location of the target, and gather there. The 

design and analysis of the search algorithms takes into account the communication 

models being used by the robots and the behaviour of the robots during the search 

which are defined in the sequel.

Two communication models are being considered. In the wireless communica­

tion model, robots can exchange information instantly, regardless of their distance 

in the Euclidean plane. In the Face-to-Face communication model, robots can ex­

change information instantly provided they are located at exactly the same point
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in the Euclidean plane. We note that some models (e.g. the one described in [42]) 

use the notion of wireless communication collisions. In the wireless communication

collisions model, difficulties may arise if a robot receives multiple wireless messages 

simultaneously. Our model does not consider the possibility of such collisions.

To make our présentation more intuitive we first consider and analyse search 

algorithms for Non-Faulty (NF) robots, in which the robots follow the algorithm as 

intended, without any violations of their protocol(s). We then analyse two scénarios 

concerning the behaviour of the robots: crash faults and Byzantine faults. The choice 

of the faulty robots is made by the adversary, which knows our algorithm in advance 

and attempts to maximize its worst-case search time. In both cases up to / among 

the k robots may be faulty, where 0 < f < k — 1. In the case of Crash-Faults (CF), 

the faulty robots behave like reliable robots, but may be subject to various kinds of 

faults in that they may not be able to receive information from other robots, they 

may be unable to share the information they know with other robots, they inight be 

unable to move, or to identify the target if it is within their visibility range. They 

will always, however, follow the instructions given by the algorithm at the best of 

their capabilities. They will never, for example, communicate false information, or 

err from the path they were assigned.

Byzantine robots behave like robots writh crash-faults, with the différence that an 

adversary may hâve them move as he sees fit; share and/or propagate true or false 

information, and relay or refuse to relay information. A byzantine robot may not lie 

about its own label. In both scénarios it is required for the algorithm to finish so that 

every reliable robot gathers at the location of the target.

The overall goal is to solve the group search problem which is to minimize the 

time required for the last non-faulty robot to reach the target, asymptotically as the 

distance d tends to infinity. Our methods also solve the classical search problem which
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requires that only the first non-faulty robot reaches the target.

3.1.2 Related work

Search has been studied extensively in mathematics, computer science, robotics, and 

operations research and is generally concerned with minimizing the time to find a 

hidden target under various conditions on the terrain being searched, and capabilities 

of the searcher(s). When the terrain is unknown to the robots (in advance) then 

the search must imply exploration [4, 82, 140J) and often involves mapping of the 

environment [154, 180]. For useful surveys on search algorithms we refer the reader 

to [23, 125] as well as to the book [7] which studies search games. Several papers 

investigated search in géométrie environments, (e.g. [82, 140, 154]) or, similar to our 

work, the two-dimensional plane, [11, 12, 103, 106, 110].

Exploring or searching the plane by a team of robots involves coordination and it is 

one of the main thèmes of investigation not only in computational geometry [12, 174], 

but also in robotics research [196, 206] and in distributed computing [103, 106, 110]. 

However, collaborative exploration may be hard even for simple environments, which 

are not known in advance (e.g. see [126]). In the case, similar to one studied in 

the présent chapter, when the search is completed by the arrivai of the last robot, it 

happens that having more robots does not help (e.g. [44]) or that achieving optimal 

search time is non-trivial (e.g. dise évacuation in [56]).

Fault tolérance in distributed computing problems has been extensively studied 

in the past (see, e.g., [142, 168, 176]). However, the question of reliability has been 

mostly investigated in cases where failures arise from the static éléments of the envi­

ronment (network nodes and links) rather than from its mobile components (robots). 

However such malfunctions are sometimes modelled by dynamic alteration of the
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network (e.g., [38, 164]). Failures due to mobile robots were investigated in the 

context of the problems of gathering [2, 91, 191], convergence [47], flocking [207], 

linear search [67], plane search by ANTS represented by finite automata [192], pa- 

trolling [58], etc. Some papers investigated the case of unreliable or inaccurate robot 

sensing de vices such as in [48, 145, 191].

The collection of robots that may hâve distinct speeds were used in [18] to de­

sign fast converging protocols, e.g. for gathering. [203] used varying mobile sensor 

speed to achieve sensor energy efficiency. However, as in the case of [57, 150], which 

considered distinct speeds for robots performing boundary patrolling, to achieve op­

timal algorithms for larger collection of robots turns out to be quite difficult. [44] 

investigated a pair of distinct-speed robots searching a line, when the search time is 

determined by the arrivai of the last robot. Again, besides some interesting limited 

cases, a general optimal algorithm has not been proposed.

3.1.3 Outline and results

We propose and analyze search algorithms for robots some of which may be faulty in 

the wireless and face-to-face communication models. In Section 3.2, we initiate our 

investigations by discussing the spécial case of non-faulty robots.

We introduce an algorithm for the wireless model, and one for the F2F model, 

both of which are asymptotically optimal.

In Section 3.3, we introduce the problem of robots which may be subject to crash 

faults. For both the wireless and the F2F communication model, we introduce an 

algorithm that is asymptotically optimal. Finally, in Section 3.4, we introduce algo­

rithms for robots with byzantine faults. In the wireless case, we présent an algorithm 

that is asymptotically optimal.
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For the F2F model, we présent two algorithms. The first one is asymptotically 

2-competitive for k > 2/ + 1, while the second requires that k > 2/ + 2, but it is 

asymptotically optimal when the robots hâve identical speeds.

3.2 Non-Faulty (NF) Robots

In this section, we introduce an algorithm for non-faulty robots, prove its correctness 

and analyze its complexity, both for the wireless and F2F setting.

Wireless communication3.2.1

The algorithm is divided into four phases, Initialisation, Exploration, Communication, 

and Gathering. In the sequel we describe them in more detail.

Initialisation phase. AU robots start at the same location, considered to be the origin

O of the plane. The robots divide the plane into angular sectors originating at O and 

whose angles are proportional to robot speeds. The angle ctj of the sector covered by

for i — 1,2,...,k. Robots first move at a27TVjrt is given by the formula: a, =

distance 2 from the origin, taking position on the edge of the sector. If i is odd, the

robot goes to the left edge of its sector, and if i is even, it goes to the right edge of

its sector.

Exploration phase. Each robot searches its own sector in a zig-zag pattern, as shown 

in Figure 3.1. We call a step, the part of the trajectory of a robot composed of an arc 

covering the angle allocated to the robot followed by a straight line segment of length 

2. When the robots are moving along the arc, they move at their maximal speed Vi, 

and when they are moving in straight line, they move at the speed Vi, i.e., the speed 

of the slowest robot. This ensures that ail robots begin their next step at the same 

time. A robot stays in this phase until it is informed of the location of the target,
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eitlier because it found it itself, or because a neighbour robot shared this information. 

Once the location of the target is known, the robot first finishes its current step, then 

enters the communication phase.

Figure 3.1: The execution of the non-faulty robots with face-to-face communication 
algorithm, where r3 identifies the target, with the exception of the gathering phase. 
The figure in the left describes the trajectories of the robots (one color per robot) 
while the right figure describe the propagation of the information of the location of 
the target (green for uninformed robots and red for informed robot).

Communication phase. In the wireless communication model, communication is in- 

stantaneous, regardless of distance. As soon as a robot identifies the target, it informs 

ail other robots instantly, then exeeutes its gathering phase.

Gathering phase. A robot in the gathering phase moves towards the target in a 

straight line, using its maximal speecl.

3.2.2 Face-to-face communication

The face-to-face communication variation of this scénario lias the same initialisation

phase, exploration phase and gathering phase. However, as the communication can 

only be done when the robots meet, the algorithm must be adapted to ensure that ail
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robots nieet, and therefore reçoive the information about the location of the target. An 

execution of the face-to-face variation of this scénario can be observed in Figure 3.1. 

Note that the gathering phase is not depicted in order to make the figure clearer. The 

communication phase now unfolds as follows:

Communication phase. Once a robot is aware of the location of the target, it will 

share this information both with the robot on its right and with the robot on its 

left before starting its gathering phase. Any given robot will meet either its left or 

right neighbour at the beginning of a step, and the other neighbour at the end of the 

current step, as shown in Figure 3.1. Therefore, the communication phase of a robot 

consists of the execution of a step as described above, at the end of which the robot 

will execute its gathering phase.

There is a spécial case to consider: if k is ocld, then r\ and 77. will hâve synchronous 

patterns, and will not meet at the end of every tvvo steps. Their communication phase 

will therefore unfold as follows:

1. The robot first informs the neighbour it nieets normally (that is, rx informs r2, 

and r'k informs r*,_i).

2. The robot complétés another step as defined in the exploration phase.

3. The robot then stays idle for the part of the step where it moves along an arc, 

and simply executes the part of the step where it moves in a straight line. In 

doing so, it will meet the other robot at the end of the step.

4. The robot shares the information, then proceeds to its gathering phase.

Algorithm 1 describes the behaviour of the robots in the face-to-face communica­

tion variation. The procedure MoveLine(d/.sd. dir, v) moves the robot in direction

74



dir of distance dist at speed v and procedure MoveArc(c, a, r, v) moves the robot 

at speed v along the circular arc centered in c of radius r subtending the angle a.

Algorithm 1: NonFaultyRobots
1 Initialisation phase
2 V±-Y.Uvû
3 dir 4— 0;
4 for i = 1 to k do

a* <“5

if i mod 2 = 0 then6

diri 4— dir; $4—1;
else

diri dir + a,-; ^ 4-----1;
dir 4— dir + a*;

7

8

9

10

il Exploration phase (every robot r, executes this in parallel)
12 j 4- 1;
13 while Target location unknown do 

MoveLine(2, di^, fi); 
MoveArc(0, ati/3, 2j, vf)-, 
diri 4— dirj + a*/?;

14

15

16

6 ir- -P',17

j <- 3 +1;18

19 Communication phase (every robot rt executes this in parallel)
20 MoveArc(0, (*.$, 2j, Wj);
21 diri = diri + &iP\
22 MoveLine( 2, diri, fi);
23 3 3 + 1;
24 if (i = 1 or i = k) and k mod 2 = 1 then 

stay still for time Ajn/V ;
MoveLine(2, diri, vi)-,

27 Gathering phase (every robot r, executes this in parallel)
28 Go to target

25

26

Lemma 1. Algorithm 1 is correct, i.e., the target is always found and the robots 

eventually gather at the location of the target, for both variations of the algorithm 

(wireless communication and face-to-face communication).

P roof. In order to prove the correctness of the algorithm, we hâve to show First, that
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the algorithm always finds the target, and second, that ail the robots can gather at 

the target.

To prove the first part, we note that at the j-th step of the exploration phase, 

the robots will scan an annulus where the inner circle has a radius of 2j — 2, and the 

outer circle has a radius of 2j. It is obvious that the robots cover the entirety of the 

annulus. Therefore, after j steps, a dise of radius 2j will hâve been entirely scanned 

by ail the robots combined.

Next we prove that the robots will always gather at the target. For the wireless 

variation, communication is instantaneous, and the robots are therefore informed 

immedlately. They can then gather at the location of the target. We prove that the 

robots are ail informed in the face-to-face communication variation as follows. As

the robots begin each step simultaneously, they are guaranteed to meet either their 

left or right neighbour at the end of each step. More precisely, ail odd robots will 

meet their left neighbour at the end of every even step, and their right neighbour 

at the end of every odd step. The opposite is true for the even robots. The onlv 

exception to this rule is the first and last robots, if there is an odd number of robots, 

in which case the information is spread at the cost of at most two extra steps. By 

following the algorithm, this ensures that every robot is informed of the location of 

the target eventuallv, and can therefore gather at the target, which complétés the 

proof of Lemma 1. □

Lemma 2. The search performed by Algorithm 1 is completed in time

4|_d/2j +d 2ir[d/2\ {[d/2j + 1)
FVl
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for the voireless communication variation, and in time

4|_d/2j + d + 4:\k/2] 2n([d/2\ + ffc/21) {[d/2\ + \k/2] + 1)
Vv\

for the face-to-face communication variation.

Proof. First, we show the following claim. 

Claim 1. The end of step j occurs at time: ^

The trajectory of a robot until step j consists of j arcs of growing radius (line 15) 

as well as j segments of length 2 resulting from the linear moves from lines 14. As 

robot ri uses its full speed u, for circular moves and speed v\ for straight line moves, 

this takes time
2j on( 2 + 44------+ 2 j)

Viv\

which is equal to:
2i + 27Tj(j + 1)

1/Vl

This ends the proof of the claim.

Suppose that the target is found at a point situated at distance d (w.l.o.g. d is 

an integer) from the origin O, say by robot r,. We vvill show that this happens in 

step [d/2\ of the exploration phase (the while loop from line 13). For simplicity, 

we assume that the target may only be found during the circular movement of the 

robots. Indeed, the union of the robots’ positions during circular movements cover 

the entire plane. Hence by Claim 1, the target is found before time

2|_d/2j 27r|rf/2j (|d/2j +1)
(3.1)

VVl

Once the location of the target has been identified by a robot, the information
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needs to be shared. Wireless communication allows this to happen instantly; face- 

to-face communication requires more time. Apart from robots ri and r*, in the case 

of an odd number of robots, the robots will communicate the information to their 

neighbour at the end of each step, both clockwise and counter-clockwise. This takes 

at most |_A;/2J extra steps if the information does not hâve to spread from rx to rk, or 

the other way around and k is odd. If there is an odd number of robots, Algorithm 1 

will add one extra step in the worst case (for the information to spread from ri to 

rk, or the other way around), for a total of \k/2], bringing the total time by Claim 1 

(including the exploration phase) to

2([d/2\ + \k/2\) 2tt([d/2\ + \k/2]) ([rf/2j + \k/2] + 1)
(3.2)

yVi

Finally, for both variations, the last robot informed (say, r*) will hâve to go back 

to the location of the target. By the time r* is informed, in the wireless case, it will 

be at a distance 2|_d/2j from the origin, and in the F2F case, it will be at a distance 

2(|_d/2j + \ k/2~\) from the origin O, that we obtain by considering only the linear 

movements of the robot. Supposing that the target is located at a point directly 

opposed to r,;, then r* will hâve to cover a distance of 2|_d/2j + d in the wireless case, 

and 2\_d/2\ + d A 2\k/2] in the F2F case, which it will do at its maximal speed. 

Therefore, the worst gathering time for the wireless case is:

2[d/2\+d
(3.3)

Vl

and the worst gathering time for the F2F model is:

2[d/2\ +d + 2\k/2)
(3.4)

ni
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Altogether, we obtain the total time required by the wireless variation by summing 

Formulas (3.1) and (3.3); whereas we obtain the total time required by the face-to- 

face variation by summing Formulas (3.2) and (3.4). We conclude that the total time 

for the wireless communication variation is

4|_d/2j + d 2ir[d/2\ {[d/2\ + 1)
(3.1) + (3.3)

VV\

The total time for the face-to-face communication variation is:

4|_d/2j + d + 4[fc/2] 2ir(|_d/2j + [fc/2]) (|_cZ/2J + [fc/2] + 1)(3.2) + (3.4) = VVl

This proves Lemma 2. □

Next we discuss a lower bound on any search algorithm.

Lemma 3. For any search algorithm with robots starting at the origin, before time

^ there are still some unexplored points of the plane at distance smaller than d.

Proof. As ail robots start at origin, at time 0 an area 7r of the unit circle is explored. 

During one unit of time, robot r* travels a distance of at most n* and, since it has 

radius of visibility 1, it can explore a new area of at most 2n,. In total, in time t

the robots can explore an area of size at most 2tV. In order to explore ail points at 

distance d, the robots need to explore the new area of size tt(d2 — 1). Hence, the time 

needed to explore ail points at distance at most d from the starting point O equals

at least ^d2V ^. □

To sum up we hâve proved the following theorem.
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Theorem 1 (Non-Faulty Robots). Algorithm 1 complétés the search successfully for 

k robots in asymptotically optimal worst-case time :

7ni2w+0(d2)
where d is the distance from the origin O to the target, and V is the sum of speeds of

ail robots.

3.3 Robots with Crash-Faults (CF)

In this section, we introduce an algorithm for robots with crash faults, prove its 

correctness and analyse its complexity.

3.3.1 Wireless communication

The algorithm works in a fashion similar to the algorithm for non-faulty robots de- 

scribed in Section 3.2, with the following différences.

Initialisation phase. Ail robots start at the same location, considered to be the 

origin O of the plane. The robots divide the plane into angular sectors originating at 

O and whose angles are computed from robots’ speeds as follows:

• Consider each robot, from the slowest to the (k — /)-th, and sum their speeds, 

such that V = Y%=i vi-

• For each subséquent robot rk_f+j, for j from 1 to /, compare its speed to y. 

If it is greater than y, set the speed of ail remaining robots (including rk-f+J) 

to y. Else add Vj to V'.
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• For each robot, set the angle a* of the sector covered by r, as follows: a* =

2irvj(f+l)

Notice that the angular sectors of ail robots now cover the plane / + 1 times. 

Moreover each point of the plane belongs to the angular sectors attributed to at least 

/ +1 different robots since by construction a, < 2ir. Robots then move at a distance 

2 of the origin, taking position on the edge of the sector. If i is odd, the robot goes to 

the left edge of its sector, and if i is even, it goes to the right edge of its sector, as it was 

done in the algorithm for non-faulty robots. The Exploration and Gathering phases 

are identical to the Algorithm 1, and the Communication phase is instantaneous in 

the wireless model.

3.3.2 Face-to-face communication

In addition to the modification to the initialisation phase described above, the com­

munication phase is changed. It is now described as follows.

Communication phase. Once a robot identifies the location of the target, it com- 

municates this location to every robot it meets (the exchange of information is still 

instantaneous). For this purpose after finding the target, it executes [^] extra steps, 

moving only counter-clockwise (instead of changing direction at each step). One extra 

step is necessary to ensure a meeting with a robot moving in the same direction, after 

an angle of 2n has been covered. A robot that learns about the location of the target 

without seeing it, immediately starts its gathering phase. Since the target is seen by 

at least one reliable robot, this ensures that ail robots are informed of the location of 

the target.

Algorithm 2 which can be found below describes the behaviour of the robots in 

the face-to-face communication variation.
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Algorithm 2: CrashRobots
1 Initialisation phase
2 V' «- 0;
3 for i from 1 to k — / do

v'i <- Vi\4

y' <- v + vi5

e j <- 1;
7 while y > Vk-f+j do

ufc-/+i vk-f+j',

J <-j + l;

8

9

10

11 for i from k — f + j to k do

12 L ;
13 for i from k — f + j to k do
14 l y'^v'+v'i

15 dir <— 0;
16 for i from 1 to k do

2*v'i (/+!)■«i t-17 V'
if i mod 2 = 0 then 

diri <— dir; <— 1;
18

19

else
diri <— dir + c^; <-----1;

dir <— dir + o^;

20

21

22

23 Exploration phase (every robot r* executes this in parallel)
24 j <r- 1;
25 while Target location unknown do 

MoveLine(2, diri, v[)',
MoveArc(0, ocrf, 2j, u'); 
diri <— diri + «i/5;

26

27

28

t-----/3;29

j <- j +1;30

31 Communication phase (every robot r, executes this in parallel)
32 for i from 1 to [y] + 1 do 

MoveLine(2, diri, u();
MoveArc(0, cij, 2j, v[)\ 
diri t— diri + <^0
j <-j +1;

37 Gathering phase (every robot r* executes this in parallel)
38 Go to target

33

34

35

36
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Lemma 4. Algorithm 2 is correct, i.e., the target is always found and the robots 

eventually gather at the location of the target, both for the wireless and the face-to- 

face variation.

Proof. In order to prove the correctness of the algorithm, we hâve to show first, that 

the algorithm always finds the target, and second, that ail the robots can gather at 

the target.

To prove the first part, we note that at each step j of the exploration phase, the 

robots will scan an annulus where the inner circle has a radius of 2j — 1, and the 

outer circle has a radius of 2j + 1. Each point of this annulus will be scanned by 

(/ + 1) different robots. Therefore, after j steps, a dise of radius 2j +1 will be entirely 

scanned by (/ + 1) different robots. As ail parts of the dise are visited at least once 

by a reliable robot, the target is guaranteed to be found.

We can use the proof from Lemma 1 to show that the robots will always gather 

at the target for both variations, which complétés the proof of Lemma 4. □

Lemma 5. The search performed by Algorithm 2 is completed in time

4|_c?/2j +d + 27r[d/2j(|d/2j + 1) ^max j f + l-j
Vk-jVi

for the wireless communication variation and

4|rf/2J+8[gl+ii + 4 )(L<i/2J+2[!l+2) fe/{ / + 1 - jr 27rif27t (^[d/2\ + 2 + 1
Vk-jaiVl

for the face-to-face communication variation.

Proof. Let Vt = Y!i=ivi and Vf = J2i=ivi f°r ail 1 < l < k. First, we show the 

following claim:
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Claim 2.
f + l-j f + 1max 

o <j<f VIVk-j

Vk-I (we set l = 0 if

the inequality is false for every l > 1). First, we show that l is the value of j that 

maximizes c(j) = ■ For l < j < /, we hâve: vk-j+i <

For l < j < /, we hâve:

Let 0 < l < f be the maximal value such that vk-i+i > f+i-i

Vk-i by définition of l./+i-j

/ + 1 - (j - 1)
— Vk-j + Vk-j+i < +

1
Vk-Q-l) Vk-i = Vk-i

f +1 - j f +1 - j

and so we hâve:
Vk-{j-l) Vk-j

<
f + i-U-1) - f + l-J

and

/ + 1 - {j - 1) ^ / + 1 ~ j
Vk-i

By induction on j, for every j > l, we hâve c(l) > c(j). 

For 0 < j < l, we hâve: vk-j > since vk-(i-1) >

k — 1, we hâve < vi+1. Hence for 0 < j < l, we hâve :

c{j - 1) = = c(j)>
Vk-u-i)

Vk-i and for ail 1 < * <f+i-i

/
Vk-j = Vk-i + ^ vk-i > Vk-t + (l — j) (

i=j V

Vk-i f + l-J
Vk-i>

f + l-l f + l-l

and

f+l-j . f+l-jc(j) = c(f)<
Vk-i
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We hâve shown that for 0 < j < /, we hâve c(j) < c(l).

Observe that for any i < k — l + 1, we hâve v\ = and so V( = V*. For i > k — l +1, 

we hâve v\ — Vk-i . We obtain:f+i—i

)+Vi-' = ( / + 1Vk-iK = i vk-t
f + i-i f + i-i

an so :

/+! 

This ends the proof of the claim.

/ + 1 / + 1-J/ + !-/ max
o<j</Vk-i Vk-:

Suppose that the target is found at a point situated at distance d from the origin 

O, say by robot ri. This happens in step [d/2] of the exploration phase (the while 

loop from line 25). For simplicity, we assume that the target may only be found during 

the circular movement of the robots. Indeed, the union of the robots’ positions during 

circular movements cover the entire plane (/ + 1) times. Consequently, the trajectory 

of the robot finding the target consists of |_^/2J arcs (line 27) as well as \d/2\ segments 

of length 2 resulting from the linear moves from lines 26. As r* uses its full speed for 

circular moves and speed V\ for straight line moves, this takes time

2|_d/2j aj(2 + 4 H-----+ 2|_g?/2J)
v'iVl

which is equal to
2[d/2j 27t(/ + 1) [d/2j ( [d/2j + 1)

(3.5)
V'Vl

Once the location of the target lias been identified by a robot, the information 

needs to be shared. Wireless communication allows this to happen instantly; face- 

to-face communication requires more time. The time required for the face-to-face
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variation is calculated as follows: Once a robot identifies the location of the target, 

it will execute enough steps to cover the entirety of the circle, which will require 

extra steps at rnost, and we need one extra step to ensure we meet ail robots, as two 

synchronised robots may move in the same direction and miss one another in the last 

step. Say that the robot to identify the target also happens to be the slowest robot 

rx. Hence any robot will execute at most (|_d/2j + 2 + l) steps and the total

time required for both exploration and communication phases amounts to:

2(lrf/2J+dgl + 1) , M/+l)(W2]+2fSl + l)([<j/2J+2[g1+2)
. (3.6)

1/'v\

Finally, for both variations, the last robot informed (say, r,) will hâve to go back 

to the location of the target. By the time r.-t is informed, in the wireless case, it will 

be at a distance 2[d/2j from the origin, and in the F2F case, it will be at a distance 

at most 2 (|_d/2j + 2 [^] + l) from the origin O, that we obtain by considering only 

the linear movements of the robot. Supposing that the target is located at a point 

directly opposed to r*, then r* will hâve to cover a distance of 2 [d/2\ +d in the wireless 

case, and 2 [\d/2\ + 2 + l) + d in the F2F case, which it will do at its maximal

speed. Therefore, the worst gathering time for the wireless case is:

2|_d/2j + d
(3.7)

Vl

and the worst gathering time for the F2F model is:

2(Ld/2J+2[g]+1)+d
(3.8)

V\

when we consider that rq is the last robot informed.

We can therefore conclude that the total required time for wireless communication
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is

4|_d/2j + d 27r (/ + l)[d/2\([d/2\ + 1)
(3.5) + (3.7)

F'Vl

which by Claim 2 is equal to :

4|_(i/2J + d / + 1 - J+ 2ir[d/2\{[d/2\ + 1) ^max |
Vk-jVl

For for face-to-face communication, the total time is obtained by summing For­

mulas (3.6) and (3.8) we conclude that the total time is:

4[d/2j+8[g1+d + 4 2*(/ + l)(Lrf/2J+2[gl+l)(|rf/2]+2[g1+2)
(3.6) + (3.8) =

V'Vl

which by Claim 2 is equal to :

4|d/2J+8[gl-M + 4 r27ri +1)(L<i/2J+2fll+2)(|d/2J+2\-2tt
Vl «i

□

Next we discuss a lower bound on any search algorithm.

Lemma 6. Every search algorithm with f crash-faulty robots has time complexity at

least:
h (d2 — i) (/ +1 - j)max

0<7</2

Proof. For any j such that 0 < j < f, the adversary may choose the j fastest robots 

rk~j+1,... ,rk to be faulty. Observe that in order to explore ail points at distance at 

most d from the origin, each such point must be viewed by at least / -Fl — j other 

robots. Indeed, if any such point is seen by at most / — j robots, the adversary
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can make them ail faulty and the point remains unexplored. Therefore, the robots 

(except the j fastest ones) altogether hâve to cover the area of n(cP — 1 )(/ + 1 — j). 

As, similarly as in Lemrna 3, in time t the robots can explore a new area of size at 

most 21 (Ya=Î vi)i the time needed to complété the exploration equals:

?r(d2 - !)(/ + ! -j)
2E iZÎvi

Since the adversary can choose any j such that 1 < j < /, the lower bound is the 

maximum among ail j:

Tr{d2 - !)(/ + 1 - j) (/ + 1 - j)max 
o <j<f 2E Uvi

□

To sum up we hâve proved the following theorem.

Theorem 2 (Crash-Faults Robots). Algorithm 2 complétés the search sucxessfully 

for k robots, including at most f of which are crash-faulty, in worst-case time

+ °(^2)7rd2 (/ + 1 - j)max 
o <j<f E Uvi2

where Vi for 1 < i < k is the speed of robot r, and d is the distance from the origin O 

to the target, when the communication is face-to-face. This is asymptotically optimal.

3.4 Robots witk Byzantine Faults (BF)

In this section, we introduce an algorithm for robots with weak Byzantine faults, prove 

its correctness and analyse its complexity. Weak Byzantine robots may expérience
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crash-faults, as described above. In addition to those faults, they may choose to 

propagate information that will hinder the progress of the algorithm. They can lie 

about everything but their own identity (a Byzantine robot couldn’t prétend to be a 

healthy robot). The notion of weak Byzantine robot exists in contrast to the notion of 

strong Byzantine robots, which hâve the capability to lie about everything, including 

their own identity. In this thesis, we focus on weak Byzantine robots.

3.4.1 Wireless communication

The algorithm works in a fashion similar to the one for Crash-Faulty Robots for the 

wireless communication model. Ail phases are in fact identical. However, in the 

CF case each phase is executed once only while in the case of Byzantine faults, the 

sequence of phases is iterated / + 1 times. In each itération, when a target signalled 

turns out to be false, the robot responsible for its announcement is rejected and the 

remaining robots reorganize and continue to search the next annulus. Eventually, 

the target is found in one of the subséquent itérations or the robots eliminate ail 

faulty robots and in the (/ + l)-st itération the real target is effectively found. With 

respect to the CF case an extra cost is paid for the robots reorganization, between 

consecutive itérations of the algorithm. The total time is asymptotically dominated 

by the exploration cost, which does not increase. This is based on the fact that the 

search by k robots containing at most / faulty ones is more costly than the search by 

k — i robots with f — i faulty ones for i > 0

If two targets are identified at the same time, ail robots agréé on one of the targets 

to visit (using any given algorithm), then go visit the other.

Lemma 7. The wireless algorithm for byzantine robots described above complétés the
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gathering of ail reliable robots at the location of the target in time

+ 27v[d/2\{[d/2\ + 1) |mffl j2[d/2\+4(d +!)(/ + !) / + 1 - J
Vi

Proof. The total time required for ail reliable robots to gather at the location of the 

target is equal to the total time required to identify the target, plus the total time 

required to investigate each potential target.

The time required to identify the location of the target is again at most

2\_d/2\ ttj(2 + 4 + • • • + 2 |_d/2j )
KV\

which is equal to

2|M + 2,rLd/2J(L<i/2J+l) / + 1 - j (3.9)max 
o <j<f Etlvi

If the adversary décidés to place the location of ail possible targets on the last 

annulus to be explored (that is, every potential target is at a distance exactly (d + 1 ) 

of the origin), then T\ has to cover a distance of at most 4(d+1)(/ +1) before arriving 

at the location of the real target.

This takes time of at most

4 (d+!)(/ + !)
(3.10)

Vl

and the total execution time is bound by

2\d/2\ + 4 (d + 1)(/ + 1) + 2ix[d/2\(\_d/2\ + 1) (max ( / + 1 - 3(3.9) + (3.10) =
Vk-tV\
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□This proves Lemma 7.

3.4.2 Face-to-face communication

We introduce the following two algorithms to solve the byzantine face-to-face com­

munication problem.

The (/ -I- l)-Confirmations Algorithm

In this algorithm, we cover each annulus 2/ + 1 times, instead of / + 1 as we did 

with the crash-faulty robots. Each robot follows its own exploration path until it 

receives / + 1 confirmations of the same location of the target, before switching to 

the gathering phase. Specifically, we hâve:

Initialisation phase: the robots divide the plane in angular sectors, in a fashion similar 

to what was done in the crash-faults scénario. Each point of the plane is covered by 

2/ + 1 different robots.

Exploration phase: identical to the crash-fault scénario.

Communication phase: each robot that finds the target executes +1 extra steps, 

going only counter-clockwise (instead of changing direction at every step), thus meet­

ing every other robot which is still in its exploration phase. Once this is done, they 

execute their gathering phase. A robot that does not find the target stays in its 

exploration phase until it is informed about the same location of the target by f + 1 

incoming robots, then executes its gathering phase.

Gathering phase: the robot moves in a straight line toward the target.

Lemma 8. The algorithm described above is correct, i.e. the target is always found 

and the robots eventually gather at the location of the target.

Proof. In order to prove the correctness of the algorithm, we hâve to show 1) that the 

target is always found, and 2) that ail the robots are eventually informed and gather
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at the target. To prove the first part, we note that at each step of the exploration 

phase, the robots scan an annulus whose inner circle has radius 2i — 1, and the outer 

circle has radius 2i + 1, with i being the current step. Each point of the annulus is 

visited by 2/ + 1 robots, thus ensuring that at least (/ + 1) reliable robots see the 

target. As ail points are visited at least once by (/ + 1) reliable robots, the target is 

guaranteed to be found.

Once the robots hâve found the target, they start informing every other robot. As 

the algorithm does not allow for a robot to deviate from its exploration course before 

receiving (/ + 1) confirmations, the robots are guaranteed to meet every other robot, 

and the byzantine robots will be unable to sway any reliable robot. Since each robot 

that saw the target will eventually meet every other reliable robot, it is guaranteed 

that every reliable robot that did not see the target directly will hear about the target 

at least (/ + 1) times. Once this is doue, they hâve a confirmation of the location of 

the target. □

Lemma 9. The search performed by the algorithm described above is completed in

time

4(L<i/2]+2[g]+l)+rf "27r" 2n f + 1 - 3f 4tr [d/2\ + 2 [d/2\ + 2 —
a%

+ 2+ 1 max 
o <j<f Vk-jV\ ai

Proof. Suppose that the target is found at a point situated at a distance d from the 

origin O, say by robot rx. This happens in step \d/2\ of the exploration phase. For 

simplicity, we assume that the target may only be found during the circular movement 

of the robots. Indeed, the union of the robots’ positions during circular movements 

cover the entire plane (2/ + 1) times. Once the location of the target has been 

identified by a robot, the information needs to be shared. The robot which holds the 

information needs to go in the counterclockwise direction covering arcs of the entire
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circle, and then one extra step to meet a robot he may hâve missed because both 

robots were moving in the same direction. Consequently, we need +1 extra steps 

at most. As the speed of the robot to identify the target is also at least 1+ the total 

time required for both exploration and communication phase is bound by:

2(lrf/2J+2flfl+1) , ^(2/ + l)([d/2J+2[g] + l)(Ld/2j+2fg+2)
V'Vl

(3.11)

The last robot informed (say, rj) will hâve to go to the location of the target. By 

the time r, is informed, it will be at a distance 2 [\d/2\ + 2 + l) from the origin

O. In the worst case, the target is located at a point directly opposed to r,, hence 

r, will hâve to cover that distance plus d to reach the target, walking at its maximal

speed. Therefore, the worst gathering time (when the slowest robot r\ is the last one 

informed) is bound by
2 ([d/2\ +2 r 2^1 (3.12)+ 1 ) + d.

ai

The total time is obtained by summing Formulas (3.11) and (3.12); we conclude

that the total time is

4(Ld/2J+2[^l + l)+d 2,r(2/+l)(ld/2j+2fÿ1+l)([<i/2J+2fgl+2)
(3.11)+ (3.12) =

V'Vl

which by Claim 2 is equal to :

4 (Lrf/2J +2 [g^l +l)+rf r 27ri )(Li/2j+2fïl+2)F47r {^\_d/2\ + 2 I + l-j+ 1
Vk-jV\ ai

□This proves Lemma 9.

The Fault-Reduction Algorithm

In this algorithm, we cover each point by / + 1 robots, as we in the CF case. The
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initialization phase and exploration phase are identical to the crash-fault scénario. 

We hâve the following communication and gathering phases:

Communication phase. Once a robot finds the target, it takes circular movements in 

the counter-clockwise direction, attempting to meet every robot still in its exploration 

phase. It takes + 1 steps which involve straight-line moves retreating from the 

origin. Once a robot that did not find the target is informed, it will itself start doing 

the same counterclockwise moves to inform every other robot of a possible location of 

the target. Once a robot is done with its sequence of informing moves, it will execute 

its gathering phase.

Gathering phase. The robot goes to the origin, and waits until (k - f ) robots are
2jl _|_i

présent there. It then waits ^ + 1 steps, and then —^— additional steps (thus en- 

suring that every reliable robot arrives at the origin). Every robot that did not arrive 

at the origin after this delay is immediately considered byzantine, and is therefore

ignored for the rest of the algorithm. More so, every robot that arrived ^- + H-----^—

steps earlier is also considered byzantine, and is ignored for the rest of the algorithm.

Once every reliable robot lias arrived, they ail move to the location of the potential 

target. If more than one target location is identified, the robots go to the location 

which was found first.

Once ail reliable robots gathered at the location of a target, and the target turns 

out to be false the robots apply a procedure to identify the liar. By élimination, a 

pair of robots which are contradicting each other is identified: the one that created 

the message, and the one that received it. Both such robots, the one that sent the 

message and the one that received it, are considered byzantine, and are ignored for the 

rest of the algorithm. Note that a reliable robot may be eliminated this way, but as 

two robots are contradicting each other and the remaining robots cannot collectively 

identify who lies, they are both discarded from future actions.
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Once this is done, the remaining robots re-arrange their sectors of the plane, and 

restart the exploration of the next annulus. In such a way, after x false targets were 

identified, and x pairs of robots were discarded as being byzantine, the annulus is 

covered (/ — x + 1) times, and (k — 2x) robots are still working to continue the search.

Lemma 10. Fault-Réduction Algorithm is correct, i.e. the target is always found 

and the robots eventually gather at the location of the target, under the condition that

k > 2f.

Proof. In order to prove the correctness of the algorithm, we hâve to show 1) that the 

target is always found, and 2) that ail the robots are eventually informed and gather 

at the target. To prove the first part, we note that at each step of the exploration 

phase, the robots will scan an annulus whose inner circle lias radius 2i — 1, and the 

outer circle has radius 2z + l, with i being the current step. Each point of the annulus 

is visited by / + 1 different robots, thus ensuring that at least one reliable robot 

sees the target. As ail points are covered by at least one reliable robot, the target 

is guaranteed to be found. Once a reliable robot has found the target, it will start 

informing every other robot, thus ensuring that every robot receives the information. 

Byzantine robots that want to mislead the reliable robots may do so / times, thus 

multiplying the number of required communication and gathering phases by / + 1. 

However, each time this is done, we get rid of at least one byzantine robot. Robots 

will never be de-synchronized from the rest of the swarm, since as soon as a reliable 

robot is informed, it also informs every other robot, and they ail gather at the origin 

within a time which is linear in d. Robots will never wait indefinitely in the origin, as 

the waiting time is bound linearly in d as well. Therefore, robots can never be stalled 

indefinitely, and they will eventually ail gather at the location of the real target. □
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Lemma 11. If every robot ofthe collection has speed v = 1, then the search performed 

by the Fault-Réduction Algorithm is completed in time ^T^d2 + o{d2)

Proof. The total time required by the Fault-Reduction Algorithm is equal to the sum 

of the exploration time, and the communication and gathering phases, which can 

both be done up to (/ + 1) times.

Each time a byzantine robot daims to hâve found a target, we will eliminate 

two robots, including at least one robot which is byzantine. Therefore, for each 

occurrence i of a byzantine robot declaring a false target at distance d,, we execute 

a communication phase, a gathering phase, and we redistribute the next armulus to 

cover between the remaining robots. The total time spend in the exploration phase 

can therefore be bound by

/ + 1 / 2 1
2k ^(MiH A{d\, ^2)+- • -4 A(df-1, df) 4 A(df,d)2(k - 2/)2(As - 2) 2(*-2(/-l))

where A(a, b) represents the time required to cover an entire annulus by a robot, with 

the inner circle of radius a and the outer circle of radius b. Observe that 1

for k > 2(/ 4- 1) and 1<î</ + 1. Therefore, we can bound the expression above

by:
/ + 12h A(0,d)

Consequently, we obtain that the exploration phase takes at most

27r(/ + l)Ld/2j(Ld/2j + l)2|_d/2j + (3.13)
2 k

Each time a robot daims to hâve identified a target, it must inform every other 

robot, thus following counterclockwise arcs summing up to 27r. The last robot in-
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formed must in turn cover counterclockwise arcs summing up to 2ir, then gather at 

the origin. From the moment the target is identified initially, at a distance at most 

d of the origin O, to the moment where ail reliable robots are gathered at the origin 

O, the time elapsed is at most

2^1+2 , 2tt(/ + 1) 2 2tt(/ + 1) r 27t~i"27r" +1 ) dd + + 2+ 1 kkv\ «î <X\

Once every robot is at the origin, they will travel a distance of at most d, to verify 

if the target is the real one. If it isn’t, the farthest robot will hâve to travel a distance 

of at most 2d to take its position to résumé the exploration. This is done at speed 

v = 1. As this entire process may hâve to be repeated at most / + 1 times, we can 

bound the maximal amount of time required to identify the real target with:

2+1+2 2tt(/ + 1))([ïl + 1)‘i)+(/+1)4‘i(/+i) ^+1> k kVl

(3-14)

The total time is obtained by summing Formulas (3.13) and (3.14); we conclude 

that the total time is

2 /r(./’ + 1) [d/2\ ( |_d/2j + 1)
(3.13)+ (3.14) = 2[d/2j +

2 k
2rgi+2 227r(/ + 1) / f27r"+ (/+!)

+ (/+1)(2 k 

f + 1

+ (/ + 1) k + 1
«1V\

2n(f + 1) / F2tt" ^ d'j + (/ + 1)4d+ 1
ai

2k *d2 + o(d2)

□This proves Lemma 11.
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Observe that the lower bound of Lemma 6 for / crash-faulty robots is clearly valid 

for / byzantine robots. To sum up we hâve proved the following theorem.

Theorem 3 (Byzantine Robots). In the wireless case, our algorithm complétés the 

search successfully for k robots, including f byzantine ones, in worst-case time

f 7rd'2\ ( /
V 2 J \o<j<f \

(/ + 1 - j) + °(^2))Tr-^k—j
Ei=i Vi

where for 1 < i < k is the speed of robot r* and d is the distance from the origin O to 

the target. More so, in the face-to-face case, the (/ + 1)-Confirmations Algorithm 

complétés the search successfully for k robots, including f byzantine ones such that 

2/ < k, in worst-case time 2c and the Fault-Réduction Algorithm described above

for the F2F model complétés the search successfully for k robots of equal speed v = 1, 

including f byzantine ones such that 2/ + 2 < k, in worst-case time ^^ + o(d2).

3.5 Additional Remarks and Conclusion

We studied search in the plane with faulty robots under two different scénarios. In the 

first one, some robots can be subject to crashes, and stop working properly, whereas 

in the second one, robots may be byzantine, and actively work against our goal. For 

both scénarios, we considered the wireless and the F2F communication model. We 

designed an algorithm which has asymptotically optimal search time, for ail of those 

cases, with the exception of the byzantine F2F model. In this case, we offer two 

algorithms: the first one works for any 2/ + 1 < k and is 2-competitive, and the 

second one works for 2/ + 1 < k, and assumes that ail robots hâve equal speed. This 

second algorithm is optimal.

The algorithms we presented consider robots with a visibility range of 1. We
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suggest that our algorithms can be adjusted to take into account robots with visibility 

range that vary from one to the other, by modifying the angular value of each robot’s 

coverage sector so as to take their visibility range into account. We leave this subject 

as an open problem.
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Chapter 4

Searching for a Non-adversarial 

Uncooperative Agent on a Cycle

)

Introduction4.1

Due to their fundamental nature, the problems of searching and exploration hâve 

been investigated in many areas of mathematics and computer science, especially in 

robotics and autonomous mobile agent computing. The robots move with certain 

speeds (not necessarily the same) and the objective of the search is to find a (usually 

static) target placed at an unknown location of the domain in a (provably) optimal 

time. This search problem was first proposed by Bellman [20] and independently by

Beck [19].

In this chapter we consider a similar search problem concerning k mobile au­

tonomous robots which are initially located on the perimeter of a unit cycle and 

which can move with maximum speed 1 on its perimeter. Unlike previous research 

which considers a static target, in our work the robots are aware that a bus (non- 

adversarial, uncooperative agent) is moving with constant speed, say s, along the
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perimeter of the unit cycle but do not know its exact location and may or may not 

know its direction of movement. We assume that during their search the robots can 

move in any direction anywhere on the perimeter of the cycle and can also commu- 

nicate wirelessly at any distance during their trajectories.

More specifically, we are interested in investigating the following search problem: 

Give an algorithm which places the robots on the perimeter of the cycle and minimizes 

the search time so that at least one of the robots can catch the bus. By the “robot 

catching the bus” we mean that the robot and the bus are at the same location at 

the same time.

Preliminaries and model of computation4.1.1

We assume that the robots are traversing a cycle (the perimeter of a disk of unit 

radius). Furthermore, there is a bus which is rotating around the cycle at constant 

speed s and its location is unknown to the robots. The robots can communicate 

• wirelessly and when a robot finds the bus it can broadcast its location to the rest 

of the robots. Note that in the single robot case (k = 1), würeless communication is 

unnecessary since the search algorithm is executed by the robot alone.

The robots can move at speed at most 1 on the perimeter of the disk and can 

change direction at will at any time during the search depending on the spécifications 

of the algorithm. An algorithm spécifiés the initial position and trajectories of the 

robots. For k robots, their movement is specified by a fc-tuple (/i(t), . ■ ■,

of k continuous functions such that fi[t) gives the précisé location of the i-th robot on 

the cycle at time t, where i = 1,2,..., k. Without loss of generality we may assume 

that the robots start at the same time while the bus is always in motion around the 

cycle.
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4.1.2 Related work

Our problem can be seen as a rendezvous/meeting problem with an uncooperative, 

but not adversarial agent, a middle case between rendezvous and cops and robbers. 

In the standard rendezvous model, ail agents fully cooperate to the common meeting 

goal. Indeed. this is the case in the related paper [109) on rendezvous of two robots 

with different speeds in a cycle (our problem is different in that one of the two 

vehicles—namely the bus—lias a fixed speed and cannot change direction). At the 

other extreme, in cops and robbers problems (e.g., see [28]), the cops hâve the same 

goal of meeting the robber, but the robber is adversarial and actively tries to avoid 

meeting. Here (at least for search), we are also trying to meet with an agent. However, 

that agent does not cooperate, but goes doing its own business, not caring whether 

it is met or not.

The underlving domain which is traversed by the robots is a continuons curve 

(in our case the perimeter of a disk of unit radius). In this setting, in addition 

to the rendezvous paper [109], related to our rendezvous problem is the work on 

probabilistic rendezvous for robots with different speeds [160], rendezvous for multiple 

robots with different speeds in [143], and rendezvous for two robots with different 

speeds in arbitrary graphs [ 162].

Related is the literature on search involving a robot and a static exit in the séminal 

papers [11, 19, 20] as well as extensive discussions and models in the books on search 

problems [3], on the theory of rendezvous games [7], and on the game of cops and 

robbers [28]. More recently, there is research on robot évacuation which is like search 

but measures the quality of search by the time it takes the last robot to fiiid an 

exit; this has been investigated in the wireless model as well as in the face-to-face 

model [56]. Related papers on robot évacuation include two robots in the face-to-face
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model [32, 62] and [68] in the wireless model when the underlying domain is a triangle

or a square.

There is also related work on gathering a collection of identical memoryless, mobile 

robots in one node of an anonymous unoriented ring. Robots start from different 

nodes of the ring and operate in Look-Compute-Move cycles and hâve to end up in 

the same node [152], as well as oblivious mobile robots in the same location of the 

plane when the robots hâve limited visibility [121].

4.1.3 Outline and results

Depending on the model being considered the robots may or may not hâve knowledge 

of the direction of movement and speed of the bus. In particular, in this chapter we 

détermine the search time for the following cases. The robots

1. do not know the direction of movement but know the speed of the bus, and

2. know neither the direction of movement nor the speed of the bus.

We note that if the robot knows the direction of movement of the bus, then it has 

been proved in [109] that 2tt/(s + 1) is a tight bound on the search time.

In Section 4.2 we provide tight upper and lower bounds for single robot search, 

while in Section 4.3 we provide tight upper and lower bounds for multiple robot search. 

In both sections we consider the impact of knowing the direction of movement of the 

bus. Table 4.1 summarizes the results of Section 4.2 for a single robot and Table 4.2 

summarizes the results of Section 4.3 concerning multiple robots.
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Direction Speed Search Time Theorem
Theorem 4 [109]2 7T / (s + 1)Known s

Unknown 27r/s Theorem 5s > 1
1/3 < s < 1 47r/(g + 1)Unknown Theorem 5

5 < 1/3 27r/(l — s)Unknown Theorem 5
Unknown Unknown Theorem 647r

Table 4.1: Optimal search time for a single robot of maximum speed 1. The column 
“Speed” refers to what the robot knows about the speed of the bus.

SpeedDirection Search Time Theorem
2n/k(s+ 1)Known Theorem 7s

27r/ksUnknown Theorem 8s > 1
27t/k (k even)Unknown Theorem 8s < 1
27t/k (k odd) OPENUnknown s < 1
2ir/k (k even)Unknown Unknown Theorem 9

2ir/(k — 1) (k odd) OPENUnknown Unknown

Table 4.2: Optimal search time for k robots of maximum speed 1. The column “Speed” 
refers to what the robots know about the speed of the bus.

4.2 One Robot

Consider the case of a single robot R and let B dénoté the bus and P, the path 

followed by the robot. Throughout this section we assume that the bus is moving at 

constant speed s and cannot change direction, while the robot is moving with speed 

1. Our analysis is divided into three subsections depending on the knowledge the 

robot has about the bus. In Subsection 4.2.1 we assume only that the robot knows 

the direction of movement of the bus, in Subsection 4.2.2 the robot does not know the 

direction of movement of the bus but knows its speed, while in Subsection 4.2.3 the 

robot knows neither the direction nor the speed s of the bus. Table 4.1 summarizes 

the results of Section 4.2 for a single robot.
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4.2.1 Known direction of movement of the bus

In this subsection we assume that the robot knows only the direction of movement 

of the bus. The following theorem was fîrst proved in [109] but we State it for com- 

pleteness.

Theorem 4 ([109]). If the robot knows the direction of movement of the bus then

2tt
s + 1

is the worst-case optimal search time.

Proof. (Theorem 4) Without loss of generality assume the bus is moving in the CCW 

direction. To prove the upper bound consider the following algorithm (depicted in 

Figure 4.1) which is executed by the robot.

Search Algorithm (Direction Known).

1. Move along the perimeter in CW direction;

2. Stop when bus is found;

Figure 4.1: Robot search for a moving bus B. The bus is moving with speed s along 
the perimeter of a cycle and the robot is moving with speed 1 searching for the bus.
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Since the robot chooses to move in a direction opposite to the direction of move- 

ment of the bus, the two will meet. The initial distance (when the robot reaches the 

perimeter) between robot and bus is at most 2ir and therefore the two will meet in 

time not exceeding

The proof of the lower bound follows from the work of [109|. This proves

Theorem 4. □

Unknown direction of movement but known speed of the4.2.2

bus

In this subsection we assume that the robot does not know the direction of movement

but knows the speed s of the bus.

Theorem 5. If the robot knows the speed s of the bus but does not know its direction 

of movement then the optimal search time is exactly

1. 27r/s if s > 1.

2. 47t/(.s + 1) if | < s < 1.

3. 27t/(1 — s) if s < |.

Proof. (Theorem 5) We prove separately the upper and lower bounds in ail three 

cases in the statement of the theorem.

Upper bounds. The upper bounds are relatively simple and we présent below three 

simple algorithms.

To prove Statement 1 assume that s > 1. In the search algorithm below, the robot 

stays put and waits for the bus to arrive.

106



Search Algorithm (Direction Unknown: s > 1).

1. The robot waits for the bus to arrive.

The upper bound in Statement 1 is immédiate since the bus travels with speed 

s and the robot is at distance at most 2ir from the bus.

To prove Statement 2, assume that | < s < 1 and consider the following search 

algorithm.

Search Algorithm (Direction Unknown: 1/3 < s < 1).

1. The robot chooses a direction and walks for time

2. If no bus found then it changes direction and walks until bus is found;

The upper bound in Statement 2 is easy since in the first part of the algorithm 

the robot walks for time If it did not rneet the bus by this time it is because the 

bus is moving in the same direction as the robot. Therefore at the moment the robot 

changes direction, in the second part of the algorithm, it is certain that it is moving 

against the bus. Therefore it will meet the bus in additional time

To prove Statement 3, assume that s < | and consider the following search algo­

rithm.

Search Algorithm (Direction Unknown: s < 1/3).

1. Robot chooses an arbitrary direction and walks until bus is found;

The upper bound in Statement 3 is easy since in the worst case the bus and 

the robot are moving in the same direction with initial distance at most 2ir.

Lower bounds. Next we proceed to prove the lower bounds for ail three cases in

the statement of the theorem.

Let us introduce a visualisation that will be used in the other lower bounds as

well. The x-axis represents time and the y-axis represents positions in the circle. The 

bus trajectory is then represented by a line passing though the initial position of the
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bus, with the slope determined bv the speed and direction of the bus (let downslope 

mean counterclockwise direction).

The robot’s trajectorv from time 0 until time T will be represented by a contiguous 

curve P (possiblv consisting of straight line segments) in this time-space diagram. Let 

ps and pe dénoté the start and end-points of P. In order for the robot to catch the 

bus, its trajectorv will hâve to cross the bus lines corresponding to ail possible initial 

positions, directions (and possiblv speeds, if the speed is unknown) of the bus. Such 

a robot trajectorv will be called a valid one. Note that the validitv of the trajectorv 

dépends on the assumptions/knowledge about the bus’s speed s, i.e. a trajectory 

valid for a given s rnight not be valid for different s.

o T,

Figure 4.2: Trajectory and other concepts: u, v, u' and v' are key points. ta, t', qq 
and ({ are support lines.

Consider first the case where the speed of the bus is known to be s, but its 

direction is unknown. For a fîxed P, let tsa and tsb dénoté tangents of slope s touching 

P from above and below, respectivelv. Since here we deal with fixed s, we will omit

respectivelv (refer tosuperscripts, and use shorthands qa and qb for tas and t 

Figure 4.2).

Let z(x) dénoté the y-coordinate of line 2 at time x. Hence, 4(0) and 4(0) repre- 

sent the starting positions of the buses moving at speed s that touch the trajectory

— S
b î
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of the robot from above and from below.

Lemma 12. If the bus speed s is known but its direction is unknown, then P is valid

if and only if ta(0) — 4(0) > 2tt and qa(0) — qb(0) > 2tï

Proof. As the y axis represents the unfolded perimeter of the cycle, every point of 

the cycle is represented in any segment of y-axis of length at least 27t. In particular, 

the segment (4(0), 4(0)). Note that since P is contiguous, every line of slope s lving 

between 4 and 4 represents a bus starting at this segment intersecting P. As the 

same argument holds for direction —s, P is valid.

If (without loss of generality) 4(0) — 4(0) < 27t, there is a point in the circle not 

covered by the segment (4(0), 4(0)). A bus line of slope s Crossing this point does 

not intersect P, therefore P is not valid. □

Let u be the earliest (in time) of the intersections of 4 or 4 with P. Let tl be a 

line of slope s at vertical distance exactly 2tt from u and lying between ta and 4- Let 

u' be the earliest intersection of t' with P. Note that since t' is between 4 and 4, it 

is ensured to intersect P, hence u' is well defined. Define v and v' for the slope —s 

analogously (see Figure 4.2). Let us call points u, v, u', v' the key points of P.

Let P1 be a trajectory starting at the earliest of the key points, following P and 

finishing at the latest key point (v to u' in Figure 4.2). We will call such trajectory 

a pruned trajectory. By Lemma 12 and its construction, P' is also a valid trajectory 

for s. (Note that translating a trajectory does not change its validity status, as 

translations correspond to different starting time and position of the robot.)

We are now ready to prove Statement 1 of Theorem 5: Since s > 1, we immediately 

get that u = v = ps. By Lemma 12, in order for P to be valid, it must touch both t' 

and q' (see Figure 4.3). Note that the robot can do so in time 2it/s by simply waiting 

at the starting location. Assume, on the contrary, that it moves and first touches
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Figure 4.3: The case s > 1.

(without loss of generality) q' at point v'). Then the earliest it can touch t' is bv 

moving towards it (counterclockwise). However, it will not be able to reach t' sooner 

than q' (which Ls also moving counterclockwise, but at speed s > 1), which reaches t' 

at time exactly 2ix/s.

Consider now the case s < 1. We know that we can prune the trajectory without 

increasing its span or breaking its validitv. In fact, the following Lemma tells us that 

it is sufficient to consider only trajectories with robot moving at full speed at ail time:

Lemma 13. Let P' be a valid pruned trajectory of span T. Then there exists a valid 

trajectory P" of span at most T in which the robot always travels at full speed.

Proof Let a, b, c and d be the key points of P', ordered by time. Let ra, rb, rc and rd 

be the corresponding support Unes. P' will be modified as follows (see Figure 4.4):

Figure 4.4: Speeding up pruned trajectory.
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• consider the robot moving from c to rd at, full speed and let d! be the point, 

where it reaches rd

• consider the robot moving from b to ra at full speeed back in time and let a' be 

the point where it reaches ra (alternatively, a’ is the point on ra from where a 

robot moving at full speed towards rb reaches b)

• finally, let d be the point where the robot moving at full speed from b to rc 

reaches rc and let d" be the point where the robot moving from d at full speed 

towards rd reaches it

As the support lines did not change, the trajectory a’bdd" is still valid. Note that a' 

is not earlier than a and d'is not later than d. Also, as d is not later than c, then d" 

is not later than d'and hence the resulting span a'd" has not increased. □

Hence, it is sufficient to consider only trajectories consisting of at most three 

line segments of slope 1 and —1. In fact, it is sufficient to consider onlv one- and 

two-segment trajectories:

Lemma 14. Let P be a valid pruned full-speed trajectory consisting of three segments 

of alternating directions. Then there exists a valid pruned full-speed trajectory of at 

most two segments with smaller span.

Proof.

Figure 4.5: Optimizing a three-segment trajectory.
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As P has three segments, it must change direction in each of its interior key points 

and each key point touches exactly one support line. Without loss of generality the 

first segment is of speed 1. As P changes direction whenever it touches a support 

line, the only possibility is shown in Figure 4.5. However, the trajectory a'b'c' touches 

ail four support lines and hence is valid, and its span is smaller than then span od

□P.

Now we are ready to prove Statements 2 and 3. We need to consider only two 

strategies:

• One segment: the robot travels in one direction until it meets the bus, or

• Two segments: the robot travels in one direction for distance 2n/(l + s) (any 

two segment trajectory needs to cross from the starting support line to the 

opposing one; if it reverses sooner, it can only achieve the needed 2ir séparation 

between support lines by travel of 2tt/(1 — s) since reversai, at which point one 

segment strategy is better), then reverses and travels until it meets the bus

In the one segment strategy, the worst case time to meet the bus is 27r/(l — s), in 

the two segments strategy, it is 47r(l + s). The first is better for s < |, the latter for 

s G (rj, l), which proves Statements 2 and 3. This complétés the lower bound in ail 

three cases and proves Theorem 5. □

4.2.3 Robot knows neither the direction nor the speed of the

bus

In this subsection we assume that the robot knows neither the direction of movement

nor the speed of the bus.
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Theorem 6. If the robot knows neither the speed s of the bus being used nor its 

direction of movement then there is an algorithm with search time

1
2tt 1 +

5+1

Moreover, for any e > 0, it is possible to assign a speed s to the bus such that no 

algorithm can achieve rendezvous with the bus in time less than 47r — |.

Proof. (Theorem 6) Consider the following search algorithm.

Search Algorithm (Direction and Speed Unknown).

1. Choose a(ny) direction and walk for at most time 27r;

2. If no bus found then reverse direction and walk until bus is found;

To prove the upper bound, note that if the algorithm failed in time to find the

bus in Step 1 it is because it is traversing the cycle in the same direction as the bus. 

Therefore by reversing direction it is guaranteed that bus and robot are moving in 

opposite direction. Hence, they will meet in additional time which proves the 

upper bound.

To prove the lower bound, first observe that for ail s it must hold tsa(0) —1£(0) > 2n 

(i.e. the width of the strip of slope s encompassing the whole P must be at least 2?r). 

Consider an s for which the width w = f*(0) — tb(0) is minimized. Since w cannot 

be reduced by choosing infinitesimallv smaller or larger s (i.e. rotating the strip), 

there must be three support points a, b, c placed on the tangents tsa and tsb such that 

the points alternate the tangent lines (two points, one each on the support lines for 

s = 0, can also define a strip of minimal width, but those points would need to hâve 

the same time coordinate, which is impossible, as P represents robot’s trajectory). 

Without loss of generality assume a and c are on tsa and b is on tb (see Figure 4.6).

Let P be an optimal trajectory. This means that Ve > 0 there exists a bus speed
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Figure 4.6: Lower bound for unknown bus speed. The dotted lines correspond to 
robot traveling at speed 1 to/frorn b. The dashed lines show slight rotation of the 
strip (if c was not on the top support line), yielding reduced width (as ôa < 6b). If a 
was not on the top support line, slight rotation in other direction will yeild smaller 
strip width.

and initial placement such that, the robot meets the bus not earlier than e before

e is a lower bound on the meeting time, where |Pj is the 

span of the trajectory P. Let us calculate how long will it take the robot to cross 

from a to b and then from b to c, as this is a lower bound on the span of P. It takes 

at least 27r/(l + s) to reach b from a, and at least ^ to reach c from b (or the other 

way around, depending on the direction of s and which support line has two points) 

i.e altogether

completing P, i.e. |P|

2n 2tr 47TIPI =
s + 1 1 — s 1 — s2

We now indicate how to select the speeds. Note that bv the géométrie sériés 

we hâve that = 47r + 47rs2+ o(s2). Therefore |P| < 47r + 47r.s2 

e < 4tt — | provided that 4ns2 < | (i.e., s < yf^)- 

This complétés the proof.

îexpansion of

□
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4.3 Multiple Robots

In this section we consider the case of k robots. Throughout we assume that the 

bus is moving at constant speed s and cannot change direction, while the robots are 

moving with speed 1. Our analysis is divided into three subsections depending on 

the knowledge the robots hâve about the bus. In Subsection 4.3.1 we assume only 

that the robots know the direction of movement of the bus, in Subsection 4.3.2 the 

robots do not know the direction of movement of the bus but know its speed, while 

in Subsection 4.3.3 the robots know neither the direction nor the speed s of the bus.

Known direction of movement of the bus4.3.1

In this subsection the robots know the direction of movement of the bus.

Theorem 7. If the robots know the direction of movement of the bus then the search 

can be completed in time
2ir

k(s + 1)

This is optimal.

Proof. (Theorem 7) If the robots know the direction of movement of the bus, say 

CCW, then consider the following algorithm.

Search Algorithm (Direction Known).

1. The robots are initially placed on the perimeter of the cycle at distance

from each other.k

2. The robots move in CW direction;

Observe that at the start, the bus is located within one of these k arcs delimited

by the trajectories of the k robots. Therefore one of the robots will meet the bus in
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its movement against the bus. It is clear that this algorithm takes time

2tt
k(s + 1)'

The proof of the lower bound follows easily from the work of [109] and is 

omitted. This proves Theorem 7.

□

4.3.2 Unknown direction of movement but known speed of the

bus

In this subsection we assume that the robots do not know the direction of movement

but know the speed s of the bus.

Theorem 8. If the robots know the speed s of the bus but do not know its direction 

of movement then the optimal search time is exactly

1. 2n/ks if s > 1.

2. 2n/k if s < 1 and k is even

3. Furthermore, if s < 1 and k is odd, then the lower bound is 2ix/{k — 1) and the 

upper bound is

(a) % for se (^,1)

(b) £ for s < j±ï

Proof. (Theorem 8) We prove separately the upper and lower bounds for ail cases in 

the statement of the theorem.

116



Upper bounds. First consider Statement 1. Assume s > 1. Consider the following 

algorithm.

Search Algorithm (Direction Unknown, Speed Known s > 1).

1. The robots are initially placed on the perimeter of the cycle at distance 

~ from each other and wait motionless for the bus to arrive.

It is clear that the bus will meet one of the robots in time at most

2tr
ks'

This upper bound is valid regardless of the parity of k.

Next consider Statement 2. Recall that in this case k is even. Assume s < 1.

Consider the following algorithm.

Search Algorithm (Direction Unknown, Speed Known s < 1: k even).

1. The robots are initially placed in pairs on the perimeter of the cycle 

at distance y from each other;

2. The robots in each pair move in opposite directions.

For k even, the resulting distance between pairs is exactly = y- Observe that 

the bus is located between two robots moving against each other. Since these two 

robots will meet no later than in time ^ 

algorithm will be

Y, the resulting running time for this

2tr
k

Finally, consider the case of k odd. We evaluate two algorithms and choose the 

best, depending on s. The first option is to use the algorithms for speed larger than 

1, i.e. spread the agents evenly and wait until the bus meets you. The meeting time 

is 2n/ks in such case, The second option is to use the following algorithm:
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Figure 4.7: The algorithm for odd number of agents. Here k = 5.

Search Algorithm (Direction Unknown, Speed Known s < 1: k odd)

1. Let X = and Y =k—s k—1

2. k + 1 robots are initially placed in pairs on the perimeter of the cycle 

at distance Y from each other; One robot at, a node u neighbouring

a segment of length X is then removed to bring down the number 

of robots used to k (see Figure 4.7)

3. The robots in each pair move in opposite direction, the lone robot

moves awav from the X segment.

Observe that if the bus started in a F segment, two robots will be traveling towards

each other from the opposite ends of this segment and will meet it at time at most 

Y/2. If the bus started in the X segment, the lone robot Crossing the X segment will 

catch it in time at most X was selected so that these two times are equal:

2ir(k-s)~ 27t(1—s)Y 2ir - X k—sT — —
k - 12 k-l

2ir(k — 1)
(k — s)(k — 1) k — s

2z X
1 — s
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For s > y5 the bound 2ir/k of the waiting algorithm is better, while for s < 

this algorithm yields a better bound of

S + Vi(t)
'—s

Vi(t) + s -s

*^>i (t)
'sVi{t)-S/ // /

t = 0
S~Vi(t)

t = 0

Figure 4.8: Sizes of excluded régions. Left: case 5 > 1. Right: case s < 1.

Lower bounds. First consider the lower bound in Statement 1. Assume that s > 1.

Let Vi(t) dénoté the speed of the z-th robot at time t as it is searching for the bus. 

R,ecall that always u,(i) < 1 and hence also Uj(f) < s. Further, consider the movement 

of the robot at an arbitrary time dt. Let us express how much of the possible initial 

bus positions can the robot exclude in time dt, i.e. if the robot does not meet the 

bus at time interval dt, then the bus could not hâve started at those positions (see 

Figure 4.8). Summing up the size of exluded régions for both bus directions we obt.ain

(s + Vi(t))dt + (s — Vi(t))dt = 2 sdt.

Let T be the time it takes for at least one of the robots to find the bus according 

to the execution of an optimal search algorithm. Therefore in time T, the i-th robot 

can cover at most, (if at everv time moment it excluded different régions) length

f
J 0

2 sdt = 2 T s
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Thus, ail k robots taken together can cover at most a length of 2Tks, and only if ail 

of them cover different areas. However, this last quantity must be at least 4zr (2n 

for clockwise and another 2tt for counterclockwise bus directions, otherwise there is a 

trajectory of the bus which will escape the robots’ search). It follows that 2Tks > 4ir, 

which yields T > 2ir/ks. This proves the lower bound in Statement 1.

Now consider the lower bound in Statement 2. Assume that s < 1. Let Vi(t) 

dénoté the speed of the i-th robot at time t as it is searching for the bus. Using a 

similar argument we observe that the z-th robot in time dt covers a length equal to

(s + Vi(t))dt 4- (vi(t) — s)dt = 2Vi(t)dt.

Therefore in time T, the i-th robot covers a length

/ 2Vi{t)dt < 2T, 
•/o

where the last inequality is valid since the speed of the robot never exceeds 1, It 

follows that k robots can cover a length of at most 2Tk. However, this last quantity 

must be at least 4zr (otherwise there is a trajectory of the bus which will escape the 

robots’ search). It follows that 2Tk > 47T, which yields T > 2ir/k. This proves the 

lower bound in Statement 2.

The lower bound for the case of .s < 1 and odd k follows directly from the lower 

bound of Statement 2 by ignoring the last robot.

The proof of Theorem 8 is now complété.

□

Remark 1. We note the open problem arising from the fact that the lower bound in 

Theorem 8 is not tight for k odd.
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4.3.3 Robots know neither the direction nor the speed of the

bus

In this subsection we assume that the robots know neither the direction of movement

nor the speed s of the bus.

Theorem 9. If the robots know neither the direction of movement nor the speed of 

the bus then the search can be completed in time

2ir 2tt
— for k even, and ------- for k odd.
/C rZ 1

Moreover, the lower bound is valid regardless of the parity of k.

Proof. (Theorem 9) The algorithm below dépends on the parity of k, the number of 

robots. First we look at the upper bound.

Assume k is even. Consider the following algorithm for k even.

Search Algorithm (Direction Unknown, Speed Unknown).

1. The robots are placed along the perimeter in pairs (two robots 

per position) and at consecutive distances = X’

2. The two robots in each pair move in opposite directions;

As before this algorithm complétés search in time

Assume k is odd. The algorithm is the same as above by using only k — 1 robots, 

which gives the upper bound

The lower bound of 2ix/k for k even and 2ir/(k — 1) for k odd follows from the 

lower bounds in Theorem 8 by setting s = 0 (in the case k is odd).

This complétés the proof of Theorem 9.

□
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The exact answer is not known for k odd. However it is conjectured that the 

search time for k robots should be the same as the search time for k — 1 robots.

Remark 2. We note the open problem arising from the fact that the lower bound ïn 

Theorem 9 is not tight for k odd.

Additional Remarks and Conclusion4.4

In this chapter we considered a search problem concerning k robots searching for a 

non-adversarial, uncooperative agent, called bus, which is moving with constant speed 

s along the perimeter of the cycle.
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Chapter 5

Evacuation from a Disc in the

Presence of a Faulty Robot

Introduction5.1

Searching an environment to find an exit (or target) placed at an unknown location 

has been studied extensively in computer science and robotics. The searchers are au- 

tonomous robots which (may) cooperate during their search by exchanging messages 

so that at least one of them can find the target in minimum possible time. Another 

form of search recently introduced in [56] is called évacuation and it has the additional 

requirement that ail the robots must go to the exit. Thus, optimality in évacuation 

is measured by the time it takes for the last robot to reach the exit, whereas in tra- 

ditional search, optimality is measured by the time it takes the first robot to reach 

the exit.

In this chapter we consider an évacuation problem for three robots which are able 

to communicate wirelessly. Initially, the robots are located at the center of a dise of 

radius one and must find an exit located on the circumference of the dise and then
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gather at the location of the exit. We consider two scénarios in which exactlv one 

robot is faulty. In the first scénario, one robot can expérience crash faults, which 

prevent it from either communicating or locating the exit. In the second scénario, 

one robot can expérience Byzantine faults, which allow it to lie, e.g., to daim to hâve 

found an exit-where there is none- or even to fail to report (communicate) the location 

of the exit to the other robots. Note that the évacuation problem is considered to 

be solved when both non-faulty robots find the exit. For both scénarios, we provide 

upper and lower bounds.

Preliminaries and notation5,1.1

There are three robots initially located at the center of a unit dise. The robots can 

move with maximum speed 1 (thus, they may stop or change direction at no cost), 

and are required to find an exit (whose location is unknown to the robots) located 

somewhere on the circumference of the dise and then gather at this location as fast 

as possible. A robot can find the exit only when it is in the same location as the exit. 

During their search the robots employ a wireless communication model, which means 

that they can exchange information instantaneously and at no cost and at any time, 

no matter the distance that séparâtes them during their search.

The search problem to be studied is concerned with ail non-faulty robots evacuat- 

ing from the (unknown) exit. The search task is complicated by the fact that one of 

the three robots, chosen by an adversary, expériences faults, chosen by the adversary 

as well. We consider two scénarios. In the first scénario, the faulty robot expériences 

crash faults while in the second the robot expériences Byzantine faults. In both cases, 

the goal is to minimize the time till the last non-faulty robot reaches the exit.

• CRASH-EVACUATION: A crash fault can be thought of as a passive fault rending:
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a robot is either unable or incapable to either detect or report the exit when it 

reaches it. Thus, such a robot is not expected to find the exit, only non-faulty 

robots cari. However, we assume that in other aspects, a faulty robot moves 

like a non-faulty robot, and thus non-faulty robots cannot detect which robots 

are faulty.

• BYZANTINE-EVACUATION: A Byzantine faulty robot not only can fail to detect 

or report the target even after reaching it, it can also make malicious daims 

about having found the target when in fact it has not. Given the presence of 

such a faulty robot, the search for the target can only be concluded when the 

two non-faulty robots hâve sufficient vérification that the target has been found.

Ail the messages being transmitted by the robots are tagged with the robot’s unique 

identifier, which cannot be altered.

5.1.2 Related work

Searching an environment to find an exit placed at an unknown location is a well 

studied problem in computer science and robotics. The searchers are autonomous 

mobile robots that may also possess partial knowledge of their environment. Many 

researchers, starting with the séminal work of Bellman [20] and Beck [19], hâve studied 

the optimal (length) trajectory traced by a single robot when searching for a target 

placed at an unknown location on a line. The aim of the algorithmic designer is 

to minimize the compétitive ratio, that is, the supremum, over ail possible target 

locations, of the ratio between the distance traveled by the robot until it finds the 

exit, and the distance of the exit from the robot’s starting position. For the case 

of a single robot on a line, the optimal trajectory uses a zig-zag, doubling strategy 

according to which if the robot fails to find the exit after travelling a certain distance
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in a particular direction it returns to its starting position and doubles its searching 

distance in the opposite direction. This trajectory has a compétitive ratio of 9 and 

this can be shown to be optimal (e.g., see Baeza-Yates et al. [12]).

Several authors considered the problem of searching in the two-dimensional plane 

by one or more searchers, including [11, 12]. The évacuation problem on a unit 

dise for multiple robots considered in our présent work is a form of two-dimensional 

search that was first considered in [56]. In that paper the authors studied évacuation 

algorithms in the wireless and face-to-face communication models. New algorithms 

for the face-to-face communication model were subsequently analyzed for two robots 

in [611 and later in [32]. The problem has also been considered in other domains, like 

triangles and squares in [68]. However, ail these papers concern évacuation only for 

non-faulty robots.

One of the novelties of our current work is that we consider the two-dimensional

évacuation problem with fault tolérance. There are numerous studies of fault tolér­

ance in distributed computing, (see, e.g., [142, 168, 176]). Network failures were most 

frequently related to static éléments of the networked environment (i.e., nodes and 

links) as opposed to its mobile components. Malfunctions of this kind were sometimes 

modelled by dynainic alteration of the network [38, 164]. Distributed computation 

arising when having some of the mobile robots are faulty were investigated in the con- 

text of the problems of gathering [2, 79, 91, 191 [, convergence [31, 47], flocking [207], 

and patrolling [58]. Several researchers also investigated the case of unreliable or 

inaccurate robot sensing devices, e.g., [48, 145, 1911. Related to our study is also the 

research in [58], where a collection of robots, some of which are unreliable, perform 

efficient patrolling of a fence. Most relevant to our current study for its perspective 

on search and fault tolérance is the research of [67] and [60] which propose search 

algorithms for faulty robots that may suffer from crash and Byzantine faults, respec-
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tively.

5.1.3 Outline and results

An outline of this chapter can be described as follows. Section 5.2 is dedicated to 

upper bounds. In Sections 5.2.1 and 5.2.2 we provide évacuation protocols along with 

their (worst case) analyses for the CRASH-EVACUATION problem and the BYZANTINE- 

Evacuation problem, respectively. Then, in Section 5.3 we give lower bounds for 

both problerns. Section 5.4 gives a discussion of possibilities for further research. 

The main results of the section are summarized in Table 5.1. Notably, since the

Problem Lower Bound Upper Bound
~ 5.082 (Theorem 12) « 6.309 (Theorem 10)Crash-Evacuation

Byzantine-Evacuation æ 5.948 (Theorem 12) « 6.921 (Theorem 11)

Table 5.1: Comparison of Crash vs Byzantine: the first column gives the type of 
fault, the middle column lower bounds, and the right column upper bounds for the 
corresponding type of faults.

optimal offline algorithm for both problerns CRASH-EVACUATION and BYZANTINE- 

EvACUATION would hâve the robots move directly to the exit at time 1, the time 

bounds of Table 5.1 can be also understood as bounds for the compétitive ratio of 

the underlving online problerns.

It is interesting to compare the results obtained in our work to the case of non- 

faulty robots. It is known (see [56]) that in the case of three non-faulty robots with 

wireless communication we hâve a lower bound of 4.159, and an upper bound.of 4.219 

for évacuation, while for two non-faulty robots 1 H- 27r/3 -|- \/3 « 4.779 is a tight upper 

and lower bound for évacuation.
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5.2 Evacuation Protocols

In this section we propose évacuation algorithms for crash and Byzantine faults, 

respectively.

Evacuating with Crash-Faults5.2.1

The main contribution is as follows.

Theorem 10. CRASH-EVACUATION can be solved in tirne ~ 6.309.

We prove Theorem 10 by identifying the best among a spécial family of natural 

algorithms that we call persistent. These are algorithms that force ail robots to 

immediately go to the circumference of the dise, and only allow a robot to stop 

exploring its segment of the dise (either by changing direction, by becoming idle or 

by leaving the circumference entirely) when it receives information about the exit. 

Since in this model, a faulty robot can only stay silent, any report about the exit has 

to be valid. As such, once the location of the exit is received by a robot, the robot 

moves along the shortest chord toward the reported exit, and évacuâtes.

We further classify persistent algorithms in two categories: the symmetric-persistent 

that hâve ail the robots begin their exploration in the same direction (either ail clock- 

wise or ail counter-clockwise), and the asymmetric-persistent that hâve one robot go 

in a direction, and the other two robots go in the opposite direction. It turns out that 

the best asymmetric-persistent algorithm outperforms the best symmetric-persistent 

algorithm (and also proves Theorem 10). Nevertheless, and as a warm-up, we begin 

by providing a tight analysis for the family of symmetric-persistent algorithms.

Lemma 15. The best symmetric-persistent algorithm deploys the three robots at 

équidistant points on the disk (at arc-distance 47r/3/, and its performance is 1 +
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f+ v/3.

Proof. (Lemma 15) Consider a symmetric-persistent algorithm that deploys robots 

r'i,r2,r3 so that their pairwise anti-clock-wise distance is /3,7 and a respectively, as 

also depicted in Figure 5.1 (where also arcs A,B,C are defined). Without loss of 

generality, assume the robots move in clockwise direction.

Figure 5.1: Ail robots move counter-clockwise. Arc A includes r3 and excludes 77; 
arc B includes 77 and excludes r2; and arc C includes r2 and excludes r3.

Consider the case where ri is faultv and the robots traverse the arcs depicted in 

Figure 5.1. Clearly, there are two cases to consider depending on whether the exit. 

is located in one of the arcs A or B, or the exit is located on arc C. If the exit is 

located in one of the arcs A or B, then r3 will discover it. If the exit is located in C, 

then r-2 will discover it. We say that the exit is either located at a counter-clockwise 

arc distance of 0 < x < 7 from r2 if r2 discovers the exit, or a counter-clockwise arc 

distance of 0 < y < a + /3 from r3 if r3 discovers the exit. Therefore, the total amount 

of time required to find the exit is given by the formula

+ 2 sin ) |\ sup (
f0<i<7 v

x + 2sin A) , = l+max{/(7), f(a + /?)},1+max sup
0<y<a+;3

where we define f{x) := x + 2 sin f.
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Similarly, ifr2 or r3 is faulty, then the algorithm terminâtes in time 1+max {/(y), f{/3 + 7)} 

and 1 + max {/(/3), /(a + 7)} respectively. We conclude that the best symmetrie- 

adaptive algorithm would choose a, /3,7 (partitioning the perimeter of the circle, of 

length 2n) so as to minimize quantity

1 + max {/(a), /(/?), /(7), /(a + 0), /(/? + 7), /(<* + 7), } (5.1)

By choosing a = (3 = 7 = expression (5.1) gives completion time 1 + ^ + x/3 as 

promisea.

Finally, we argue that no values of cv, /3 and 7 respecting a, /3 and 7 > 0 and 

a + P + 7 = 2ir can improve on this bound. Say, we set a > y- Then it is clear 

that either a + /3>:yorQ + 7>^fi since a + /3 + 7 = 2n. Observe that function 

a + f3 + 2 810^^ is increasing in a + (3, and when a + P = Y' t^ien (5-1) is upper 

bounded by 1 + ^ + \/3. Observe also that function a + 7 + 2 sin is increasing in 

a + 7, and when a + 7 = y, then expression (5.1) is upper bounded by 1 + y + V^- 

We conciude that function (5.1) strictly increases for a > y- A similar argument 

shows that function (5.1) increases if either (3 or 7 exceed y- This complétés the 

proof of Lemma 15. □ □

In order to proceed with the analysis of assymetric-persistent algorithms, we need 

a simple technical lemma, providing a worst case analysis for a spécial configuration 

of healthy searching robots.

Lemma 16. Consider two robots at arc distance 2n — s that are about to explore an 

arc of length s moving in opposing directions (toward each other). Assume also that 

an exit is located somewhere at the arc of length s. Then, the worst case termination
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time g (s) is given by the formula

,if s < 27r/32 sin(s/2) 

s/2 — 7t/3 + \/3 ,otherwise.
g{s) = <

Proof. (Lemma 16) By symmetry, we may assume that the exit is found after time 

x by one of the robots, where 0 < x < s/2 (see Figure 5.2). When the message is 

transmitted that the exit is found, the two robots are at the endpoints of an arc of 

length s — 2x, hence at chord distance 2sin(s/2 — x). Hence, the time elapsed till both

Exit

1X 2n — s

Figure 5.2: Exit found and reported after time x. Worst case is x — 0, if s < 2tï/3, 
and x = s/2 — tt/3 otherwise.

robots reach the exit is x + 2sin(s/2 — x). The claim follows by the monotonicity 

of the latest function with respect to x in the interval [0, s/2]. This complétés the 

proof of Lemma 16.

□

We are now ready to prove Theorem 10, by determining the optimal asymmetric- 

persistent algorithm.
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Lemma 17. The best asymmetric-persistent algorithm has performance æ 6.309. The 

algorithm achieving this hound deploys two robots to the same location on the dise, 

which they explore in opposing directions. The third robot is deployed at arc-distance 

Po from any of the robots, and starts exploring in opposite direction of the closest 

robot, where 80 is the unique root of 3/3/2 + \/3 = 47t/3 + 2sin(/3/2) in the interval

[0, 2tt].

Proof. (Lemma 17) Consider an asymmetric-persistent algorithm that, deploys robots 

77,77, r3 as depicted in Figure 5.3, where a, P > 0 (the case P — 0 can be easily seen 

to induce worse termination time, while the case a = 0 is identical to 7 = 0).
»'i

K

r 3
;

Figure 5.3: Robots 77 and r2 move counter-clockwise; r3 moves clockwise. A excludes 
the starting position of 77 and r3; B excludes the starting position of r2, but includes 
the starting position of 77; C includes the starting position of both r2 and r3.

There are a number of cases as to which the faulty robot is and where the exit 

is located. Ail the cases are summarized in Table 5.2, where identical cases are also 

grouped together.

For each case we will détermine the worst case running time. Then we will choose 

a, P, 7 so as to minimize the maximum of ail these running times.

• Case 1. After time 7, robots 77,77 will be at arc distance 7 and they will be
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cA B
Case 2Case 1 Case 1n
Case 4Case 3 Case 4r2
Case 5Case 5 Case 6

Table 5.2: The columns indicate the location of the exit. The rows indicate the faulty 
robot, ri’s initial search position is in B, r2 and r3’s initial search position are in C.

about to explore an arc of length a + (3 = 2n — 7 moving in opposing directions. 

Also the exit is located somewhere at the arc of length 2n — 7. Hence, by 

Lemma 16, the (worst case) total termination time will be 1 + 7 + g(2ir — 7) 

which simplifies to

1 + 7 + 2 sin(7/2) ,if 7 > 47t/3 

1 + 7/2 + 27r/3 + \/3 ,otherwise.
e(7) := <

Also, it is easy to see that e(7) is strictly increasing, a fact vve will use later on.

• Case 2. The setup is identical to that of Lemma 16 where the arc that holds 

the exit has arc length s = 7. Hence, the (worst case) total termination time 

will be 1 + ^(7), which is easily seen to be dominated by e(i) of case 1, for every

0 < 7 < 27r.

• Case 3. This situation is similar to Case 1, where (instead of 7) robots are at 

distance (3 + 7, and they are moving toward each other, and in an arc segment 

that does not contain the exit. Hence, the worst case termination time is equal 

to e(/3 + 7). Since e(-) is strictly increasing, this case dominâtes the cost of case

1.

• Case 4- This situation is similar to Case 2, where (instead of 7) robots are at 

distance /3 + 7 and they are moving toward one another and toward the segment
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that contains the exit. The maximal total required time is therefore given by 

the function 1 + g (f3 + 7), which is easily seen to be dominated by e(fi + 7) of 

case 3, for ail 0 < fi + 7 < 2n.

• Case 5. We treat the case when r3 is faulty and the exit is either in C or A 

together. It is clear that r2 will be the robot that finds the exit. Assume that 

the exit is located at distance 0 < x < a+7 from the initial searching position of 

r2 (to ensure that the exit is located in A). Then the total required search time 

is given by 1 + x + 2sin f, since the distance between 77, r2 remains invariant. 

Clearly, in the worst case, the total required search time is 1 + a + 7 + 2sin f.

• Case 6. This case is identical to case 5, where ri will find the exit (instead of 

r2, but still fi remains their invariant distance), and where the arc that contains 

the exit has length (3 (instead of a + 7). Hence, worst case termination time is 

equal to 1 + fi + 2 sin |

It follows that the best asymmetric-persistent algorithm is determined by a, j3,7 

that minimize

max{e(/3 + 7), 1 + a + 7 + 2sin(/3/2), 14-/3 + 2 sin(/3/2)} ,

i.e. the costs of cases 3, 5, and 6.

First we show that the promised upper bound is achievable. Indeed, we set 7 = 0, 

so that a + /3 = 2n. Now we define fi0, by equating the costs of cases 3,5, i.e. as the 

root of the équation e(/3) = 1 + 27T —/3 + 2sin(^/2). Numerical calculations yield that 

0o ~ 2.96603, or in other words (by looking at the définition of function e(/3)), 0O is 

defined as the solution to the équation 3/3/2 + \/3 = 47r/3 + 2sin(/3/2). We conclude 

that 7 = 27r — /3q ~ 3.31716 < 47r/3, which induces worst termination time to be the
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same in cases 3,5 and equal to 1 + 2tt — Pq + 2sin(/?o/2) ~ 6.30946, as promised.

Now we prove the above choices are optimal. Indeed, if P + 7 > 47t/3, then the 

total termination time cannot be better than the situation where cases 3,5 induce the 

same cost. Equating the resulting costs, we obtain that P + 7 + 2sin((/3 + 7)/2) = 

a + 7 + 2sin(o:/2). Using that P + 7 = 2tt — a, the previous équation yields p — 

2sin(/3/2) = a — 2sin(a/2), i.e that a — (3. But then 7 = 0 as well. Since P > 47t/3, 

the induced cost, by case 3, is at least 1 + 47t/3 + \/3 « 6.92084.

Finally, assume that /3 + 7 < 47t/3. For anv fixed 7, the total termination time 

cannot be better than the situation where cases 3,5 induce the same cost. Equating 

the resulting costs, we obtain that (/? + 7)/2 + 27t/3 + \/3 = a + 7 + 2sin(/3/2). Since 

27r — P — 7, the optimal choice for P should be /?7 satisfying 3/?7/2 + 7/2 + \/3 = 

47r/3 + 2 sin(/37/2). Note that P1 is a fonction of 7, hence differentiating both sides 

of last équation with respect to 7, and after elementary calculations, we obtain that 

P'y(3/2 — cos(/37/2)) = —1/2. Since /37 > 0, we obtain that cos(/?7/2) < 1 and hence 

/?/ > —1. This implies that expression P1 + 7 is strictly increasing in 7, and this 

linear term appear in the termination time of case 3. Hence, choosing 7 = 0 is indeed 

optimal. This concludes the proof of Lemma 17.

a =

□□

5.2.2 Evacuating in the presence of Byzantine Faults

The main contribution is as follows.

Theorem 11. Byzantine-Evacuation can be solved in time 1+y+v^ « 6.92084.

Proof. (Theorem 11) The analysis relies on Figure 5.4. Assume that ail three robots 

Vk, for k G {1,2,3}, execute the main évacuation Algorithm 3.

The idea of the algorithm is for the robots to traverse the circumference of the 

disk for a time of 2n/3. Depending on the calls that hâve been received, the robots
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hâve information to either go to the exit or continue traversing the circuinference of 

the disk for another period of time time y. They can now verify conflicting messages 

of the correct location of the exit based on the calls that hâve been made by the other 

robots so far. Details are being discussed in the sequel.

Algorithm 3: Evacuation with Byzantine Faults
1 Go to the circumference, at position
2 while Tk ’s location is not the same as the exit ’s location do

for 2e do
follow the circumference clockwise

if One robot clairns to hâve found more than one exit then
Continue execution of algorithm as though the robot remained silent

if No information about exit then 
for y do

follow the circumference clockwise till exit is either found or 
reported. Finish

3

4

5

6

7

8

9

if One robot daims to hâve found the exit then
Go to closest part of the segment that is claimed to contain the exit; 
Explore entire segment. Finish.

if Two robots claim to hâve found the exit then 
Investigate both exits. Finish.

i5 Iiiform ail robots of the location of the exit.

10
il

12

13
14

First note that one time unit is required to reach the circumference of the dise. 

After y additional time units, the entire dise has been explored once. The areas 

explored by the robots are contiguous but not overlapping. Observe that a Byzantine 

robot that daims to hâve found more than one exit is immediately identified as faulty 

by the healthy robots. Both potential exits are ignored, and the algorithm continues 

as though the robot had remained silent. If a non-faulty robot finds the exit, it 

immediately informs ail other robots, then stop its exploration. Say without loss 

of generality that rx is healthy. If rq finds the exit during the first y part of the 

exploration, then it stops and is done with the execution of its algorithm, in a time
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s.

Figure 5.4: The initial searching position for n, r2 and r3 in the Byzantine fault.s 
model

at most, 1 + y- If it does not, find an exit during the first y part of the exploration, 

then we must consider three cases:

• No exit location reported: If no exit was found, then keep exploring the circum- 

ference of the disk for time y. Notice that this means that the exit cannot 

be in B. If the exit is in C, then ri has found the exit, and its execution is 

complété in a time at most 1 + y. If the exit is in A, then we learn that r3 

is Byzantine (otherwise, it would hâve claimed to hâve found the exit during 

the first, 1 + y of the execution of the algorithm), and r2 will hâve correctly 

identified the location of the exit (Notice that rx needs to finish exploring the 

second arc C to make sure that it was r3 that lied.) Say the exit is located at an 

arc distance of 0 < x < y from ri’s current position. Then 2sin| is required 

for ri to reach the exit. Since this function is monotone in x for x < n, ri can 

reach the exit in a total time of at most 1 + y + \/3.

• One exit location reported: If one robot other than rx daims to hâve found the 

exit, we consider two situations: (1) the robot is healthy, in which case the exit 

is indeed located on the segment where the announcement was made; or (2)
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the robot is Byzantine, in which case the other two segments hâve been entirely 

explored by healthy robots (and are therefore reliably proven to be empty), and 

the exit is located on the segment where the announcement was made. Notice 

that in both situations, the only possible location for the exit is on the segment 

where the announcement was made. If the announcement was made on the 

segment C, then r\ explores C immediately, for a total time of at most 1 + ^0 

If the announcement was made on the segment A, then ri must first reach one 

end of segment A, which requires 2 sin = \/3 (both ends of the segment are 

équidistant from ri’s position), then explore the segment, for a total time of at 

most 1 + ^ + \/3-

• Two exit locations reported: If both r2 and r3 claim to hâve found an exit, 

then we know that one of those two daims is true. ri will investigate both 

daims, starting by the closest one. Say r2 daims to hâve found the exit at a 

distance x from its initial searching position, and r3 daims to hâve found the 

exit at a distance y of its initial searching position. Then r\ must travel an 

additional 2 sin | + 2 sin fy

for x = y = for a total time of at most 1 + y + 2\/3.

to reach both exits. This function is maximised

Observe that both robots r2 and r3 execute the same algorithm, and the maximal 

time required is therefore the same. The adversary will choose the location of the exit 

and the Byzantine robot in such way as to maximise the total time of execution of the 

algorithm. Therefore, since \/3 < y, this algorithm solves the évacuation problem 

in total time 1 + y + \/3. This complétés the proof of Theorem 11. □ □
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5.3 Lower Bounds for Evacuation Protocols

This section is devoted to proving our main négative results.

Theorem 12. The following lower bounds are valid.

(a) Problem CRASH-EVACUATION requires time at least 5.082.

(b) Problem BYZANTINE-EVACUATION requires time at least 5.948.

The lower bound proofs for Crash and Byzantine faults, respectively, admit a 

unified approach that, we detail in the form of a few preliminary lemmata below.

It is easy to observe that if we consider three robots starting from the center of a 

unit dise then for any e > 0, at time 1 + y — e there is an équilatéral triangle inscribed 

in the circle not ail of whose vertices hâve been explored by a robot. However, in the 

main proof we will make use of an even stronger property of the three robots.

Next we define a useful property P(T), where T > 0 dénotés time, to be used in 

the rest of the proof for a lower bound.

Définition 1 (Property P(T)). For any algorithm and any time less than T there 

are two points on the circle at distance at least \/3 and each of which was visited at 

most once by anyone of the three robots.

Since Property P (T) ensures the existence of two points at distance at least \/3 

which hâve been visited at most once by the robots, a simple adversarial argument 

will guarantee that T + \/3 is a lowrer bound on évacuation for Byzantine faults (see 

Lemma 20), while T + \/3/2 is a lower on évacuation for Crash faults (see Lemma 19). 

However, before proving these last statements, we are interested to find a T which 

satisfies property P {T).
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Note that property P(T) is monotone increasing in T, in that P(T) A T' < T => 

P(T'). Hence, the larger the value of the parameter T for which P{T) is valid the 

better the lower bound that can be derived.

Lemma 18. Property P( 1 + 13\/3/7) is valid.

Proof. (Lemma 18) In the sequel, to help our intuition, we prove first the weaker 

statement that P(4) is valid and then we improve this to P(1 + 13\/3/7). Let us 

consider some algorithm at time < T, where T = 4, and assume by contradiction 

that ail points that hâve been visited at most once by a robot are at distance less 

than v/3 from each other. Clearly, ail these points must lie on an arc of length less 

than 27t/3. Therefore looking at the complément of this arc we find an arc of length 

longer than 4ir/3. In turn, this gives rise to a regular hexagon with five of its vertices 

inside this last arc each visited twice by a robot. Therefore these five vertices of 

the hexagon hâve been visited ten times in total by the three robots. Since there are 

three robots, it follows that at least one robot must hâve visited four of these vertices. 

However this is impossible as T = 4. It follows that property P(4) is valid.

Now we dérivé the main resuit of the lemma by showing that P(1 + 13\/3/7) 

is valid. We argue as in the previous paragraph, however, instead of selecting five 

vertices of a regular hexagon we will choose the five points more carefullv.

As in the proof of P(4) above, let three points A, P, C be vertices of an équilatéral 

triangle such that every point in the perimeter of the dise which is visited by at most 

one of the three robots is in the arc clockwise between A and B.

In turn, this wdll give rise to five points on the circumference of the dise with each 

of its vertices visited twice by a robot; namely choose a point D located between A 

and C and a point E between B and C so that the length of arc AD is x and this is 

equal to the length of arc EB (the choice of x will be based on maximizing the length
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Figure 5.5: Evacuation of the second truth telling robot.

of a path visiting these vertices and will be made précisé in the next, paragraph). 

Since there are ten visitations by three robots one of the robots rnust hâve visited 

four consecutive points at least once.

We will show that visiting four vertices among A, B, C, D, E takes time at least 

13\/3/7 « 3.21. If x < 7t/3 then there are 2 candidates for the shortest four-point, 

walk, namely

either D-ïA-ïB-ïEovA-^D^-C^E.

Taking into account the lengths of the corresponding chords in these two paths, it, 

turns out that we need to maximize the function f(x) defined by the équation below.

f(x) := min{\/3 + 4sin(x/2),2sin(x/2) + 4sin(7r/3 — x/2)}.

It is easilv seen that the maximum of / is equal to 1 + 13 \/3/7 and it is obtained at 

x = 4/ arctan(l/(3\/3)). The rest of the reasoning is the same as for T = 4 in the 

first paragraph of the proof. This complétés the proof of Lemma 18. □□

Proof. (Theorem 12) Now we are ready to conclude the proofs of the two parts of
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Theorem 12 on crash and Byzantine faults, respectively.

Lower Bound for Crash-Faults The proof of Part (a) follows as a corollary of 

Lemma 19 below.

Lemma 19. If property P (T) holds then we can achieve a lower bound of T + on 

évacuation in the presence of a crash-faulty robot.

Proof. (Lemma 19) Identify two points A, B at distance > >/3 each of which was 

visited at most once by anyone of the three robots. Say r\ is the robot that visited 

neither of those points. Set the exit to be the point farthest away from r^s current 

location. Clearly, at least is required for ri to reach the point. This proves 

lemma 19.

□

Lower Bound for Byzantine-Faults The proof of Part (b) follows as a corollary 

of Lemma 20 below.

Lemma 20. If property P{T) holds then we can achieve a lower bound of T + \/3 on 

évacuation in the presence of a Byzantine robot.

Proof. (Lemma 20) Identify two points A, B at distance > \/3 each of which was 

visited at most once by anyone of the three robots. Assume without loss of generality 

that ri visited A. Then we hâve two possibilities to consider: either ri also visited 

B, or (say) r2 visited B.

If ri visited both points, set ri to be Byzantine, then wait until either r2 or r3 

visit either A or B. Once this first visit happens, claim that the exit is located at the 

other point. The robot that visited the first point will require at least \/3 to reach 

the other point, which proves the lemma in this case.
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If, say, r2 visited point B, then hâve r\ claim that the exit is located at point B, 

and r2 claim that the exit is located at point A (which will happen as soon as the 

robots reach those points). Then r3 will hâve to visit both points to find the real exit, 

since it has no means of distinguishing the reliable robot from the Byzantine robot. 

Choose the first point visited by robot r3 not to hâve the exit, and set the exit at the 

location of the other point. Then r3 requires at least \/3 to reach the other point, 

which proves the lemma in this case as well.

Combining these two cases, this complétés the proof of Lemma 20.

□
If we note the following approximations for the quantities arising in Lemma 18: 

1 + 13v/3/7 « 4.21 and 4/arctan(l/(3\/3)) « 0.76, then the proof of Theorem 12 is 

complété. □□

5.4 Additional Remarks and Conclusion

In this chapter we considered the évacuation problem on a dise for three robots exactly 

one of which has either crash or Byzantine faults. We analyzed the problem in both 

fault scénarios and gave lower bounds as well as évacuation algorithms resulting in 

upper bounds.
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Chapter 6

Exploring Graphs with Time 

Constraints by Unreliable Collection

of Mobile Robots

Introduction6.1

Alice and Bob is a busy Ottawa couple with three kids Chris, Donald and Eisa. One 

day they need to pick up Eisa from the kindergarten, drive Donald to the wrestling 

practice and get Chris to the train station. They also need to get groceries, pick 

up wine and flowers before each store closes for a dinner party in their house. How 

should Alice and Bob share these tasks to minimize the effort and complété each one 

before its deadline?

An Ottawa School Bus Company needs to transport pupils to local schools before 

the start of their classes. Given the harsh Canadian climate, it is the nonn rather than 

exception that a number of buses fail to function on any given day and an adéquate 

replacement must be planned in advance. How should the buses aliocate the tasks
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to successfully conclude the distribution of students while respecting the timeso as

deadlines?

Throughout this chapter, the environment is modelled by a graph that must be 

explored by a collection of mobile robots. The graph edges are weighted by numbers, 

representing the time it takes to traverse them. Each graph node is assigned a dead- 

line, representing the maximal time moment to deliver a service to this node by some 

mobile robot. A number of robots may crash during their work. What is the minimal 

time needed to service a given graph by a collection of k robots? What is such a time 

if we assume that up to / unknown robots may crash during their work?

6.1.1 Preliminaries and notation

We are given a weighted n-node graph G = (V, E) with V its set of vertices, E its set 

of edges, and a set of k mobile robots initially placed at a subset of its nodes. The 

weight of an edge {vi,Vj} corresponds to the time it takes to be traversed by a robot. 

Each node vt of the graph is assigned a deadline A,, which is a positive real number. 

Robots walk along the edges of the graph with unit speed. The robots collaborate 

attempting to explore the entire graph. However, a subset of up to / robots may turn 

out to be unreliable and fail to collaborate. Unreliability refers to the robots which 

may be crash faulty in that they suffer from an (unspecified) passive, omission failure 

and then stop responding but are otherwise harmless. This subset of unreliable robots 

may be chosen by the adversary, which is assumed to know our algorithm beforehand. 

The exploration is successful if each graph node is visited before its deadline by at 

least one of the reliable robots.

We assume that nodes already explored “do not block passage” and can still be 

visited, even after their deadlines hâve expired, by robots on their way to reaching
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unexplored parts of the graph.

We dénoté by t —> ri(t) the trajectory of the z-th robot as a function of the 

time t, where r*(f) dénotés the position of the z-th robot in the graph at time t, for 

i — 1,2.... ,k. Note that at a given time t, a robot may be located in the interior of 

an edge.

By a schedule we mean a set of functions rj(f),z = 1,2,... ,k which define the 

motion of the robots respecting their maximum unit speed. We say that the schedule 

explores the graph if for each node u, there exists a robot rj such that rj(t*) = u,, for 

some time t* < A,.

Given a time A, we study the decision problern whether the graph may be suc- 

cessfully explored before time A. We also look at the optimization problern, that is, 

the problern of ensuring that the reliable robots visit every node before expiration 

of its deadline, and the last explored node is visited as fast as possible. If for any 

schedule, the adversary can find a subset of / unreliable robots, so that any of the 

remaining k — f robots fails to visit some node before its deadline, then the instance 

of the problern is deemed unsolvable.

6.1.2 Related work

Searching a graph with one or more searchers has been widely studied in the mathe- 

matics literature (see, e.g. [125] for a survey). There is extensive literature on linear 

search (referring to searching a line in the continuous or discrète model), e.g.

[111 for optimal deterministic linear search and [81] for algorithms incorporating a 

turn cost when a robot changes direction during the search. Variants of search using 

collections of collaborating robots has also been investigated. The robots can employ 

either wireless communication (at any distance) or face-to-face communication, where

see
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communication is only possible among co-located robots. For example, the problem 

of évacuation [61] is essentially a search problem where search is complétée! only when 

the target is reached by the last robot. Linear group search in the face-to-face com­

munication model has also been studied with robots that either operate at the same 

speed or with a pair of robots having distinct maximal speeds [15, 44]. Linear search 

with multiple robots where sonie fraction of the robots may exhibit either crash faults 

or Byzantine faults is studied in [67] and [60], respectively.

The (Directed) Rural Postman Problem (DRPP) is a general case of the Chinese 

Postman Problem where a subset of the set of arcs of a given (directed) graph is ’re- 

quired’ to be traversed at minimum cost. [43] présents a branch and bound algorithm 

for the exact solution of the DRPP basée! on bounds computed from Lagrangian Re­

laxation. [52] studies the polyhedron associated with the Rural Postman Problem and 

characterizes its facial structure. [100] gives a survey of the directed and undirected 

rural postman problem and also discusses applications.

A scheduling problem considered by the research community concerns n jobs, each 

to be processed by a single machine, subject to arbitrary given precedence constraints; 

associated with each job j is a known processing time aj and a monotone nondecreas- 

ing cost function Cj(t), giving the cost that is incurred by the completion of that 

job at time t. [170] gives an efficient computational procedure for the problem of 

finding a sequence which will minimize the maximum of the incurred costs. Further, 

[170] also studies a class of time-constrained vehicle routing and scheduling problems 

that may be encountered in several transportation/ distribution environments. In the 

single-vehicle scheduling problem with time window constraints, a vehicle has to visit 

a set of sites on a graph, and each site must be visited after its ready time but no 

later than its deadline. [208] studies the problem of minimizing the total time taken 

to visit ail sites. [135] considers the problem of determining whether there exists
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a schedule on two identical processors that executes each task in the time interval 

between its start-time and deadline and présents an 0(n3) algorithm that constructs 

such a schedule whenever one exists.

The author of [25] résolves the complexity status of the well-known Traveling Re- 

pairman Problera on a line (Line-TRP) with general processing times at the request 

locations and deadline restrictions by showing that it is stronglv NP-complete. [178] 

considers the problem of finding a lower and an upper bound for the minimum number 

of vehicles needed to serve ail locations of the multiple traveling salesman problem 

with time Windows in two types of precedence graphs: the start-time precedence 

graph and the end-time precedence graph. [141] considers “the pinwheel”, a formal- 

ization of a scheduling problem arising in satellite transmissions whereby a piece of 

information is transmitted for a set duration, then the satellite proceeds with another 

piece of information while a ground station receiving from several such satellites and 

wishing to avoid data loss faces a real-time scheduling problem on whether a “useful” 

représentation of the corresponding schedule exists.

The work of [198] is very related to our work in that jobs are located on a line. 

Each job lias an associated processing time, and whose execution has to start within 

a prespecified time window. The paper considers the problems of minimizing (a) 

the time by which ail jobs are executed (traveling salesman problem), and (b) the 

sum of the waiting times of the jobs (traveling repairman problem). Also related is 

the research on Graphs with dynamically evolving links (also known as time varying 

graphs) which has been explored extensively in theoretical computer science (e.g., 

see [38, 113, 164]).
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6.1.3 Outline and results

We consider first the collections of robots which are ail reliable. We start in Section

6.2 with the case of a single robot on a line graph and we give an algorithm finding 

the shortest exploration time when the robot’s starting position is given, is arbitrary, 

or it is arbitrary but restrained to some subset of line nodes. In Section 6.3 we study 

line exploration by a collection of robots at fixed or arbitrary positions on the line. 

We observe, that these algorithms may be extended to the ring case, although their 

complexity is slightly compromised.

In Section 6.4 we consider the case of unreliable robots. In one case, we show an 

unexpected resuit. If k robots are at given fixed initial positions on the line and up to 

/ out of k robots may turn out to be crash-faulty, the problern of finding the optimal 

exploration time is NP-hard. This resuit holds even if the nodes’ deadlines may be 

ignored (e.g. they are infinité for ail nodes). For ail other settings we give algorithms 

finding optimal exploration times. In Section 6.5 we extend our approach to the 

ring environment. However, the setting which was proven to be NP-hard for fines is 

polynomial-time decidable for the ring. Finally, we show that outside the fine and 

ring environment the problern becomes hard. For a graph as simple as a star, already 

for the case of two robots, the exploration problern turns out to be NP-complete.

Single Robot on the Line6.2

In this section, we présent algorithms that allow a single robot to solve the optimiza- 

tion problern on the fine for two cases: when the robot’s initial position is given by 

an adversary, and when we hâve the possibility of choosing it ourselves.

We hâve a sequence of nodes n0 < vx < ■ ■ ■ < vn-i on the real fine, and a robot 

r initially placed at initial position r(0). We dénoté by vs the starting node of the
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robot, i.e. r(0) = vs

Observation 1. Without loss of generality we may assume that As+1 < As+2 < • • • < 

An_i. Indeed, if Ak > Ak+i for some k > s we can drop node vk from considération, 

since visiting vk+i before its deadline implies that vk is also visited before its deadline. 

For the same reason, we can also assume that A0 > At > • ■ • > As_i.

Observation 2. Without loss of generality we may consider only the solutions which 

consist of sequences that axe increasing and decreasing at alternate nodes, respectively, 

i.e., sequences r(0), r(ti), r(t2), • • •, r(tp) such that 0 < r(t2i) < r(t2i+2), and 0 > 

r(t2i+1) > r[t2i+f), for ail i in the appropriate range. Moreover, each turning node 

r(ti) is located at some node Vj, j = 0,1,..., n — 1.

6.2.1 The snapshot graph

With these observations in mind, we define the fundamental concept of a directed, 

layered snapshot graph S which will form the basis of ail subséquent algorithms.

Every node of the snapshot graph S represents a situation when a new node of 

the line is visited by the robot for the first time. Consequently, each node of S is 

denoted by a pair (i,j) or (i,j), where i < j, [i,j] is the interval of nodes already 

explored by the robot and the node of the line marked with the bar (either i or j) 

dénotés the current position of the robot.

Observe that the robot can advance its exploration in one of two ways: either by 

visiting the next unexplored node to the left of the interval already explored, or by 

visiting the next unexplored node to its right. These two possibilities generate the 

directed edges between the nodes of the snapshot graph. The weight of such an edge 

equals the time needed by the robot to traverse the path between robot positions in 

both nodes. Consequently, the nodes (i,j) and (i,j) are placed at layer j — i and the
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adjacencies in S are only between nodes of consecutive layers. Notice the following 

properties of the snapshot graph (see also Fig. 6.1 below):

(0,4)

Figure 6.1: A depiction of a snapshot graph for the case of line L consisting of five
nodes. For clarity, we do not show the edge weights of the snapshot graph S in
Fig. 6.1. Notice that, for any line graph L, the weights of the directed edges (i, j) —ï 
(i,j + 1) and {j,k) —» (j + 1 ,k) in its snapshot graph are equal to the weight of 
the edge (j,j + 1) in the line graph L. Similarly, the weights of the directed edges 
(i — 1 ,j) —» (i,j) and (i,j — 1) -» (i,j) in the snapshot graph S are equal to the
weight of the path i j in the line graph L.

• The graph S has n layers numbered from 0 to n — 1.

• There are n source nodes at the zeroth layer and 2(n — j) nodes at the jf-th 

layer for each j = 1,2, •• • , n — 1. Therefore, there are 2 target nodes (on the 

(n — l)-th target layer).

• The in-degree and the out-degree of each node is bounded by 2. Therefore, the 

number of nodes in the graph is bounded by snapshot graph is 0(n2).

Observe that, the solution to the optimization problem for the line corresponds to
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the shortest path from the source node representing the initial position of the robot 

to one of its target nodes, which respects the time constraints of ail the nodes of L.

Given initial position of the robot6.2.2

We first présent a version of the algorithm which produces the optimal exploration 

path, assuming a given starting position vs of the robot on the line. Consider the 

snapshot graph S described above. In order to obtain the optimal exploration path 

in the snapshot graph respecting the time constraints of L, we generate an all-targets 

shortest-time tree T whose root coincides with the node (va,vs) of the snapshot 

graph corresponding to the initial position vs of the robot. This is doue in the 

following way.

We add a time counter time to every node of S. We set to zéro the time counter 

of the initial node (v„,vs) and to oo the initial time counters of ail other nodes of 

S. We then visit ail nodes of S layer by layer. Consider a visit of any such node 

v, which corresponds to the first visit to node Vj of L. For each predecessor of v in 

S we consider the time equaling its time counter augmented by the weight, of the edge 

joining it with v. Let Min dénoté the smaller of these values (we take an arbitrary 

one in the case of equality). If Min does not exceed the time constraint of Vj (i.e. 

Min < Aj) we set the time constraint of v to Min and we add to T the edge from 

the corresponding predecessor of v. Otherwise, the time counter of v is set to oo and 

we leave v parentless.

Observe that, T is a tree, as each node has at most one parent. One of the two 

target nodes of the smaller time counter defines the optimal exploration time and the 

path to it in T corresponds to an optimal exploration path of L. Otherwise, there 

exists no exploration path respecting the node deadlines of the line graph.
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For any node v of S we dénoté by new(v) the index of the node of the line 

G which is newly explored when arriving at v. More exactly, new(v) = j, such that 

either v = (i, j) or v (j, k), for some i < j < k < n — 1.

The following procedure InitStart indicates how to initialize the time counters of 

the nodes of S before running the main body of the algorithm. For each node i of 

the line L, which may be a starting position of a robot, we put a node (i, i) of S to 

the set A. Ail nodes of A hâve their time counters irntialized to 0.

Procedure InitStart(A, S) with A a subset of nodes of S at zeroth layer;

1 for every node v of V (S) \ A do
2 time(v) = oc;
3 for every node v of A do
4 |_ time(v) = 0;

Algorithm 4 describes the pseudo-code that formalizes the previously outlined 

construction of a shortest-time tree.

Algorithm 4: Single Robot exploration on the line with given initial position
vs;
Input: A snapshot graph S and the starting position vs of the robot 
Output: An exploration tree with optimal exploration times

1 InitStart ({n,,}, S);
2 for layer i = 0 to n — 1 do
3 for each arc v —> w starting at layer i do 

t = time(u) + weight(v,w)] 
if t < timefw) and t < Anew(w) then

time(w) = t; v = parent{w)\

4

Figure 6.2 illustrâtes the execution of Algorithm 4. The weighted line graph 

containing five nodes denoted by integers from 0 to 4 is presented at the top of 

Fig. 6.2. The robot is initially placed at node 1. The solid directed edges depict 

the shortest-time tree respecting the deadlines (the remaining edges of the snapshot
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graph whieh are not being used are dashed). Each node has been assigned the time 

counter computed by Algorithm 4. The path of the shortest-time tree ending in the 

target node represents the optimal trajectory of the robot.
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Figure 6.2: Illustration of the execution of the line-exploration algorithm starting 
from node 1.

Theorem 13. Consider a line graph G and a robot placed at its starting position vs. 

Algorithm 4 correctly computes an optimal exploration path which satisfies the node 

deadlines in 0(n2) time.

Proof. We show that for every node v = (i,j) (resp. v = (■i,j)) of the snapshot 

graph the algorithm computes the shortest time time(v) needed to explore the interval 

[i,j\ of the line graph. which respects the deadlines of its nodes by the robot starting at 

vs, such that i < s < j, and ending its exploration at (resp. Vj). The proof goes by 

induction on the layer. The claim is clearly true for any node (i, i) at layer 0. Suppose
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that the claim is true for ail nodes at layers at most £ — 1. Take any node at level i, 

i.e., either v — (i,i + £) or v = (i,i + £) . Consider the shortest time exploration path 

ending at v. The immédiate predecessors of v in this path is a node w from layer £ — 1, 

for which the shortest-time exploration path is correctly computed by the inductive 

hypothesis. The time needed to reach v from w equals the time distance between 

new(v) and new(w) at the line graph. If time(v) + weight(w —>• v) < Anew(w) then 

the deadline of node new(w) is respected and time(w) is correctly computed lines 

4-6 of Algorithm 4, otherwise the exploration time of w remains at time(w) = oo as 

set in the InitStart procedure. The 0(n2) time complexity follows directly from the 

properties of the snapshot graph. □

Arbitrary starting positions6.2.3

We now consider a variation of the problem when the choice of the starting position 

of each robot is left to the user, or is restricted. When this choice is restricted, the 

user must choose the starting position of each robot within a subset of nodes of the 

line graph. We will show that Algorithm 4 also works in such a setting. We need, 

however, modify the call to procedure InitStart in line 1 of Algorithm 4, so that its 

first parameter equals the set of ail nodes of the line at which the robot may start. 

An example of its execution is presented on Fig. 6.3, where a user may choose any 

node of the line graph as the starting position of the robot.

Observe that, for any node w of the snapshot graph, the value of time(w), com­

puted by the algorithm, represents now the shortest exploration time ending at w 

starting from any node of the line graph. T is now a forest with the nodes of T, 

whose time counter remains at oo isolated in T (having no children or parent in T).

Corollary 1. Let A be the subset of nodes of the line graph which we can choose
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1

Figure 6.3: Illustration of the execution of the line-exploration algorithm in the case 
of arbitrary starting node. For any sub-interval [i,j] of the line, the optimal robot 
trajectory exploring [i,j] is given by the cheaper among the solid directed paths 
incoming to nodes (i, j) and (i, j).

for the starting position of the robot. Suppose that the first parameter of the call to 

procedure InitStart in line 1 of Algorithm 4 (A) equals the set of ail nodes from zeroth 

level of S uihich correspond to the nodes of A. Such version of Algorithm 4 correctly 

computes in 0(n2) time an optimal exploration path of the line graph, which satisfies 

the node deadlines. Moreover, for any sub-interval [i,j] of the line, the algorithm 

computes an optimal robot starting position to explore [i,j], the cost (time) of such 

exploration and the trajectory of the robot.

The proof of Corollary 1 is almost identical to the case of Theorem 13. Observe 

that, in the inductive step, when the parent w of any node v in T is determined, 

the root of the connected component of T containing v corresponds to the node of A
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offering the shortest exploration path.

6.3 Multiple Robots on the Line

In this section we consider line exploration by a collection of k < n mobile robots. As 

before we study two variants of the time optimization problem. In the first setting, 

the initial positions of the robots are arbitrary, i.e. the algorithm identifies the initial 

placement of the robots, which results in the shortest exploration time respecting the 

node deadlines. In the second setting, the distinct initial robot positions are given in 

ad varice. Both variants are solved using versions of dynamic programming. We start 

with the following observation concerning the movement of the robots.

Observation 3. There exists an optimal exploration solution in which the robots 

never change their initial order along the line. Moreover, the sub-intervals of the line 

explored by different robots are mutually disjoint.

Proof. This is easily proven by observing that any solution that forces two robots to 

cross path can be replaced by an equally efficient solution where robots turn around 

instead of Crossing path. We also observe that there is no benefit to the exploration 

of a single node by multiple robots (by définition of the problem). Therefore, once 

two robots are located on adjacent nodes, the only efficient move for each robot is to 

move away from the other. □

We use the following notation. Suppose that we need to explore an interval [i,j] 

of the line respecting the deadlines of the nodes of [i,j]. For the setting when the 

robots are placed at given initial positions, for any pair of indices i,j, such that 

0 < i < j < n — 1, we dénoté by ThJ the optimal time of exploration of the interval 

[i,j] using the robots placed within [i,j], When the initial placement of the robots
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is left to the algorithm, for any 1 < r < k, we dénoté by the optimal time of 

exploration of the interval [i,j] using r robots which may be placed at arbitrary initial 

positions within [i, j].

Given initial positions6.3.1

We start with the following observation

Observation 4. Consider a line and a robot initially placed in its sub-interval [i, j]. 

Using Algorithm f the values Tiyj for ail 0 < i < j < n — may be computed by the 

formula

Tij = min (time{(i,j)),time((i,j))) (6.1)

Let pi dénoté the initial position of robot i. We assume that we hâve 0 < p\ < P2 < 

• • • < Pk < n — 1. By Observation 3 we need to partition the line into sub-intervals 

[/j,rj] for i = 1.2,... ,k (with l\ = 1 and r^ = n), each one explored by a different 

robot. The interval [k,ri\, explored by robot i, contains its initial position p^, but 

not an initial position of any other robot. Hence edges (r*, li+1) for i = 1,..., k — 1, 

that we call idle edges, are never traversed by any robot. The following formula, is 

an obvions conséquence of Observation 3,

max(Tjim_i, Tmj ),Tu = (6.2)min
Pq<m<pq + 1

for any i < pqipq+i < j. Indeed, the idle edge (m — 1, m), separating the sub-segments 

of operation of robots q and q + 1, is chosen so as to minimize the exploration time
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of interval

We give first an idea of our algorithm. We generate the snapshot graph, as de- 

scribed in Subsection 6.2.2. Let’s use the notation p0 = — 1 and p/t+i = n. For 

m = 1,..., k let Sm be the subgraph of S obtained by keeping the nodes (i,j) and 

(i,j) such that pm-1 < i,j < pm+i- In the first part of our algorithm, for each robot 

m, we run Algorithm 4 with inputs pm and Sm, obtaining the optimal exploration 

time Tij of each line sub-interval which contains exactly one starting position 

Pi, for i = 1,2,... ,k.

In the second part of the algorithm, we combine exploration times of individual 

robots, in order to obtain the optimal exploration time T0j using robots initially 

placed within [0,j], subsequently for each j. Let rj dénoté the number of robots 

initially placed in interval [0, j] and suppose, that we computed the optimal explo­

ration times of ail intervals, which initially contain robots 1,2,...,rj — 1. When j 

exceeds prj we use robot r3 and we détermine the idle edges preceding the intervals of 

operation of rj, resulting in the optimal exploration times of intervals, which initially 

contain robots 1,2,... ,rj.

Algorithm 5: Exploration algorithm on the line with k robots at fixed initial 
positions
Input: Line L with starting robots’ positions pi,P2, ■ • -Pk

1 Construct the snapshot graph S from L\
2 for m = 1 to k do

Exécuté Algorithm 4 with inputs pm and Sm; 
for every (i,j) s.t. pp-i <} < j < Pm+i do 

!_ Ti>:j

3

4

5

6 for j = p2 to n — 1 do
Toj := max(T0im_i,TmJ);7 min

PTj _, <rn<pTj

Theorem 14. Algorithm 5 in 0(n2) time computes the optimal exploration of the line
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by k robots initially placed at given initial positions 0<pi<p2<---<Pk<n — 1.

Proof. By Observation 3, we can assume that in an optimal solution, each robot 

m opérâtes in an interval [lm,rm], which does not contain an initial position of any 

other robot. Hence we hâve pm-1 < lm < Pm and pm < rm < pm+i- Ail pairs of 

indices which verify this property are considered in line 4 of Algorithm 5. By

Theorem 13 and Observation 4 each such value Tjj is correctly computed in line 5 of

Algorithm 5.

We now prove that in line 7 the Algorithm 5 correctly computes values T0j for 

n — 1. The proof goes by induction on j. For ail 0 < j < P2 the 

interval [0, j] contalns a single robot, so the value Tjj is correctly computed in the 

first itération of the for-loop in lines 2-5. Consider any j > P2, i.e. when the interval 

[0, j] contains more than one robot, and suppose, by the inductive hypothesis, that 

the values T0ti correspond to optimal times of exploration of segments [0,î], for ail 

i < j . Let T* be the optimal tiine of exploration of interval [0, j], which vérifiés 

the claim of Observation 3, i.e. such that there exists an idle edge (m* — 1, m*), and 

Prj-i < m* A Pry During such optimal exploration, robots 1,2, ...,rj — 1 explore 

interval [0, m* — 1] (using some time T*), and robot rj explores interval [m*,j] (using

max(T*, T2*). By the inductive hypothesis, we hâve T0im* < T* 

and < T2*. Consequently, we hâve in line 7 of Algorithm 5

ail j = 0,1,.. * ?

time 7|). Clearly T*

7m* ,j ) = max(T*,T2*) = T*(To, Tm,j) A max (7n,m*Toj - mm max
Prj —P^j

m—\i -1?

which concludes the inductive proof.

We consider now the time complexity of Algorithm 5. The snapshot graph S in 

line 1 is constructed in 0(n2) time. Observe that since each node of S can only be in 

two different subgraphs Si and Sj, we hâve J2i=i |W(-S»)| < 2|V(5)| = 0(n2). Hence,
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ail the executions of line 3 of Algorithm 5 take 0(n2) amortized time. Similarly, in 

line 4 of the algorithm, in ail its executions, it considers 0(n2) nodes of graph S. 

Consequently the for-loop of lines 2-5 is executed in 0(n2) amortized time. As each 

of 0(n) executions of the for-loop in lines 6-7 takes 0(n) time we conclude the 0{n2) 

overall time complexity of Algorithm 5. □

Arbitrary initial positions6.3.2

This algorithm is also based on the dynamic programming approach for computing 

the table T-j, for ail 1 < r < k and 0 < i < j < n 

the optimal exploration time of the line using k robots. We use the following formula, 

which works for any r, rq, r2, where ri, r2 > 1, r = rq + r2 and any 0<i<j<n — 1.

1. The values of represent

T>r) (Tirkl),Tj$) •
y L^r\j ' rv i. J (6.3)rinn max

i<k<j

Üsing Formula (6.3), the values of may be computed in a greedy manner for 

the increasing values of r. As Formula (6.3) may be naturally computed in 0(n) time, 

the total complexity of such a greedy approach is in 0(kn3).

We give now a more efficient algorithm computing Tq^_i. Observe first, that when 

[il,il] C [*2»J2]» then < t£j2- Consequently, when computing T-ÿ, the value

of index k which minimizes mamay be found by a binary search (cf. 

function OptTime).

The following observation is easy.

i J

Observation 5. Consider two fixed numbers ri,r2 of robots. If for any interval [i,j} 

of the line, Tjj1^ and represent the optimal time of exploration of the interval by 

r 1 and r2 robots, respectively, then function OptTime correctly computes in O(logn) 

time the optimal exploration time of the interval [i,j] by r = ri + r2 robots.
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Function OptTime(i, j, ri, r2);
1 if j — i + 1 < rx + r2 then
2 return 0

3 klow — kfâgh — j l
4 while kiow < khigh+1 do

k ( k[aw + kfagh ) /2,
if > < ï£> then

5

6

Lk = k7 low

else
khi g h k

io return min(max(T/^

8

9

r£L-)> max(^5lU> r£i,i));<• "■

The greedy approach would compute the values of table T^'J for any given r. Our 

algorithm below comprîtes the values of when r is a power of 2 not exceeding k. 

Then, using formula 6.3, tliey are combined in flog k] steps, to compute the values 

of Tÿ.

Algorithm 6: ; Multiple robot line exploration with arbitrary starting po­
sitions
1 Let rb, T'b-i, - ■ ■, ro be the consecutive bits of the binary représentation of k]
2 Compute table T-j ;
3 for m = 0 to b do 

r = 2m;
for ail pairs (i,j) such that 0<i<j<n — ldo 
_ T-f] = OptTime(f, j,r,r);

4

5

6

7 r = 2fe;
8 for m = 1 to b do 

if rb = 1 then9 —m

p = 2b~m;
for ail pairs (i,j) such that 0<i<j<n — ldo 

Trj+r) = OptTim e(i,j,p,r); 
r = p + r;

10

il

12

13

The following theorem proves the correctness and the complexity of Algorithm 6.
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Theorem 15. Algorithm 6 computes in 0(n2\ogn\ogk) time the optimal time needed 

by k robots to explore the line.

Proof. By Corollary 1 and Formula (6.2) the usage of Algorithm 4 in line 2 of Algo­

rithm 6 correctly computes a single robot optimal exploration time for any sub-interval 

of a given line. By induction on r, using Observation 5, lines 3-6 of Algorithm 6 cor­

rectly compute the optimal exploration time of any interval [i,j] using 2m robots, for 

any m, such that 2m < r.

From line 1 we hâve k — rb2b + r6_i26-1 + • • • + r02°, where b is the position of 

the first 1-digit in the binary représentation of k. We prove that, at the start of each 

itération of the for loop from line 8, we hâve

1. r = k — k mod 2b+l m, and

2. the table has been already computed for ail 0 < i < j < n — 1.

The proof goes by induction on m. At the start of the first itération of the loop when 

m = 1, we hâve r = 2b. Then indeed the inductive condition is verified as

k-k mod 2b+l 1 = (rb2b+rb_x2b x-i----- hr020)-(rè_i26-1 6-2+.. .+r02°) = 2b = r+rb-2^

and the value of T/j J was computed previously in line 6 of the algorithm.

Suppose that the inductive condition was verified at the beginning of the m-th 

itération. Suppose first that rb-m = 0. Then the i-th itération of the loop is empty 

but as k mod 2b+1~m = k mod 2b+1~^m+l\ so that at the beginning of the next 

itération the value of r remains unchanged, it follows that the inductive condition is 

verified.

Consider now the case when rb_m = 1. Then, between the start of the m-th 

and the (m + l)-st itération of the loop in lines 10 and 13 we hâve r := r + 2b~m.
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Consequently, by the inductive assumption, we hâve at the beginning of the (m + l)-st 

itération

r = k - k mod 2b+l~m + 2b~m 

= (rb 2b + r6_! 2 

= (rb 2b + rfc_x 2

6-1 b—m b—m+ • • • + r0 2°) — (rb-m2 + • • • + 7o2°) + 2 

) = k-k mod 26+1“(m+1)6-1 b—md-----+ H-m?

The value of the table is then computed in line 12 of the algorithm, which 

complétés the induction proof.

From the inductive proof it follows that at the end of the fo-th itération of the for 

loop from line 8 (i.e. at the beginning of the non-existing (b+ l)-st itération) we hâve 

r = k — k mod 26+1~(6+1) = k, and the table has been computed, which

complétés the proof of the correctness of the algorithm.

In line 2, the table T-j may be computed by Algorithm 4 in 0(n2) time (cf. 

Fig. 6.3). As r < 2b, both for loops starting at line 3 and 8 hâve 0(log k) itérations. 

Since each internai for loop from line 5 and 11, respectively, has 0(n2) itérations 

calling function OptTiine of complexity O(logn) we conclude that Algorithm 6 fin- 

ishes in 0(n2 lognlog k) time. This algorithm produces an optimal schedule. It is 

not claimed that Algorithm 6 produces an optimal schedule in optimal time. □
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6.4 Line Exploration with Unreliable Collections of

Robots

In this section we study the exploration problem when some of the robots may be 

faulty, i.e., when they fail to realize their exploration tasks. In this case, other robots 

need to help, so that eventually every node of the line is visited by some reliable robot 

before its deadline. Let there be given a weighted line L, containing n nodes with 

given deadlines and a collection of k robots at most / of which may turn out to be 

faulty. Consider a schedule for k robots on the line L. We say that the schedule is 

/-reliable in time A, if for any choice of / faulty robots by an adversary, each node 

of the line is visited by at least one non-faulty robot before its deadline and before 

time A.

Note that, in the case when ail robots are reliable, it is never useful to hâve more 

than one robot initially placed at the same position. In the case of the presence 

of unreliable robots, is may be required. Consequently, we will assume that it is 

admissible for more than one robot to start from the same node of the line.

Observation 6. If there can be f faulty robots, then to successfully explore a node v 

with deadline A(v), node v must be visited by at least f + 1 robots before time A(u).

It is interesting to look at the decision problem as well as the optimization problem 

related to faulty agents. In the decision problem we look for an algorithm, which, 

given / and A, vérifiés whether there exists an /-reliable schedule in time A. In the 

optimization problem, we need an algorithm, which, for any given /, finds the minimal 

time interval A, which admits some /-reliable schedule in time A. Clearly, solving 

the optimization problem implies a solution to the decision problem and hardness of 

the decision problem implies hardness of the optimization problem. We are interested
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in both settings - for fixed and for arbitrary initial positions of the robots. As the 

case of the arbitrary starting positions is easier we discuss this variant first.

6.4.1 Arbitrary starting positions

We prove the following theorem.

Theorem 16. Let there be given a weighted line L, containing n nodes with given 

deadlines and a collection of k robots, which may be put at arbitrary starting positions

on L. For any 0 < f < k the optimization problem involving up to f faulty robots 

may be solved in O (n2 log n log [) tirne.

The idea of the proof of Theorem 16 is based on the Observation 6. To obtain an 

/-reliable schedule it is sufficient to partition the set of k robots into / + 1 groups 

of [jrfï\ robots, where each such group explores the segment using Algorithm 6. We 

show that such condition is also necessary. The time complexity follows directly from 

Theorem 15.

Proof. Let A be the tirne interval satisfying the claim of the theorem, in the sense 

that there exists an /-reliable schedule in time A, while for any A' < A, there does 

not exist an /-reliable schedule in time A'. We show first that the necessary and 

sufficient condition for the existence of such an /-reliable schedule is the following. 

Condition 1: There must exist a schedule involving [yyïj robots (ail reliable), start­

ing at arbitrary initial positions on L, which solves the exploration of L in time A.

Indeed, by Observation 6 each node of the line L must be explored by at least / +1 

robots. Therefore we can partition the collection of robots into / + 1 groups, each 

group entirely exploring line L. The least numerous of these groups can contain no 

more than , robots and this group must explore L. Conversely, if [y^\ robots
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can explore line L in time A, we can form f + l groups of [j^ï\ robots each, executing 

the same schedule and the line is explored by each of / + 1 independent groups.

Bv Theorem 15, Algorithm 6 computes the optimal time of line exploration by a 

collection of robots which may be placed at arbitrary initial positions. Consequently, 

the output of Algorithm 6 run for r = [yfr[\ robots exactly vérifiés Condition 1. By 

Theorem 15, its time complexity is then as stated in the claim of the theorem. □

6.4.2 Given starting positions

Contrary to the case studied in the previous section, when the robots are assigned 

to fixcd positions on the line, the existence of faulty robots leads to a problem which 

turns out to be NP-hard. In fact, the decision problem is hard, even in the case when 

ail individual deadlines may be ignored (they are ail larger than A), i.e. when the 

line does not hâve any node time constraints.

More formally we are confronted with the following problem:

Exploration of the Line with Crash Faults (ELCF) problem

Instance: A line L, a multiset P of k starting positions of robots, a number of faults 

/ and a time interval A.

Question: Is there an exploration strategy for the collection of k robots, which may 

include up to / faulty ones, such that each node of L is visited by at least one 

non-faulty robot before time A?

Theorem 17. The ELCF decision problem is NP-complete, and remains so even 

if ail numerical variables are polynomially bounded. In other words, it is strongly

NP-complete.
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The proof uses réduction from the Numerical 3-Dimensional Matching (N3DM), 

which is known to be strongly NP-complete. In the N3DM problem we hâve three 

sets, each containing the same number of q integers. We need to form q triples, each 

one using éléments of different sets, so that the sums of ail triples are the same. We 

construct an instance of the ELCF problem by setting / = q — 1 and k = 3q and 

we put robots on the line in three groups of q initial positions. We chose the initial 

positions of the robots in such a way, that in order to cover the line / +1 times, which 

is needed by Observation 6, they must form triples, so that each triple of robots could 

explore the entire line. The choice of the initial positions is made carefully, so that 

the exploration is possible only if each such triple of robots corresponds to a triple of 

integers that is obtained from the solution of the N3DM problem.

The proof of Theorem 17 is split into two lemmas. We first show that the ELCF 

decision problem is strongly NP-hard, and then that the ELCF decision problem is

in NP.

Lemma 21. The ELCF decision problem is strongly NP-hard.

Proof. We construct a polynomial-time many to one réduction from the following

strongly NP-hard problem referenced as [SP16] in [147].

Numerical 3-Dimensional Matching (N3DM) problem

Instance: Three multisets of positive integers A = {a*, a2, ■.

{c1; c2,..., Cq}, and an integer S.

Question: Does there exist two permutations of [l,ç] such that for every

1 — i ^ Ç, ûj T b7rg(i) T c-kcO —

^q\ i B {&1, &2, ■ • • , bq}, C• 5

We construct an instance (L,P,/, A) of the ELCF problem from an instance of 

N3DM as follows. Let a = maxjG[lj9](oi), b = maxje[1)9](6j) and c maxieji,,] (<*).

Let / = 45 + 6a + 66 -f- 12c and £ = 3/ — 45 — 1. L is the line of length £ (with £ + 1
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nodes). Each edge of L has weight one. For the sake of simplicity we name i the node 

of L at distance i from the leftmost node. We hâve 3q robots each corresponding to 

an integer from one of the multisets A, B or C. For each i = 1,2,..., q, we put three 

robots: one robot A% at node ai = ai, one robot Bt at node /% = I + 26j and one 

robot Q at node 7* = 21 + 4q. The number of faults / is equal to q — 1 and the time 

interval A is equal to / — 1. The construction can be done in polynomial time. We 

show that the answer to the constructed instance of the ELCF problem is the same 

as the answer to the original instance of N3DM.

First, assume that there exists a solution 7T£, txq to the instance of the N3DM 

problem. We show that the robots can solve the corresponding instance of the ELC F 

problem as follows.

Robot Ai will first move to the left until reaching node 0 (moving distance a*), 

and then to the right until reaching node a\ = I — 1 — a, (moving distance I — 1 —ai). 

This can be done in time A = / — 1 and thus robot Ai has visited in time ail nodes 

in the interval [0, a[].

Robot will first move to the left until reaching node = a\ +1 (moving 

distance a* + 2b7rB(i)) and then to the right until reaching node = 21 — \ — 2at — 

2b-KB(i) (moving distance / — 1 — a*

and thus it has visited in time ail nodes in the interval [/3^B(q,ÆB(q]-

Robot C^c{i) will first move to the left until reaching node 7^^

(moving distance 2eq + 2+ 4c^c(q) and then to the right until reaching node 

7lc(i) = 31 - 1 - 4oi - 46^(q - 4cTc(i) (moving distance / - 1 - 2cq - 267rs(i) - 4c*c(i)). 

This can be done in time A = / — 1 and thus it has visited in time ail nodes in the

26^s(j)). This can be done in time A = / — 1

Æs(i) +1
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interval bic(j),7£c(j)}- Observe that we hâve :

3/ — 1 — 4 aj — — 4c^c(j) = 3/ — 45 — 1 = £

Hence Circ(i) has visited in time ail nodes in the interval [Slc^,£].

A

Figure 6.4: Illustration of robots Ai, B^b^ and Cnc^ visiting ail nodes of the line.

Since [0, a\] U [/3[fi(i), #B(i)] U hlc{i)J] = [0,4 ail nodes of the line hâve been 

visited in time by either Ai, B^b^ or Cnc^ for i = 1,2,...,/ + 1. It follows that 

every node is visited by at least one non-faulty robot and this is a solution to the 

ELCF problem.

Now assume there is a solution to the ELCF problem. Let A = {At !| 1 < i < q}, 

B = {Bi | 1 < i < g} and C = {Ci \ 1 < i < q}. First, we show the following claim.

Claim 3. The robots in A must, visit node 0 and they are the only robots that can do 

it, the robots in ® must visit node I and they are the only robots that can do it and 

the robots in C must visit node i and they are the only robots that can do it.

For i = 1,2the robots in positions /3i and 7* are too far (at distance at 

least I) to reach node 0 in time smaller than A = / — 1. The robots in positions 

are the only ones that can visit the node 0 and since this node must be visited by 

/ +1 = q robots, they must ail visit it. Hence, the robots in positions a, cannot visit
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in time node I which is at distance I of node 0. Similarly, the robots in positions Bi 

are the only ones that can visit the node / and since this node must be visited by 

/ + 1 = q robots, they must ail visit it. Similarly, the robots in positions y, are the 

only ones that can visit the node 21 and so node i (since (. > 21) and since this node 

must be visited by / + 1 = q robots, they must ail visit it. This ends the proof of the 

claim.

For i — 1,2,..., q, let [0, a£] be the interval of nodes visited by robot Ai, [/5|, /3[] 

be the interval of nodes visited by robot Bi and [7], 7[] be the interval of nodes visited 

by robot Ci.

Claim 4. There are two permutations 7rjg(z) and TTc(i) such that for i = 1,2..., q,

PlB(i) = ai + 1 and Tic(i) = + L

First observe that if there is a portion of the line that is visited by more than 

f + l = q robots, then it means that there are robots from two different sets (for 

example, robots from sets A and B). We can then eut the trajectory of some of the 

robots in order to decrease the number of robots visiting the same node. So we can 

assume without loss of generality that each node is visited by exactly q robots. This 

means that there is a partition of the robots into q subsets, such that every node of 

the line is visited in time by exactly one robot of each subset. By the first claim, there 

is one robot of each set A, ® and C in each of q subsets. Hence, for i = 1, 2,..., q, 

there is a subset of robots {Atl BKg^,C%c^)} that must visit ail the nodes of the line. 

Since two robots of the same subset do not visit the same node, their intervals are 

disjoint. This ends the proof of the claim.

By the second claim, Robot Ai can travel a distance A to search its interval [0, a[]. 

Observe that Ai starts at distance from node 0. Since A > 3a > 3aj, the optimal 

way for robot Ai to search its interval is to first go to the left and then to the right.
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So, we hâve a\ = / - 1 - a*. By Claim 4, we hâve + 1 = / — a*. Robot

Bng(i) starts at distance a, + 26* from node Since A > 3a + 66 > 3(a-j + 26*),

the optimal way for robot Bi to search its interval is to first go to the left and then 

to the right. So, we hâve Æ = / — 2a* — 267re(*) — 1. By the last Claim, we hâve 

7tc(j) = /3[ +1 = / — 2aj — 267rs(*). Robot starts at distance 2a*+ 267rB(i)+ 4c„.c(;) 

from node Since A > 6a + 66 + 12c > 3(2a* + 267rB(*) + 4cOTC(j)), the optimal

*\e(d

way for robot Cj to search its interval is to first go to the left and then to the right. 

Observe that since robot rnust visit node we hâve :

31 4a* 46*-sp) 4cffc,(p 1 31 45 1 \ v a* ~\~ S

Hence, t^b^c^d is a solution for the instance of the N3DM problem. □

Lemma 22. The ELCF decision problem is in NP.

Proof. We consider the verifier-based définition of NP. A certificate for the instance of 

the ELCF decision problem is simply the set of the trajectories of the k robots. Each 

trajectory is of length 0(n2) and hence this certificate is in 0(kn2) and so polynomial 

in the size of the instance. We can check in polynomial time (by simulating the 

trajectories of the robots) that every node of the line is visited before time A by at 

least / + 1 robots. Thus, the certificate can be verifîed in polynomial time. □
An interested reader may observe that, given a configuration of k robots on a line 

and a time A, finding what is the maximal number / of robot faults that will still 

guarantee the exploration, is also strongly NP-hard.

Interestingly, we show in the following section, that the corresponding problem for 

the ring environment (even its optimization version) has a polynomial time solution. 

More exactly, we can polynomiallv compute the smallest time needed to explore the

172



ring by k robots placed at given initial positions, when any sub-collection of up to / 

robots may turn out to be faulty.

6.5 The Ring Environment

In this section we show that most of the results for the line environment may be 

adaptec! to work on the ring. However, the ELCF decision problem turns out to 

hâve a polynomial-time solution for the ring.

Suppose that the ring R contains nodes 0,1, 2,.. 

order around R. Then every node i of the ring has a counterclockwise neighbour (i+1) 

mod n and a clockwise neighbour (i — 1) mod n. Consequently, in this section, ail 

the ring node indices are implicitly taken modulo n. The approach used for the ring 

also starts by creating the snapshot graph, however slightly different from the one 

introduced in Section 6.2.1. The nodes of the snapshot graph are of the forin (i,j) and 

(i.j), where the node of the ring marked with the bar dénotés the current position 

of the robot and [i,j] is the segment of the ring already explored by the robot taken 

in the counterclockwise direction from i to j. Observe that, the terminal nodes of 

the snapshot graph, i.e. those which correspond to the exploration of every node 

of the ring, are now ail nodes (i,j) and (i, j), such that (j — i) mod n — 1, i.e. i 

is the counterclockwise neighbour of j. Such snapshot graph also has 0(n2) nodes 

of constant degree (see Fig. 6.5 below). Consequently, by using the argument from 

Theorem 14 we hâve the following Observation.

n — 1 in that counterclockwise* 7

Observation 7. AU values of Tfor pairs (i,j), such that each pair dénotés a 

counterclockwise segment around the ring containing an initial position of at most 

one robot, may be computed in 0(n2) time.

Observe that, there exists an optimal solution for the ring with idle edges between
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(0.0) (1.1) (2,2) (3.3) (4.4)

/\ /\ /\ /\ /\

Figure 6.5: Snapshot graph for a case of ring R of five nodes. Grey nodes and edges 
are duplicates of other nodes at the same level (for présentation clarity). Ail last level 
nodes correspond to the ring entirely explored.

initial positions of consecutive robots. By removing one such edge the ring becomes 

a line-segment. Consequently, most of our observations for Unes may be applied for 

rings. In particular, for the case of robots which may be placed at arbitrary initial 

positions on the ring, the following Corollary is obvious.

Corollary 2. In 0(n2 lognlogfc) time it is possible to compute the optimal time of 

exploration of the ring of size n by a set of k robots, which may be placed at arbitrary 

initial positions.

Indeed, it is sufficient to apply Algorithm 6, in which in Unes 5 and 12 we consider 

ail pairs (i, j) (rather than pairs for which i < j).

In the case of robots at given initial positions, the adaptation of the line algorithm 

to the ring case is also relatively easy, with some compromise on its time complexity. 

We hâve the following Proposition.

Proposition 1. T'here exists an O ( n2 + logn) algorithm for computing an optimal 

exploration of the ring R of size n using k mobile robots, initially placed at fixed 

positions on R.
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Proof. Take a pair i,i +1 of successive robots around the ring R for which the distance 

of their initial positions is the smallest. In an optimal exploration on the segment 

\pi,Pi+1] of R, one of its edges is idle. Knowing, which such edge is idle, we might 

remove it frorn R converting the ring to a line segment. Then the line exploration 

Algorithm 5 may be executed for such a segment. As the segment [pj,pi+1] is of size 

0(n/k), one possible approach is to try ail the possibilities of making idle every edge 

of [pi,Pî+1], each time running Algorithm 5 for the ring segment thus obtained. This 

would resuit in overall complexity 0(n3/k).

Consider the following, more careful adaptation of Algorithm 5 for the ring. Its 

first part (Unes 1-5) may be run once, computing ail values Tjj in 0(n2) time. Then 

the second part (lines 6-7) are repeated 0(n/k) times, i.e. for ail segments 0(n/k) 

obtained from R by removal of each possible idle edge between Pi and pi+i. Moreover, 

the min computation from line 7, by Observation 5, may be computed in (logn) time. 

This results in an 0(y logn) complexity of lines 6-7 hence in O (n2 + ^ logn) ring 

exploration algorithm. □

We now consider unreliable robots. Similarly to the line exploration case, every 

node of the environment must be explored / + 1 times by different robots before its

deadline.

Consider first the case of robots which may be placed at arbitrary initial positions 

on the ring R. Suppose that we dénoté by R^+1^ a ring obtained in the following way. 

We eut R at any node v, obtaining a line segment starting and ending by a copy of v. 

We merge / + 1 copies of such segment, identifying the starting and the ending nodes 

of consecutive copies, obtaining a segment of n(f + 1) nodes. Finally, we identify 

both endpoints of such segment obtaining a ring R^+l\ Observe that, covering R 

by k robots’ exploration trajectories, so that each node of R is visited / + 1 times,
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is équivalent to exploring using k robots, so that each of its nodes is visited

(once) before its deadline. As the size of R^+1^ is in 0(nf), from Corollary 2 we get

Corollary 3. Suppose that in an n-node ring we can place at arbitrary initial positions 

k robots, which may include up to f faulty ones. In 0(n2f2 log £;(logn + log/)) time 

it is possible to compute the optimal time of exploration of the ring.

If the initial positions of the robots on the ring are given in advance, contrary to 

the case of the line segment, it is possible to décidé in polynomial time whether there 

exists an /-reliable schedule in any given time A.

Proposition 2. Consider a ring R of size n and k robots placed at given initial 

positions at the nodes of S. For any given time A there is a polynomially-bounded 

algorithm that décidés whether ring R may be explored by its robots within time A.

Proof. Create ring R^+1^ formed of / +1 copies of R, thus obtaining k(f +1) possible 

starting positions for k robots. We need to find an exploration of ring in time T

using k robots, which may be placed at k(f+1) starting positions. If such explorations 

are possible, then there exists one, for which each robot covers a disjoint segment of 

R^+1\ with idle edges separating them. Consider one such edge and remove it from 

R(f+1\ obtaining a segment S of size n(f + 1) — 1. The set of k robots explore S in 

time T. As the chosen idle edge belongs to some copy of ring R, it is sufficient to 

consider n segments 50, Si,..., S„_ i of size n(f + 1) — 1 and check whether one of 

them may be explored in time T.

From the corresponding snapshot graph, we compute first for any position i on the 

ring R f+l\ the value P(i) denoting the largest position j, in the counterclockwise 

direction around R^+1\ such that a robot placed at a permitted initial position 

can explore in time T the segment [i, j] of ring R^+lf Consider now an algorithm
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deciding for any given segment Sm, where rn = 0,1.. 

explored in time T by some set of k robots, each of which may be placed at any of 

the given k(f + 1) starting positions. Starting from the initial endpoint of Sm, for ail 

consecutive values of r = 1,2,..., k, we compute the largest index irSm, such that the 

initial sub-segment of Sm ending at node irSm may be explored by a set of r robots in 

time T. We can prove by induction on r that

n — 1, whether Sm may be' )

?s+1 = p(irs +i)
•Jm v ‘Jm '

If igm reaches (or exceeds) the last node of segment Sm, then Sm is explorable by k 

robots in time T.

We repeat the procedure for ail segments Sm. As ring is possible to be

explored at time T if and only if one of the segments Sm may be explored in time T 

this concludes the proof.

□

6.6 NP-hardness for Star Graphs

We gave exploration algorithms for Unes and rings with time constraints on the nodes. 

It is easy to see that the exploration problem is hard for graphs, even for the case of a 

single robot and a graph with edges of unit length. Indeed, for a graph on n nodes, by 

setting ail its node deadlines to n — 1, an instance of exploration problem is équivalent 

to finding a Hamiltonian path. However, we show below that the exploration problem 

is hard for graphs as simple as stars and already for two mobile robots.

Proposition 3. The exploration problem respecting node deadlines for given start­

ing positions of the robots is NP-hard. This problem is also NP-hard if the starting
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positions are arbitrary.

Proof. We accomplish the réduction from the Partition Problem [136].

Partition problem

Instance: A sets of q of positive integers A = {ai, a2,..., aq}

Question: Does there exist a partition of set A into two subsets of equal sum.

We construct a polynornial-time réduction from the Partition problem. Consider 

an instance of the partition problem with the set A = {ai, 02,.. aj. Let £i=i a* =

2cr. We design the corresponding instance of the star exploration problem. Consider 

a star consisting of q + 4 edges ei, e2,..., eg+4. Let the weight w of each edge be such 

that w(ei) = ai, for i = 1,2,..., q, and w(eq+1) = w(eq+2) = w(eq+3)

Take two mobile robots 1 and 2 and put them at the starting positions at the endpoints 

of edges eg+i and eg+2, different from the centre of the star. Let the deadline of each 

node of the star be A(ej) = 10<7, for i = 1, 2,..., q + 4. Note that the sum of the 

weights of ail edges of the star equals 18a. Further, observe that each robot has to 

end its route at one of the edges eg+3 and eq+4. Indeed, otherwise one of the edges 

eq+3 or eg+4 would be traversed twice (by the same robot in both directions) and the 

sum of the trajectories of both robots would exceed 22a. Hence one of the robots 

would arrive to its last node after time lia and its deadline would not be met.

' 5

w(eq+4) = 4a.

Consequently, robots must traverse once both edges eg+i and eg+2 at the beginning 

of their respective routes and finish the routes by traversing edges eg+3 and eg+4. Each 

of the remaining edges e*, for i = 1,2,..., q, must be traversed in both directions and 

the sum of the robot route lengths is at least 4 ■ 4a + 1 w{ei) = 20a. In order for

both robots to reach their last nodes within their deadline time of 10a, each of them 

must traverse the subset of edges of total length a. This requires solving the given 

instance of the partition problem.
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It is easy to see that the above réduction works not only for the star exploration 

from given starting positions, but also from arbitrarv ones. □

6.7 Additional Remarks and Conclusion

We studied the question of exploring graphs with time constraints by collections of 

unreliable robots. When ail robots are reliable we used dynamic programming to give 

efficient exploration algorithms for line graphs and rings. We showed, however, that 

the problem is NP-hard for graphs as simple as stars. We showed how to extend, in 

most cases, our solutions to unreliable collections of robots.

One of our results is quite unexpected and important. Suppose that a collection 

of robots, placed on a line, may contain an unknown subset of robots (of bounded 

size), which turn out to be crash faulty. Verifying whether it is possible to explore 

the line within a given time bound is an NP-hard problem. The same problem on the 

ring has a polynomial-time solution.

An interested reader may observe that our positive results imply the possibility 

to compute the resilience of the configuration, i.e. given a time A, to find the largest 

value /, such that there exists a schedule assuring exploration when any set of / 

robots turns out to be unreliable.

In this section, we did not actually produce schedules for our robots, but we 

only computed the optimal times when such schedules may be completed. However, 

from our work it is implicitly clear how to generate such schedules. We proved the 

optimality of the schedules but we did not prove the optimality of our algorithms. 

One of the possible open problems is to attempt to design algorithms of better time 

complexity.
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Chapter 7

Conclusion and Future Work

The purpose of our thesis was to study various exploration problems using mobile 

agents. These problems concern both géométrie and graph environments. We were 

especially interested in situations where robots may expérience faults, be they crash 

faults or Byzantine faults. We also considered cases where robots had different speeds.

Our contribution covered four spécifie topics. Chapter 3 focused on exploration of 

the two-dimensional Euclidean plane by a group of k robots. Three main variations 

were studied: in the first variation, robots were ail reliable. In the second variation. / 

robots could expérience crash-faults. In the third variation, / robots could expérience 

Byzantine faults. For ail variations, we introduced algorithms for two communication 

models: wireless and face-to-face. We also discussed upper and lower bounds: ail 

those algorithms are asymptotically optimal, with the exception of the byzantine face- 

to-face model, where our algorithm is only optimal if 2/ + 1 < k. A natural extension 

of our work is to consider collections of robots with possibly distinct visibility ranges. 

An interesting open question concerns exploration of polygonal environments using 

robots with bounded or unlimited visibility ranges.

In chapter 4, we studied the best way for one or multiple robots to intercept a
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bus travelling alongside the circumference of a circle of unit length, and we provided 

algorithms for various circumstances: when the speed of the bus was either known or 

unknown, and when its direction was either known or unknown. Our work also opens 

several possibilities for further work, such as:

• bus with non-constant speed (i.e. known only upper and lower bound);

• bus with known movement function (e.g. f{t), where f(t) gives the speed of 

the bus at time t), but unknown initial location and direction (determined by 

the sign at /(£));

• bus time shift (e.g. knowing that the bus moves according to f(t + to), for some 

t0, but not knowing t0)\

• agents with different and possibly non-constant speeds;

• other domains, like trees or arbitrary graphs; and

• different communication model (e.g. face-to-face, or limited visibility).

Chapter 5 studied the problem of évacuation on a dise. We studied two vari­

ations: crash-faults and Byzantine faults under the wireless communication model. 

We evaluated the efhciency of the algorithm by measuring the time elapsed before 

ail reliable robots gather at the location of the exit. Our work focused on providing 

upper and lower bounds for the case of 3 robots, 1 of which is faulty. There are several 

challenging open problems, such as:

• closing the gaps between the upper and lower bounds for either robot fault 

(either crash or Byzantine) model with wireless communication, as presented in 

our work;
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• exploring other types of communication models (e.g. face-to-face, or even lim­

itée! visibility);

• identifying the upper and lower bounds for more than three robots, / of which 

may be faulty, and dérivé asymptotic bounds similar to the results of [56]; and

• exploring robots with different maximal speeds.

Despite the fact that obtaining tight bounds for évacuation problems are known often 

to lead to functions which can be a challenge to optimize, the algorithmic insights 

derived by this interaction between robot mobility and communication can lead to 

rewarding applications of distributed computing in search and évacuation.

In chapter 6, we studied exploration problems in graphs with deadlines on nodes. 

We studied various graphs (line, ring, star) with one, then multiple robots. We 

discussed the complexity of algorithms that solved this problem, and evaluated the 

impact of crash faults on the complexity of the problems. This leaves some open 

problems, such as:

• designing algorithms of better time complexity;

• studying the feasibility of the exploration of the star graph by a single robot in 

polynomial time;

• the case of a single robot in a tree with node deadlines; and

• identifying the smallest (or simplest) class of graphs for which the exploration 

by a single robot is hard.

182



Bibliography

[1] Y. Afek, R. Kecher, and M. Sulamy. Optimal and résilient pheromone utilization 

in ant foraging. arXiv preprint arXiv:1507.00772, 2015.

[2] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous 

mobile robots. SI AM Journal on Computing, 36(1) :56—82, 2006.

[3] R. Ahlswede and I. Wegener. Search problems. Wiley-Interscience, 1987.

[4] S. Albers and M. R. Henzinger. Exploring unknown environments. SI AM

Journal on Computing, 29(4) : 1164—1188, 2000.

[5] S. Albers, K. Kursawe, and S. Schuierer. Exploring unknown environments with 

obstacles. Algorithmica, 32(1 ): 123—143, 2002.

[6] S. Alpern, R. Fokkink, S. Gai, and M. Timmer. On search games that include 

ambush. SI AM Journal on Control and Optimization, 51(6):4544-4556, 2013.

[7] S. Alpern and S. Gai. The theory of search games and rendezvous. Springer,

2003.

[8] E. M. Arkin, M. A. Bender, S. P. Fekete, J. S. B. Mitchell, and M. Skutella. 

The freeze-tag problem: how to wake up a swarm of robots. In Proceedings

183



of the thirteenth annual ACM-SIAM symposium, on Discrète algorithms, pages 

568-577. Society for Industrial and Applied Mathematics, 2002.

[9] E. M. Arkin, M. A. Bender, and D. Ge. Improved approximation algorithms for 

the freeze-tag problem. In Proceedings of the fifteenth annual ACM symposium 

on Parallel algorithms and architectures, pages 295-303. ACM, 2003.

[10] S. Azad. Foraging Algorithms for Robotic Swarms. PhD thesis, Concordia 

University Montréal, Québec, Canada, 2015.

[11] R. Baeza Yates, J. Culberson, and G. Rawlins. Searching in the plane. Infor­

mation and Computation, 106(2):234—252, 1993.

[12] R. Baeza-Yates and R. Schott. Parallel searching in the plane. Computational 

Geometry, 5(3):143—154, 1995.

[13] B. Balamohan, S. Dobrev, P. Flocchini, and N. Santoro. Exploring an unknown 

dangerous graph with a constant number of tokens. Theoretical Computer Sci­

ence, 610:169-181, 2016.

[14] R. Baldoni. F. Bonnet, A. Milani, and M. Raynal. On the solvability of anony- 

mous partial grids exploration by mobile robots. In International Conférence 

On Principles Of Distributed Systems, pages 428-445. Springer, 2008.

[15] E. Bampas. J. Czyzowicz, L. Gasieniec, D. Ilcinkas, R. Klasing, T. Kociumaka, 

and D. Pajak. Linear search by a pair of distinct-speed robots. In SIROCCO,

pages 195-211. LNCS, 2016.

[16] E. Bampas, J. Czyzowicz, L. Gasieniec, D. Ilcinkas, and A. Labourel. Almost 

optimal asynchronous rendezvous in infinité multidimensional grids. In Inter­

national Symposium on Distributed Computing, pages 297-311. Springer, 2010.

184



[17] E. Bampas, J. Czyzowicz, D. Ilcinkas, and R. Klasing. Beachcombing on strips 

and islands. In International Symposium on Algorithms and Experiments for 

Sensor Systems, Wireless Networks and Distributed Robotics, pages 155-168.

Springer, 2015.

[18] J. Beauquier, J. Burman, J. Clement, and S. Kutten. On utilizing speed in 

networks of mobile agents. In Proceeding of the 29th ACM SIGACT-SIGOPS 

Symposium on Principles of distributed computing, pages 305-314. ACM, 2010.

[19] A. Beck. On the linear search problem. Israël Journal of Mathematics, 2(4):221 

228, 1964.

[20] R. Bellman. An optimal search. Siam Review, 5(3):274-274, 1963.

[21] M. A. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power of a 

pebble: Exploring and mapping directed graphs. In Proceedings of the thirtieth 

annual ACM symposium on Theory of computing, pages 269-278. ACM, 1998.

[22] M. A Bender and D. K. Slonim. The power of team exploration: Two robots 

can learn unlabeled directed graphs. In Foundations of computer science, 1994 

proceedings., 35th annual symposium on, pages 75-85. IEEE, 1994.

[23] S. J. Benkoski, M. G. Monticino, and J. R. Weisinger. A survey of the search 

theory literature. Naval Research Logistics (NRL), 38(4):469-494, 1991.

[24] S. N. Bhatt, S. Even, D. S. Greenberg, and R. Tayar. Traversing directed 

eulerian mazes. J. Graph Algorithms Appi, 6(2): 157-173, 2002.

[25] S. Bock. Solving the traveling repairman problem on a line with general Process­

ing times and deadlines. European Journal of Operational Research, 244(3):690-

703, 2015.

185



[26] A. Bonato, E. Chiniforooshan, and P. Pralat. Cops and robbers from a distance.

Theoretical Computer Science, 411(43):3834-3844, 2010.

[27] A. Bonato, P. Golovach, G. Hahn, and J. Kratochvü. The capture time of a 

graph. Discrète Mathematics, 309(18):5588—5595, 2009.

[28) A. Bonato and R. Nowakowski. The game of cops and robbers on graphs. AMS,

2011.

[29] A. Bonato, P. Pralat, and C. Wang. Pursuit-evasion in models of complex 

networks. Internet Mathematics, 4(4):419-436, 2007.

[30] S. Bouchard, Y. Dieudonné, and B. Ducourthial. Byzantine gathering in net­

works. Distributed Computing, 29(6):435-457, 2016.

[31] Z. Bouzid, M. G. Potop-Butucaru, and S. Tixeuil. Optimal byzantine-resilient 

convergence in uni-dimensional robot networks. Theoretical Computer Science,

411 (34-36) :3154-3168, 2010.

[32] S. Brandt, F. Laufenberg, Y. Lv, D. Stolz, and R. Wattenhofer. Collaboration 

without communication: Evacuating two robots from a disk. In Algorithms and

Complexity - lOth International Conférence, CI AC 2017, Athen, Greece, May 

24-26, 2017. Proceedings, 2017.

[33] P. Brass, F. Cabrera-Mora, A. Gasparri, and .1. Xiao. Multirobot tree and graph 

exploration. IEEE Transactions on Robotics, 27(4):707-717, 2011.

[34] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative multi­

robot exploration. In Robotics and Automation, 2000. Proceedings. ICRA ’OO. 

IEEE International Conférence on, volume 1, pages 476-481. IEEE, 2000.

186



[35] W. Burgard, M. Moors, and F. Schneider. Collaborative exploration of unknown 

environments with teams of mobile robots. In Advances in plan-based control 

of robotic agents, pages 52-70. Springer, 2002.

[36] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider. Coordinated multi- 

robot exploration. IEEE Transactions on robotics, 21(3):376—386, 2005.

[37] D. Caissy and A. Pelc. Exploration of faulty hamiltonian graphs. International 

Journal of Foundations of Computer Science, 27(07):809-827, 2016.

[38] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying 

graphs and dynamic networks. In Ad-hoc, mobile, and wireless networks, LNCS,

volume 6811, pages 346-359. Springer, 2011.

[39] J. Chalopin, S. Das, and A. Kosowski. Constructing a map of an anonymous 

graph: Applications of universal sequences. In International Conférence On 

Principles Of Distributed Systems, pages 119-134. Springer, 2010.

[40] J. Chalopin, S. Das, and N. Santoro. Rendezvous of mobile agents in unknown 

graphs with faulty links. In International Symposium on Distributed Com,puting,

pages 108-122. Springer, 2007.

[41] J. Chalopin, Y. Dieudonné, A. Labourel, and A. Pelc. Rendezvous in networks 

in spite of delay faults. Distributed Computing, 29(3): 187-205, 2016.

[42| B. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. Deterministic 

broadcasting in ad hoc radio networks. Distributed computing, 15(l):27-38,

2002.

187



[43] N. Christofides, V. Campos, A. Corberân, and E. Mota. An algorithm for the 

rural postman problem on a directed graph. Mathematical Programming Study, 

26:155-166, 1986.

[44] M. Chrobak, L. Gasieniec, Gorry T., and R. Martin. Group search on the line. 

In Proceedings of SOFSEM 2015, LNCS 8939, pages 164-176. Springer, 2015.

[45] T. H. Chung, G. A. Hollinger, and V. Isler. Search and pursuit-evasion in mobile 

robotics. Autonomous robots, 31 (4):299, 2011.

[46] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing 

by mobile robots: Gathering. SIAM Journal on Computing, 41(4):829-879,

2012.

[47] R. Cohen and D. Peleg. Convergence properties of the gravitational algorithm 

in asynchronous robot Systems. SIAM Journal of Computing, 41(1): 1516—1528,

2005.

[48] R. Cohen and D. Peleg. Convergence of autonomous mobile robots with inae- 

curate sensors and movements. SIAM Journal on Computing, 38(1):276—302,

2008.

[49] A. Collins, J. Czyzowicz, L. Gasieniec, A. Kosowski, E. Kranakis, D. Krizanc, 

R. Martin, and O. Morales Ponce. Optimal patrolling of fragmented boundaries. 

In Proceedings of the twenty-fifth annual ACM symposium on Parallelism in 

algorithms and architectures, pages 241-250. ACM, 2013.

[50] A. Collins, J. Czyzowicz, L. Gasieniec, A. Kosowski, and R. Martin. Syn- 

chronous rendezvous for location-aware agents. In International Symposium on 

Distributed Computing, pages 447-459. Springer, 2011.

188



[51] A. Collins, J. Czyzowicz, L. Gasieniec, and A. Labourel. Tell me where i am so 

i can meet you sooner. In International Colloquium on Automata, Languages,

and Programming, pages 502-514. Springer, 2010.

[52] A. Corberân and J. M. Sanchis. A polyhedral approach to the rural postman 

problem. European Journal of Operational Research, 79(1):95—114, 1994.

[53] J. Czyzowicz, S. Dobrev, K. Georgiou, E. Kranakis, and F. MacQuarrie. Evacu- 

ating two robots from multiple unknown exits in a circle. Theoretical Computer 

Science, 2016.

[54] J. Czyzowicz, S. Dobrev, R. Krâlovic, S. Miklik, and D. Pardubskâ. Black hole 

search in directed graphs. In International Colloquium on Structural Informa­

tion and Communication Complexity, pages 182-194. Springer, 2009.

[55] J. Czyzowicz, L. Gasieniec, K. Georgiou, E. Kranakis, and F. MacQuarrie. The 

beachcombers’ problem: walking and searching with mobile robots. Theoretical

Computer Science, 608:201-218, 2015.

[56] J. Czyzowicz, L. Gasieniec, T. Gorry, E. Kranakis, R. Martin, and D. Pajak. 

Evacuating robots from an unknown exit located on the perimeter of a dise. In

DISC 201f. Springer, Austin, Texas, 2014.

[57] J. Czyzowicz, L. Gasieniec, A. Kosowski, and E. Kranakis. Boundary patrolling 

by mobile agents with distinct maximal speeds. In ES A, pages 701-712, 2011.

[58] J. Czyzowicz, L. Gasieniec, A. Kosowski, E. Kranakis, D. Krizanc, and N. Taleb. 

When patrolmen become corrupted: Monitoring a graph using faulty mobile 

robots. In Algorithms and Computation - Proceedings of 26th International

Symposium, ISAAC 2015, pages 343-354, 2015.

189



[59] J. Czyzowicz, L. G^sieniec, A. Kosowski, E. Kranakis, O. Morales-Ponce, and 

E. Pacheco. Position discovery for a System of bouncing robots. Information 

and Computation, 244:122-133, 2015.

[60] J. Czyzowicz, K. Georgiou, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, 

and S. Shende. Search on a line by byzantine robots. In 27th International 

Symposium on Algorithms and Computation, ISAAC 2016, December 12-14,

2016, Sydney, Australia, pages 27:1-27:12, 2016.

[61] J. Czyzowicz, K. Georgiou, E. Kranakis, L. Narayanan, J. Opatrny, and 

B. Vogtenhuber. Evacuating robots from a dise using face to face commu­

nication. In Proceedings of CIAC 2015, LNCS, volume 9079, pages 140-152. 

Springer, Paris, France, 2015.

[62] J. Czyzowicz, K. Georgiou, E. Kranakis, L. Narayanan, J. Opatrny, and 

B. Vogtenhuber. Evacuating using face-to-face communication. Proceedings

CIAC 2015 (also CoRR), abs/1501.04985, 2015.

[63] J. Czyzowicz, D. Ilcinkas, A. Labourel, and A. Pelc. Asynchronous deterministic 

rendezvous in bounded terrains. In International Colloquium on Structural 

Information and Communication Complexity, pages 72-85. Springer, 2010.

[64] J. Czyzowicz, D. Ilcinkas, A. Labourel, and A. Pelc. Worst-case optimal ex­

ploration of terrains with obstacles. Information and Computation, 225:16-28,

2013.

[65] J. Czyzowicz, A. Kosowski, and A. Pelc. How to meet when you forget: log- 

space rendezvous in arbitrary graphs. Distributed Computing, 25(2):165—178, 

2012.

190



[66] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black 

hole in synchronous tree networks. Combinatorics, Probability and Computing,

16(4) :595—619, 2007.

[67] J. Czyzowicz, E. Kranakis, D. Krizanc, Narayanan. L., and J. Opatrny. Search 

on a line with faulty robots. In Proceedings of the 2016 ACM Symposium on

Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25- 

28, 2016, pages 405-414, 2016.

[68] J. Czyzowicz, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and 

S. Shende. Wireless autonomous robot évacuation from équilatéral triangles 

and squares. In Ad-hoc, Mobile, and Wireless Networks - lfth International

Conférence, ADHOC-NOW 2015, Athens, Greece, June 29 - July 1, 2015, Pro­

ceedings, pages 181-194, 2015.

[69] J. Czyzowicz, E. Kranakis, and E. Pacheco. Localization for a System of colliding 

robots. Distributed Computing, 28(4):245—252, 2015.

[70] J. Czyzowicz, E. Kranakis, D. Pajak, and N. Taleb. Patrolling by robots 

equipped with visibilitv. In International Colloquium on Structural Informa­

tion and Communication Complexity, pages 224-234. Springer, 2014.

[71] J. Czyzowicz, A. Pelc, and A. Labourel. How to meet asynchronously (almost) 

everywhere. ACM Transactions on Algorithms (TALG), 8(4):37, 2012.

[72] G. D’Angelo, G. Di Stefano, and A. Navarra. How to gather asynchronous obliv- 

ious robots on anonymous rings. In International Symposium on Distributed 

Computing, pages 326-340. Springer, 2012.

191



[73] G. D’Angelo, A. Navarra, and N. Nisse. Robot Searching and Gathering on 

Rings under Minimal Assumptions. PhD thesis, INRIA, 2013.

[74] G. D’Angelo, A. Navarra, and N. Nisse. Gathering and exclusive searching on 

rings under minimal assumptions. In International Conférence on Distributed

Computing and Networking, pages 149-164. Springer, 2014.

[75] S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. Map construction 

of unknown graphs by multiple agents. Theoretical Computer Science, 385(1- 

3):34-48, 2007.

[76] S. Das, P. Flocchini, A. Nayak, and N. Santoro. Distributed exploration of an 

unknown graph. In International Colloquium on Structural Information and 

Communication Complexity, pages 99-114. Springer, 2005.

[77] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. The power 

of lights: Synchronizing asynchronous robots using visible bits. In Distributed

Computing Systems (ICDCS), 2012 IEEE 32nd International Conférence on, 

pages 506-515. IEEE, 2012.

[78] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U. Vaccaro. 

Asynchronous deterministic rendezvous in graphs. Theoretical Computer Sci­

ence, 355(3):315-326, 2006.

[79) X. Défago, M. Gradinariu, S. Messika, and P.R. Parvédy. Fault-tolerant and 

self-stabilizing mobile robots gathering. In Proceedings of DISC 2006, pages

46-60, 2006.

[80] B. Degener, B. Kempkes, T. Langner, F. Meyer auf der Heide, P. Pietrzyk, 

and R. Wattenhofer. A tight runtime bound for synchronous gathering of

192



autonomous robots with limited visibility. In Proceedings of the twenty-third 

annual ACM symposium on Parallelism in algorithms and architectures, pages

139-148. ACM, 2011.

[81] E. D. Demaine, S. P. Fekete, and S. Gai. Online searching with turn cost. 

Theoretical Computer Science, 361 (2) :342—355, 2006.

[82] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown envi­

ronment. In Proceedings of FOCS, pages 298-303. IEEE, 1991.

[83] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. In Foundations 

of Computer Science, 1990. Proceedings., 31st Annual Symposium on, pages

355-361. IEEE, 1990.

[84] D. Dereniowski, Y. Disser, A. Kosowski, D. Paj^k, and P. Uznanski. Fast col­

laborative graph exploration. Information and Computation, 243:37-49, 2015.

[85| D. Dereniowski, R. Klasing, A. Kosowski, and L. Kuszner. Rendezvous of 

heterogeneous mobile agents in edge-weighted networks. In International Col- 

loquium on Structural Information and Communication Complexity, pages 311-

326. Springer, 2014.

[86] D. Dereniowski and A. Pelc. Drawing maps with advice. Journal of Parallel 

and Distrihuted Computing, 72(2):132—143, 2012.

[87] A. Dessmark, P. Fraigniaud, D. R. Kowalski, and A. Pelc. Deterministic ren­

dezvous in graphs. Algorithmica, 46(1 ):69—96, 2006.

[88] A. Dessmark and A. Pelc. Optimal graph exploration without good maps. 

Theoretical Computer Science, 326(l-3):343-362, 2004.

193



[89] G. A. Di Luna, P. Flocchini, S. G. Chaudhuri, F. Poloni, N. Santoro, and 

G. Viglietta. Mutual visibility by luminous robots without collisions. Informa­

tion and Computation, 2016.

[90] Y. Dieudonné and A. Pelc. Anonymous meeting in networks. Algorithmica,

74(2):908-946, 2016.

[91] Y. Dieudonné, A. Pelc, and D. Peleg. Gathering despite mischief. ACM Trans­

actions on Algorithms (TALG), 11 (1): 1, 2014.

[92] Y. Dieudonné, A. Pelc, and V. Villain. How to meet asynchronously at poly­

nomial cost. SIAM Journal on Computing, 44(3):844-867, 2015.

[93] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with little 

memory. In Proceedings of the thirteenth annual ACM-SIAM symposium on 

Discrète algorithms, pages 588-597. Society for Industrial and Applied Mathe- 

matics, 2002.

[94] S. Dobrev, P. Flocchini, R. Krâlovic, P. Ruzicka, G. Prencipe, and N. Santoro. 

Black hole search in common interconnection networks. Networks, 47(2) :61—71,

2006.

[95] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole 

in arbitrary networks: Optimal mobile agents protocols. Distributed Computing,

19(1):1—99999, 2006.

[96] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration as graph 

construction. IEEE transactions on robotics and automation, 7(6):859-865,

1991.

194



[97] C. A Duncan, S. G. Kobourov, and V. S. Kumar. Optimal constrained graph 

exploration. ACM Transactions on Algorithms (TALG), 2(3):380-402, 2006.

[98] C. Dutta, G. Pandurangan, R. Rajaraman, Z. Sun, and E. Viola. On the 

complexity of information spreading in dynamic networks. In Proceedings of the 

Twenty-Fourth Annual ACM-SIAM Symposium on Discrète Algorithms, pages

717-736. SIAM, 2013.

[99] M. Dynia, J. LopuszaNski, and C. Schindelhauer. Why robots need maps. In 

International Colloquium on Structural Information and Communication Com­

plexity, pages 41-50. Springer, 2007.

[100] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part ii: The 

rural postman problem. Operations research, 43(3):399-414, 1995.

[101] Y. Elor and A. M. Bruckstein. Uniform multi-agent deployment on a ring. 

Theoretical Computer Science, 412(8-10):783—795, 2011.

[102] S. Elouasbi and A. Pelc. Deterministic rendezvous with détection using beeps. 

International Journal of Foundations of Computer Science, 28(01):77—97, 2017.

[103] Y. Emek, T. Langner, D. Stolz, J. Uitto, and Wattenhofer R. How many ants 

does it take to find the food? Theor. Comput. Sci., 608:255-267, 2015.

[104| Y. Emek, T. Langner, D. Stolz, J. Uitto, R. Wattenhofer, and I. Technion.

Towards more realistic ants.

[105] Y. Emek, T. Langner, J. Uitto, and R. Wattenhofer. Ants: Mobile finite State 

machines. arXiv preprint arXiv:1311.3062, 2013.

[106] Y. Emek, T. Langner, J. Uitto, and R. Wattenhofer. Solving the ANTS prob­

lem with asvnchronous finite State machines. In Automata, Languages, and

195



Programming - J^lst International Colloquium, ICALP 2014, Copenhagen, Den- 

mark, July 8-11, 2014, Proceedings, Part II, pages 471-482, 2014.

[107] P. Fazli, A. Davoodi, and A. K. Mackworth. Multi-robot repeated area coverage. 

Autonomous robots, 34(4):251-276, 2013.

[108] O. Feinerman and A. Korman. Memory lower bounds for randornized collab­

orative search and implications for biology. In International Symposium on 

Distributed Computing, pages 61-75. Springer, 2012.

[109] O. Feinerman, A. Korman, S. Kutten, and Y. Rodeh. Fast rendezvous on a cycle 

by agents with different speeds. In Distributed Computing and Networking - 15th 

International Conférence, ICDCN 2014, Coimbatore, India, January 4-7, 2014-

Proceedings, pages 1-13, 2014.

[110] O. Feinerman, A. Korman, Z. Lotker, and J. S. Sereni. Collaborative search on 

the plane without communication. In Proceedings of the 2012 ACM symposium 

on Principles of distributed computing, pages 77-86. ACM, 2012.

[111] M. 3. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed 

consensus with one faulty process. Journal of the ACM (JACM), 32(2):374-382, 

1985.

[112] R. Fleischer and G. Trippen. Exploring an unknown graph efficiently. In Euro 

pean Symposium on Algorithms, pages 11-22. Springer, 2005.

[113] P. Flocchini. Time-varying graphs and dynamic networks. In 2015 Summer 

Solstice: 7th International Conférence on Discrète Models of Complex Systems,

2015.

196



[114] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Computing without commu- 

nicating: Ring exploration by asynchronous oblivious robots. In International 

Conférence On Principles Of Distributed Systems, pages 105-118. Springer,

2007.

[115] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Remembering without mem- 

ory: Tree exploration by asynchronous oblivious robots. In International Collo- 

quium on Structural Information and Communication Complexity, pages 33-47.

Springer, 2008.

[116] P. Flocchini, D. Ilcinkas, and N. Santoro. Ping pong in dangerous graphs: 

Optimal black hole search with pebbles. Algorithmica, 62(3-4):1006-1033, 2012.

[117] P. Flocchini, M. Kellett, P. Mason, and N. Santoro. Map construction and 

exploration by mobile agents scattered in a dangerous network. In Parallel &

Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on 

pages 1-10. IEEE, 2009.

[118] P. Flocchini, B. Mans, and N. Santoro. Exploration of periodically varying 

graphs. In International Symposium on Algorithms and Computation, pages

534-543. Springer, 2009.

[119] P. Flocchini, B. Mans, and N. Santoro. On the exploration of time-varying 

networks. Theoretical Computer Science, 469:53-68, 2013.

[120] P. Flocchini, G. Prencipe, N. Santoro, and G. Viglietta. Distributed computing 

by mobile robots: uniform circle formation. Distributed Computing, pages 1-45,

2014.

197



[121] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of 

asynchronous robots with limited visibility. Theoretical Computer Science,

337(1):147- 168, 2005.

[122] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern 

formation by asynchronous, anonymous, oblivious robots. Theoretical Computer

Science, 407(1-3):412-447, 2008.

[123] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous of two 

robots with constant memory. In SIROCCO, pages 189-200. Springer, 2013.

[124] F. V. Fomin, P. A. Golovach, J. Kratochvü, N. Nisse, and K. Suchan. Pursuing 

a fast robber on a graph. Theoretical Computer Science, 411(7): 1167-1181,

2010.

[125] F. V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed 

graph searching. Theoretical Computer Science, 399(3) :236-245, 2008.

[126] P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and Pelc A. Collective tree explo­

ration. Networks, 48(3): 166-177, 2006.

[127] P. Fraigniaud and D. Ilcinkas. Digraphs exploration with little memory. In 

Annual Symposium on Theoretical Aspects of Computer Science, pages 246-

257. Springer, 2004.

[128] P. Fraigniaud. D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration 

by a finite automaton. Theoretical Computer Science, 345(2-3):331-344, 2005.

[129] P. Fraigniaud, D. Ilcinkas, S. Rajsbaum, and S. Tixeuil. Space lower bounds for 

graph exploration via reduced automata. In International Colloquium on Struc-

198



tural Information and Communication Complexity, pages 140-154. Springer,

2005.

[130] P. Fraigniaud, A. Korman, and Y. Rodeh. Parallel exhaustive search without 

coordination. arXiv preprint arXiv: 1511.004 86, 2015.

[131| P. Fraigniaud and A. Pelc. Deterministic rendezvous in trees with little mem- 

ory. In International Symposium on Distributed Computing, pages 242-256.

Springer, 2008.

[132] P. Fraigniaud and A. Pelc. Decidability classes for mobile agents comput­

ing. In Latin American Symposium on Theoretical Informatics, pages 362-374.

Springer, 2012.

[133] A. Frieze, M. Krivelevich, and P. Loh. Variations on cops and robbers. Journal

of Graph Theory, 69(4):383-402, 2012.

[134] D. W. Gage. Randomized search strategies with imperfect sensors. In Optical 

Tools for Manufactunng and Advanced Automation, pages 270-279. Interna­

tional Society for Optics and Photonics, 1994.

[135] M. R. Garey and D. S. Johnson. Two-processor scheduling with start-times and 

deadlines. SI AM Journal on Computing, 6(3):416-426, 1977.

[136] M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. W. 

H. Freeman New York, 2002.

[137] L. Gqsieniec, R. Klasing, R. Martin, A. Navarra, and X. Zhang. Fast periodic 

graph exploration with constant memory. Journal of Computer and System 

Sciences, 74(5):808-822, 2008.

199



1138] L. Gasieniec, A. Pelc, T. Radzik, and X. Zhang. Tree exploration with logarith- 

mic memory. In Proceedings ofthe eighteenth annual ACM-SIAM symposium on 

Discrète algorithms, pages 585-594. Society for Industrial and Applied Mathe-

inatics, 2007.

[139] M. Ghaffari, C. Musco, T. Radeva, and N. Lynch. Distributed house-hunting 

in ant colonies. In Proceedings of the 2015 ACM Symposium on Principles of 

Distributed Computing, pages 57-66. ACM, 2015.

[140] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The polygon exploration 

problem. SI AM Journal on Computing, 31 (2) :577—600, 2001.

[141] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel. The pinwheel: A real- 

time scheduling problem. In System Sciences, 1989. Vol. II: Software Track, 

Proceedings ofthe Twenty-Second Annual Hawaii International Conférence on,

volume 2, pages 693-702. IEEE, 1989. Also, in Handbook of Scheduling Algo­

rithms, Models, and Performance Analysis, CRC Press, 2004.

[142] J. Hromkovic, R. Klasing, B. Monien, and R. Peine. Dissémination of informa­

tion in interconnection networks (broadcasting & gossiping). In Combinatorial 

network theory, pages 125-212. Springer, 1996.

[ 143] E. Huus and E. Kranakis. Rendezvous of many agents with different speeds in 

a cycle. In Ad-hoc, Mobile, and Wireless Networks - lfth International Con­

férence, ADHOC-NOW 2015, Athens, Greece, .lune 29 - July 1, Proceedings, 

pages 195-209, 2015.

[144] T. Izumi, Y. Katayama, N. Inuzuka, and K. Wada. Gathering autonomous 

mobile robots with dynamic compassés: An optimal resuit. In International 

Symposium on Distributed Computing, pages 298-312. Springer, 2007.

200



[145] T. Izumi, S. Souissi, Y. Katayama, N. Inuzuka, X. Défago, K. Wada, and M. Ya­

mashita. The gathering problem for two oblivious robots with unreliable com­

passés. SIAM Journal on Computing, 41 (1):26—46, 2012.

[146] Y. Jin, Y. Liao, A. A Minai, and M. M. Polycarpou. Balancing search and target 

response in cooperative unmanned aerial vehicle (uav) teams. IEEE Transac­

tions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36(3):571-587,

2005.

[147] D. S. Johnson. The NP-completeness column: an ongoing guide. Journal of 

Algorithms, 6(3):434-451, 1985.

[148] B. Kalyanasundaram and K. R. Pruhs. Constructing compétitive tours from 

local information. Theoretical Computer Science, 130(1) : 125—138, 1994.

[149] M. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: 

An optimal randomized algorithm for the cow-path problem. Information and

Computation, 131 ( 1) :63—79, 1996.

[150] A. Kawamura and Y. Kobayashi. Fence patrolling by mobile agents with distinct 

speeds. In Distributed Computing, volume 28:2, pages 147-154, 2015.

[151] R. Klasing, A. Kosowski, and A. Navarra. Taking advantage of symmetries: 

Gathering of many asynchronous oblivious robots on a ring. Theoretical Com­

puter Science, 411(34-36):3235-3246, 2010.

[152] R. Klasing, E. Markou, and A. Pelc. Gathering asynchronous oblivious mobile 

robots in a ring. Theoretical Computer Science, 390(l):27-39, 2008.

[153] R. Klein. Walking an unknown Street with bounded détour. Computational 

Geometry, 1(6) :325—351. 1992.

201



[154] .J. Kleinberg. On-line search in a simple polygon. In Proceedings of SODA, 

pages 8-15. SIAM, 1994.

[155] J. M. Kleinberg. The localization problem for mobile robots. In Foundations 

of Computer Science, 199f Proceedings., 35th Annual Symposium on, pages

521-531. IEEE, 1994.

[156] S. Koenig, C. Tovey, and W. Halliburton. Greedy mapping of terrain. In 

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International

Conférence on. volume 4, pages 3594-3599. IEEE, 2001.

[157] A. Kolling and S. Carpin. Pursuit-evasion on trees by robot teams. IEEE 

Transactions on Robotics, 26(1):32—47, 2010.

[158] A. Korman and Y. Rodeh. Parallel linear search with no coordination for a 

randomly placed treasure. arXiv preprint arXiv:1602.04952, 2016.

[159] D. R. Kowalski and A. Malinowski. How to meet in anonymous network. The- 

oretical Computer Science, 399(1-2) : 141—156, 2008.

[160] E. Kranakis, D. Krizanc, F. MacQuarrie, and S. Shende. Randomized ren- 

dezvous algorithms for agents on a ring with different speeds. In Proceedings of 

the 2015 International Conférence on Distributed Computing and Networking,

ICDCN 2015, Goa, India, January pages 9:1-9:10, 2015.

[161] E. Kranakis, D. Krizanc, and P. Morin. Randomized rendez-vous with limited 

memory. In Latin American Symposium on Theoretical Informa,tics, pages 605- 

616. Springer, 2008.

1162] E. Kranakis, E. Krizanc, D. Markou, A. Pagourtzis, and F. Ramirez. Two 

different speeds sufRce for rendezvous in arbitrary graphs. In Proceedings of

202



the 43rd International Conférence on Carrent Prends in Theory and Practice of 

Computer Science (SOFSEM) January 16-20, Lero-Limerick, Ireland, 2017.

[163] S. Kreutzer and S. Ordyniak. Digraph décompositions and monotonicity in 

digraph searching. In International Workshop on Graph-Theoretic Concepts in 

Computer Science, pages 336-347. Springer, 2008.

[164] F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic 

networks. In Proceedings of the forty-second ACM symposium on Theory of

computing, pages 513-522. ACM, 2010.

[165] A. Kumar, S. Sharma, R. Tiwari, and S. Majumdar. Area exploration by 

flocking of multi robot. Procedia Engineering, 41:377-382, 2012.

[166] S. Kwek. On a simple depth-first search strategy for exploring unknown graphs. 

In Workshop on Algorithms and Data Structures, pages 345-353. Springer, 1997.

[167] L. Lamport. The weak byzantine générais problem. Journal of the ACM 

(JACM), 30(3):668-676, 1983.

[168] L. Lamport, R. Shostak, and M. Pease. The byzantine générais problem. ACM 

Transactions on Programming Languages and Systems (TOPLAS), 4(3):382-

401, 1982.

[169] I. Lamprou, R. Martin, and S. Schewe. Fast two-robot disk évacuation with 

wireless communication. In International Symposium on Distributed Comput­

ing, pages 1-15. Springer, 2016.

[170] E. L. Lawler. Optimal sequencing of a single machine subject to precedence 

constraints. Management science, 19(5):544-546, 1973.

203



[171] C. Lenzen, N. Lynch, C. Newport, and T. Radeva. Trade-offs between sélection 

compiexity and performance when searching the plane without communication. 

In Proceedings of the 2014 ACM symposium on Principles of distributed com­

puting, pages 252-261. ACM, 2014.

[172] A. Q. Li, F. Amigoni, and N. Basilico. Searching for optimal off-line exploration 

paths in grid environments for a robot with limited visibility. In A A AI, 2012.

[173] A. Lôpez-Ortiz and S. Schuierer. On-line parallel heuristics, processor schedul- 

ing and robot searching under the compétitive framework. Theoretical Computer

Science, 310(1-3):527-537, 2004.

[174] A. Lopez-Ortiz and G. Sweet. Parallel searching on a lattice. In Proceedings of 

the 13th Canadian Conférence on Computational Geometry, 2001.

[175] T. Luczak and P. Pralat. Chasing robbers on random graphs: Zigzag theorem. 

Random Structures & Algorithms, 37(4):516-524, 2010.

[176] N. A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[177] N. Megow, K. Mehlhorn, and P. Schweitzer. Online graph exploration: New 

results on old and new algorithms. Theoretical Computer Science, 463:62-72,

2012.

[178] S. Mitrovic-Minic and R. Krishnamurti. The multiple traveling salesman prob- 

lem with time Windows: Bounds for the minimum nurnber of vehicles. Simon

Fraser University TR-2002-11, 2002.

[179j C. O’Brien. Solving ANTS with loneliness détection and constant memory. PhD 

thesis, Massachusetts Institute of Technology, 2015.

204



[180] C. H Papadimitriou and M. Yannakakis. Shortest paths without a map. In 

Proceedings of ICALP, LNCS, volume 372, pages 610-620. Springer, 1989.

[181] A. Pelc. Deterministic rendezvous in networks: A comprehensive survey. Net­

works, 59(3):331-347, 2012.

[182] M. Potop-Butucaru, M. Raynal, and S. Tixeuil. Distributed computing with 

mobile robots: an introductory survey. In Network-Based Information Systems 

(NBiS), 2011 lfth International Conférence on, pages 318-324. IEEE, 2011.

[183] G. Prencipe. Impossibility of gathering by a set of autonomous mobile robots. 

Theoretical Computer Science, 384(2-3) :222—231, 2007.

[184] G. Prencipe and N. Santoro. Distributed algorithms for autonomous mobile 

robots. In Fourth IFIP International Conférence on Theoretical Computer

Science-TCS 2006, pages 47-62. Springer, 2006.

[185] O. Reingold. Undirected connectivity in log-space. Journal of the ACM

(JACM), 55(4):17, 2008.

[186] R.. Reischuk. A new solution for the byzantine générais problem. Information 

and Control, 64(l-3):23-42, 1985.

[187] I. M. Rekleitis, G. Dudek, and E. E. Milios. Multi-robot collaboration for robust 

exploration. In Robotics and Automation, 2000. Proceedings. ICRA ’OO. IEEE 

International Conférence on, volume 4, pages 3164-3169. IEEE, 2000.

[188] N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, and F. Amblard. 

Time-varying graphs and social network analysis: Temporal indicators and met-

rics. arXiv preprint arXiv:1102.0629, 2011.

205



[189] W. Sheng, Q. Yang, J. Tan, and N. Xi. Distributed multi-robot coordination 

in area exploration. Robotics and Autonomous Systems, 54(12):945—955, 2006.

[190] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, 

and H. Younes. Coordination for multi-robot exploration and mapping. In

AAAI/IAAI, pages 852-858, 2000.

[191] S. Souissi, X. Défago, and M. Yamashita. Gathering asynchronous mobile robots 

with inaccurate compassés. Principles of Distributed Systems, pages 333-349,

2006.

[192] Langner T., Uitto .J., Stolz D., and Wattenhofer R. Fault-tolerant ANTS. In 

Distributed Computing - 28th International Symposium, DISC 2014, Austin, 

TX, USA, October 12-15, 2014■ Proceedings, pages 31-45, 2014.

[193] A. Ta-Shma and U. Zvvick. Deterministic rendezvous, treasure hunts and 

strongly universal exploration sequences. In Proceedings of the eighteenth an- 

nual ACM-SIAM symposium on Discrète algorithms, pages 599-608. Society for 

Industrial and Applied Mathematics, 2007.

[194] C. J. Taylor and D. J. Kriegman. Vision-based motion planning and exploration 

algorithms for mobile robots. IEEE Transactions on robotics and Automation, 

14(3)417-426, 1998.

[195] H. Thimbleby. The directed chinese postman problem. Software: Practice and

Expérience, 33(11 ):1081—1096, 2003.

[196] S. Thrun. A probabilistic on-line mapping algorithm for teams of mobile robots. 

The International Journal of Robotics Research, 20(5):335-363, 2001.

206



[197] S. Thrun et al. Robotic mapping: A survey. Exploring artificial intelligence in 

the new millennium, 1:1-35, 2002.

[198] J. N. Tsitsiklis. Spécial cases of traveling salesman and repairman problems 

with time Windows. Networks, 22(3):263—282, 1992.

[199] L. A. Tychonievich and J. P. Cohoon. Coalescing swarms of limited capacity 

agents: Meeting and staying together(without trust). IAENG International 

Journal of Computer Science, 39(3):254-260, 2012.

[200] G. Viglietta. Rendezvous of two robots with visible bits. In International Sym­

posium on Algorithms and Experiments for Sensor Systems, Wireless Networks 

and Distributed Robotics, pages 291-306. Springer, 2013.

[201] M. L. Visinsky, J. R. Cavallaro, and I. D. Walker. Robotic fault détection and 

fault tolérance: A survey. Reliability Engineering & System Safety, 46(2): 139- 

158, 1994.

[202] I. A Wagner, Y. Altshuler, V. Yanovski, and A. M. Bruckstein. Cooperative 

cleaners: A study in ant robotics. The International Journal of Robotics Re­

search, 27(1) : 127—151, 2008.

[203] G. Wang, M. J. Irwin, H. Fu, P. Berman, W. Zhang, and T. La Porta. Opti- 

mizing sensor movement planning for energy efficiency. ACM Transactions on

Sensor Networks, 7(4) :33, 2011.

[204] K. Wehmuth, A. Ziviani, and E. Fleury. A unifying model for representing 

time-varying graphs. arXiv preprint arXiv:lf02.3f88, 2014.

207



[205] M. Yamashita and I. Suzuki. Characterizing géométrie patterns formable by 

oblivious anonymous mobile robots. Theoretical Computer Science, 411(26-

28):2433-2453, 2010.

[206] B. Yamauchi. Frontier-based exploration using multiple robots. In Proceedings 

of 2nd international conférence on Autonomous agents, pages 47-53. ACM,

1998.

[207] Y, Yang, S. Souissi, X. Défago, and M. Takizawa. Fault-tolerant flocking for a 

group of autonomous mobile robots. Journal of Systems and Software, 84(1) :29—

36, 2011.

[208] G. H. Young and C.-L. Chan. Single-vehicle scheduling with time window 

constraints. Journal of Scheduling, 2(4) : 175—187, 1999.

[209] R. Zlot, A. Stentz, M. B. Dias, and S. Thayer. Multi-robot exploration

trolled by a market economy. In Robotics and Automation, 2002. Proceed­

ings. ICRA ’02. IEEE International Conférence on, volume 3, pages 3016-3023.

con-

IEEE, 2002.

208


