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ABSTRACT 

Photovoltaic (PV) technologies are emerging as a significant solution in energy 

systems around the world not only to address the climate change target, but also to reduce 

electricity generation costs. Substantial deployments of solar installations as renewable, not 

contaminating, and inexhaustible sources of energy are gaining popularity in cold 

geographical locations with considerable snowfall. Similar to other electrical devices, solar 

systems can also operate efficiently in cold climates, but the accumulation of snow and ice 

on the surface of PV panels can reduce their performance. The variation of atmospheric 

conditions caused by snow is an important factor to consider in the research and 

development of PV technologies in order to reach a highly efficient and highly-reliable 

integration of solar energy into a power grid. The latter can be achieved by an appropriate 

design and analysis of snow shaded PV systems based on accurate models. 

The main goal of this thesis is to bring contributions for enhancing the knowledge 

about the use of PV systems in cold climate regions, and to present a modeling toolbox that 

can help PV developers and researchers to characterize the real field behaviour of PV 

systems under snowy conditions. In this context, the innovative contributions of this thesis 

are: 1) development of an optimized modeling method for characterizing the performance 

of PV modules under uniform snow coverage, 2) development of a novel modeling 

technique for PV modules subjected to the nonuniform snow coverage, 3) study of the 

effect of PV panels layout and snow patterns on their electrical characteristics, and 4) 

development of a prediction model based on real field data coming from different PV 

technologies to estimate the maximum power production of snow-covered PV modules. 

Regarding to the first contribution, an improved procedure for the modeling of PV 

modules is presented based on the single-diode model and capitalizing on the Giddings-

LaChapelle theory to accurately estimate the irradiation intensity received on the surface  of 

uniform snow-covered PV modules. Moreover, the particle-swarm optimization (PSO) 

algorithm is employed to determine and update instantaneous values of electrical model 

parameters of PV modules as per variable snow conditions.  Furthermore, an empirical 

equation of snow power losses as a function of snow depth is proposed. With respect to the 

second contribution, the first modeling algorithm was modified to propose a comprehensive 



  

iii 
 

approach and a universal algorithm to model the PV systems covered with different snow 

patterns. This modeling algorithm brings contributions through a novel multi-zone contour-

based approach of modeling that separates nonlinear PV characteristics of partial shaded 

modules into the multiple linear ones. Furthermore, the adaptation of a variant of a PSO-

based algorithm is utilized in this model to instantaneously update and evaluate the output 

characteristics of PV modules. A power loss equation validated using data collected 

through real field tests is also proposed. Related to the third contribution, the effect of PV 

panels’ layout on the performance of snow shaded PV modules is investigated through 

three different positions, namely horizontal, vertical and diagonal layouts. Different snow 

removal scenarios representing probable partial snow shading are tested on different 

technologies of PV modules (with or without bypass diode protection) to analyze their 

electrical characteristics and power losses for selecting appropriate panel layout as well as 

PV module technology in snowy regions. The final contribution of this research aims is the 

development of an improved prediction model for PV modules’ energy production based on 

a combination of meteorological data and historical data during the cold months. The 

parameters such as irradiance, back-surface temperature of modules, ambient temperature, 

humidity, pressure, UV index, and wind speed are employed to implicitly predict the 

maximum output power of PV modules under different patterns of snow shading. Various 

prediction models based on different machine learning algorithms such as decision 

(regression) trees, gradient boosted trees, random forest, and artificial neural networks 

(ANN) are implemented and compared with the experimental results.  

This research serves as a helpful reference in the development and appropriate 

selection of PV systems toward their application in cold weather regions. 
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RÉSUMÉ 

La technologie photovoltaïque a connu un essor ces dernières décennies suite à la 

recherche des solutions énergétiques permettant de faire face aux défis majeurs tels que le 

changement climatique et l’économie des ressources énergétiques. Cette alternative a 

conduit à un intérêt grandissant de l’usage et du déploiement des panneaux solaires dans les 

régions du globe dotées d’un climat froid et connaissant de chutes de neige considérables. 

Un tel intérêt est dû au fait que l’énergie solaire s’avère non polluante et à coût moindre 

comparé aux énergies fossiles. À l’instar des différentes sources d’énergie électrique, les 

systèmes solaires sont de plus en plus utilisés dans des pays à climat froid. Les systèmes 

solaires peuvent fonctionner efficacement dans des régions du globe à climat froid, quoique 

leur rendement peut être affecté par les dépôts de neige et de glace sur leurs surfaces. De ce 

fait, la variation des conditions atmosphériques suite aux chutes de neige est un facteur 

essentiel à prendre en compte dans le domaine de recherche et développement des cellules 

photovoltaïques. Ce qui contribuera à la fabrication des panneaux solaires à grand 

rendement et d’une intégration à coût raisonnable. Ceci peut être accompli grâce à la 

conception et une analyse appropriée des systèmes photovoltaïques ombragés par la neige 

basée sur des modèles précis.  

   L’objectif fondamental de cette thèse est de contribuer à mettre au point des 

modèles permettant d’optimiser le rendement des panneaux solaires en région froide et de 

plus de mettre sur pied une application permettant d’assister les chercheurs et les industriels 

ayant un intérêt particulier relatif à ce champ de recherche prometteur  afin de caractériser le 

comportement réel des systèmes photovoltaïques recouverts de neige. Dans ce contexte, les 

apports innovants de cette thèse sont : 1) le développement d'une méthode de modélisation 

optimisée pour caractériser la performance d’une cellule photovoltaïque (PV) sujette à un 

enneigement uniforme, 2) le développement d’un nouveau modèle de prédiction de la 

performance d’une cellule PV sujet à un enneigement non uniforme, 3) l’étude de l’effet de 

la disposition des panneaux photovoltaïques et d’un amas de neige recouvrant les cellules 

d’un panneau PV sur ses caractéristiques électriques et 4) le développement d’un modèle de 

prédiction portant sur des données de mesures prélevées sur différents sites utilisant des 

technologies PV spécifiques dans le but d’estimer la production en temps réel d’un module 

PV recouvert de neige.    
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 En ce qui concerne la première contribution, une amélioration du modèle des 

cellules PV basée sur l’approche du modèle à diode unique portant sur la théorie de 

Giddings-LaChappelle a été considérée dans le but d’estimer de manière précise la densité 

d’irradiation reçue à la surface des modules PV uniformément recouverts de neige. De plus, 

l’algorithme d’essaims particulaires (EP) a été employé afin de déterminer et mettre à jour 

les valeurs instantanées des paramètres des modèles électriques des cellules PV en fonction 

des conditions d’enneigement. De même, un modèle empirique des pertes d'énergie dues à 

la neige en fonction de l’épaisseur de neige est proposé. Pour ce qui est du second objectif, 

il repose sur la modification de la première version du modèle dans le but de proposer une 

approche globale et un algorithme universel permettant la modélisation des systèmes 

photovoltaïques recouverts de différents motifs formés par les dépôts de neige. Cet 

algorithme correspond à une nouvelle approche de modélisation basée sur les contours 

multizones qui sépare les caractéristiques PV non linéaires des modules partiellement 

ombragés en plusieurs modules linéaires. En outre, l'adaptation d'une variante d'un 

algorithme basé sur l’EP a été utilisée dans ce modèle pour mettre à jour et évaluer 

instantanément les caractéristiques de sortie des modules PV. Une équation de perte de 

puissance validée à l'aide de données collectées par des tests réels sur le terrain a également 

été proposée. Concernant la troisième contribution, l’effet de la disposition des panneaux 

photovoltaïques sur les performances des modules photovoltaïques ombragés par la neige 

est étudié tenant compte de trois positions différentes, à savoir les dispositions horizontales, 

verticales et obliques. Différents scénarios de déneigement indiquant un ombrage partiel 

probable de la neige sont testés sur différentes technologies de modules PV (avec ou sans 

protection de diode de dérivation) pour analyser leurs caractéristiques électriques et leurs 

pertes de puissance afin de sélectionner la disposition des panneaux appropriée ainsi que la 

technologie des modules PV dans les régions enneigées. La contribution finale de cette 

recherche vise à développer un modèle de prédiction amélioré pour la production d'énergie 

à l’aide des modules PV basé sur une combinaison de données météorologiques et de 

données historiques de puissance de sortie pour un système PV susceptible d’être 

opérationnel pendant les mois froids. Les paramètres tels que l'irradiation solaire, la 

température de surface dorsale des modules, les températures ambiantes, l'humidité, la 

pression, l'indice UV et la vitesse du vent sont utilisés pour prédire implicitement la 
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puissance de sortie maximale des modules PV sous différents modèles d'ombrage de la 

neige. Divers modèles de prédiction portant sur des algorithmes d'apprentissage machine 

tels que les arbres de décision (régression), les arbres à gradient boosté, la forêt aléatoire et 

les réseaux de neurones artificiels (RNA) ont été mis au point et comparés aux résultats 

expérimentaux. 

 Cette recherche servira de référence utile pour le développement et le choix 

judicieux de critères de sélection des systèmes PV en vue de leurs applications dans des 

régions froides. 
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1 INTRODUCTION AND STATE OF THE ART 

 

1.1 Overview  

  According to the recently published REN21’s Renewables Global Status Report 

(GSR) 2019, 26% of global electricity production came from renewable energies [1]. 

Among the sustainable energy sources, solar photovoltaic (PV) systems are on the third 

place of the most important energy source after hydro- and wind power in terms of global 

installation capacity [2]. In recent years, applications of PV technologies have offered 

promising solutions not only to fulfil the climate change target, but also to reduce 

electricity generation costs. The maturity of solar photovoltaic technology is growing at an 

unprecedented rate. Solar systems are becoming financially competitive because the cost of 

solar electricity continues to decline [3]. The price of PV technologies has fallen to around 

one-hundredth per watt since 1977 [4]. In fact, a decrease in PV technologies' price, the 

noiseless operation, flexible scaling of installation and easy maintenance of solar systems 

keep it in close competition with hydro- and wind technologies. As per the International 

Energy Agency (IEA) report, global electricity production from PV will grow to 953 TWh 

by 2025, which represents more than 400% increase from 2014 [5]. The International 

Energy Agency (IEA) has estimated that the sun will be the world’s largest source of 

electricity by 2050 [5]. 

The integration of PV systems into power grids has been also gaining popularity in 

climates with considerable snowfall. In 2009, nearly three-quarters of PV systems in the 

world were installed in countries such as Germany, Japan, Czech Republic and Canada that 

experience cold climate conditions [6]. For example, in Canada, the installed capacity of 

PV systems was around 1300 MW in 2013 with a growth of about 60% over the previous 

year. Moreover, estimates for the year 2020 predict an increase in the capacity of solar 

electricity to 6300 MW by producing nearly 1% of the total electricity generation of 

Canada [7]. 

Cold climate can improve solar panels’ output since similar to most electronic 

devices, solar cells work efficiently in cold conditions. In addition, the white snow on the 

https://news.energysage.com/what-is-the-power-output-of-a-solar-panel/
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ground reflects the sun’s light and helps improve the PV performance. However, snow 

accumulating on PV panels can reduce their energy production capability during cold 

months. In other words, the amount of irradiance that penetrates the snow layer and reaches 

the PV module can be decreased, resulting in low or zero electricity generation. This 

phenomenon which is known as snow shading can result in an inability of PV technology to 

meet the power network requirements.     

 There are two important patterns of snow shading, i.e., uniform and nonuniform 

snow shading. The uniform snow shading happens when the whole surface of the PV panel 

is covered by a uniform snow layer. A nonuniform snow pattern creates partial shading 

conditions, in which some parts of the snow cover melt or slide down. Although there are 

other sources of shading such as passing clouds, soiling, and shadowing, snow shading is 

one of the most probable shading reasons that can hinder the reception of irradiance to the 

surface of PV panels in the regions with a considerable amount of precipitation. Hence, 

analysis of the solar systems performance under cold weather conditions plays a key role in 

clarifying their uncertainty and variability in electricity generation caused by this climatic 

phenomenon. To address this issue, an accurate model of a PV module capable of 

determining its instantaneous electrical characteristic taking into account the snow effect is 

necessary. Moreover, this online modeling method that is capable to resemble the PV 

generators’ performance under the variation of environmental conditions can be interfaced 

with the PV converters and improves their maximum power point tracking (MPPT) 

controllers.  

1.2 Targets of Thesis  

In this context, this thesis aims, in an initial step, to propose a novel methodology of 

PV modeling to represent the instantaneous electrical characteristics of PV modules 

covered with uniform snow coverage. The attenuation of the transmitted solar radiation 

penetrating a layer of snow is rigorously estimated through an accurate theory describing 

the uniform snow coverage impact on the solar panels. In the next step, the effect of partial 

shading conditions due to nonuniform snow deposit on the PV panel is investigated through 

a comprehensive model. To this end, a novel universal multi-zone approach of photovoltaic 
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modeling is proposed to determine the electrical characteristics of PV modules covered 

with nonuniform snow patterns under partial shading conditions. In addition, the validity of 

the proposed model is investigated using real data obtained from the SCADA system of a 

12-MW grid-connected PV farm. Finally, the effect of the PV panel layout on its electrical 

behavior under different snow deposit patterns is studied. This analysis is helpful for a 

proper installation of PV panels in cold climates, allowing to minimize power loss due to 

snow. In a broader perspective, the research work in this thesis can help interpret the 

performance of PV systems under snowy conditions and can be considered as a powerful 

tool for the design and selection of PV modules subjected to snow accretion.  

1.3 State of the Art and Problem Formulation   

PV systems have inherent intermittent characteristics which are negatively affected 

by weather conditions. Therefore, the integration of PV systems into the power grids brings 

challenges which impose undesirable impacts on the power grid operation. In cold climate 

regions, two important factors, i.e. ice and snow, increase considerably the uncertainty and 

variability of PV generation. Since PV systems are frequently installed in regions that 

experience unpredictable snow and icing conditions, attention to their electrical behavior 

becomes essentially important. 

1.3.1  Impact of Snow on Solar Panels 

Snow deposition is the most obvious manner by which the confluence of cold 

temperatures and moisture can obstruct the face of a PV array. Snow particles often bounce 

when they impact the glass face of a photovoltaic panel. The wind field plays a remarkable 

role in determining the relative velocity of a snow particle impacting the array, both on the 

first impact and on subsequent bounces [8]. After bouncing, a snow particle follows a 

trajectory determined by gravity, the wind field at the surface of the array, and the 

momentum of the particle immediately after its collision with the surface. The panel tilt 

angle is also significant in determining the tendency of a particle to stay at rest on the panel 

surface. For panel tilt angles less than 90º, the snow particle will probably return to the 

array surface, where there is an opportunity to bounce again. Snow particles withstand 

under the influence of different forces on the surface of the PV panel such as: wind (or air 
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resistance) force, normal and tangential component of the gravity force which are 

dependent on the weight, velocity and temperature of particles, panel tilt angle, surface 

irregularities and the friction force. Eventually, when the magnitude of the friction force 

exceeds the net force of the tangential components of the wind force and the gravity force, 

particles might decelerate and tend to come to rest [9]. 

The surface of PV panels can affect the ability of electricity production of a 

photovoltaic system during the cold months. Most obviously, the array will often be at a 

temperature different from the ambient air temperature. It is conceivable that the array will 

be above freezing when the ambient air temperature is well below  freezing. The 

temperature of the array is influenced by radiation gains and losses to/from the environment 

and wind (convective cooling) [8].  

Albedo which is defined as the ratio of the intensities of reflected radiation to incident 

radiation is calculated using radiation intensities averaged over the short-wave radiation 

spectrum. This important optical property of snow can be characterized as a reflective 

characteristic of light from snow accumulation on the surface and the surrounding snow-

covered ground of PV panels. Tilted PV modules especially, in PV farms can typically 

collect more reflected radiation due to a larger view factor between the rear of the module 

and the snow-covered ground and array [6, 10].  

The effect of installation parameters (e.g., tilt angle, height above ground, and albedo) 

on the bifacial gain and energy yield of three south-facing PV system configurations have 

been investigated using a set of measured data from Sandia National Laboratories, a 

bifacial PV test-bed [11]. The results of this experiment demonstrate that modules installed 

at the highest possible albedo with high enough height have higher production. Besides, the 

seasonal optimum tilt angles are usually higher for modules installed closer to the ground. 

The experimental report based on the full-year field study of two flat roofs PV sites located 

in Sweden with a low albedo of 0.05 is investigated for monofacial and bifacial modules 

with a 40° tilt facing south mounted in different orientation [12]. The Nordic conditions of 

this location show a higher albedo could be achieved on a sunny day with fresh snow for 

the bifacial modules. 
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1.3.2 Analysis and Accurate Modeling of Photovoltaic Module Under Uniform Snow 

Coverage  

Over the years, several researchers have studied the effect of snow and ice on energy 

losses of PV systems. Investigations from the Natural Bridges National Monument, resulted 

in a daily loss prediction from 5% to 45% of system yield for two module angles of 30° and 

40° depending on snow depth [13]. A study of PV losses due to snow shedding, performed 

in the Energy Diversification Research Laboratory, CANMET, analysed the effect of 

temperature and melting technology in reduction of some energy losses [14]. Marion et al. 

concluded that snowfall could be a serious threat to the failure of grid-connected 

photovoltaic systems in Arizona, U.S. which can affect the overall system losses [15]. A six 

year-data acquisition of a 28-degree roof mount PV system in Germany showed that the 

values of proportional annual yield reduction by snowfall losses range from 0.3 to 2.7% 

[16]. The authors of [17, 18] introduced  a generalized monthly snow loss model taking into 

account the effect of insolation, humidity, temperature, ground interference, and tilt angle 

for two PV sites in Truckee, CA, U.S. Average annual losses of 6% - 26% for different tilt 

angles of 35°-0° were obtained. Other reported measurements have also indicated that a PV 

system can have annual snow losses as high as 12% for a series of six PV systems in 

Colorado [19], 3.5% for a PV system of 70 PV modules in Ontario [6], and 5-12% for 

seven PV modules in four tilt angles assessed in Calumet, MI, USA [20]. The model 

presented in [21] combined snow depth measurements with commonly available 

meteorological data of a 15-year continuous weather history in calculating PV outputs with 

and without snow to estimate the contribution of snow cover to PV power loss. In [22], a 

methodology that incorporates the Bouguer-Lambert Law [23] is proposed to estimate the 

transmitted level of insolation in deep layers of snow. However, it suffers from lack of 

accuracy to evaluate the diminished radiation intensity in light and medium snow coverage. 

Moreover, the parameters of the model for a particular environmental condition cannot be 

extracted simultaneously. The nonuniform distribution of solar irradiance on the backside 

of the bifacial PV modules was studied in [24]. A single diode-based model of the solar cell 

was used to characterize its current-voltage (I-V) curve and to calculate the micromismatch 

losses of the PV system as well [24]. These losses of the system were analyzed for 

surrounding ground of PV modules including grassland, cement floor, snowfield, with and 



  

7 
 

without a crossbeam. The snowfield demonstrates the highest micromismatch losses within 

1%-3%. Table 1 summarizes the snow related research works on PV systems in recent 

years with their dataset, technology, method and application as follows: 

Table 1. Snow related research works on PV systems in the literature. 

Research Dataset PV technology and sites Method Application 

[13]  (B. L. Brench. 

1979) 

One winter 

season  

  

Standard cell Comparative  Daily snow loss  

[14] ( M. M. D. 

Ross. 1995 ) 

30 Winter 

seasons  

Polycrystalline silicon cells Comparative Overall snow 

losses 

[15] (B. Marion et 

al.2005) 

30 Winter 

seasons 

18 Different grid-connected PV 

sites  

Comparative Overall snow 

losses  

[16] (G. Becker, et 

al.2006) 

Six winter 

seasons 

Monocrystalline silicon Correlation 

base  

Overall snow 

losses 

 [17] (L. Powers, et 

al. 2010) 

Two winter 

seasons  

Two different sites Analytical 

correlation base 

Annual snow 

losses 

[18] (T. Townsend 

and L. Powers. 

2011) 

Two winter 

seasons  

Two different sites Analytical 

correlation base 

Annual snow 

losses 

[19] (B. Marion, et 

al. 2013) 

Two winter 

seasons  

Polycrystalline 

and mono crystal silicon 

Analytical 

Comparative 

Annual snow 

losses 

[6] (R. W. 

Andrews, et al. 

2013) 

Two winter 

seasons 

Crystalline and  

Amorphous silicon 

Correlation 

base 

Annual snow 

losses 

[20] (N. Heidari, et 

al . 2015) 

One winter 

season 

Polycrystalline 

silicon 

Analytical 

Experimental  

Annual snow 

losses 

[21] (S. Pisklak. 

2016) 

10 – 15 

Winter  

seasons   

Three different sites  Comparative  Monthly and 

annual snow 

losses 

[22] (S. Hosseini, 

et al. 2018) 

One winter 

seasons 

Thin film , monocrystalline 

and polycrystalline 

silicon 

Numerical 

iteration  

Circuit-based   

modeling and  

module snow 

losses  

[24] (L. Wang, F. 

Li, et al.2019) 

One winter 

season 

Bifacial monocrystalline CZ 

silicon. 

Analytical 

comparative 

Micromismatch 

losses 
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 In most of the previous work reported in the literature, energy losses due to snow 

have been addressed and calculated through a simple comparison between the expected 

energy and the measured output power of PV systems based on offline models. However, 

research has not yet adequately addressed the challenges associated with the penetration of 

solar radiation through snow pack to the surface of PV modules. Thus, such models exhibit 

serious deficiencies for describing the various physical processes that have an impact on the 

conversion of photo energy into electricity. Consequently, they cannot be employed to 

characterize accurately the PV modules covered with snow. To cope with these 

shortcomings, an electric model of a PV module in cold conditions could be a powerful tool 

not only for analyzing PV plant performance, but also for optimizing the power converter 

design and for studying the MPPT algorithms. 

Furthermore, in order to obtain a good approximation of the measured data acquired 

from a true solar cell, a feasible optimization computational method should be employed to 

estimate the parameters of solar cell models [25]. Recently, various approaches have been 

presented for the extraction of the accurate parameters of solar cells models such as  Rs and 

Rsh represent the series and shunt resistances respectively, Iph defines the photo-generated 

current by the incidence of light, Is is the diode’s reverse saturation current, α0 is the diode 

ideality factor. The results on the well-known solar cell diode-based model prove that most 

of the soft computing algorithms [26-29] have achieved better results than those achieved 

by analytical approaches [30, 31] or numerical methods [32, 33] due to their global search 

capability which can find the optimal solution for problems with multiple unknown 

parameters, especially for the models with nonlinear transcendental function. A 

transcendental function is an analytic function that does not satisfy a polynomial equation, 

in contrast to an algebraic function. Examples of transcendental functions include the 

exponential function, the logarithm, and the trigonometric functions. 

In fact, the soft computing algorithms such as genetic algorithm (GA) [34, 35], 

particle swarm optimization (PSO) [36, 37], simulated annealing (SA) [27, 38], pattern 

search (PS) [39], cuckoo search (CS) [40], artificial bee swarm optimization (ABSO) [26], 

harmony search (HS) [25], differential evolution (DE) [31, 41, 42], artificial bee 

colony(ABC) [28], bird mating optimizer (BMO) [29, 43] and lightning search algorithm 

(LSA) [44] have been used for the extraction of parameters of solar cells in the literature. 
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 Among the aforementioned soft computing algorithms, PSO has drawn the attention 

of many authors because of its specific features, namely the fact that the method can find 

with high probability the global optimal solution by tuning only a few parameters, it is easy 

to program by guiding particles to search the hyperspace without the need of transformation 

to binary encoding and of special genetic operators such as mutation and cross over, and 

has no limit of defining optimization objectives [45, 46]. Numerous authors developed and 

improved various versions of the PSO algorithm, each with its different advantages for 

different complex optimal problems of PV system parameter extraction [37, 47-50]. In [49], 

a PSO-based parameter extraction routine combined with an analytical algorithm is 

proposed to overcome the problem of encountering locally optimal solutions, in the three-

diode lumped model. A PSO algorithm with time variation inertia weight and acceleration 

coefficient is developed in [48] for extracting solar cell parameters using a single diode 

model. The optimal parameters of silicon solar cell have been extracted and the results are 

compared with those of artificial bees swarm optimization (ABSO) [26], simulated 

annealing (SA) [38] and chaos particle swarm optimization (CPSO) [37]. The PSO 

algorithm is also attractive for the authors in the field of MPPT control, especially in 

finding the global maximum power point (GMPP) for the partially shaded PV modules [51-

54]. Table 2 classifies the state-of the-art methods employed to extract the modeling 

parameters of PV modules in the recent years. It presents a comparison of methods in terms 

of circuit model, algorithm, PV technology, and accuracy. The accuracy of proposed 

methods in Table 2 is evaluated through different types of errors such as root mean square 

error (RMSE), sum square error (SSE), mean absolute error (MAE), normalized error, 

relative error, and graphical comparison. These errors are presented in [55] and the RMSE, 

as the selected error measure for the context of this work, is defined in detail in section 

2.2.2.4. Although these modified variations of PSO improve the performance of the 

algorithm for finding the optimal model parameters, according to the best of our 

knowledge, the characteristics of snow-covered PV solar systems have not been modelled 

using PSO. Hence the work in this thesis is focused on the PSO- based modeling of PV 

modules under snowy conditions.  
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Table 2. Comparison of PV parameters extraction methods proposed in the literature.  

Research work Circuit model PV technology Algorithm Accuracy 

[33] ( M. Chegaar, 

et al. 2001) 

Single diode model Polycrystalline and 

RTC France silicon 

Optimized 

newton-

based 

Graphical  comparison 

only 

[34] (J. A. Jervase, 

et al. 2001) 

Two-diode model Silicon solar cell Genetic 

algorithm 

(GA) 

Relative error : varied 

from 2 to 36% 

[36] (M. Ye, et al. 

2009) 

Both single and 

double diodes model 

Silicon solar cell Particle 

swarm 

optimization 

(PSO) 

RMSE = 0.00014 

[35] (M. Zagrouba, 

et al. 2010) 

Single diode model 50 W PV 

module of  ANIT-

Italy 

Numerical 

GA-based 

SSE : varied from 0.0002 

to 0.06 

[37] (H. Wei, et al. 

2011) 

Single diode model Silicon solar cell Chaos 

particle 

swarm 

optimization 

(CPSO) 

RMSE : varied from 

0.265 to 0.6244 

[41] (K. Ishaque, 

et al. 2011) 

Single diode model Multi-crystalline, 

mono-crystalline 

and thin-film 

Differential 

evolution 

(DE) 

Graphical comparison 

only 

[25] (A. 

Askarzadeh, et al. 

2012) 

Both single and 

double diodes model 

(R.T.C. France) 

silicon 

solar cell 

Harmony 

search (HS) 

RMSE = 0.00098 

[31] (K. Ishaque, 

et al. 2012) 

Two-diode model Multi-crystalline, 

mono-crystalline 

and thin-film 

Penalty 

based DE 

Graphical comparison 

only 

[38] (K. M. El-

Naggar, et al. 

2012) 

Both single and 

double diodes model 

Polycrystalline 

silicon 

Simulated 

annealing 

(SA) 

RMSE: varied from 

0.0017 to 0.0027 

[39] (M. AlHajri, 

et al. 2012) 

Both single and 

double diodes model 

Polycrystalline 

silicon 

 Pattern 

search (PS) 

RMSE: varied from 

0.0118 to 0.2863 

[26] (A. 

Askarzadeh, et al. 

2013) 

Both single and 

double diodes model 

RTC France silicon 

cell 

Artificial 

bee swarm 

optimization 

(ABSO) 

RMSE= 0.000983 

[40] (J. Ma, et al. 

2013) 

Single diode model Crystalline and 

amorphous silicon 

Cuckoo 

search (CS) 

RMSE = 0.0010 
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[48] (N. F. A. 

Hamid, et al. 2013) 

Single diode model RTC France silicon 

cell 

PSO RMSE= 0.000986 

[30] (S.-x. Lun, et 

al. 2013) 

Single diode model Monocrystalline 

and polycrystalline 

silicon 

Taylor’s 

series 

RMSE : varied from 

0.0116 to 0.0065 

[42] (W. Gong, et 

al. 2013) 

Both single and 

double diodes model 

Polycrystalline and 

RTC France silicon 

Repaired 

adaptive DE 

RMSE : Varied from 

0.000986 to 0.002 

[28] (D. Oliva, et 

al. 2014) 

Both single and 

double diodes model 

RTC France silicon Artificial 

bee colony 

(ABC) 

RMSE= 0.000986 

[27] (F. Dkhichi, et 

al. 2014) 

Single diode model RTC France silicon Levenberg–

Marquardt 

(L-M) 

RMSE= 0.000986 

[32] (T. Ma, et al. 

2014) 

Single diode model Crystalline silicon analytical Relative  error = 0.5% 

[29] (A. 

Askarzadeh, et al. 

2015) 

Single diode model Amorphous silicon Bird mating 

optimizer 

(BMO) 

RMSE : varied from 

0.0021 to 0.0071 

[44] (R. Sirjani, et 

al. 2016) 

Both single and 

double diodes model 

Monocrystalline 

silicon 

Lightning 

search 

algorithm 

(LSA) 

SSE : varied from  

0.00458 to 0.22640 

[50] (A. Harrag, et 

al. 2017) 

Both single and 

double diodes model 

Not mentioned PSO Graphical comparison 

only - 

[49] (T. Wei, et al. 

2019) 

Three-diode model Organic solar cell 

(OSC) 

PSO Graphical comparison 

only - 

 

 

1.3.3 Modeling of Photovoltaic Modules Covered with Nonuniform Snow Patterns 

When some parts of snow on the surface of PV systems are melt or slide down, a 

nonuniform snow pattern can be created leading to a partial shading condition, in which the 

shaded sections of modules receive low or zero irradiation. Partial shading is also 

happening in lower scale levels and is known as a mismatch condition where, PV cells 

within the same installation receive different irradiance levels [56]. Although there are 

other mismatch conditions that can lead to an uneven irradiance such as soiling, shadowing, 

and cell damages, snow partial shading is the most remarkable factor of mismatching which 

can extremely decrease the efficiency of PV modules [57]. 
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For the efficient utilization of the solar system in both commercial and research 

applications, the nonlinear electric behavior of PV modules should be properly 

characterized. This nonlinear behavior gets more complicated under partial shading 

conditions [58, 59]. Under this mismatch condition, with respect to the electrical properties 

and structure of PV modules, as well as the shading pattern and its intensity, the PV system 

characteristics deviate from their standard form bearing multiple peaks. Thus, the reliable 

modeling of the complex characteristics of PV systems due to nonuniform snow is a 

challenging issue that needs to be addressed.    

Several research works have been conducted in the field of PV system modeling to 

address partial shading phenomena. The most popular PV models under snow-free 

conditions which utilize the concept of electrical equivalent circuit are commonly based on 

the single-diode model [60, 61] or on the two-diode model [62-64] which could include 

additional series and shunt resistances. Then, computational techniques are used for the 

modeling approach that can be classified into three main categories: analytical, numerical, 

and soft computing (SC) methods. In analytical methods, the mathematical formulation of 

the basic PV model is conducted by deriving the explicit equations, usually based on the 

three important operating points, namely maximum power point (MPP), short circuit (SC) 

and open circuit (OC) points, to completely avoid the iterative procedure for extracting the 

model parameters [65-68]. In numerical methods, the equations of the circuit-based model 

have been employed and directly implemented in suitable computational tools, such as 

MATLAB, to be solved numerically [69-72]. To this purpose, iterative solving procedures 

are mostly executed by the Newton-like methods [73]. SC techniques such as the Artificial 

Neural Network (ANN) can predict the PV characteristics based on trained data [74, 75]. 

This technique is considered by some authors as more suitable for theoretical investigation 

rather than practical implementation [76]. A comparison of research works on the modeling 

of PV systems under partial shading condition is listed in Table 3.   
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Table 3. Research works on the modeling of PV systems under partial shading condition.  

Research Method Circuit 

Model  

PV technology Application Accuracy 

[77] (V. Quaschning, 

et al. 1996) 

Newton- 

Raphson(nu

merical) 

Double 

diodes 

Monocrystalline 

silicon 

 

Characterizing 

the I-V curve  

Graphical 

comparison 

only  

[71] (H. Kawamura 

et al.. 2003) 

Newton–

Raphson 

Single 

diode 

Not mentioned  Characterizing 

the I-V curve  

Graphical 

comparison 

only 

[70] (Y.-H. Ji, et al. 

2009) 

Numerical  Single 

diode 

Simulink block of 

PV 

KPEMS150A72  

MPPT Graphical 

comparison 

only 

[67] (Y.-J. Wang, et 

al. 2010) 

Analytical  Single 

diode 

Multicrystalline si

licon 

Effect of partial 

shading on PV 

characteristics  

Graphical 

comparison 

only 

[63] (K. Ishaque, et 

al. 2011) 

Numerical-

Analytical  

Double 

diodes 

Multicrystalline, 

monocrystalline, 

and thin-film 

MPPT Relative 

error : less 

than 10 %  

[64] (K. Ishaque, et 

al. 2011) 

Newton- 

Raphson 

 

Double 

diodes 

Multicrystalline, 

monocrystalline, 

and thin-film 

MPPT Relative 

error : less 

than 8 % 

[78] (S. Moballegh, 

et al. 2013) 

Analytical Single 

diode 

Crystalline silicon 

wafer surrounded 

by ultra-thin 

amorphous silicon 

MPPT Relative 

error : varied 

from 5-10% 

[66] (M. 

Seyedmahmoudian, 

et al. 2013) 

Analytical Single 

diode 

Multicrystalline 

silicon 

Characterizing 

the P-V and I-V 

curves for MPPT 

Graphical 

comparison 

only 

[72] (Y. Mahmoud, 

et al. 2014) 

Numerical Single 

diode 

Polycrystalline, 

monocrystalline, 

and thin-film 

Characterizing 

the P-V and I-V 

RMSE: 

varied from 

0.55 to 1.92 

[75] (H. Mekki, et al. 

2016) 

Artificial 

neural 

network 

(ANN) 

Free Multicrystalline 

silicon 

Characterizing 

voltage and 

current based on 

time interval for 

Fault detection  

mean 

absolute 

error (MAE) 

= 0.001 

[61] (B. Meyers, et 

al. 2017) 

Analytical Both 

single and 

two 

diodes  

Simulated module 

with 96 cells 

Characterizing 

the P-V and I-V 

curves for MPP 

variation 

Normalized 

error = 0.1  
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[56] (H. S. Moreira 

et al. 2018) 

Analytical Single 

diode 

Monocrystalline 

Silicon 

Characterizing 

the P-V and I-V 

curves for MPPT 

RMSE: 

varied from 

0.03 to 0.20 

[73] (A. G. Peter, et 

al. 2019) 

Numerical  Double 

diodes 

Multicrystalline, 

monocrystalline, 

and thin-film 

Characterizing 

the P-V and I-V 

curves 

Relative 

error of 

model 

parameters: 

less than 0.1 

% 

[68] (P. Bharadwaj et 

al . 2019) 

Analytical Single 

diode 

Polycrystalline 

silicon 

Characterizing 

the I-V curve 

Relative 

error = 5% 

 

For the practical investigation of snow-covered PV modules, the physical and optical 

properties of snow need to be considered. Due to a higher albedo level of the snow-covered 

ground than that of snow-free surfaces, a portion of the reflected sunlight from surrounding 

areas could be absorbed by PV modules in snowy conditions. Furthermore, snow transfers 

heat in a more complex way than either other solids or fluids, and the insulating properties 

of snow/ice covering a PV module would influence the convective heat loss. Therefore, the 

existing models exhibit serious deficiencies to describe the various physical processes that 

influence the conversion of photo energy into electricity, and thus, cannot be used to 

characterize the PV modules covered with non-uniform snow.  

Recently, two modeling approaches of PV modules covered with snow have been 

published to study the effect of snow on the PV characteristics.  In [22], a snow modeling 

method based on the Newton-Raphson technique has been proposed. In our recent 

published paper [79], a metaheuristic computational method based on the particle swarm 

optimization (PSO) technique has been also proposed for the snow-covered PV systems and 

it has been tested by three different types of commercial PV panels. Comparing the results 

of the paper shows a close compatibility between the characteristics of the proposed model 

and the practical test bed [79]. Although these papers modeled the effect of snow on the PV 

systems, the PV performance has not been examined and modeled under nonuniform snow 

patterns. Therefore, this motivated us to introduce and propose a comprehensive approach 

and a universal algorithm to model the PV systems covered with different snow patterns. 
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1.3.4 Analysis of PV Panels Layout and Prediction of Different PV Technology 

Performance by Using the Raw Data of Installation Field   

As shown in Figure 1, photovoltaic cells use light energy (photons) from the sun to 

generate electricity using PV technology. Most of the module technologies use wafer-based 

crystalline silicon cells or thin film cells. A PV module is an assembly of PV cells. To 

supply the electrical equipment by the direct current electricity generated by the PV 

systems, a collection of PV modules that is called a PV panel should be arranged to 

construct PV arrays. The PV panels in the configuration of arrays can be arranged in 

difference ways such as vertical, horizontal and diagonal, as illustrated in Figure 2. These 

templates of panel arrangements (i.e. the panel layout) can be selected according to the 

application of the PV system and the availability of the installation space.    

 

 

Figure 1. How photovoltaic cells generate electricity form sun light energy [80]. 

 

 

https://www.imagesco.com/articles/photovoltaic/photovoltaic-pg4.html
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Figure 2. Different ways of PV panels arrangement such as (a) vertical, (b) horizontal and (c) diagonal [81]. 

 

(a) 

(b) 

(c) 
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Generally, different layouts of PV panels demonstrate the same behavior when they 

are not shaded. It means that under the uniform sunlight exposure, different arrangements 

of solar panels perform equally [82]. However, for an economical aspect, the determination 

of an optimal number of modules required to be installed in a restricted space to respond 

the energy demand can represent a challenge. For example, for the rooftops arrangement, 

vertical layout of the panels is the most efficient configuration in terms of production level 

[83]. Standard rooftop racking systems are optimally designed for the vertical layout. Thus, 

an installation of the same number of PV panels in the horizontal and diagonal 

configuration requires more rows, thus increasing the associated cost. To this end, most PV 

developers select the vertical layout that requires less hardware and simpler wiring, 

resulting in less complicated and faster implementation in comparison with horizontal and 

diagonal layouts [84].  

The efficiency and maintenance of the PV layout are important factors in designing 

the solar systems used in a variety of solar applications subjected to snow. In addition, the 

proper layout of panels plays a key role in generating the electricity in cold regions. In fact, 

the performance of snow partial shaded PV modules could be affected by the PV panels 

layout arrangement. In  [85], a research based on numerical analysis was conducted on the 

snow power loss of PV systems for horizontal and vertical panels layouts. However, it was 

not experimentally validated for different PV layouts as well as snow patterns on their 

surface. Therefore, the investigation of solar system performance with different PV layouts 

under the nonuniform snow accretion is significantly important. Hence, an attempt was 

made in this thesis to carry out a comprehensive research to determine the effect of 

different PV panels layout and snow patterns on their electrical characteristics.     

1.3.5 Prediction Model of Different PV Technology Power Generation by Using the 

Raw Data of Installation Field   

Although the growing market, reliability, and technology advancement of solar 

systems have been improved over recent years, there are still significant questions 

regarding the actual performance of PV modules in the field under different environmental 

conditions that can be realized in day-to-day operations. In addition, the snow and its effect 

on solar panels are very unpredictable, both from time to time and from site to site. 
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Normally, with the manufacturer’s information and a quality control test, the long-term 

performance of PV modules, can be estimated in a standard condition, while its interaction 

with a diverse set of environmental parameters cannot be simply accounted. Therefore, by 

processing the meteorological data and the historical output power data of the PV system 

under study, a learning-based algorithm for training a model can be executed to predict the 

power generation of a real solar installation.  

The prediction of power generation through the combination of meteorological and 

historical generation data of solar energy is gaining considerable attention. In the literature, 

several forecasting strategies and different scientific investigations have been introduced to 

estimate the future trends of PV energy production. Firstly, the traditional statistical models 

were introduced which worked based on the classical time series forecasting of solar energy 

and weather conditions such as Autoregressive models, Moving Average, and 

Autoregressive Moving Average [86]. They were often applied to the models with the 

linear dynamic structures. Next, the Fourier series models [87] based on the physical model 

were proposed which were less effective for the complex nonlinear systems subjected to the 

irradiance fluctuation [88]. Finally, the advanced nonlinear models such as Artificial Neural 

Network (ANN) [89], Support Vector Machines (SVM) [90, 91] and hybrid models [92] 

promptly attract many attentions in the field of power production forecasting.   

In general, the neural networks indicate a universal approximation ability between the 

variety of artificial intelligence techniques [93]. In neural-based methods, sophisticated 

circuit modeling and their electrical parameters are avoided and thus, the knowledge about 

the specification of the PV system is not required. The prediction results of the mentioned 

system are released by three stages including the train, test, and regression of the read data 

[74]. For instance, in [94], an ANN approach has been used to predict module output 

characteristics for any given individual cell temperatures and irradiances using a number of 

critical points to parameterize the current-voltage curve. Another ANN-based model is 

proposed which can take into account the variation of the equivalent circuit parameters with 

respect to operating conditions for characterizing PV arrays with shaded solar cells [95]. A 

short-term prediction model based on the SVM method has been introduced to estimate the 

PV energy production for the next day with 15 minutes values using the database of solar 

irradiance, environmental temperature, and past energy production [96]. In [74], the 
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Levenberg–Marquardt (L–M) algorithm has been adopted and incorporated into back 

propagation learning algorithm for training a feed-forward neural network for the modeling 

of PV power generation.  

Employing different techniques of machine learning provides comprehensive 

prediction models through finding the interrelationships between the parameters of 

historical data recorded in PV systems. In recent years, investigating the meteorological 

data using intelligent techniques has shown a great interest in the prediction of PV yield. In 

[97], the problem of energy prediction for the several PV plants connected to a power grid 

has been studied and the results were compared for ANNs versus regression trees as 

learning algorithms. The results obtained from two PV power plant datasets show that the 

regression trees perform well by improving the prediction by 30 % with respect to the one 

achieved using artificial neural networks. The authors of [98] propose a prediction model 

based on Gradient Boost Decision Tree using historical weather data to predict the future 

PV power output based on the weather forecast. A hybrid prediction model based on the 

random forest learning algorithm is provided in [99] to estimate the dynamic I–V 

characteristic curves during the fluctuation of meteorological data that causes random 

changes in PV performance. Prediction of PV systems power output from seven solar PV 

sites of the University of Queensland, Australia is investigated in [100]. Meteorological 

data such as solar irradiance, wind speed, temperature, and humidity are applied as inputs 

to the multivariate neural network algorithm to forecast the output power of PV systems in 

smart grids. Other types of machine learning techniques [101-103], as well as different 

hybrid algorithms [104-106], are widely used to implement various versions of prediction 

models for the PV output power production in snow free conditions. 

Snowfall as an effective parameter that can diminish the production of PV systems 

has been addressed in some research papers. In [18], historical data for two sets of PV 

modules are investigated to develop a linear regression model and a non-linear empirical 

model. In these models, the output power production of PV modules for both cases of 

snow-covered and manually cleaned modules are compared to take into account the 

meteorological parameters such as average air temperature, insolation, and average relative 

humidity in the prediction of the snow loss. The snow-related PV yield based on the 

meteorological data is obtained in [107] by subtracting the measured output of the PV 
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system from the values of standard one to build a simple prediction model. Although in the 

previously mentioned models, the environmental parameters, as well as snow effect, are 

considered, the results of the model demonstrate a low prediction accuracy. Simulator 

based-models such as National Renewable Energy Laboratory’s System Advisor Model 

(SAM), DowM simulator, and Iowa energy center solar calculator are also presented in 

some papers which import the meteorological data to predict the PV output power with and 

without snow [21, 108].  Through a linear combination of forecasts for the PV power 

output in normal conditions and snow-covered conditions, an empirical prediction model is 

introduced which considers the probability of snow [109]. The loss ratio for the PV systems 

under the exposure of snow, rain and dust is presented in [110] to estimate the monthly PV 

generation based on the Monte Carlo algorithm. Most recently, a daily snow loss prediction 

model was proposed using machine learning algorithms based on meteorological data of a 

PV farm which compared the performance of different computational intelligence 

techniques [111]. However, the proposed prediction model has not considered the effect of 

snow shaded areas on the surface of PV modules. Table 4 presents a summary of relevant 

research works on the prediction models for PV systems available in the literature.  

 

Table 4. Research work on prediction modeling of PV systems. 

Research Input-output training data 

base 

Method PV technology 

and site 

Application 

[95] (E. 

Karatepe, et 

al. 2007) 

Irradiance, temperature, 

and parameters of single 

diode model   

ANN Monocrystalline 

silicon 

Prediction of model 

parameters to characterize 

the shaded PV arrays.  

[86] (P. 

Bacher, et al. 

2009) 

Global irradiance and solar 

power of entire year 2006 

Adaptive linear 

regression time 

series 

21 rooftop  PV 

systems  

Prediction of hourly values 

of solar power 

[93] (E. 

Karatepe, et 

al. 2009) 

Irradiance and pre-

determined shading 

patterns maximum energy 

production   

Hybrid (ANN) 

and fuzzy logic 

Multicrystalline 

technology 

Prediction of the maximum 

power generation and the 

voltage of GMPP under 

partial shading condition 

[18] (T. 

Townsend, et 

al. 2011) 

Average air temperature, 

insolation, humidity, and 

output power production 

with and without snow 

Linear regression Two different 

sites  

Prediction of snow losses  
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[90] (. G. da 

Silva 

Fonseca, et al. 

2011) 

Temperature, humidity, 

cloudiness, horizons, and 

output power of PV  

Support vector 

regression (SVR) 

1 MW PV power 

plant with multi-

crystalline silicon 

 

Prediction of PV power 

production  

[91] (J. G. da 

Silva 

Fonseca. 

2011) 

Temperature, humidity, 

cloudiness, horizons, and 

output power of PV  

ANN and  

support vector 

machines (SVM) 

1 MW PV power 

plant with multi-

crystalline silicon 

 

Prediction of PV power 

production 

[94] (J. A. 

Dolan et al. 

2011) 

Temperature, irradiance, 

shading, and number of 

critical points 

ANN Roof top PV lab 

with 

multicrystalline 

silicon cells 

I-V characteristic of PV 

module estimation and 

MPPT 

[89] (M. 

Cococcioni, 

et al. 2012) 

Irradiation, temperature, 

the sampling hour, and 

daily accumulated energy 

ANN 2 Different 

ground 

installations of  

solar systems 

Forecasting a one day-

ahead of energy production  

[107] (R. W. 

Andrews, et 

al. 2012) 

Irradiance, module 

temperature, snow depth, 

and DC power input to 

each inverter 

Simple 

Comparative  

2 large-scale 

8MW PV plants  

Daily snow loss prediction  

[109] (E. 

Lorenz, et al. 

2012) 

Numerical weather data, 

and PV power production 

with and without snow 

Linear 

combination and 

simple 

persistence 

method 

Different PV sites 

and 

meteorological 

stations in the 

northeast of 

Germany 

Local and regional 

photovoltaic power 

prediction 

[110] (T. 

Hong, et al. 

2013) 

Actual electricity 

generation of PV facilities 

Monte-Carlo 

algorithm  

70 Different PV 

facilities in Seoul  

Calculate loss ratio to 

estimate the monthly PV 

generation 

[96] (R. De 

Leone, et al. 

2015) 

Irradiance, environmental 

temperature 

and past energy production 

SVR 1 PV plant in Italy Prediction of PV 

production  

[21] (S. 

Pisklak. 

2016) 

15 years data of 

temperature, irradiance, 

wind speed, snow depth 

and  

Multi-order 

polynomial 

regression 

15 different PV 

sites in USA 

Prediction of snow losses 

[97] (M. Ceci, 

et al. 2016) 

Rain precipitation, 

temperature, dew point, 

ozone, wind speed, 

humidity, wind bearing and 

irradiance, geographic 

coordinates, and historical 

data on power production 

ANNs versus 

regression trees 

Several 

photovoltaic (PV) 

plants spread over 

an extended 

geographic area in 

Italy and USA. 

Prediction of PV power 

generation  
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[108] (A. A. 

Shishavan, et 

al. 2016) 

Wind speed, irradiance, 

snow depth, and PV 

system production  

 

System advisor 

model (SAM)  

Silicon and 

amorphous silicon 

in Iowa, USA 

Prediction of system losses 

(considering snow losses)  

for the analysis of the 

performance of  PV energy 

yield 

[103] (U. K. 

Das et al. 

2017) 

Solar irradiance, module 

temperature, ambient 

temperature, wind speed, 

and PV output Power  

SVR-based Monocrystalline, 

polycrystalline, 

and thin-film 

Forecasting  of PV power 

generation 

[98] (J. 

Wang, et al . 

2018) 

Weather data (not 

mentioned in paper)and PV 

power output 

Gradient boosted 

tree (GBDT) 

The 5kW solar 

power plant in 

Ashland, USA 

Predicting  the future PV 

power output 

[100] (M. Q. 

Raza, et al. 

2018) 

Irradiance, wind speed, 

temperature,  humidity, 

and output power of PV 

systems 

Multivariable 

ANN 

seven solar PV 

sites of the 

University of 

Queensland, 

Australia 

Forecasting  the output 

power of PV systems in the 

smart grids 

[101] (H. 

Zang et al.. 

2018) 

Solar radiation, 

temperature, wind speed, 

and output power of PV 

arrays 

Deep 

convolutional 

neural network 

(CNN) 

Two different PV 

arrays with the 

capacity of 100 

and 200 kW 

Forecasting the output 

power of PV arrays 

[99] ( I. A. 

Ibrahim, et 

al.2019) 

Incident irradiance, 

ambient temperature, 

module temperature, wind 

speed, wind direction, 

relative humidity, month 

number, day number, and 

the output current and 

voltage  

Hybrid random 

forest (RF) 

One poly-

crystalline  PV 

module 

Prediction of  PV I–V 

characteristic 

curves 

[102] (T. 

Yang, et al . 

2019) 

Time of record, irradiance, 

wind direction, 

temperature, 

pressure and humidity, and 

output power of PV system 

Long short-term 

memory (LSTM) 

Two PV stations 

located in one 

area of China 

Prediction of PV power 

output 

[104] (G. 

Perveen, et 

al.2019) 

Time of record, irradiance, 

temperature, and output 

power of PV system 

Fuzzy logic, , 

and adaptive-

neural fuzzy-

inference system 

(ANFIS) 

250 W 

multi-crystalline 

solar PV modules 

Forecasting global solar 

energy 

[105] (W. 

VanDeventer 

et al. 2019) 

 Temperature. solar 

irradiance, and power 

 

A genetic 

algorithm-based 

support vector 

machine 

(GASVM) 

3kW PV system 

with 

More than  12 PV 

modules 

Forecasting the output 

power of residential PV 

system 
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[106] (J. 

Ospina, et al. 

2019) 

Time of record, irradiance, 

temperature and statistical 

features of system output 

power  

Hybrid wavelet-

based LSTM 

with Deep neural 

nets (DNN) 

12.6 MW PV 

system located in  

Florida, USA 

Forecasting the PV power 

output for both large-scale 

and small-scale PV systems 

[111] (B. 

Hashemi, et 

al. 2020) 

Daily snow loss values 

together with the daily 

meteorological 

measurements for 

snowfall, temperature, 

humidity, irradiance, and 

wind speed on the farm site 

over the duration of four 

years 

ANN, Random 

forest (RF), 

GBDT, Decision 

tree (DT), and 

SVR 

PV farm in 

Ontario, Canada. 

Prediction of snow power 

losses 

 

Although the state-of-the-art contributions introduce different forecasting approaches 

to model the energy production of PV systems by considering several parameters and 

historical datasets, most of the prediction models have not examined and modeled snow 

shading conditions. To this end, considering the snow shading effect can open up a novel 

horizon for the PV systems designers and professionals who work in the field of forecasting 

the trends of power generation of solar installations in the cold areas experiencing different 

cover of snow patterns. 

The final part of thesis aims at developing an improved prediction model for PV 

modules’ energy production estimation based on a combination of meteorological data and 

historical output power data during the cold months. The physical and optical effects of the 

snow accumulation as well as the different patterns of the snow shading are also considered 

as the input parameters for the desired model. In this prediction model, the effective 

parameters such as humidity, pressure, UV index, and wind speed are involved in the 

estimation of PV module production.  

 

1.4 Objectives 

The universal growth of solar system applications as a safe and trustable renewable 

energy source encourages both researchers and solar system developers to address the 

upcoming issues in this field. Besides, it has been statistically proven that plenty of solar 

investments have been located in the regions that experience snowy winters. Winter months 
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are actually suitable for solar energy production, as long as PV panels are not covered by 

snow, but the snow accumulation on PV panels is an issue that needs to be considered for 

the optimum harvesting of solar energy in cold climate conditions. Therefore, the analysis 

and modeling of the characteristics of solar systems as well as expected output power and 

losses in the presence of snow layers are essential. Generally, this thesis aims to enhance 

the knowledge about the application of PV systems in cold regions. In addition, developing 

an accurate PV model, and its performance analysis would help the design and selection of 

PV modules subjected to snow. For this purpose, the specific objectives of this project are 

presented as follows: 

• Objective 1: Development of an optimized modeling method for characterizing the 

performance of PV modules under uniform snow coverage.  

• Objective 2: Development of a novel modeling technique for PV modules subjected to 

the nonuniform snow coverage.   

• Objective 3: Study of the effect of PV panels layout and snow patterns on their 

electrical characteristics. 

 

• Objective 4: Development of a prediction model based on real field data coming from 

different PV technologies to estimate the maximum power production of snow-covered 

PV modules. 

1.5 Originality and Contributions 

Installation of large PV systems is becoming common in cold climate regions, where 

there is significant snowfall during the winter season. Snow accumulation shades the PV 

cells in the array and thus limits their ability to generate electricity. While the distribution 

of snow deposition on a module does not harm the panels, it obstructs sunlight's insolation 

path to the surface of solar cells. To better understand the effect of degradation in electrical 

performance of PV cells associated with the presence of snowfall, an accurate modeling 

and analysis of snow-covered photovoltaic modules is vitally necessary. This thesis brings 

original contributions to this field as follows:   
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1.5.1 Modeling of Uniform Snow-covered PV Modules 

Related to Objective 1 of the thesis stated in the previous section, one of the main 

contributions of this thesis in modeling of uniform snow-covered PV modules is the 

estimation of the irradiation intensity received on the PV surface based on the Giddings-

LaChapelle theory [112]. Contrary to the Bouguer-Lambert Law, this theory enables an 

accurate estimation of the PV module behavior covered with thin and medium snow layers, 

particularly for critical snow depths less than 2 cm. Furthermore, the particle-swarm 

optimization (PSO) algorithm, a powerful agent-based algorithm is employed to determine 

and update instantaneous values of electrical model parameters of PV modules as per 

variable snow conditions. Moreover, a model that determines normalized PV system losses 

as a function of snow depth is proposed. The proposed model offers a high accuracy in 

estimating electrical characteristics of snow-covered PV modules. Such a model can help 

PV developers to optimally design PV farms in cold environments and take necessary 

measures for their maintenance, leading to an increase in an efficient lifetime. 

1.5.2 Modeling of Partial Snow Shaded PV Modules 

Nonuniform snow accretion on PV panels often occurs due to ambient conditions 

such as wind, temperature variation, partial snow shedding, and ground interference. This 

leads to power loss that is dependent on the configuration of snow patterns on the PV 

module. There is still no available electrical model of PV modules that can be used to 

characterize to their electrical behavior under nonuniform snow patterns. Therefore, it is 

essential to propose a comprehensive approach and a universal algorithm to model the PV 

systems covered with different snow patterns. In response to Objective 2, this thesis brings 

contributions through a novel multi-zone contour-based approach of modeling that 

separates nonlinear PV characteristics into the multiple linear ones. The proposed solution 

can operate under any pattern of snow shading and provides an accurate evaluation of solar 

radiation into the snow cover. A second contribution is the adaptation of a variant of a 

PSO-based algorithm to instantaneously update and evaluate the output characteristics of 

PV modules. A final contribution is related to the proposal and validation of a power loss 

equation using data collected through real field tests and also from a large-scale PV farm.    
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1.5.3 Analysis of the Physical Layout of Snow-covered PV Panels Impact on Their 

Performance 

The PV modules in an array can be electrically connected together in either series, 

parallel, or a mixture of the two, to yield the desired voltage and current level. The output 

power of a PV array not only depends on ambient conditions, but also depends on the 

interconnection of the individual PV panels. Hence, the physical layout of PV modules 

arrangements could also affect the PV power production. In this thesis, as a third 

contribution (related to Objective 3 in section 1.3), the effect of PV panels layout on their 

performance is investigated through three different positions, namely horizontal, vertical 

and diagonal layouts. Different snow removal scenarios indicating probable partial snow 

shading are tested on different technologies of PV modules (with or without bypass diode 

protection) to analyze their electrical characteristics. This analysis can help to design and 

select the appropriate panel layout as well as PV module technology in snowy regions.  

 

1.5.4 Development of Prediction Model for Power Generation of Snow Shaded PV 

Panels 

 This part of the thesis aims at developing an improved prediction model for PV 

modules’ energy production based on a combination of meteorological data and historical 

output power data for a PV system during the cold months. The physical and optical 

parameters of the snow accumulation as well as the depth and area of snow cover for 

different snow shading patterns are also considered as the input parameters for the model. 

With the contribution of this comprehensive model, the effective parameters such as 

irradiance, back surface temperature of modules and the ambient temperatures, humidity, 

pressure, UV index, and wind speed are employed in the estimation of the PV modules 

production. In the proposed model, the complexity of circuit-based modeling methods with 

several electrical parameters is avoided. The solution is a data-driven solution that can 

predict implicitly the maximum output power of PV modules for a future period of time, 

under different patterns of snow shading.    
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1.6 Thesis Outline  

The rest of thesis is organized as follows:  

Chapter 2 starts with defining the single diode-based model of PV modules and details the 

way this model can be upgraded by considering the penetration of solar radiation in snow 

through the Giddings and LaChapelle theory in section 2.2. Section 2.2.2 introduces the 

main objective of this chapter by proposing a modeling method using a PSO-based 

algorithm that estimates the characteristics of PV modules under the different depth of 

uniform snow accretion. The capability of this optimized modeling technique is validated 

through a series of experimental tests as well as through the use of real data collected by the 

SCADA system of a 12-MW grid-connected PV farm in section 2.3.2. Finally, a snow-

related power loss equation is introduced and validated in section 2.3.2.4 through the use of 

experimental data. 

Chapter 3 introduces an improved version of the PSO-based modeling algorithm for the 

PV units covered with nonuniform snow patterns. The model is validated through 

experimental outdoor tests under different scenarios of partial shading in section 3.3.1, and 

in section 3.3.1.3 the snow losses of the system are formulated in an empirical equation. 

Section 3.2 describes the novel universal multi-zone modeling approach proposed in this 

chapter.  

Chapter 4 firstly proposes a detailed definition on the effect of bypass diodes on the 

characteristics of snow shaded PV modules in section 4.1.1. Thereafter, section 4.2.2 

presents a power loss analysis of the effect of PV panels layout on their electrical 

characteristics under partial shading conditions due to nonuniform snow deposits using a 

series of outdoor experiments. Finally, section 4.3 enables selecting an optimal PV layout 

in snow conditions.   

Chapter 5 starts by describing the stages of a prediction model for the power generated by 

snow-covered PV panels based on raw data acquired at the installation field  in section 

5.1.1. Section 5.1.1.1 defines the machine learning algorithms employed in this model that 

uses a combination of meteorological data and on-site sensor measured parameters of PV 

modules as input during the snowy months and provides an estimate of the maximum 
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output power of PV modules. The comparison between the results of different machine 

learning algorithms of the prediction model over two scenarios for input variables and two 

cases of model training is depicted in Section 5.2.  

Chapter 6 presents the concluding remarks on the work presented in this thesis, the 

research contributions in section 6.1, and suggests some possible topics for the future work 

in section 6.2. 

 

Following are the list of publication regarding to this thesis: 
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2.  M. Khenar, S. Taheri, A.-M. Cretu, S. Hosseini, and E. Pouresmaei, "PSO-Based 

Modeling and Analysis of Electrical Characteristics of Photovoltaic Module under 

Nonuniform Snow Patterns," IEEE Access, 2020. 
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2 ANALYSIS OF PHOTOVOLTAIC MODULES 

CHARACTERISTICS UNDER UNIFORM 

SNOW COVERAGE   

 

2.1 Overview  

The rapid increase of PV systems installed in cold regions during the recent years 

necessitates addressing the issues that come up with the maturity of PV technologies. For 

this purpose, the effect of snow as one of the main probable phenomena which hinder the 

path of solar irradiation to the surface of solar panels needs to be vitally investigated. 

Therefore, this chapter proposes a modeling method using a PSO-based algorithm that 

estimates the characteristics of PV modules under the different depth of snow accretion. 

The developed model utilizes the Giddings and LaChapelle theory which involves both 

optical and physical properties of snow in the estimation of the attenuated solar irradiance 

into the layer of snow. The single-diode-five-parameter equivalent circuit model is the base 

platform for this modeling technique. The optimization algorithm of this model can 

simultaneously update the parameters of the circuit model through the instantaneous 

measurements of output voltage and current on the PV module. The capability of the 

modeling technique is validated through a series of experimental tests on three different 

commercial PV technologies under different snowy conditions. Besides, the model 

technique is further validated through the use of real data collected by the SCADA system 

of a 12-MW grid-connected PV farm. This research can be regarded as a useful reference 

for designing and selecting the PV modules in the snowy regions.  

 

2.2 PSO-based Model and Analysis of Photovoltaic Module 

Characteristics under Uniform Snow Coverage  

Accurate modeling of I–V and P–V characteristics of a PV cell is required to emulate 

its behavior under various environmental conditions. The basic circuitry model of the ideal 

PV cell consists of a linear independent light generated current source connected in parallel 
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with a single diode. In a real solar system, the electrical characteristics of the PV cell 

cannot be adequately modeled by an ideal PV cell equivalent circuit. The latter exhibits 

deficiencies in determining the performance of PV cells when subjected to climatic 

changes. Consideration of this issue leads to a further extension of the previous model by 

the inclusion of additional shunt and series resistances. This can lead to an improved PV 

cell model with respect to the effect of temperature and insolation variation, particularly at 

low voltage [113]. The addition of extra diodes has been proposed to increase the accuracy 

of the model. However, this approach increases the model parameters and consequently the 

computational time. This is not efficient in online modeling of photovoltaic arrays [114]. 

To this end, the proposed methodology in this thesis employs the single-diode equivalent 

circuit model as shown Figure 3 [115]. From the theory of semiconductors, the implicit 

equation, which electrically represents the characteristics of the practical PV module in the 

output terminal, can be derived as: 

 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 [𝑒𝑥𝑝 (
𝑉 + 𝑅𝑠𝐼

𝛼0𝑉𝑡
) − 1] −

𝑉 + 𝑅𝑠𝐼

𝑅𝑠ℎ
 

(1) 

 

where 𝑅𝑠 and 𝑅𝑠ℎ represent the series and shunt resistances respectively, 𝐼𝑝ℎ  defines the 

photo-generated current by the incidence of light, 𝐼𝑠 is the diode’s reverse saturation 

current, 𝛼0 is the diode ideality factor, and 𝑉𝑡 = 𝑁𝑠𝑘𝑇𝑐/𝑞 is the PV module thermal voltage 

with the cell temperature of 𝑇𝑐 (K), 𝑘 = 1.3806503 × 10−23 J/K is the Boltzmann 

constant, 𝑞 = 1.60217646 × 10−19 C is the electron charge, and 𝑁𝑠 series connected cells.  
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Figure 3.  Single-diode model of the ideal PV cell and equivalent circuit of a practical PV device including 

series and parallel resistances 
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2.2.1  The Penetration of Solar Radiation in Snow 

To build an accurate model for the electrical performance of a snow-covered PV 

module, one should consider the influence of the penetration of solar radiation in the snow 

pack. Solar irradiation on the snow coverage is either absorbed by the refraction through 

some internal layer in the snow or is reflected and lost back into the atmosphere. Thus, the 

attenuation of incident light in snow is due both the effects of extinction and of reflection. 

Albedo, which is defined as the ratio of the intensities of reflected radiation to incident 

radiation, is calculated using radiation intensities averaged over the short-wave radiation 

spectrum [6, 10]. On the other hand, the extinction of insolation through snow cover can be 

evaluated by choosing an average value for the extinction coefficient over the solar 

spectrum. 

The albedo and the extinction of solar radiation in snow are coupled and strongly 

affected by the properties of the adjacent layer of snow on the surface [116, 117]. This 

coupling phenomenon was investigated through experiments conducted by Giddings and 

LaChapelle [112]. The penetration phenomenon is analyzed in terms of the physical 

processes occurred and formulated by the following equations that estimate the shortwave 

radiation penetration through an isotropic snow at depth x when a horizontal absorbing 

surface is placed at this depth beneath the laminated snow cover: 

 

𝐺↓(𝑥) =
𝐺↓(0) 𝜔𝑒

−𝑘𝑒𝑥𝑡 𝑥(1 + tanh  𝑘𝑒𝑥𝑡  𝑥)

{1 +
𝜔
2 [1 +

𝑒−𝑘𝑒𝑥𝑡 𝑥 (1 −
𝜔
2)

𝜔
2 cosh  𝑘𝑒𝑥𝑡  𝑥 + sinh  𝑘𝑒𝑥𝑡  𝑥

]} (
𝜔
2 + tanh  𝑘𝑒𝑥𝑡  𝑥)

 
 

(2) 

𝛼 =
1 −

𝜔
2

1 +
𝜔
2

 

 

(3) 

where G↓(0) and G↓(x) represent the downward flux of radiation at snow surface and at 

depth 𝑥, respectively, 𝛼 is the albedo of snowpack, and 𝜔 is a dimensionless parameter 

which is related to reflection feature of snow. Albedo as the important optical property of 

snow can be empirically calculated as reflective indicator of light from snow accumulation 

on the surface and the surrounding snow-covered ground of PV panel and kext is the 
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extinction coefficient which is represented by the physical properties of snow for evaluating 

the diminished isolation due to the extinction phenomena through the snow layer. 

Although the interpretation and direct measurement of incoming radiation flux within 

the snow is difficult, the albedo of a snow pack is a simpler, measurable and available 

parameter. The values of ω can be calculated using equation (3) according to measured 

values of albedo. Accordingly, for the albedo changes from 0.538 to 0.901, the value of ω 

varies in the range from 0.60 to 0.10 respectively [112]. In order to determine the extinction 

coefficient, the following equation that considers ice and snow conditions can be used 

[118]. 

𝑘𝑒𝑥𝑡 =
3𝜌

2𝜌𝑖𝑟𝑒𝑓
 

(4) 

 

where 𝜌 is the snow density, 𝜌𝑖 is the ice density (= 917 kg m-3), and 𝑟𝑒𝑓 is the effective 

grain radius. For different types of snow, from the soft new snow to the hard powder one, 

the value of extinction coefficient may range from around 10 m-1 to 55 m-1; for ice 

accumulation the values of 𝑘𝑒𝑥𝑡  range from 2 m-1 for clear ice to 20 m-1 for cloudy ice [14].  

Table 5. Densities of various types of snow cover. 

Snow Type Density (kg/m3) 

Wild snow 10 to 30 

Ordinary new snow immediately after falling in the still air 50 to 65 

Settling snow 70 to 90 

Very slightly toughened by wind immediately after falling 63 to 80 

Average wind-toughened snow 280 

Hard wind slab 350 

New firm snow 400 to 550 

Advanced firm snow 550 to 650 

Thawing firm snow 600 to 700 
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Density appears to be the most common classifying feature and is relied upon to the 

natural variation. Regarding the comprehensive assessment of the TN Conseil Passive 

Melting Technology for the PV system affected by the snow and ice accretion in Canada 

[14], the type of different snow have been classified according to their densities as Table 5.   

For a snow depth greater than a critical value of 2-4 cm (Figure 4), the Giddings-

LaChapelle model can be merged with the Bouguer-Lambert Law to estimate the level of 

insolation that reaches the surface of PV cells covered with snow [23], such that: 

 

𝐺↓(𝑥) = 𝐺↓(0)𝑒
−𝑘𝑒𝑥𝑡 𝑥 (5) 

 

It is important to recall that the Bouguer-Lambert Law exhibits low efficiency for low 

amounts of snow cover because it only considers the extinction coefficient in its 

relationship. But by making use of the Giddings-LaChapelle theory, both extinction and 

reflection effects and their coupling are considered. As such, one can estimate the 

insolation level reaching to the surface of PV cells for different ranges of snow thickness.  

 

 

Figure 4. Attenuation of downward solar radiation for an increasing the depth of snow 
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2.2.2 Determining the PV Module Parameters  

In order to determine the current-voltage characteristic of a PV cell, it is required to 

compute five parameters i.e.,𝐼𝑝ℎ , 𝐼𝑠, 𝑎0, 𝑅𝑠 and 𝑅𝑠ℎ,  from equation (1). In the majority of 

cases, in order to simplify computations, the model incorporates only the variations of 

photo-generated current (𝐼𝑝ℎ) and diodes reverse saturation current (𝐼𝑠), while the 

remaining parameters are kept constant. However, this simplification can negatively affect 

the accuracy of the model, particularly in snow conditions. Thus, the proposed approach 

presented in this thesis computes and updates simultaneously all the above-mentioned five 

parameters considering environmental conditions using the following steps: 

 

2.2.2.1 Step 1: Photocurrent (𝑰𝒑𝒉) 

The photocurrent of a  PV module covered by snow (Iph) that depends on the intensity of 

incident insolation on the surface of the PV module and the module temperature can be obtained as 

[119]: 

 

𝐼𝑝ℎ =
𝐺↓(𝑥)

𝐺𝑆𝑇𝐶
. 𝐾𝑠𝑓[𝐼𝑝ℎ,𝑆𝑇𝐶 +𝐾𝐼(∆𝑇)] 

(6) 

 

where 𝐼𝑝ℎ,𝑆𝑇𝐶  is the photocurrent of the PV module in standard test conditions (STC) where 

the solar irradiance level has the value 𝐺𝑆𝑇𝐶 = 1000 W/m2, ∆𝑇 = 𝑇𝑐 − 𝑇𝑆𝑇𝐶 is the 

temperature variation of the PV cells junction, 𝑇𝑆𝑇𝐶 = 25 ℃, and the solar spectral 

distribution is equal to AM1.5 spectrum, 𝐾𝑠𝑓 defines the effect of aging and dirt in derating 

of the PV module, and 𝐾𝐼 is the temperature coefficient of short-circuit current reported by 

manufacturers. 

 

2.2.2.2 Step 2: Diode Reverse Saturation Current (𝑰𝒔) 

In the presence of snow at low irradiance levels, the open-circuit voltage of PV cell 

relevant to the variation of irradiance and temperature is calculated as follows [119]: 

 

𝑉𝑜𝑐 = 𝑉𝑜𝑐,𝑆𝑇𝐶 + 𝑉𝑡 𝑙𝑛(𝐺↓(𝑥). 𝐾𝑠𝑓/𝐺𝑆𝑇𝐶) + 𝐾𝑉(∆𝑇) 
(7) 
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The values of  𝑉𝑜𝑐,𝑆𝑇𝐶 , the open-circuit voltage at STC, and  𝐾𝑉,  the temperature 

coefficient of the open-circuit voltage, can be extracted from manufacturer datasheets. As a 

result, an improved equation which describes the saturation current  𝐼𝑠 of the diode by 

considering both temperature and insolation is given by [120] and [121]  as: 

 

𝐼𝑠 = (𝐼𝑝ℎ − 𝑉𝑜𝑐/𝑅𝑠ℎ)/(𝑒𝑥𝑝(𝑉𝑜𝑐/𝑎0𝑉𝑡) − 1) (8) 

  

Equations of voltage and current of the PV module at the MPP can be developed as 

[120]: 

𝑉𝑚𝑝 = 𝑉𝑚𝑝,𝑛 + 𝑉𝑡 𝑙𝑛 (
𝐺↓(𝑥)

𝐺𝑆𝑇𝐶
. 𝐾𝑠𝑓) + 𝐾𝑉𝑃(∆𝑇) 

 (9) 

𝐼𝑚𝑝 =  
𝐺↓(𝑥)

𝐺𝑆𝑇𝐶
. 𝐾𝑠𝑓[𝐼𝑚𝑝,𝑛 + 𝐾𝐼𝑃(∆𝑇)] 

(10) 

where 𝑉𝑚𝑝,𝑛 and 𝐼𝑚𝑝,𝑛 are the nominal voltage and current of MPP at STC and their 

correlate temperature coefficients 𝐾𝑉𝑃 and 𝐾𝐼𝑃 respectively, are taken from the 

manufacturer documents for the verities of PV modules. 

Although the aforementioned equations represent the variations of photocurrent (𝐼𝑝ℎ) 

and diode saturation current (𝐼𝑠) with respect to the temperature and irradiance in the 

presence of snow,  their optimum values can be obtained by interaction with the remaining 

parameters (𝛼0, 𝑅𝑠 and 𝑅𝑠ℎ) in different climatic conditions.  

 

2.2.2.3 Step 3: Determination of  𝜶𝟎, 𝑹𝒔 and 𝑹𝒔𝒉 

The remaining parameters in (1), i.e. 𝛼0, 𝑅𝑠ℎ and 𝑅𝑠 are obtained through iteration 

process. Hence, initial guesses for 𝑅𝑠 and 𝑅𝑠ℎ are required. By substituting (9) and (10) in 

(11) which represents the slope of the line segment between the short circuit and the 

maximum power remarkable points, the minimum values for the resistance can be 

determined [120].   

 

𝑅𝑠
′ = 0;    𝑅𝑠ℎ

′ = [𝑉𝑚𝑝,𝑛/(𝐼𝑠𝑐,𝑆𝑇𝐶 − 𝐼𝑚𝑝,𝑛)] − [(𝑉𝑜𝑐,𝑆𝑇𝐶 − 𝑉𝑚𝑝,𝑛)/𝐼𝑚𝑝,𝑛], (11) 
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The ideality factor of diode 𝛼0 typically resides in a known range between 1 ≤ 𝛼0 ≤

2  [120]. In the above equation, 𝐼𝑠𝑐,𝑆𝑇𝐶which is provided by manufacturer datasheets, 

represents the short-circuit current under STC. 

 

2.2.2.4 Step 4: Objective Function 

The optimization algorithm is applied to tune the values of parameters until the online 

experimental data are in accord with the I-V relation of (1). Therefore, (1) can be rewritten 

as below in order to construct a function that specifies the error between measured and 

calculated pairs of current and voltage values. 

𝑔(𝐼, 𝑉,ψ) = 𝐼 − 𝐼𝑝ℎ + 𝐼𝐷 + 𝐼𝑅𝑠ℎ = 𝐼 − 𝐼𝑝ℎ + 𝐼𝑠 [𝑒𝑥𝑝 (
𝑉 + 𝑅𝑠𝐼

𝛼0𝑉𝑡
) − 1] +

𝑉 + 𝑅𝑠𝐼

𝑅𝑠ℎ
 

(12) 

 

where, ψ = [𝑅𝑠ℎ , 𝑅𝑠, 𝐼𝑝ℎ , 𝐼𝑠, 𝛼0] is the decision vector that includes the set of unknown 

parameters to be extracted accurately. In this work, the root mean square of the error 

function is employed as an objective function as follows: 

 

                                            𝑂𝐹 = √
1

𝑁
∑  (𝑔(𝐼𝑘, 𝑉𝑘, ψ)) 2

𝑁

𝑘=1
 

 

(13) 

 

where 𝐼𝑘 and 𝑉𝑘  are the values of the kth pair of N data points in the experimentally 

measured I-V characteristics. Theoretically, the desired value for 𝑂𝐹 is zero if the exact 

values of each parameter have been found for any experimental I-V data. However, because 

of the noise of measurement and computation errors, it is expected to obtain a small value 

(i.e. |𝜀| < 0.001) for 𝑂𝐹. 

2.2.2.5 Step 5: Particle Swarm Optimization (PSO) Algorithm 

PSO is a stochastic optimization method, inspired by the behavior of a flock of birds 

or a school of fish, developed in 1995 [122]. PSO algorithm uses real numbers of particles 

to guide its search without the need of transformation of binary encoding and special 

genetic operators which is used in genetic algorithm (GA). Moreover, contrary to other 

stochastic algorithms, PSO is free from the sophisticate computation of selection, crossover 

and mutation. In fact, the PSO as a metaheuristic approach is used to optimize a function 
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that is difficult to express analytically. By considering these great merits of PSO, it has 

been decided to utilize this  efficient agent-based algorithm to solve the optimization 

problem. 

In PSO, the global position is searched by a number of agents (particles) with a 

continually updated velocity [123]. As shown in Figure 5, the movement of each particle in 

the search space is controlled by its own best position and the globally best position found 

by all particles so far. 

w(j)v1(j)

x1(j)
x2(j)

x1(j-1)

x1(j+ 1)

x2(j-1)

x2(j+ 1)

Pbest1 (j)
Pbest2 (j)

gbest (j)

 
Figure 5.  Displacement of particles in PSO search space. 

 

Each particle with the index of 𝑖 emulates the success of neighboring particles and 

reaches its own success to find the best position (state) with time in a d-dimensional 

hyperspace. In each update with iteration index 𝑗, the current position 𝑥𝑖(𝑗 + 1) and 

velocity 𝑣𝑖(𝑗 + 1) of particles are dynamically adjusted regarding to their own previous 

best position experience 𝑝𝑏𝑒𝑠𝑡𝑖(𝑗) and the previous best solution 𝑔𝑏𝑒𝑠𝑡(𝑗) of the entire 

swarm as follows [122]: 

 

𝑣𝑖(𝑗 + 1) = 𝑤(𝑗)𝑣𝑖(𝑗) + 𝑐1 𝑟1(𝑗) × [𝑝𝑏𝑒𝑠𝑡𝑖(𝑗) − 𝑥𝑖(𝑗)]
+ 𝑐2 𝑟2(𝑗) × [𝑔𝑏𝑒𝑠𝑡(𝑗) −  𝑥𝑖(𝑗)], 

 

(14) 

 
𝑥𝑖(𝑗 + 1) = 𝑣𝑖(𝑗 + 1) + 𝑥𝑖(𝑗), 

(

(15) 

 

where 𝑤 is the inertia weight, 𝑐1 and 𝑐2 are the acceleration coefficients, conventionally 

𝑐1=𝑐2=2 and 𝑟1 and 𝑟2 are random (normal distribution) numbers with values between 0 and 
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1. A possible solution of the optimization problem is represented by the position of each 

particle that corresponds in the context of this work to the set of solar cell parameter values. 

The global search and local search of a solution can be ideally balanced by using a value of 

selected inertia weight as follows: 

 

    𝑤(𝑗) = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)
𝑗

𝑗𝑚𝑎𝑥
,                                                                        (16) 

 

In this equation, 𝑗𝑚𝑎𝑥 indicates the maximum number of iterations (generation size). 

An improved convergence speed was observed by the variation of inertial weight from 

𝑤𝑚𝑎𝑥 = 0.9 to  𝑤𝑚𝑖𝑛 = 0.4 over entire search range. It also avoids premature convergence, 

and reduces the total number of iterations [36]. 

The changes of velocity vector of each particle in equation (14) can be further 

updated by the following law: 

𝑣𝑖(𝑗 + 1) = {

𝑉𝑚𝑎𝑥  , 𝑖𝑓 𝑣𝑖(𝑗 + 1) > 𝑉𝑚𝑎𝑥
−𝑉𝑚𝑎𝑥  , 𝑖𝑓 𝑣𝑖(𝑗 + 1) < −𝑉𝑚𝑎𝑥
𝑣𝑖(𝑗 + 1)                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,     

 

 

       

(17) 

 

In the above relation, 𝑉𝑚𝑎𝑥 represents the maximum permitted excursion (is also 

known as velocity clamping factor) of any particle in that dimension to clamp the 

unnecessary movement of particles [122]. 

Personal best position of each particle can be updated by comparing the personal best 

of each particle to its current fitness through the comparison of objective function (OF), 

and set to the better performance according to the following relation. 

 

𝑝𝑏𝑒𝑠𝑡𝑖(𝑗) = {
𝑝𝑏𝑒𝑠𝑡𝑖(𝑗 − 1), 𝑖𝑓 𝑂𝐹(𝑥𝑖(𝑗)) ≥ 𝑂𝐹(𝑝𝑏𝑒𝑠𝑡𝑖(𝑗 − 1))

𝑥𝑖(𝑗),                        𝑖𝑓 𝑂𝐹(𝑥𝑖(𝑗)) < 𝑂𝐹(𝑝𝑏𝑒𝑠𝑡𝑖(𝑗 − 1)) ,
 

 

      
(18) 

 

 

The position of the particle with the best fitness within the entire swarm sets the 

global best as follows: 

𝑔𝑏𝑒𝑠𝑡(𝑗) ∈ {𝑝𝑏𝑒𝑠𝑡1(𝑗), 𝑝𝑏𝑒𝑠𝑡2(𝑗), … , 𝑝𝑏𝑒𝑠𝑡𝑁𝑆(𝑗)}|𝑂𝐹(𝑔𝑏𝑒𝑠𝑡(𝑗))

= min {𝑂𝐹(𝑝𝑏𝑒𝑠𝑡1(𝑗)),𝑂𝐹(𝑝𝑏𝑒𝑠𝑡2(𝑗)), … , 𝑂𝐹 (𝑝𝑏𝑒𝑠𝑡𝑁𝑆(𝑗))} , 

 

(19) 
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Figure 6 depicts the flow chart of the proposed method in conjunction with the PSO 

algorithm. After importing the experimental data and environmental information into the 

algorithm, the coefficients, the population size, and boundary of variables are defined. 

According to the depth and properties of the snow layer, the received irradiance, as well as 

the extinction coefficient, are calculated and consequently the initial particle positions and 

its velocity regarding the model parameters are initialized. Based on stopping constraints 

(i.e. the maximum iteration number or the tolerance of objective function), the iterations 

will be stopped and the model parameters will be saved as the best solution. For this 

purpose, the values of results are compared with the previous iteration to update the 

personal and global bests and when the stopping constraints are satisfied, the extracted 

results are the best model parameters with the least deviation from experimental data.     
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Move particles to the new positions 
using equation (15)

Display the I-V and P-V curves for the best 
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minimum deviation from experimental data

start
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,learning factors C1 ,C2 ,inertia weight wmax ,wmin  and velocity 

clamping factor Vmax

Calculate G (x) and Kext  using equation (2)-(4) 

respectively, initialize set of parameters using equation  

(6)-(11) correspond to Xi(0) , initialize velocity Vi(0) and 

inertia weight w(0)

For each iteration j

Evaluate fitness function of each 

particle OF(Xi(j)) using equation(13)

Set the local best Pbest i (j) using equation(18)

And global best  gbest (j) using equation(19)
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equation(16)

j  >  jmax

Or 

OF   OFmin

j= j+1

Yes 

No 

 

Figure 6. The proposed PSO algorithm for PV modeling 
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2.3 Results for PSO-based Modeling and Analysis of Photovoltaic 

Module Characteristics under Uniform Snow Coverage  

This section presents experimental results for the model presented in section 2.2. and 

related to Objective 1 of this thesis. It presents simulated electrical characteristics of PV 

modules obtained using the proposed model under uniform snow pattern. The validity of 

the proposed modeling approaches is investigated through real experimental measurements 

with three commercial PV modules covered with snow as well as through data obtained 

from a 12-MW grid-connected PV farm.   

2.3.1 Simulation Results  

The proposed PSO method enables simultaneous computation of unknown values 

of 𝛼0, 𝑅𝑠 and 𝑅𝑠ℎ and optimal values of 𝐼𝑝ℎ  and 𝐼𝑠 with respect to the temperature and 

irradiance in the presence of snow. The values of optimized extracted parameters, their 

relevant minimum objective functions, the computation time and the bound of search range 

are shown in Table 6.   

If the population size and the number of iterations defined are too small, the 

algorithm leads to poor results because of the limitation of the space for exploring 

solutions. As consequence, in the following experiments for operating the modeling 

algorithm, control variables of PSO have been executed by setting the number of particles 

as 100 and the maximum number of iterations as 10000. The objective (fitness) function 

specified as the root mean square error between measured and calculated pair of voltage 

and current data points vary from 135 to 200 points in different types of panels. 

In the optimization problem based on PSO for extracting solar cell parameters, the 

fitness function and the objective function are identically described as equation (13). The 

smaller the objective function, the better the fitness of an individual. Furthermore, reaching 

the maximum iteration number 𝑗𝑚𝑎𝑥 or satisfying the minimum fitness function 𝑂𝐹𝑚𝑖𝑛  are 

used as the stopping criteria in this case. 
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2.3.2 Experimental Validation  

The accuracy of the proposed method in determining I-V and P-V characteristics is 

validated using experimental data of uniformly snow-covered PV modules of different 

technologies and also using real data acquired using the SCADA system of a grid-

connected PV farm.  

Table 6. Optimized parameters of the PV modules extracted by the proposed algorithm 

Parameters CS6P-260P 

Range 1 2 3 

𝐼𝑝ℎ(A) [0,10.14] 5.0763 3.194 0.9823 

𝐼𝑠(A) [0, 3.5× 10−8] 2.617 × 10−11 1.6464 × 10−11 5.0589× 10−12 

𝛼0 [1,2] 1.0027 1.0052 1.0085 

𝑅𝑠ℎ(Ω) [53,3000] 501.023 782.4833 2348.1286 

𝑅𝑠(Ω) [0,10] 0.61808 0.98531 3.2224 

Time (s) ….. 275 317 243 

OF min ….. 4.21× 10−4 4.01× 10−4 3.97× 10−4 

 ET-M53695 

Iph(A) [0,7.34] 3.719 1.3204 0.27923 

Is(A) [0, 6.6× 10−9 ] 5.1609× 10−11 1.8179× 10−11 3.5855× 10−12 

α0 [1,2] 1.0504 1.0519 1.0532 

Rsh(Ω) [41,3000] 112.493 560.0398 1223.696 

Rs(Ω) [0,10] 0.39453 1.1064 5.3276 

Time (s) ….. 205 215 328 

OF min ….. 4.56× 10−4 4.89× 10−4 4.78× 10−4 

 FS 275 

𝐼𝑝ℎ(A) [0,1.66] 0.84057 0.61658 0.28483 

𝐼𝑠(A) [0, 1.6× 10−11] 1.9551× 10−14 1.4434× 10−14 6.5289× 10−15 

𝛼0 [1,2] 1.0165 1.0069 1.0133 

𝑅𝑠ℎ(Ω) [505,5000] 1411.8196 2230.4348 3128.2938 

𝑅𝑠(Ω) [0,100] 17.9777 24.0628 53.9588 

Time (s) ….. 289 241 314 

OF min ….. 4.73× 10−4 4.69× 10−4 5.03× 10−4 

 

2.3.2.1 Test Bed Design and Installation   

A series of experiments were carried out using three different types of PV module 

technologies i.e., an ET-M53695 monocrystalline PV module from ET Solar manufacturer, 

a CS6P-260P polycrystalline PV module from Canadian Solar manufacturer, and a FS-275 

thin film PV module from First Solar manufacturer to measure electric characteristics of 

PV modules. The parameters of the test-bed panels are provided in Table 7. A comparison 

between the measured short-circuits current of the PV panels and the ones provided by the 
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manufacturers datasheet was performed to obtain the value of Ksf, used in (6). This 

coefficient was found to be approximately equal to 1 for the CS6P-260P and FS-275 PV 

panels as new technologies, while it was determined to equal 0.97 for the ET-M53695 

panel. 

Table 7. Electrical parameters of the test bed solar panels. 

Parameters CS6P-260P ET-M53695 FS 275 

𝑃𝑚𝑎𝑥(W) 260 95 75 

𝑉𝑚𝑝(V) 30.4 18.52 68.2 

𝐼𝑚𝑝(A) 8.56 5.13 1.10 

𝑉𝑜𝑐(V) 37.5 22.5 89.6 

𝐼𝑠𝑐(A) 9.12 5.57 1.23 

𝑁𝑠 60 36 116 

Bypass Diode 3 3 Non 

 

As shown in Figure 6, the PV modules with snow coverage were faced due south with 

a tilt angle of 30˚ under the test condition. The test bed was racked with the latitude of 

45.47ᵒ. Data acquisition was conducted using HT Instruments I-V 400 PV Panel Analyzer 

and irradiance meter test kit to export the PV characteristics. The quick and reliable 

temperature measurement of the back surface of modules was carried out by a Fluke 62 

Mini infrared thermometer. An electronic digital caliper was employed to measure the 

snow depth. Snow densities were determined using a digital scale. A magnifying glass and 

a millimeter-scale grid were used to acquire the size of snow grains. For different snow 

patterns over the experiments, the extinction coefficient ranged between 18 m-1 and 54 m-1.  

 

 

Figure 7.  Experimental set-up for the snow-covered PV modules. 
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(a) 

 
 

(b) 

  
(c) 

 

Figure 8.  I-V and P-V curves obtained using the proposed model and experimental data under various climate 

conditions and for different snow depths for: (a) CS6P-260P (polycrystalline), (b) ET-M53695 

(monocrystalline), and (c) FS-275 (thin film). 

(1)RMSE= 0.000421 

(2)RMSE= 0.000401 

(3)RMSE= 0.000397 

(1)RMSE= 0.000456 

(2)RMSE= 0.000489 

(3)RMSE= 0.000478 

(1)RMSE= 0.000473 

(2)RMSE= 0.000469 

(3)RMSE= 0.000503 
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2.3.2.2 Results Validation and Discussion 

The I-V and P-V characteristics of the simulated model are compared with those 

measured from the test field to experimentally validate the effectiveness of the proposed 

PV model approach as shown in Figure 8. The circle markers in blue represent the 

experimental measurements, while the modeled results are marked by the red solid lines. A 

good concordance was identified between the simulated current values obtained by 

employing the model and the experimental ones. Since the field information, physical 

characteristics of the snow coverage, including density, depth, and an estimation of grain 

size as well as manufacturer data are taken into account, the proposed model has the 

capability to reflect the impact of variable weather conditions on the behavior of PV 

modules.  

A better representation of the degree of agreement between theoretical and 

measurement results of the proposed model can be more accurately illustrated if the difference 

in the output quantities is plotted as a function representing the percentage of deviation between 

the proposed model and the experimental data. Hence, the following equation has been used to 

calculate and plot the percentage of the output power deviation for the same input quantities of 

the first graphs in Figure 8 as below: 

    𝐷𝐸𝑉 % =
(𝑃𝑖− 𝑃 ̂𝑖)

𝑃𝑖
× 100,                                                                        (20) 

where the 𝑃𝑖 is the measured output power and 𝑃̂𝑖 is the modeled output power of modules 

in each point of characteristics indexed by 𝑖. The results of power deviation percentage are 

instantly plotted in Figure 9. 
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(a) 

 
(b) 

 
(c) 

Figure 9.  Percentage of output power deviation between the proposed model and experimental data of the 

first graphs (1) of figure 8 for: (a) CS6P-260P (polycrystalline), (b) ET-M53695 (monocrystalline), and (c) 

FS-275 (thin film). These graphs demonstrate the instant variation of power deviation in each point of output 

voltage.  
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2.3.2.3 Model Error  

Since the plotted graphs of I-V and P-V characteristics for the simulated model and 

those experimentally measured from the test field in Figure 8 are in close agreement, to 

further evaluate the accuracy and validate the modeling results, two categories of errors are 

presented and analyzed for the proposed model, i.e., the errors introduced by the modeling 

algorithm error and the measurement errors, described as follows:   

2.3.2.3.1 Error of Modeling Algorithm 

Regarding the concept of this modeling algorithm, the experimental pairs of voltage 

and current data points are imported into the algorithm to calculate the model parameter 

and to plot the modeled characteristics. Hence, the average root mean square errors which 

are calculated based on the difference between the two ranges of data points are the best 

point-to-point error indicators to discern deviations between measured and modeled data 

points of characteristics. The values of root mean square error (RMSE) computed between 

measured and modeled data points of Figure 8 characteristics (which are the same values of 

minimum objective function (OFmin) are provided in Table 6 for a better evaluation of 

model accuracy. Besides, Figure 10 shows the convergence performance, a fitness index 

between experimental data and those calculated by the proposed PSO-based PV model for 

the three different PV technologies as per the objective function of (13). Figure 10 

highlights the ability of the model to determine the PV curve characteristics with a RMSE 

of 0.0004. It exhibits an excellent fitness value OF that offers very high accuracy. 
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Figure 10. Root mean square error between the proposed model and the experimental data. 

 

2.3.2.3.2 Error of Measurement Equipment 

According to the Guide to the expression of uncertainty in measurement released by the 

Bureau International des Poids et Mesures (BIPM) [124], the uncertainty in the result of a 

measurement generally consists of several components which can be classified into 

“random” and “systematic” uncertainties. The term of “random” uncertainties can be 

misleading and should be avoided while the “systematic” term usually can be calculated 

based on the specification of measurement tools. The HT Instruments I-V 400 PV Panel 

Analyzer is the data acquisition tool for different measurements of PV systems in this thesis. 

This section clarifies this uncertainty based on the datasheets of the measurement tools 

employed during experimentation and the extra information obtained through correspondence 

with the engineers of HT Instruments company.  

The main data acquisition equipment used in this research is the HT Instruments I-V 

400 PV Panel Analyzer along with two other sensors: an irradiance meter test kit and a 

Fluke 62 Mini infrared thermometer. In addition to the pair of voltage and current data 

points as well as the irradiance on the surface of snow layer and back-surface modules 

temperature, the information about the maximum power point (MPP) of PV modules can 

also be acquired using the HT Instruments I-V 400 PV Panel Analyzer. This information 

can be exported from the equipment using Topview software that accompanies this 
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measurement tool. Although this equipment is considered as one of the accurate tools in the 

field of PV systems measurements, there is still a measurement uncertainty referred to as 

‘accuracy’ in the manufacturers’ specifications which evaluates the error of measurement 

for HT Instruments I-V 400. The latter is calculated as ±[%reading +

(number of digits) × (resolution)] at 23°C± 5 °C, at a relative humidity < 80%.  This 

equation indicates that the measurement accuracy (the uncertainties of measurements) for 

the above instrument is ranged in 1-5%.  

2.3.2.4 Snow-Related Power Loss 

The performance of PV modules can be negatively affected by snowfall during cold 

months. In fact, snow accretion can cause obstacles on the PV module surface to receive 

maximum irradiance, consequently leading to a reduction in energy production. In order to 

evaluate the impact of snow on the performance of PV modules, a series of measurements 

of the CS6P-260P polycrystalline PV module under different snow depths were carried out 

and the MPP values of P-V curves were recorded. A comparison between the expected 

MPPs of the snow-free PV module and those obtained from snow-covered one, as shown in 

Figure 8, highlights a significant reduction in the output power with an increase in the snow 

depth. In order normalize power losses due to snow, the percentage of loss, obtained by 

comparing the MPPs of the snow-covered PV modules with those obtained for clean 

modules, is also shown in Figure 11. It can be observed from this figure that a PV module 

can experience power losses more than 50% when the snow depth reaches the critical depth 

of 2 cm.  
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Figure 11.  Effect of different snow depths on power production and loss of CS6P-260P. 

The percentage of loss in the power generation of PV modules as a function of snow 

depth, average amount of extinction coefficient 𝑘𝑒𝑥𝑡  and 𝜔 can be expressed by (21). The 

dashed line in green in Figure 11 illustrates the amount of the estimated power loss by 

considering average values of 35.5 m-1 and 0.315 for the extinction coefficient and ω 

respectively. The proposed power loss equation can offer a good tool to select PV modules 

for locations exposed to freezing conditions. Contrary to the power loss model proposed in 

[22], the proposed Giddings and LaChapelle-based power loss model shows a higher 

accuracy in predicting the energy efficiency. This is due the fact that Giddings and 

LaChapelle approach shows better performance under light and medium snow accretion in 

comparison with the Bouger-Lambert Law. 

𝑃𝑙𝑜𝑠𝑠(%) =  

[1 −   𝜔 𝑒−𝑘𝑒𝑥𝑡 𝑥(1 + tanh  𝑘𝑒𝑥𝑡  𝑥) / {1 +
𝜔

2
[1 +

𝑒−𝑘𝑒𝑥𝑡 𝑥(1−
𝜔

2
)

𝜔

2
cosh  𝑘𝑒𝑥𝑡 𝑥+sinh  𝑘𝑒𝑥𝑡 𝑥

]} (
𝜔

2
+

tanh  𝑘𝑒𝑥𝑡  𝑥)] × 100  

 

 

 

 

(21) 

 

 

2.3.2.5 Industrial Case 

The great merit of the proposed PV modeling method can be accentuated by 

calculating power losses of a 12-MW grid-connected PV farm. The data we used comes 

from a farm that is located in Ontario, Canada. This location consists of the south-facing 
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thin film PV panels with a fixed tilt angle. Hourly-average data acquisition of the PV farm 

such as the back-surface temperature and the tilted irradiance of PV panels, along with the 

module DC voltage, DC current and the AC power of the inverters is recorded by the 

SCADA system of the PV farm. The maximum power of the PV arrays is extracted by 

assigning an MPPT control for the grid-connected inverters in PV farms. Data of the 

SCADA system such as the snow properties and its depth as well as the irradiance and 

temperature were acquired when PV modules were covered with snow for two typical days 

of December 2015 and January 2016 after the precipitation are traced in Figure 12. 
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Figure 12.  Output and expected DC power of a 12-MW grid-connected PV farm from SCADA database 

along with the estimation of output power, loss and efficiency of system using the proposed model for two 

different days with snow depths of (a) h=1.6 cm (day 1), and (b) h=2.55 cm (day 2). 

Table 8 indicates the energy generation of the12-MW PV farm for these two 

mentioned days based on the novel approach proposed in this thesis and the previous model 

presented in [22] for the same case study. It can be seen that a higher level of accuracy is 

achieved in comparison with the previous model since the proposed approach uses the 

Giddings and LaChapelle law that shows high efficiency in determining receiving solar 

radiation on the PV module surface.  

 

 

 

Table 8.  Energy generation of a 12-MW PV Farm for Two Typical Days. 

 Day 1  

(h=1.6 cm) 

Day 2  

(h=2.55 cm) 

SCADA database 46.234 MWh 29.418 MWh 

Proposed modeling 

algorithm 

47.58 MWh 30.48 MWh 

Error of proposed 

modeling algorithm 

2.92 % 3.6 % 

Error of reference [22]  6.3 % 6.8 % 

 

The published paper of [22] is the results of Ph.D. thesis of its author [125] which 

firstly presented an accurate algorithm to characterize the output of the snow covered PV 

modules. It achieves interesting results in the field of PV systems modeling under snowy 

conditions. The case studies that have been considered in [125], such as the PV farm data 

and PV technologies, are mostly the same as in the current thesis. Hence, [22] is the best 

case of comparison for the evaluation of the modeling methodology presented in this thesis. 
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2.4 Summary for the Analysis and Modeling of Uniform Snow-covered 

PV Modules 

This chapter proposed an accurate PSO-based modeling method of snow-covered PV 

modules. The realistic behaviour of PV systems, when subjected to the variation of climatic 

parameters in the presence of snowfall, is considered and the Giddings and LaChapelle 

theory was employed to accurately determine the receiving solar radiation on the PV 

module surface. The model parameters were simultaneously updated using the PSO 

algorithm to derive the electrical characteristics of the PV modules under different snow 

conditions. The experimental validation of the modeling technique was performed using 

real field data obtained using three different technologies of commercial PV modules. It 

was observed that the results of the testbed are in close agreement with the model 

prediction. The power loss of a snow-covered PV module was also formulated by an 

empirical equation that allows to estimate the power production of PV system under 

different depths of snow. Furthermore, the accuracy of the proposed model was also 

evaluated by an additional study that was conducted to correlate the SCADA information of 

a 12-MW PV farm (as a prominent PV market) with the results of the modeling method. It 

can be concluded that for a large range of environmental conditions, the step by step 

methodology in this work can be considered as a valuable modeling tool for deriving the 

electrical characteristics of the uniformly snow-covered PV modules.  
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3 MODELING OF PV UNITS COVERED WITH 

NONUNIFORM SNOW PATTERNS   

 

3.1 Overview 

The accretion of snow on the surface of PV systems which strongly diminishes the 

energy production of PV modules is known as the snow shading. The shading phenomena 

may happen in uniform (as presented in the previous chapter) and nonuniform patterns. 

This chapter aims to investigate the effect of nonuniform snow accretion as the second 

possible form of shading which happens when a part of accumulated snow on surface melts 

or slides down. This nonuniform shading causes an uneven reception of solar irradiance to 

the surface of PV modules (known as a mismatch condition) and leads to multi-zone 

characteristics of shaded modules. To address this issue, a novel universal approach of PV 

modeling is proposed in this chapter to determine the electrical characteristics of PV 

modules under snow partial shading conditions. The proposed modeling algorithm utilizes 

the contour-based discretization methodology to separate the PV characteristics into 

multiple sub-zones. The PSO-based technique is again employed to simultaneously extract 

the optimum values of model parameters for each sub-zone. The modeling method is 

validated through experimental outdoor tests under different scenarios of partial shading, 

and the snow losses of the system are formulated in an empirical equation. The following 

sections outline the proposed methodology and the results obtained from the proposed 

model respectively.   

3.2 A Novel Universal Multi-Zone Approach for Modeling of PV Units 

Covered With Nonuniform Snow Patterns  

According to the level of granularity, each unit of the PV system is composed of 

several cells connected in series and parallel, as shown in Figure 13. The electrical behavior 

of a solar system corresponds directly to the incident solar irradiance and the surface 

temperature of PV panels. Hence, the electrical parameters of their circuitry model are not 

constant and change under the variation of meteorological conditions. Before analyzing the 
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performance of a PV array, it is necessary to assess the performance of a PV cell in the 

presence of nonuniform snow. In the theory of semiconductors, an ideal PV cell can be 

modeled by a current source in parallel with a diode. However, to emulate an accurate 

behavior of a PV cell, additional series and parallel resistances should be added [126]. In 

addition to the fundamental equivalent circuit, the modeling of PV systems requires 

mathematical equations, a set of parameters, and an applicable methodology to calculate the 

unknown values and characterize the electrical response of the system. From simple 

piecewise linear (PL) equivalent model [127] to more sophisticated circuit model with a 

couple of diodes [128] and multi-quadrant performance [129], the single-diode electrical 

equivalent which is also known as one-diode or five parameters model is the most widely 

used model [130]. This is due to the best compromise between the accuracy and 

computational time burden [114].   
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Figure 13.  Level of granularity in a PV unit. 

 

3.2.1 Model Development of Partial Shaded PV Systems from Cell to Array  

As illustrated in Figure 13 the PV cell is the fundamental component of the solar 

system whose electrical behavior varies depending on the environmental conditions. The 

basic models of PV module and their different operation modes under mismatched 

conditions especially when shadowing occurs are defined in [131]. Based on the Shockley 

law for the diodes [132] and its interaction with the rest of the elements in the circuit 



  

56 
 

topology, the nonlinear characteristic of a real PV cell was represented in (1). The model of 

solar system requires a systematic approach to derive and updated a set of five parameters, 

i.e., 𝑅𝑠, 𝑅𝑠ℎ, 𝐼𝑝ℎ, 𝐼𝑠, and 𝛼0 to thoroughly represent the behaviour of solar system under any 

atmospheric conditions. 

3.2.1.1 PV Unit Model  

Taking into account that fact that the cells in the units are considered similar, the 

mathematical voltage-current relation of these units can be derived by defining the basis of 

the output current and voltage of the constitutive cells as follows: 

 

                            {
𝐼𝑢𝑛𝑖𝑡 = 𝑁𝑝𝐼

𝑉𝑢𝑛𝑖𝑡 = 𝑁𝑠𝑉
 

(22) 

 

where 𝑁𝑠 and 𝑁𝑝 are the number of the cells in series and parallel, respectively. By 

substituting equation (21) in equation (1), the voltage-current relation of the unit will be as 

follows: 

  

𝐼𝑢𝑛𝑖𝑡 = 𝑁𝑝 . {𝐼𝑝ℎ − 𝐼𝑠 [𝑒𝑥𝑝(

𝑉𝑢𝑛𝑖𝑡 +
𝑁𝑠
𝑁𝑝
𝑅𝑠𝐼𝑢𝑛𝑖𝑡

𝛼0𝑁𝑠𝑉𝑡
)− 1]}−

𝑉𝑢𝑛𝑖𝑡 +
𝑁𝑠
𝑁𝑝
𝑅𝑠𝐼𝑢𝑛𝑖𝑡

𝑁𝑠
𝑁𝑝
𝑅𝑠ℎ

 

 

 

 

 

 

(22) 

By comparing equations (1) and (23), the values of each element in the PV unit can 

be summarized as follows: 

 

𝐼𝑝ℎ,𝑢𝑛𝑖𝑡 = 𝑁𝑝 . 𝐼𝑝ℎ ,   𝐼𝑠,𝑢𝑛𝑖𝑡 = 𝑁𝑝 . 𝐼𝑠  ,   𝑅𝑠,𝑢𝑛𝑖𝑡 =
𝑁𝑠

𝑁𝑝
𝑅𝑠  ,    𝑅𝑠ℎ,𝑢𝑛𝑖𝑡 =

𝑁𝑠

𝑁𝑝
𝑅𝑠ℎ    

,and    𝛼0,𝑢𝑛𝑖𝑡 = 𝑁𝑠. 𝛼0 

 

 

(23) 

3.2.1.2 Distribution of Solar Radiation on the Surface of Snow-covered, Partially 

Shaded PV Modules 

The incident light to the surface of a partially snow-covered PV unit is composed of 

two different components of irradiance based on the level of radiation, depth, and the area 

of snow coverage: 𝐺𝑖𝑟 is the component of irradiance which affects the non-shaded surface 
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of a PV unit (direct irradiance) and 𝐷𝑖𝑟 is the diffuse component of the reduced irradiance 

through the snow shaded areas. For this purpose, the factor of the area should be involved 

in the calculation of the total solar radiation in the presence of partial coverage of snow. 

Hence, in the 𝑖th shaded contour with the uniform coverage of snow, 𝑥𝑖 is the depth of 

snow layer where the shading factor ∝i is defined as the ratio of shaded area 𝐴𝑠ℎ,𝑖 to the 

total area of contour 𝐴𝑇,𝑖 . 

 

∝𝑖=  
𝐴𝑠ℎ,𝑖

𝐴𝑇,𝑖
⁄  

(25) 

Therefore, the total solar radiation received on the surface of the PV unit is 

represented by equation (26) as follows: 

 

𝐺𝑡𝑜𝑡 = 𝐺𝑖𝑟 ∙ (1 −∑ ∝𝑖

𝑘

𝑖=1

) +∑𝐷𝑖𝑟(𝑥𝑖) ∙∝𝑖

𝑘

𝑖=1

 

(26) 

 

The precise characterization of the snow-covered PV model requires an accurate 

evaluation of the total radiation received. Although the direct irradiance is an available 

property and can be measured easily in the ambient of PV installation, the diffusion of 

irradiance beneath the snow layer is not accessible and needs to be investigated for a better 

estimation of electrical model performance. The diffuse radiation on the snow coverage is 

either attenuated by the refraction of the light beam through penetrating into the snow layer 

or can be lost by reflecting back to the atmosphere. Thus, the diffusion phenomena in the 

irradiance collision with the snow pack consist of both the effect of extinction and 

reflection. The factor of light extinction can be involved in the evaluation by selecting an 

average value for the extinction coefficient over the spectrum of solar radiation. By 

considering the reflection indicator (Albedo) as the ratio of intensities of reflected 

irradiation to the average of incident irradiation [10] and direct coupling between the 

albedo and extinction of solar radiation were investigated experimentally by Giddings and 

LaChapelle [112]. 𝐷𝑖𝑟(𝑥) is the diffuse downward flux of radiation into the snow pack at 

depth of 𝑥 can be calculated by equation (2) where the direct incident solar radiation in the 

surface of snow is 𝐺𝑖𝑟 . 
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3.2.1.3 Extraction of the Partially Shaded PV System’s Parameters  

In order to characterize the current-voltage curve of a PV cell, its relevant electrical 

of the single-diode model (Figure 3) consisting of five unknown parameters i.e., 𝐼𝑝ℎ, 𝐼𝑠, 𝑎0, 

𝑅𝑠, and 𝑅𝑠ℎ should be extracted. Although most manufacturers provide some information 

related to the technology of PV cells in the standard test condition (STC), these parameters 

are usually unavailable in the PV module datasheets. Hence, they need to be extracted by 

an accurate computational method as per particular environmental conditions. Moreover, in 

the mathematical relation in (1), the model parameters are conjugated by an implicit 

nonlinear current-voltage characteristic in which complex analytical methods are required 

[133]. In addition, the well-known Newton-based method shows a deficiency in 

computation since some parameters, for the sake of simplicity, are considered constant 

[134]. Therefore, the accuracy of the modeling method necessitates the simultaneous 

computation of the unknown parameters that are significantly affected by irradiance and 

temperature variations.  

Under non-uniform snow coverage, the PV unit experiences different layers of 

snowpack or snow-free areas. This leads to a complex PV characteristic, characterized by 

multiple peaks due to the bypass diodes. In this situation, a PV panel covered with a non-

uniform snow pattern cannot be characterized by one set of parameters for the whole range 

of its current-voltage curve.  Hence, to deal with this situation, this thesis proposes to divide 

the PV curve with multiple peaks into several zones containing single peaks. 

For instance, Figure 14 shows an electrical characteristic of a partially shaded PV 

module that experiences three different irradiance levels. Then, this non-uniform curve is 

divided into three zones (sub-curves) with a uniform reception of irradiance in the relevant 

range of current and voltage. Then, each sub-curve can be characterized as a PV panel 

under a uniform snow coverage.  
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Figure 14.  I-V curve a) non-uniform characteristic of a snowy PV module under three different level of 

irradiance b) discretization of curve to the three uniform sub-zones. 

Since the PV characteristic is divided into several subsections, the relevant 

photocurrent according to the irradiance level and temperature of each zone can be 

calculated by equation (6) and arranged in the vector of 𝐼𝑝ℎ  by ascending order as follows: 

 

𝐼𝑝ℎ= [𝐼𝑝ℎ(𝐺1, 𝑇1), 𝐼𝑝ℎ(𝐺2, 𝑇2),  𝐼𝑝ℎ(𝐺3, 𝑇3) , … , 𝐼𝑝ℎ(𝐺𝑚 , 𝑇𝑚)] 

;  𝐺1 < 𝐺2 < 𝐺3 < ⋯ < 𝐺𝑚 

 

(27) 

 

This vector can be used for defining the range of current for each sub-zone in the next 

steps of the modeling approach. For the PV technology, which is not protected by the 

bypass diodes, one value of 𝐼𝑝ℎ  from equation (27) is needed. 

 

The primary equations of the parameter extraction methodology for each sub-zone of 

the discretized characteristic can follow the same equations (equation (6) to (11)) of the 

previously mentioned steps until the new description of step 4, for defining the multi-

objective function with multi-constraints as follows: 

 

3.2.1.3.1 Step 4: Defining the Multi-Objective Function of PV System 

In this step, the modeling of system is defined as an optimization problem with multi-

objective function counterpart to the number of sub-zones. The optimization algorithm aims 
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to adjust the values of the parameters in a way that the online experimental data become in 

close accordance with those calculated by equation (1). Due to the generation of new sub-

zones under non-uniform snow accretion, the error function for the m sub-zone is 

generalized by the following equation, which indicates the error between measured and 

calculated values of current and voltage.  

 

𝑔𝑚(𝐼, 𝑉, ψ𝑚 ,  𝐺𝑚 , 𝑇𝑚) = 𝐼 − 𝐼𝑝ℎ + 𝐼𝐷 + 𝐼𝑅𝑠ℎ =  

𝐼 − 𝐼𝑝ℎ(𝐺𝑚 , 𝑇𝑚) + 𝐼𝑠𝑚 [𝑒𝑥𝑝 (
𝑉 + 𝑅𝑠𝑚𝐼

𝛼0𝑚𝑉𝑡
) − 1] +

𝑉 + 𝑅𝑠𝑚𝐼

𝑅𝑠ℎ𝑚
 

 

(28) 

where the set of unknown parameters in each sub-zone is represented by the decision vector 

 ψ𝑚 = [𝑅𝑠ℎ𝑚 , 𝑅𝑠𝑚 , 𝐼𝑝ℎ𝑚
, 𝐼𝑠𝑚 , 𝛼0𝑚]. The optimization algorithm should be applied to the 

main error function (equation (29)). According to the range of the current in each sub-zone 

which is divided by different 𝐼𝑝ℎ(𝐺𝑚), their counterpart voltage points (𝑉1, 𝑉2, … , 𝑉𝑚−1) 

separate the voltage range of each sub-zone as shown in Figure 14. 

𝐹𝑚(𝐼, 𝑉, ψ𝑚,  𝐺𝑚, 𝑇𝑚)

=

{
 
 
 
 

 
 
 
 𝐼 − 𝐼𝑝ℎ(𝐺1, 𝑇1) + 𝐼𝑠1 [𝑒𝑥𝑝 (

𝑉 + 𝑅𝑠1𝐼

𝛼01𝑉𝑡
) − 1] +

𝑉 + 𝑅𝑠1𝐼

𝑅𝑠ℎ1
                       0 ≤ 𝐼 ≤ 𝐼𝑝ℎ(𝐺1)  , 𝑉1 ≤ 𝐼 ≤ 𝑉𝑜𝑐

        

     𝐼 − 𝐼𝑝ℎ(𝐺2, , 𝑇2) + 𝐼𝑠1 [𝑒𝑥𝑝 (
𝑉 + 𝑅𝑠2𝐼

𝛼02𝑉𝑡
) − 1] +

𝑉 + 𝑅𝑠2𝐼

𝑅𝑠ℎ2
          𝐼𝑝ℎ(𝐺1) ≤ 𝐼 ≤ 𝐼𝑝ℎ(𝐺2)  , 𝑉2 ≤ 𝐼 ≤ 𝑉1

⋮                                                                                                                         ⋮

𝐼 − 𝐼𝑝ℎ(𝐺𝑚, 𝑇𝑚) + 𝐼𝑠𝑚 [𝑒𝑥𝑝 (
𝑉 + 𝑅𝑠𝑚𝐼

𝛼0𝑚𝑉𝑡
) − 1] +

𝑉 + 𝑅𝑠𝑚𝐼

𝑅𝑠ℎ𝑚
  𝐼𝑝ℎ(𝐺𝑚−1) ≤ 𝐼 ≤ 𝐼𝑝ℎ(𝐺𝑚)  , 0 ≤ 𝑉 ≤ 𝑉𝑚−1

 

(29) 

 

The best coincidence between the experimental and calculated data can be achieved 

when the parameters of the decision vector are calculated as close as possible to the real 

values when each sub-zone contains 𝑁𝑚 number of points. Hence, in this work the root 

mean square of the error function is employed as the objective function for each sub-zone 

as follows: 

 𝑂𝐹𝑚 = 𝑅𝑀𝑆𝐸𝑚 = √
1

𝑁𝑚
∑  (𝐹𝑚(𝐼𝑘, 𝑉𝑘, ψ𝑚 ,  𝐺𝑚 , 𝑇𝑚)) 2

𝑁𝑚

𝑘=1
 , 

 

(30) 

 

A global optimization can be achieved when the relative average error as equation 

(31) for all the points related to the sub-zones is minimal. 
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𝐸𝐹𝑀 =
1

𝑁
∑ 𝑁𝑚 .

𝑀

𝑚=1

𝑅𝑀𝑆𝐸𝑚  , 
  

(31) 

 

Theoretically, in ideal conditions, the value of 𝑅𝑀𝑆𝐸𝑚 should be equal to zero. 

However, due to the noise in measurements and computational errors, a predefined 

tolerance (i.e. |ε| < 0.001) is accepted. 

3.2.1.3.2 Step 5: Particle Swarm Optimization (PSO) Algorithm 

In this work, a variant of the PSO algorithm with an optimization ability over a multi-

dimensional search space is employed as the search engine of a multi-objective 

optimization problem. The stochastic exploration ability of PSO works by spreading a 

population of candidate solutions called particles in a bounded search space. As we 

described in section 2.2.2.5, each particle with the index 𝑖 explores around the search space 

where its position 𝑥𝑖(𝑗 + 1)  is dynamically updated with time in the iteration 𝑗 by its own 

previous best position experience 𝑝𝑏𝑒𝑠𝑡𝑖(𝑗) and the previous globally best position 

𝑔𝑏𝑒𝑠𝑡(𝑗) discovered by the entire swarm so far as represented in equation (14) and (15).  

By the systematically variation of inertia weight in the predefined range by equation 

(16) and clamping the velocity of particles based on the maximum permitted displacement 

of any particle in that dimension as equation (17), each particle visits different personal best 

positions during its life (up to the 𝑗th iteration and serves as memory for keeping the 

knowledge about each particle when it is updated by comparing it to its current fitness. The 

value of personal best is saved as a better experience according to the equation (18).  

https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Point_particle
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Move particles to the new positions 
using equation (15)

Set the search parameters of PSO from the generation 

number  jmax and population size of particles ZS  to 

learning factors C1 ,C2 ,range of inertia weight (wmin ,wmax) 

and velocity clamping factor Vmax

According to the range of each hyperspace dimension 

initialize the position of ψm parameters as Xi(0) and their 

corresponding velocity Vi(0) and inertia weight w(0)

For each iteration j

Evaluate fitness function of each particle 

OFm(Xi(j)) using equation (30)

Set the local best Pbest i (j) using equation (18) and 

global best  gbest (j) using equation(19)

Calculate velocity of particles using 

equation (14) and (17) 

Update inertia weight using 

equation(16)

j  >  jmax

Or 

OFm   OFm,min

j= j+1

Yes 

No 

Set the range of current-voltage for each 

sub-zone and define the error and objective 

function using equation (29) and (28) 

start

Input experimental and 

environmental information 

Detect different shading pattern  

Discretize the area of PV surface based on the 

selected contours and different isotropic snow layer  

Calculate shading ratios in each contour and their 

counterpart irradiance using equation (25),(26)   

For each set of G and T calculate Iph and IS  by (6)-

(8) and initialize the rest of parameters Rsh , RS  

and  0 using equation (9)-(11) 

Bypass diodes

Yes 

No 

Select the minimum value of Iph from using 

equation (27) and define single error and 

objective function for the whole range of 

current and voltage  

save the extracted parameters of each sub-zone and plot the corresponding I-V and P-V characteristics  

 

Figure 15. The proposed PSO algorithm for the modeling of partially shaded PV modules covered by snow. 

 

By conducting the previous steps (from step 1 to step 5) so far, it is expected that the 

swarm is attracted toward the best solution. Eventually, the position of the particle with the 

best fitness over the whole swarm becomes the global best as (19). 

According to the sequence of stages in the flowchart of the proposed algorithm shown 

in Figure 15, the partially shaded surface of the panel is separated into multiple zones (sub-

sections). The shading pattern in each contour defines different shading ratios along with 

the surface of the shaded area to calculate their counterpart irradiances. Consequently, each 

set of irradiance and temperature initializes a set of model parameters which indicates the 
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parameters of each sub-zone in the characteristic of PV. Since the PV characteristic is 

separated into the different subsections, the photo generated currents for each set of 

irradiance and temperature are calculated and arranged by ascending order as in equation 

(27). These values play a key role in defining the range of current and voltage in each sub-

zone. If the technologies of PV modules are protected by the bypass diodes, the algorithm 

is continued to solve a multi-objective function problem, represented by equation (30). 

Otherwise, the minimum value of the photo generated current from equation (27) is 

selected as the initial value of 𝐼𝑝ℎ  and the optimization problem is considered as a single 

objective function like the objective of first problem. The optimization problem in each 

sub-zone is simultaneously solved by a PSO algorithm, similar to the approach employed in 

section 2.2.2.5. The proposed PSO method simultaneously finds the optimized values for 

the unknown parameters with respect to the temperatures and irradiances for a PV module 

covered partially with snow, in each dimension of the search space. Finally, the tolerance of 

fitness function defines the constrain for selecting the best solution between the results of 

algorithm.  

3.3 Results for the Proposed Multi-Zone Approach for Modeling of PV 

Units Covered with Nonuniform Snow Patterns  

In this section, the simulation results from the proposed model in section 3.2 are 

compared with those obtained experimentally using different technologies of PV modules 

under different non-uniform snow patterns.   

3.3.1 Experimental Validation  

3.3.1.1 Installation of the Outdoor Test Bed 

Several experiments of different non-uniform snow patterns using three different 

types of PV module technologies, i.e., an ET-M53695 monocrystalline PV module from ET 

Solar manufacturer, a CS6P-260P polycrystalline PV module from Canadian Solar 

manufacturer, and a FS-275 thin film PV module from First Solar manufacturer were 

conducted. 
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Figure 16 shows the installation of the test bed with the field latitude of 45.47ᵒ where 

the PV modules were mounted on the rack facing south with a tilt angle of 30ᵒ, in an open 

area under the exposure of snow precipitation. Similar to section 2.3.2.1, the data 

acquisition unit was equipped with the HT Instruments I-V 400 PV Panel Analyzer along 

with an irradiance meter test kit to measure I–V and P–V graphs. The back-surface 

temperature of each module was quickly measured in each period of data saving by a Fluke 

62 Mini infrared thermometer. An electronic caliper was used to digitally measure the 

depth of the snow layer. The snow densities were obtained using a digital scale. A 

millimeter-scale grid and a magnifying glass were used to estimate the grain size. 

Moreover, artificial non-uniform patterns (Figure 16 a and b) were created by partly 

removing the snow coverage that helps eliminate the problems related to randomness in the 

position of snow free areas. 
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Figure 16.  Different scenarios of partial shading for the PV panels under snow coverage. 

3.3.1.2 Evaluation of PV Characteristics and Discussion  

To confirm the accuracy of the proposed model in determining PV characteristics, the 

simulated I-V and P-V curves are compared to those obtained from PV modules covered 

with snow, as shown in Figure 14. As can be observed in Figure 17 to Figure 23, a good 

degree of agreement exists between the PV characteristics calculated from the model and 

the experimental ones. This accuracy is due to the fact that the proposed model can 

calculate and update the PV parameters simultaneously as per irradiance, temperature, PV 

technology, and snow pattern.   

(a) (b) 

(c) (d) 

(e) (f) 
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The performance of a PV module can be affected by temperature, irradiance, shading, 

and module configuration. The power produced by a PV module is directly proportional to 

the amount of light that a PV module receives. However, when a number of series-

connected PV cells in a PV module receive less irradiance due to the snow coverage, they 

behave as a resistor instead of a generator that may cause a hot-spot problem. To mitigate 

this situation, bypass diodes are normally used in parallel with the solar module. Moreover, 

they can guarantee power generation from the rest of the module. From the experimental 

results for the PV technologies of CS6P-260P and ET-M53695, protected by three bypass 

diodes, it can be seen that the PV curve is characterized by multiple peaks under the 

nonuniform snow deposit. This is due to the fact that bypass diodes conduct current. Thus, 

the number of power peaks under partial shading conditions mainly depends on the number 

of bypass diodes. On the contrary, for those PV technologies (e.g. FS-275) without bypass 

diodes, a single peak can be seen in the PV characteristics even under partial shading 

conditions (Figure 23). The good alignment between the modeled and the measured data in 

the obtained results (Figure 17 to 23) demonstrates the ability of the proposed modeling 

method to successfully deal with different variations of the shading pattern, for any 

technology of PV modules, with or without bypass diodes.   
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(a) 

 

(b) 

Figure 17.  I-V and P-V curves obtained using the proposed model and experimental data for the scenario a 

with irradiance level of 677W/m2 and back-surface module temperature of -14.36 °C: (a) CS6P-260P 

(polycrystalline), (b) ET-M53695 (monocrystalline).  

EFm= 0.00081 

EFm= 0.000901 
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(a) 

 

 

(b)  

Figure 18.  I-V and P-V curves obtained using the proposed model and experimental data for the scenario b 

with irradiance level of 328W/m2 and back-surface module temperature of -3.41 °C: (a) CS6P-260P 

(polycrystalline), (b) ET-M53695 (monocrystalline). 

 

EFm= 0.00117 

EFm= 0.00169 
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(a)  

  

(b)  

Figure 19.  I-V and P-V curves obtained using the proposed model and experimental data for the scenario c 

with irradiance level of 825W/m2 and back-surface module temperature of -8.41 °C: (a) CS6P-260P 

(polycrystalline), (b) ET-M53695 (monocrystalline). 

 

EFm= 0.00146 

EFm= 0.00265 
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(a)  

  

(b)  

Figure 20.  I-V and P-V curves obtained using the proposed model and experimental data for the scenario d 

with irradiance level of 210W/m2 and back-surface module temperature of -11.13°C: (a) CS6P-260P 

(polycrystalline), (b) ET-M53695 (monocrystalline). 

 

 

 

EFm= 0.00132 

EFm= 0.00168 
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(a)  

  

(b)  

Figure 21.  I-V and P-V curves obtained using the proposed model and experimental data for the scenario e 

with irradiance level of 525W/m2 and back-surface module temperature of -4.36°C: (a) CS6P-260P 

(polycrystalline), (b) ET-M53695 (monocrystalline). 

 

EFm= 0.000973 

EFm= 0.00114 
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(a)  

  

(b)  

Figure 22.  I-V and P-V curves obtained using the proposed model and experimental data for the scenario f 

with irradiance level of 710W/m2 and back-surface module temperature of -9.43 °C: (a) CS6P-260P 

(polycrystalline), (b) ET-M53695 (monocrystalline). 

 

EFm= 0.00274 

EFm= 0.00303 
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Figure 23.  I-V and P-V curves obtained using the proposed model and experimental data under different 

partial shading conditions for the technology of FS-275 without bypass diodes where irradiance levels and 

back-surface module temperatures for the respective scenarios are a: Gir= 482.4 W/m2;  Tc= -21.11°C, d: Gir= 

517.8 W/m2;  Tc= -15.24°C ,  f: Gir= 479.8 W/m2;  Tc= -18.99°C.  

 

According to the function of equation (20), the percentage of output power deviation 

is also plotted for the most complicated characteristics of different PV modules 

technologies to illustrate the degree of agreement between the theoretical and measurement 

results as follows: 

 

(a) EFm= 0.000489 

(f) EFm= 0.000578 

(d) EFm= 0.000507 
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(a) 

 
(b) 

 
(c) 

Figure 24.  Percentage of output power deviation between the proposed model and experimental data for: (a) 

CS6P-260P (polycrystalline), (b) ET-M53695 (monocrystalline), and (c) FS-275 (thin film). These graphs 

demonstrate the instant variation of power deviation in each point of output voltage which shows sharp spikes 

in peak point of characteristics.  
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3.3.1.2.1 Errors of Modeling Algorithm 

According to the inherent feature of the proposed modeling method, the pairs of 

voltage and current data points of experimental characteristics should be imported to the 

modeling algorithm for extracting the model parameters and then the modeled 

characteristics will be plotted based on the extracted parameters. Hence, the total accuracy 

of the proposed modeling method can be evaluated based on the mismatch between the 

pairs of data points that form the measured and modeled characteristics. Therefore, the root 

mean square error which is calculated based on the difference between the two different 

sorts of data points is the best error function to confirm the agreement between the 

measured and modeled data. Hence, for each curve of I-V and P-V characteristics in 

Figures 17 to 23, the value of the average root mean square error (EFm) is calculated as an 

indicator on the relative point-to-point deviation between the simulated model and data 

experimentally measured from the test field. These values are provided in Table 9 (related 

to Figs. 17 to 23), for a better evaluation of the model accuracy. Although, the values of 

errors for the modeling method demonstrate the accuracy of the proposed algorithm, the 

measurement error relevant to the measurement uncertainty of data acquisition equipment 

(HT Instruments I-V 400 PV Panel Analyzer) should be considered too. As mentioned in 

section 2.3.2.3.2, as per the manufacturers’ specifications, this error is ranged in 1-5%. The 

latter error can be useful to give a perspective about the quality of measured data used for 

the theoretical part of algorithm.    

 

Table 9 Average root mean square error of modeling method 

Scenarios CS6P-260P ET-M53695 FS 275 

a 0.00081 0.000901 0.000489 

b 0.00117 0.00169 − 

c 0.00146 0.00265 − 

d 0.00132 0.00168 0.00507 

e 0.000973 0.00114 − 

f 0.00274 0.00303 0.000578 
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The relative point-to-point average root mean square error (EFm) as a fitness index 

between the measured and the simulated curves is shown in Figure 25. This figure 

demonstrates the good accuracy achieved by the proposed modeling approach.    

 

 

Figure 25. Average root mean square error between the proposed model and the experimental data. 

The first part of experimental results was extracted from the PV technologies of 

CS6P-260P and ET-M53695 were both protected by three bypass diodes. Thus, the P-V 

curves of these modules have at most three peak points in the case of snow partial shading. 

For better understanding the effect of bypass diodes on the characteristics of PV systems, 

the technology of FS-275 PV panel which manufactured with no bypass diode was also 

experimentally tested. As depicted in the Figure 23, under different conditions of snow 

partial shading the P-V curve has only single peak point of power with corresponding 

single knee in the I-V curve. 

3.3.1.3 Snow-related Power Loss and Efficiency of Snow Shaded Modules 

Solar systems show a good performance in harsh cold weather because the low 

temperature can increase positively the output power. However, the accumulation of snow 

on the surface of PV modules can decrease or even stop electricity generation leading to 

considerable power losses. Therefore, a series of tests were carried out on a CS6P-260P 

polycrystalline PV technology to determine the impact of snow accretion on PV power 
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losses. In fact, the measured values of MPPs under different snow thickness were compared 

with a snow-free condition to determine the power losses in percentage. Figure 26 and 

Figure 27 show the performance of the PV module under different snow patterns. As can be 

seen from Figure 26, the snow depth is a determining parameter for the energy losses in 

which the performance of the PV module decreases to a critical value of 50%. Figure 27 

shows that the variation of snow losses increases with an increase in the shaded area by 

snow.  

The percentage of power losses can be evaluated as a function of the shading 

factor ∝𝑖, the snow depth in each contour 𝑥𝑖, the average amount of extinction coefficient 

𝑘𝑒𝑥𝑡 , and 𝜔 using equation (32). By considering the average value of the extinction 

coefficient 35.5 m-1 and 0.315 for ω in the test, the estimated power loss is calculated and 

shown by the dashed green line in Figure 26 and Figure 27. The accordance between the 

estimated power loss calculated using equation (32) and the real snow loss of the system 

demonstrates that the proposed power loss equation can be regarded as a tool for the 

selection and proper installation of PV modules subjected to snow accretion.  

𝑃𝑙𝑜𝑠𝑠(%) =  [∑  ∝𝑖∙ (1 − 
𝜔𝑒−𝑘𝑒𝑥𝑡 𝑥𝑖(1+tanh  𝑘𝑒𝑥𝑡 𝑥𝑖)

{1+
𝜔

2
[1+

𝑒−𝑘𝑒𝑥𝑡 𝑥𝑖(1−
𝜔
2)

𝜔
2 cosh  𝑘𝑒𝑥𝑡 𝑥𝑖+sinh  𝑘𝑒𝑥𝑡 𝑥𝑖

]}(
𝜔

2
+tanh  𝑘𝑒𝑥𝑡  𝑥𝑖)

)𝑘
𝑖=1 ] × 100  

 

 

 

(32) 

 

 

 

Figure 26.  Effect of different snow depths on power production, losses and efficiency of CS6P-260P with the 

shading factor of 0.5. 
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Figure 27. Effect of different shading factor on power production, losses and efficiency of CS6P-260P with 

the snow depth of h= 1.4 cm. 

3.4 Summary for the Modeling of PV Modules Covered with 

Nonuniform Snow  

This chapter focused on the modeling of the effect of nonuniform snow on electrical 

behavior of PV systems. Hence, the idea of multi-zone analysis of PV characteristics was 

developed to model the behaviour of PV modules covered with nonuniform snow patterns 

under partial shading conditions. The platform of the proposed modeling approach was 

designed based on the single-diode-five-parameter equivalent circuit, incorporating the 

Giddings and LaChapelle theory to accurately estimate the received irradiance to the 

underneath surface of PV modules in the presence of snow. Through a contour-based 

discretization methodology, any nonlinear PV characteristics were divided into the separate 

linear ones, each one including a single peak. A swarm-based optimization methodology 

was adapted to instantaneously update and evaluate the modeling parameters of each sub-

zone to accurately characterize the output of the PV system. Moreover, a power loss 

equation of non-uniformly-covered snowy PV panels was introduced and validated using 

real data from experimental tests. Finally, the proposed model was successfully validated 

using three different commercial types of PV technologies commonly used in North 
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America. This research work can be regarded as a basis for the development of PV models 

and a practical tool for the design and selection of PV modules subjected to snow. 
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4 ANALYSIS OF PV PANELS LAYOUT UNDER 

SNOW CONDITION  

 

4.1 Overview  

One of the main strengths of PV systems is their robustness in severe environments, 

as they do not involve moving parts or components that can be easily broken physically. 

However, during cold months, the snow accumulation diminishes the received irradiance at 

the surface of PV panels. The snow coverage blocks the sunlight's path to the solar cells 

and significantly reduces the electricity production of PV modules. In the previous 

chapters, the performance of PV panels under different forms of snow shading were 

introduced and modeled in terms of output characteristics, power generation, and snow 

losses. Contrary to uniform snow deposit, the panel layout influences the efficiency of the 

PV under snow partial shading conditions. This chapter proposes an analysis of the effect 

of PV panels layout on their electrical characteristics under partial shading conditions due 

to nonuniform snow deposits. A series of outdoor experiments are conducted taking into 

account different snow removal scenarios on different technologies of PV modules (i.e. 

with and without bypass diodes protection) to determine snow losses. Moreover, the 

performance of the bypass diodes’ protection and their effect on the output characteristics 

of the partially shaded PV modules are studied. The results of this section can be helpful for 

PV system developers for selecting the appropriate PV panels layout in the cold regions.  

4.1.1 Effect of Bypass Diodes on the Characteristics of Snow Shaded PV Modules  

In a partially shaded module, solar cells that belong to the same string experience 

different polarization. It means that a reverse biasing which occurs for the shaded cells 

makes them as electrical loads for the power generated by the other cells. Therefore, a 

current limitation will happen for the normal cells in the whole string. This leads to power 

dissipation, which dramatically reduces the output power of the PV module, and results in 

hotspot phenomena and irreversible damage in the shaded cells [135]. To avoid the 

detrimental effects of hotspot destruction, a bypass diode is connected in anti-parallel with 
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cell strings to route a replacement current pass and cut off the output power of the 

mismatched cells. For the efficient utilization of the solar system in both commercial and 

research applications, it is essential to deal with the nonlinear characteristics of its output. 

This nonlinear behavior gets more complicated if the PV module is affected by the non-

ideal operating in partial shading conditions. Under this mismatch condition, with respect to 

the electrical properties and structure of PV modules, as well as the shading pattern and 

intensity, PV system characteristics deviate from their standard form. For the PV modules 

with more than one bypass diode, partial shading leads to the multi-peaks P-V curve and 

multi-knees I-V curve.  Hence, in order to predict, analyze, and design the PV system for 

all conditions of operation, the effect of bypass diode that causes multiple local maxima 

under partial shading conditions should be considered in the modeling of PV modules 

production [136]. 

Although the PV manufacturers normally use bypass diodes to prevent the hot-spot 

problem and to stop unproductive cells from disrupting the production of active cells, the 

PV characteristics of the shaded PV array become more complicated showing multiple 

peaks in the P-V graph. This phenomenon can be seen in Figures 15 to 21 in which the P-V 

characteristics bear multiple peaks under the condition where the bypass diodes operate to 

protect cells. In fact, the number of peaks over a partially shaded module depends on the 

number of bypass diodes and the irradiance level. 

As shown in Figure 28(a) the shape of the I-V curves of PV modules in a normal 

operating condition has only a single-knee curve. On the other hand, Figure 28(b) illustrates 

the behavior of PV module characteristics when subjected to the partial shading conditions 

due to nonuniform snow (Figure 16(a) where its characteristic contains a double-knee I-V 

curve (analysis of the Figure 17). The counterpart P-V curve of this shading scenario has 

two peak points; the left-most peak point in the curve indicates the transition point where 

the two bypass diodes are protecting the cell strings switches from non-conducting state to 

the conducting state or vice versa. Based on the trend of voltage and current from the 

origin, within the left region of the left peak point, the value of current is large while the 

voltage value is small. Thus, the bypass diodes protecting the shaded cell strings are in a 

conducting state and the other one is in a non-conducting state. Within the right region of 

the left peak point the current value is decreasing while the value of voltage is increasing. 
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Therefore, the state of all three bypass diodes switches to the non-conducting state and the 

second peak point is generated for the rest part of the characteristic.  

 

 
 

(a) 

Transition point 

Two bypass 

diodes on  

All three bypass diodes 

off  

 

Transition point 

            

 
(b) 
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Figure 28. Analysis of PV modules characteristics under different condition: (a) normal operation with 

uniform irradiance (b) nonuniform irradiance with double steps (c) nonuniform irradiance with triple steps.   

For the second scenario of shading (Figure 18), the snow coverage area only affects 

one cell string and consequently one bypass diode that corresponds to this shaded area 
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switches in different regions of the curve in Figure 17 similar to the analysis of shading for 

the first scenario in Figure 28(b). The I-V and P-V curves can include triple steps of current 

when the all three bypass diodes are affected by the shaded areas on the entire cell strings 

of PV module. The characteristic in Figure 19, divided into the three regions, as shown in 

Figure 28(c), where at the left-most power peak point, the two bypass diodes with the more 

shaded area will be in conducting state. Within the region between the left-most peak point 

and the middle peak point, the bypass diode with the most shaded area will remain in 

conducting state and the other two  will be in the non-conducting state; finally, for the right 

side area of the middle peak point, all bypass diodes will switch to the non-conducting 

state. 

 

4.1.2 Effect of PV Panels Layout  

For the sake of optimal use of PV systems, a detailed plan for designing the layout of 

the solar panels with respect to their applications is required. The output power production 

of a PV system is determined according to the number of solar modules installed within the 

available space. It is possible to install photovoltaic modules in a landscape, portrait, or 

diagonal layouts depending on the configuration of a specific area. For instance, for some 

applications, i.e. for the rooftops installation, it is recommended to use portrait panels 

layout [83]. 

Concerning the solar energy efficiency, the layout of panels is not an issue for the 

non-shaded PV panels. In other words, under the uniform irradiation, solar panels mounted 

horizontally perform as well as those mounted vertically and diagonally. With regard to 

cost, a vertical mounting layout is recommended for standard rooftop racking systems. 

Thus, installing the PV modules with a horizontal or diagonal layout requires more rows 

and consequently, additional hardware and increased cost [82]. With less hardware, wiring 

can be less complicated for the vertical installation rather than horizontal and diagonal-

mounted solar panels that leads to an easier and quicker installation task [84].  

Although the abovementioned instructions recommended for selecting the appropriate 

PV panels layout under snow free condition is useful, they could be improper for solar 

systems under variable cold weather conditions. For the PV systems subjected to the snow 
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accretion, particularly under nonuniform snow accumulation, the PV panel layout could 

represent a unique challenging issue. To the best of our knowledge, there is a lack of 

research to investigate the effect of snow partial shading on the energy production of PV 

modules. Recently, a research was carried out to characterize the electrical behaviour of 

snow-covered PV cells under two different PV layouts. However, due to lack of systematic 

experimental results, this numerical based-investigation could not represent the real effect 

of PV layouts under different common snow patters [85]. To this end, this chapter deals 

with the effect of different PV panels layouts on energy losses under partial shading 

condition, in a comprehensive, experimental way.  

 

4.2 Results on the Analysis of PV Panels Layout  

4.2.1 Effect of PV Panels Layout on Their Electrical Behavior under Partial Shading 

Conditions  

In this part of the thesis, three scenarios for snow shading patterns were considered to 

evaluate the behavior of PV modules as illustrated in Figure 29. To eliminate the problems 

related to the randomness in the position and size of shaded zones, artificial nonuniform 

patterns were manually created by partially removing the snow coverage. According to the 

layout of the PV modules in the configuration of PV arrays, these scenarios are the 

probable partial shading patterns when some parts of snow on the surface melt or slide 

down. Several measurements of the environmental conditions, as well as electrical, optical, 

and thermal variables were recorded under different variations of irradiance, temperature, 

and snow depth. 

The experiments were performed on monocrystalline technology with three bypass 

diodes as well as thin film technology without bypass diodes. Shading profiles are 

categorized into three scenarios as follows: 

▪ Vertical shading profile (scenario 1): a snow removal vertically from 100% (fully 

shaded) to 0% (snow free) coverage as illustrated in Figure 29(a). 

▪ Horizontal shading profile (scenario 2): a snow removal horizontally from 100% (fully 

shaded) to 0% (snow free) coverage as illustrated in Figure 29(b). 
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▪ Diagonal shading profile (scenario 3): a snow removal diagonally from step 1 to step 10 

(snow free) coverage as illustrated in Figure 29(c). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29.  Shading scenarios of PV modules: (a) vertical shading profile (b) horizontal shading profile (c) Diagonal 

shading profile. 

 

The results of the current-voltage and power-voltage characteristics obtained from the 

experiments on two PV modules technology under different shading scenarios are depicted 

in Figures 31 – 36 for two PV technologies. According to the trajectory of characteristics 

variation, some linear and nonlinear changes are recorded, which have not been 

investigated before in the modeling of snow shaded modules.  In the following section, the 

electrical characteristics of monocrystalline (with bypass diodes) and thin film (without 

bypass diodes) are analyzed. 
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Vertically 

One cell group 

 

Horizontally 

 

Diagonally

 

(a) (b) (c) 

Figure 30. The state of bypass diodes for monocrystalline technology under different snow shading scenarios 

(a) vertical (b) horizontal (c) diagonal  

4.2.1.1 Monocrystalline Technology 

In the monocrystalline technology, the cell groups are horizontally arranged and for 

each group of cells, a bypass diode is considered to protect all cells in the group. Hence, in 

each scenario, if a group of cells is covered, its relevant protection bypass diodes get turned 

on. In addition, the effect of diode protection is that it causes a rapid reduction in the output 

peak power and leads to a step change in the electrical characteristic for each irradiance 

level. The behavior of electrical characteristics PV modules is analyzed according to 

relevant scenarios, represented in Figure 31 with bypass diodes, as follows:    

▪ Scenario 1: as illustrated in Figure 30(a) all three cell groups are simultaneously 

affected by the snow layer. Hence, all three bypass diodes are in conducting state. 

Therefore, as shown in Figure 31, the PV characteristics do not show multi-steps 

current-voltage characteristic in this condition and the peak power decreases 

considerably with an increase in snow coverage. 

▪ Scenario 2: as long as each group of cells gets free of snow gradually, their relevant 

bypass diodes get turned off as shown in Figure 30(b). Thus, the PV characteristics 

demonstrate step changes with respect to the level of the incident irradiance (Figure 

32). Therefore, in this scenario, the bypass diodes show nonlinear behaviors that 

cause multi-steps current-voltage characteristics.       
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▪ Scenario 3: Regarding the snow coverage in Figure 30(c), the cell groups are mostly 

under coverage at the same time. Thus, the bypass diodes are conducting altogether 

and the characteristics demonstrate generally linear variations. However, in the case 

in which some of the cell groups get completely free of snow, their relevant bypass 

diodes get turned off, leading to multi-steps in the PV characteristics, i.e., in the two 

last steps of removing in Figure 33 (steps 11 and 12).   

4.2.1.2 Thin film Technology 

A thin film solar cell is a second-generation solar cell that is made by depositing one 

or more thin layers or thin film (TF) of photovoltaic material on a substrate, such as glass, 

plastic or metal. Thin film technology has always been cheaper but less efficient than 

conventional first-generation crystalline silicon solar cell (c-Si) technology. However, its 

performance has significantly improved over the years. There is no bypass diode in this 

technology that results in a linear behavior of electrical characteristics with respect to the 

snow thickness and a sole single peak even under partial snow shading condition (without 

multi-steps curvature).  

As shown in Figures 34 to 36 from vertical to diagonal layouts, the output 

characteristics of thin film technology exhibit a single peak due to the lack of bypass 

diodes. In addition, in comparison with horizontal and diagonal layouts, in the vertical 

layout, the power production of modules dramatically decreases with an increase in a 

shaded area and the PV module characteristics still demonstrate linear variation. Hence, 

although the thin film technology demonstrates simpler characteristics but its efficiency is 

lower than monocrystalline technology because the MPP is dropped dramatically by 

increasing the shading area. A visual comparison between the characteristics of Figure 31 

to 33 and their counterpart characteristics in Figure 34 to 36 which demonstrate the same 

snow removal scenarios in two different technologies indicates that the thin film technology 

has always a single peak characteristic of power-voltage which can utilize simpler MPPT 

controllers, while its efficiency is lower than monocrystalline technology.     
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Figure 31. Characteristics of PV module with monocrystalline technology under the vertical snow removing 

scenario for the snow depth of 3.9 mm when the module temperature and surface irradiance vary from -0.3 °C 

to -4°C and 420 to 426 W/m2, respectively.   
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Figure 32. Characteristics of PV module with monocrystalline technology under the horizontal snow 

removing scenario for the snow depth of 10 mm when the module temperature and surface irradiance vary 

from -1.3 °C to -4.4°C and  397 to 455 W/m2, respectively.   
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Figure 33. Characteristics of PV module with monocrystalline technology under the diagonal snow removing 

scenario for the snow depth of 4.9 mm when the module temperature and surface irradiance vary from -6.8 °C 

to -9.5°C and  479 to 486 W/m2, respectively.   
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Figure 34. Characteristics of PV module with thin film technology under the vertical snow removing scenario 

for the snow depth of 4.7 mm when the module temperature and surface irradiance vary from -0.7 °C to 

+4.3°C and  420 to 426 W/m2, respectively.   
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Figure 35. Characteristics of PV module with thin film technology under the horizontal snow removing 

scenario for the snow depth of 4.5 mm when the module temperature and surface irradiance vary from  -0.7 

°C to +2.9°C and  454 to 484 W/m2, respectively. 
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Figure 36. Characteristics of PV module with thin film technology under the diagonal snow removing 

scenario for the snow depth of 5.1 mm when the module temperature and surface irradiance vary from -0.5°C 

to +2.8°C and  473 to 498 W/m2, respectively. 
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4.2.2 Analysis of Snow Power Losses for Different PV Panels Layout 

As PV systems are expected to make a significant contribution to supply electricity in 

a more secure and economic way, it is essential to carry on verifying the effect of their 

configuration and layout on snow power losses. The percentage of snow power losses for 

different layouts is determined through a comparison between the power values of global 

MPP of the snow-covered PV modules against their expected MPP without the snow 

shading for the same irradiance and temperature. The calculated values of snow losses for 

the different technologies of PV modules are plotted versus shaded area in Figure 37 

(monocrystalline technology) and 38 (thin film technology).  For a better comparison, the 

shaded areas for three different layouts are normalized to have the same condition in term 

of snow-covered areas.     

 

Figure 37. Snow power losses for the monocrystalline technology of PV module under different panels 

layout: a) portrait layout with the snow depth of 3.9mm, b) landscape layout with the snow depth of 10 mm, 

and c) diagonal layout with the snow depth of 4.9 mm.     

As shown in Figure 35, for the monocrystalline technology, the trajectory of curves 

depicts that by increasing the shading area, the values of power losses increase with a 

steeper slope for the vertical and diagonal layouts when compared to the horizontal one. 

Furthermore, the trajectory of the curve for the horizontal layout evolves into two steps. 

The creation of these two steps can be due to the bypass diodes in the cell strings arranged 
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horizontally. It can be observed that, although the depth of snow on the horizontal layout is 

greater than other layouts, it achieves a lower power loss under snow partial shading. 

Table 10.  Average snow power losses for different layouts of monocrystalline technology  

Layout Vertical 

(Portrait) 

Horizontal 

(Landscape) 

Diagonal  

Depth of snow (mm) 3.9 10 4.9 

Average power losses (%) 

 

70.06884 57.11557 

 

68.36463 

 

 

Table 10 presents the average snow power loss of the abovementioned layouts based 

on different depths of nonuniform snow patterns. It can be highlighted that, in contrast to 

the higher depth of snow in diagonal and horizontal layouts in comparison with the vertical 

layout, the horizontal layout has the lowest average power loss. Thus, the horizontal layout 

can be considered an optimal configuration for the monocrystalline technology under snow 

partial shading condition. Although the vertical panel layout is the most popular layout for 

the arrangement of PV systems, it bears the greatest losses when subjected to snow partial 

shading conditions.  

 

Figure 38. Snow power losses for the thin film technology of PV module under different panels layout: a) 

portrait layout with the snow depth of 4.7mm, b) landscape layout with the snow depth of 4.5 mm, and c) 

diagonal layout with the snow depth of 5.1 mm.     
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For the thin film technology, the power loss due to snow is also experimentally 

verified when the snow-covered area on PV panels change horizontally, diagonally and 

vertically, as shown in Figure 38. As snow coverage reduces vertically and diagonally, the 

reduction in snow loss is small until it reaches the critical shading factors of 0.1 and 0.5, 

respectively. On the other hand, for the horizontal snow coverage variation, the linear 

reduction in snow loss when the snow-covered area reduces is significant.  

Table 11 presents the average power losses for three layouts for a similar snow depth. 

Similar to the monocrystalline technology, it can be observed that the horizontal layout is 

the configuration of PV panels with the lowest power losses. This analysis along with 

knowledge of snow-melting patterns is helpful for a proper installation of PV panels in cold 

climates in order to minimize their power loss due to snow. 

Table 11.  Average snow power losses for different layouts of thin film technology 

Layout Vertical 

(Portrait) 

Horizontal 

(Landscape) 

Diagonal  

Depth of snow (mm) 4.7 4.5 5.1 

Average power losses (%) 67.53218 

  

33.84083 

 

49.04161 

 

 

4.3 Summary on PV Layout Analysis  

The focus of this chapter was primarily to provide an analysis of different installation layouts 

of PV modules under snow accretion based on a series of systematic tests. Different scenarios of 

snow removal were created in vertical, horizontal, and diagonal configurations to emulate their 

corresponding installation layouts (i.e. vertical, horizontal, and diagonal positions). The output 

characteristics of the PV modules in different layouts were investigated to determine an appropriate 

layout according to the application of solar systems. The experiments were conducted on two 

different technologies of PV modules with or without bypass diode protection. The effect of bypass 

diodes protection on the performance of PV panels was also investigated and discussed. The results 

of average power losses in different PV layouts and technologies were also presented under various 

shading patterns. The horizontal layout of PV panels showed the lowest power losses. 
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5 PREDICTION MODEL OF SNOW SHADED 

PV SOLAR SYSTEMS 

 

5.1 Overview  

   The maximum output power of the PV system can be regarded as an important 

factor for the actual performance of PV modules in the field, under different environmental 

conditions. The snow and its effect on solar panels are very unpredictable, both from time 

to time and from site to site. Hence, through recorded meteorological data together with the 

output power data of the snow-covered PV system during the cold months, a learning-based 

algorithm can be implemented to predict the power generation of a real solar installation. In 

this thesis, several prediction models for the estimation of maximum output power of snow 

shaded solar PV systems based on different algorithms have been studied, implemented and 

tested. These algorithms include decision (regression) trees, gradient boosted trees, random 

forest, and artificial neural networks (ANN) which all lead to interesting results. The ability 

of the prediction model has been validated over two cases of data set: firstly using 75%-

25% holdout, and secondly, in order to use the entire data in our limited dataset, using 4-

fold nested cross-validation technique. Through the grid optimization method, different 

combinations of hyperparameters of each algorithm were tested to identify an optimized set 

of these parameters to be used in the prediction model. The results of the model obtained 

for two different technologies of solar cells are presented and the performance of models is 

evaluated by reporting the root mean square error (RMSE) between the real and modeled 

data as well as the optimized hyperparameters of each algorithm.   

5.1.1 Prediction Model 

 In a few research papers, the thermodynamics of PV modules have been considered 

when the linkage between the convection and radiation is defined as a dynamic factor 

[137]. However, these models do not incorporate the electro-optical and electro-

thermodynamic coupling for the standard PV modules [138]. These fully coupled electrical, 

thermal, and optical dynamics are not generally considered simultaneously in a model. To 
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this end, a combined effort to include these factors into a unified model has been 

considered to efficiently utilize an experimentally measured dataset to train a machine 

learning-based model. The flowchart diagram of this prediction model is depicted in Figure 

39. This modeling method aims to predict the maximum output power of the PV module 

through the following procedure:  

              

1. In the data acquisition stage, different physical, optical, environmental, and the 

meteorological parameters such as snow depth, snow-covered area, back surface 

modules temperature, irradiance, wind speed, pressure, humidity, ambient temperature 

and UV index need to be acquired as well as the maximum output power of PV modules 

as the output variable of system (that defines the solar energy production).  

2. The experimental dataset is generated by acquiring measurements of the PV module for 

several days of the cold months. The measured data set is then divided into two sets: one 

for the training the model (i.e. the training data set) and the other one for the evaluation 

of the prediction accuracy of the model (i.e. the test data set).  

3. Once the model is trained for each technology of PV module, according to the 

climatology of the location such as wind speed, pressure, humidity, and UV index, the 

prediction model can be used for providing an estimate of the output of the solar energy 

production at any ambient temperature, solar irradiance, and shading pattern of snow. 

The trained model thus provides a prediction of the PV system output power for a future 

time period.  

Prediction Model 
Maximum Output Power

of PV Modules

Target Variable

Inputs Output

Attributes

Meteorologically Recorded 

On-site Sensors Measured

7.Back surface modules temperature

6.Irradiance

 8.Depth of snow layer  

9.Snow-covered area 

2. Humidity
1. Wind speed

 3. Pressure

4. UV index

5. Ambient temperature
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Figure 39. Prediction model for calculation of snow-covered PV modules production. 

 

In the data acquisition stage, data records of the technical parameters of the solar 

panels including the maximum output power of PV modules (W) as well as module 

temperatures (°C) together with the meteorological on-site measurements including 

irradiance (W/m2), and ambient temperature (°C) are collected over the winter 2020 by the 

sensors of two different technologies of PV panels located at the Université du Québec en 

Outaouais (UQO), Gatineau, Québec, Canada. In addition, the database of Canadian 

government is used for retrieving other climatological data such as humidity (%), wind 

speed (Mph), UV index, and pressure, measured in inch of mercury (inHg) because the 

corresponding sensors were not available on the test site [139]. Moreover, the snow depth 

(mm) and the percentage of snow-covered area (the area of snow-covered part divided by 

the area of panel) of PV modules are measured directly on the snow-covered panels.  The 

acquired dataset consists of 228 data points directly measured in the test field, from which 

96 belong to the monocrystalline, and 132 to thin film technology.   

For the proposed prediction models, data are imported to the algorithms and using the 

grid optimization method, different combinations of hyperparameters are tested for each 

model. The optimal hyperparameters are selected in order to achieve the best results of the 

prediction model, i.e., the minimum root mean square error (RMSE). To achieve a suitable 

range of variation and diversity of parameters, the whole dataset is shuffled and two cases 

are considered for creating the training and test datasets. First, 75% of the dataset has been 

considered as a training set and the rest of 25% kept as a testing set. In the other case, in 

order to take advantage of the entire available data and compute a more realistic evaluation 

of the models’ performance that is independent of the composition of training and testing 

datasets, the cross validation technique has been considered as well. This approach involves 

randomly dividing the set of observations into k groups, or folds, of approximately equal 

size. Based on the number of folds, in each variation of this technique, one fold is 

considered as a test set, and the model is trained on the remaining k − 1 folds and final 

results are reported as the average for each different k variation. The choice of 4 folds cross 

validation in this thesis is justified by the fact that it uses the same amount of data for 

training and testing in each fold as in the case of 75%-25% holdout. As such, the shuffled 
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data was equally divided into four parts, from which three were used to train the model and 

the other one to test the model. Because we are interested at the same time to identify the 

best hyperparameters, we are using nested cross-validation. As such, we used an outer 4-

fold cross-validation loop to split the data into training and test datasets, and an inner loop 

to select the model via 4-fold cross-validation on the training dataset. The test dataset is 

then used to evaluate the model performance. Although the nested cross validation is 

computationally slower than normal cross validation, it is possibly one of the best 

approaches to estimate a truer error, that is almost unbiased and with low variance [140]. 

  

5.1.1.1 Machine Learning Algorithms Employed for Prediction 

The production of PV modules is a complex phenomenon that depends on different 

physical, optical, environmental, and meteorological parameters. These parameters in 

conjugation with more sophisticated parameters regarding features of snow layers on both 

surfaces and the surrounding area of PV modules such as extinction and reflection features 

of snow as well as type, depth, and snow-covered area on the panel’s surface are also 

correlated in the yield of snow shaded PV modules. Hence, the best way to consider all 

these parameters in the calculation of PV system production is using the real data field 

information of PV system installation to develop a model that is trained to predict the 

output power of the system. This goal can be achieved by the inherent strength of machine 

learning techniques which can explore available data to identify an intelligent prediction 

model of the PV system output. For this purpose, in this thesis, a supervised learning 

approach is implemented using machine learning algorithms for a multiple univariate 

regression problem with 9 attributes including meteorologically recorded parameters such 

as humidity, wind speed, pressure, UV index, and ambient temperature, as well as on-site 

sensors to measure solar irradiance, back surface modules temperature, depth and snow-

covered area for different shading patterns and a numeric target variable which is the 

maximum output power. In order to develop prediction models, different algorithms are 

used, as described in the following sections.   
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A. Decision trees 

 

Among the predictive modeling algorithms used in machine learning, decision trees 

are popular ones that give intelligibility and simplicity. This decision support tool that 

works based on the conditional control statements is presented as a tree-like graph that 

consists of a root node, non-leaf nodes, leaf nodes, and branches. In the flowchart-like 

structure of this learning algorithm, the root node is the starting point of the algorithm that 

contains all data records of the training dataset and it is split into two or more sub-nodes. In 

each non-leaf node, a test is conducted on an attribute to split at a certain value of the 

particular attribute, each branch represents the outcome of the test, and each leaf node 

represents a decision taken about a target value after computing all attributes. According to 

the problem objective, the cost function (RMSE in this thesis) is minimized when the best 

choice of attribute and split criterion is obtained. Decision trees are called as regression 

trees in the cases where the target variable take continuous values (typically real numbers) 

[141]. The path from the root to the decision about each attribute in branches and to the 

conclusions about the attribute’s target values in the leaves represents regression rules.   

 

The decision tree is built by implementing the Recursive Binary Splitting method which 

divides the records of every attribute 𝑗 into two regions 𝑅1 and 𝑅2 : 

 

𝑅1 (𝑗, 𝑠) =  {𝑥│𝑥𝑗 ≤ 𝑠}𝑎𝑛𝑑 𝑅2 (𝑗, 𝑠) =  {𝑥│𝑥𝑗 > 𝑠} 

  

 (33) 

 

where 𝑥 represents an attribute i.e. humidity, wind speed, pressure, UV index, ambient and 

back-surface module temperature, irradiance, depth and snow-covered area as the input 

parameters for the case of this prediction model. When the values of 𝑗 (the feature number) 

and 𝑠 (the value of the feature at the splitting point) are specified, the Residual Sum of 

Squares (RSS) of the tree is minimized as follows [142]: 

  

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦𝑅1
)2

𝑥𝑖∈𝑅1

+ ∑ (𝑦𝑖 − 𝑦𝑅2
)2

𝑥𝑖∈𝑅2

 

 

  

(34) 

 

where 𝑦𝑖 and 𝑦
𝑅1

 represent the target value of data point 𝑖 and the average target value of 

region 𝑅, respectively. The best division criterion can be determined when 𝑅SS is 
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calculated for different values of 𝑗 and 𝑠. Then, regarding the specified division criterion 

the whole dataset is split into two separate sets in two sub-nodes. For the other sub-nodes 

the same procedure is followed to reach the desired tree depth. In the context of this 

prediction model, the maximum depth of the tree is considered as one of the 

hyperparameters of learning algorithm which is optimized over a validation set  (i.e. 25% of 

training dataset). 

 

B. Gradient Boosted Tree 
 

Gradient boosted trees are based on the concept of regression trees and build a model 

in a stage-wise fashion like other boosting methods [143]. In the first stage, a regression 

tree is built based on the training data. Then, the training data is fed into the developed 

model and the predicted values of the target variable are obtained. The measured target 

value and the predicted target value are then compared to calculate the first stage error 

corresponding to each data record 𝑖 of the training data as follows: 

 

Err1 = M𝑖 − 𝑃𝑖
1, ∀ 𝑖 ∈ 𝑁 

 

 (35) 

where Mi, Pi
1, Err1, and N are the measured target value, the predicted target value in first 

stage, the error of prediction in the first stage, and the number of data records in the training 

data, respectively. The second stage is implemented by feeding the training data to the new 

tree to obtain the prediction of first stage error values which are used to find the new 

prediction for target value in the second stage as follows: 

 

𝑃𝑖
2 = 𝑃𝑖

1 + (𝐿𝑅 × 𝑃𝑖
Err1), ∀ 𝑖 ∈ 𝑁 

 

 (36) 

 

where 𝑃𝑖
2, 𝑃𝑖

Err1, and LR are the predicted target value in second stage, the predicted error 

value in second stage, and the learning rate (usually selected from the range between zero 

and one), respectively. The two stages defined by equations (35) and (36) are repeated 

iteratively to calculate a new prediction for the target value until the stopping criterion is 

satisfied. In this work, the number of iterations is considered as the stopping criterion to 

end up the iteration of this algorithm.  

https://en.wikipedia.org/wiki/Boosting_(machine_learning)
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C. Random Forest  
 

Random forests were introduced to correct the overfitting that can occur with the use 

decision trees and therefore the main concept of these both algorithms is the same [143]. 

Random forests algorithm is an ensemble learning algorithm built on a series of regression 

decision trees. In order to build regression trees for the samples, all attributes or a subset of 

attributes with more than one member can be used. The model is trained using several 

sample datasets randomly extracted from the training data. After training the individual 

regression trees of the forest, the test dataset is fed into the trained model to obtain the 

predicted target values using each tree. The final prediction result is computed as the mean 

prediction of target values over the individual trees through averaging the outputs of all 

trees for each data point in the test data. 

 

D. Artificial Neural Network 
 

Artificial neural networks (ANNs) consist of neuron nodes, called processing units, 

interconnected like a network designed to simulate the way the human brain analyzes and 

processes information [144]. The self-learning capability of ANNs enables forming 

probability-weighted associations between the input and output layers, as well as (in most 

cases) one or more hidden layers to find a pattern in data set. The behavior of the 

processing unit can be characterized as the following function [141]: 

 

𝑜 = 𝑓(𝑛𝑒𝑡𝑗) = 𝑓(∑𝑤𝑗,𝑖𝑥𝑖

𝑝

𝑖=0

) 
  

(36) 

 

where 𝑓 denotes the activation function which determines the output  o , 𝑥𝑖  is the ith input 

between  P different inputs of the unit and  𝑤𝑗,𝑖 is the connection weight of input 𝑖 in unit 𝑗. 

The ANN model should be constructed by first defining the number of inputs, outputs, and 

hidden layers as well as the activation function and type of the model including feed-

forward ANN or recurrent ANN. Second, the connection weight should be determined. The 

back-propagation learning method is used for this purpose. This method searches for a set 

of connection weights (including biases) that minimizes the output error. The search, which 
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is called the gradient descent search, changes the 

weights in the direction of reducing the output error after passing the inputs through the 

model in iterations.  

 

Two different scenarios for implementing the prediction model have been designed to 

evaluate the effect of different input variables for this prediction model.  

 

Scenario 1) In the first scenario of the prediction model, the main input variables such as 

irradiance, module temperatures, snow-covered area, and snow depth have been considered 

(lower left corner of Figure 39). The best results of this scenario for different algorithms are 

numerically and visually reported in this section. The identified optimal values of the 

hyperparameters through grid search and the RMSE of the models are tabulated in Table 11 

for two different generations of PV cells, namely the crystalline based (ET-M53695) and 

the thin film based (FS275) technologies. The comparative results between the real and 

predicted values of system output are plotted in Figures 40 and 41 for the first scenario, for 

the two technologies, respectively.   
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Table 12. Parameters and numerical results for the selected models for scenario 1.  

 Case 1  (75%-25% holdout) Case 2  (4-fold cross-validation) 

Technology  Model  RMSE parameters RMSE parameters 

 

 

 

Monocrystalline 

 

(ET-M53695) 

 

Decision 

trees 

 

 

0.043 

 

maximal_depth     = 4   
minimal_leaf_size = 3   
apply_prepruning   
prepruning_alternatives = 0 

 

 

 

0.073 

 

maximal_depth     = 38 

minimal_leaf_size = 2 

apply_prepruning 

prepruning_alternatives = 60 
 

 

Random 

forest 

 

0.053 

 

Num_of_trees   = 340 

maximal_depth     = 15 

apply_prepruning   
 

 

0.045 

 

number_of_trees   = 422 

maximal_depth     = 12 

apply_prepruning   
 

Gradient 

boosted 

trees 

 

0.071 

 

Num_of_trees  = 7 

maximal_depth    =3 

learning_rate    = 0.7 
 

 

0.048 

 

Num_of_trees  = 47 

maximal_depth    = 7 

learning_rate    = 0.33 
 

 

ANN 

 

0.048 

training_cycles = 477  

learning_rate = 0.0185 

Num hidden layer = 2 

 

0.087 

 

training_cycles = 481  

learning_rate = 0.0169 

Num hidden layer = 2 

 

 

Thin film 

 

(FS275) 

 

 

 

 

 

Decision 

trees 

 

0.081 

 

maximal_depth     = 5   
minimal_leaf_size = 4   
apply_prepruning   
prepruning_alternatives = 0 

 

 

0.0133 

 

maximal_depth     = 10 

minimal_leaf_size = 4 

apply_prepruning 

prepruning_alternatives = 10 
 

 

Random 

forest 

 

0.116 

 

Num_of_trees   = 2 

maximal_depth     = 45 

apply_prepruning   
 

 

0.080 

 

Num_of_trees   = 247 

maximal_depth     = 15 

apply_prepruning   
 

Gradient 

boosted 

trees 

 

0.110 

 

Num_of_trees  = 41 

maximal_depth    = 5 

learning_rate    = 1.0 
 

 

0.046 

 

Num_of_trees  = 110 

maximal_depth    = 6 

learning_rate    = 0.37 
 

 

   ANN 

 

0.077 

 

 

training_cycles   = 55 

learning_rate   = 0.0143 

Num hidden layer = 2 2   

 

0.161 

 

training_cycles   = 89 

learning_rate   = 0.0147 

Num hidden layer = 2 2    
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(a) 

 
(b) 

 

(c) 

 

(d) 

Figure 40. Comparative results of 75%-25% holdout in scenario 1 between the real and prediction of 

maximum output power of snow covered modules of Monocrystalline technology for the different models:  a) 

decision trees, b) random forest, c) gradient boosted trees, and d) ANN. 
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(a) 

 
(b) 

 

(c) 

 
 

(d) 

Figure 41. Comparative results of 75%-25% holdout in scenario 1 between the real and prediction of 

maximum output power of snow covered modules of thin film technology for the different models: a) 

decision trees, b) random forest, c) gradient boosted trees, and d) ANN. 
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By comparing the results of different models in this first scenario, it can be observed 

that the decision tree model reaches the best results with a root mean square error of 0.043 

in the case of 75%-25% holdout. In the case of nested cross validation, the values of RMSE 

are higher for decision tree and ANN while these values are lower for gradient boosted tree 

and random forest in comparison with the case of 75%-25% holdout. These results are 

expected because nested cross validation offers a more accurate estimation of the real 

performance of the model (i.e. it is not biased by the specific data contained in the 

training/test dataset as the 75%-25% holdout can be). 

Scenario 2) In the second scenario, the other climatological recorded parameters such as 

humidity, ambient temperature, wind speed, UV index, and pressure have also been 

considered for implementing the prediction models (top and bottom left corners of Figure 

39). The values of chosen hyperparameters and the RMSE achieved by the four considered 

machine learning models are tabulated in Table 12 for the same two different PV 

technologies. The comparative results between the real and predicted values of system 

output are plotted respectively for the two technologies in Figures 42 and 43.    
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Table 13. Numerical results of selected models for the scenario 2. 

 Case 1  (75%-25% holdout) Case 2  (4-fold cross-validation) 

Technology  Model  RMSE parameters RMSE parameters 

 

 

 

Monocrystalline 

 

(ET-M53695) 

 

Decision 

trees 

 

 

0.034 

 

maximal_depth     = 3   
minimal_leaf_size = 2   
apply_prepruning   
prepruning_alternatives =0 

 

 

 

0.041 

 

maximal_depth     = 15 

minimal_leaf_size = 85 

apply_prepruning 

prepruning_alternatives = 0 
 

 

Random 

forest 

 

0.044 

 

Num_of_trees   = 8 

maximal_depth     = 4 

apply_prepruning   
 

 

0.049 

 

number_of_trees   = 79 

maximal_depth     = 12 

apply_prepruning   
 

Gradient 

boosted 

trees 

 

0.063 

 

Num_of_trees  = 3 

maximal_depth    = 2 

learning_rate    = 0.5 
 

 

0.052 

 

Num_of_trees  = 49 

maximal_depth    = 8 

learning_rate    = 0.23 
 

 

ANN 

 

0.041 

 

training_cycles =313  

learning_rate = 0.02 

Num hidden layer = 2 

 

0.038 

 

training_cycles = 485  

learning_rate = 0.0175 

Num hidden layer = 2 

 

 

Thin film 

 

(FS275) 

 

 

 

 

 

Decision 

trees 

 

 

0.036 

 

maximal_depth     = 4   
minimal_leaf_size = 1   
apply_prepruning   
prepruning_alternatives = 0 

 

 

 

0.101 

 

maximal_depth     = 15 

minimal_leaf_size = 7 

apply_prepruning 

prepruning_alternatives = 7 
 

 

Random 

forest 

 

0.100 

 

Num_of_trees   = 2 

maximal_depth     = 10 

apply_prepruning   
 

 

0.069 

 

Num_of_trees   = 63 

maximal_depth     = 12 

apply_prepruning   
 

Gradient 

boosted 

trees 

 

0.084 

 

Num_of_trees  = 6 

maximal_depth    = 1 

learning_rate    = 1.0 
 

 

0.051 

 

Num_of_trees  = 35 

maximal_depth    = 4 

learning_rate    = 0.45 
 

 

ANN 

 

0.051 

 

training_cycles   = 99 

learning_rate   = 0.0197 

Num hidden layer = 2 2   

 

0.063 

 

training_cycles   = 96 

learning_rate   = 0.0144 

Num hidden layer = 2 2    
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(a) 

 
(b) 

 

(c) 

 

(d) 

Figure 42. Comparative results of 75%-25% holdout in scenario 2 between the real and prediction of 

maximum output power of snow covered modules of Monocrystalline technology for the different models: a) 

decision trees, b) random forest, c) gradient boosted trees, and d) ANN. 
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(a) 

 
(b) 

 

(c) 

 

(d) 

Figure 43. Comparative results of 75%-25% holdout in scenario 2 between the real and prediction of 

maximum output power of snow covered modules of thin film technology for the different models:  a) 

decision trees, b) random forest, c) gradient boosted trees, and d) ANN. 
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According to the results of modeling in this second scenario, in the case of 75%-25% 

holdout, the prediction of maximum output power is more accurate, reaching RMSEs of 

0.034 and 0.036 for the model based on the decision trees for the monocrystalline and the 

thin film technology, respectively. These errors are respectively 0.009 and 0.045 lower for 

the two technologies than the best RMSEs achieved in the first scenario for the same 

algorithm. Moreover, the values of RMSE for the model based on the algorithm of gradient 

boosted trees and random forests are decreased by 0.008 and 0.009, respectively which 

demonstrate a good accordance between the real and predicted values in the second 

scenario. As such, the use of meteorological parameters such as humidity, ambient 

temperature, wind speed, UV index, and pressure along with on-site sensor data on the 

irradiance, back-surface module temperature, snow-covered area, and snow depth led to an 

improvement in the accuracy of prediction model. The same facts are confirmed for the 

cross validation. The best results achieved in the second scenario with RMSE values of 

0.041 and 0.038, respectively for the algorithms of decision trees and ANN are decreased 

by 0.032 and 0.049 respectively with respect to the best RMSEs achieved in the first 

scenario for the same two algorithms. The results achieved using 4-fold nested cross 

validation demonstrate a more realistic estimation of system performance because the 

dataset in not highly dependent on the composition of specific data in the training and 

testing set as in the case of 75%-25% holdout. 

 

5.2 Summary on Machine Learning Algorithms Employed for 

Prediction 

In this section of the thesis, a prediction model was proposed to estimate the power 

production of a snow shaded PV solar system for two different commercial types of PV 

technologies commonly used in North America. Different physical, optical, environmental, 

and meteorological parameters of academic PV panels located in the Université du Québec 

en Outaouais (UQO), Gatineau, Québec, Canada were recorded to predict the maximum 

power production of these solar systems for the cold months of winter 2020. The prediction 

model was implemented through the use of four machine learning algorithms including 

decision trees, gradient boosted trees, random forest, and artificial neural networks. For the 
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training and test data set, the recorded dataset was divided into two ways, including 75%–

25% holdout and cross-validation to compare the performance of prediction model. 

Moreover, two different scenarios corresponding to different combinations of input 

parameters were tested. In the first scenario, the main input parameters such as irradiance, 

module temperatures, snow-covered area, and snow depth have been just considered, while 

in the second scenario other meteorological parameters such as humidity, ambient 

temperature, wind speed, UV index, and pressure have been also involved for 

implementing the prediction models. The best results were achieved in the second scenario 

with more comprehensive meteorological inputs by adding other input parameters such as 

humidity, ambient temperature, wind speed, UV index, and pressure to the attributes. 

According to the numerical results, the model built using decision trees achieved the best 

performance in the case of 75%-25% holdout with the RMSE values of 0.034 and 0.036 

with the algorithm of decision trees for the monocrystalline and thin film technologies 

respectively. In the case of cross validation for the second scenario, the model based on 

ANN with RMSE of 0.038 for the monocrystalline technology and the model based on 

Gradient boosted trees with a RMSE of 0.051 for the thin film technology represent the best 

performance achieved. These results of the proposed prediction model demonstrate that it 

can be useful for the estimation of solar energy production in locations with a considerable 

amount of snowfall.  
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6 CONCLUSIONS  

 

6.1  Concluding Remarks   

 

The increasing world’s energy demands and environmental pollution are motivating 

the trend of energy production using the sun as one of the main renewable energy sources 

available in nature. The harvest of this inexhaustible energy source is possible by the direct 

production of electricity through PV systems. Accordingly, the research and technology 

investments are allocated to improve PV systems integration. Although the low 

maintenance, high-reliability, and noiseless operation of PV systems make them a strategic 

power supply option among the diversity of power generation sources, their electricity 

production can be greatly challenged by snowfall during cold months. Hence, the impact of 

snow on the performance of PV modules needs to be studied in depth. In addition, the 

effective use of PV panels requires reliable modeling methods, targeting to predict the 

behavior of a PV system at conditions different from those characterized by the 

manufacturer datasheet. The PV model can be used for simulating the electrical 

characteristics and dynamics of PV power plants under various meteorological conditions 

or for estimating the energy production and efficiency of a solar plant at specific locations. 

As a result, in this thesis, the main challenging problems of PV systems integration in 

different environmental conditions, especially in snowy climates, were investigated and 

categorized in the following topics: 

  1) Development of an optimized modeling method for characterizing the performance of 

PV modules under uniform snow coverage,  

  2) Development of a novel modeling technique for PV modules subjected to the 

nonuniform snow coverage,  

  3) Study of the effect of PV panels layout and snow patterns on their electrical 

characteristics, and  
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4) Development of a prediction model based on real field data coming from different PV 

technologies to estimate the maximum power production of snow-covered PV modules.  

In response to the aforementioned needs, different approaches of modeling were 

proposed and validated through simulation and experimentation. To this end, the major 

findings of this project can be summarized as follows: 

• A PV model was proposed to predict the behavior of PV modules covered with a uniform 

snow deposit. It capitalizes on the Giddings and LaChapelle theory to determine 

accurately the receiving solar radiation on the PV module surface because the albedo and 

the extinction of solar radiation are coupled based on this theory. The PSO algorithm was 

utilized in this model to update PV module parameters under different snow depths. The 

model was validated experimentally using PV modules based on different technologies, as 

well as using real data from a 12-MW PV farm. The results obtained by the proposed 

model are in a good agreement with those obtained experimentally. The model offers thus 

a great advantage in predicting electric characteristics of PV modules under different 

snow conditions, from light to heavy snowfall. The results obtained are of great 

importance as they can help to improve the electrical performance of PV systems under 

snow conditions. An empirical power loss equation has been proposed to calculate the 

snow-related power loss on the basis of climatic circumstances of PV panel exposure. The 

proposed PV model is capable of interfacing with power electronic converters and MPPT 

control techniques, allowing the simulation of whole PV plants and their interaction with 

other systems. 

• A comprehensive method was introduced for modeling the behavior of PV system under 

various patterns of shading and partial snow accretion. The primary objectives were to 

evaluate the performance of PV systems in snowy climates and to propose an accurate 

multi-zone model for PV modules covered with nonuniform snow patterns. To this end, 

an experimental modeling approach based on the single-diode-five-parameter equivalent 

circuit incorporating the Giddings and LaChapelle theory was formulated to accurately 

determine the absorbed solar radiation on the PV module surface. In addition, a PSO 

optimization algorithm was used to extract the unknown parameters considering 

environmental conditions. Then, a series of systematic experimental tests under different 
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snow patterns were carried out using different PV technologies, typically used in cold 

regions. The results obtained from the proposed model are in good agreement with those 

obtained experimentally. In addition, an equation was derived to estimate the percentage 

of power losses of PV modules. The contributions of this research formulate the 

nonuniform shading pattern for characterizing the output of PV systems partially affected 

by the snow. 

• A PV panel layout can play an important role in the productivity of a PV panel covered 

with nonuniform snow. For this purpose, a series of experiments were conducted using 

different scenarios of snow removal to emulate the partial shading coverage of snow on 

three different panels layout such as vertical, horizontal, and diagonal.  The difference in 

energy generation is more obvious for bigger snow depths and smaller snow-covered 

areas. Based on the experimental results, it can be concluded that the vertical PV panels 

layout faces the greatest power loss due to nonuniform snow accretion in both PV module 

technologies. While the diagonal layouts can be a better choice than the vertical panels 

layout, the horizontal PV module layout is the most effective layout when subjected to the 

partial snow coverage. Hence, a proper layout can reduce the negative effects of 

nonuniform snow accretion on PV power production. Through the comparison in term of 

power losses for two different technologies, although the thin film technology 

demonstrates simpler characteristics, its efficiency is lower than that of monocrystalline 

technology. This study could provide a practical vision for investigating the impacts of 

snow/ice on the electrical characteristics of a PV array. The presented analysis forms the 

basis for designing large PV arrays, in order to mitigate the influence of snow/ice on the 

energy production of PV systems.  

• The efficient and economic use of PV systems can be managed if the energy production 

for the period of time ahead is predicted. In the last part of research project, a prediction 

model of the PV system production was proposed by involving the combination of 

meteorological data and the historical output power data of the PV system under study 

during the cold months. Through the day-to-day data acquisition in the presence of 

different snow shading patterns for different technology of PV modules, the nonlinear 

effect different snow shading on the surface of panels was investigated and considered as 
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one of the input variables of the prediction model. Besides, the effective climatological 

parameters such as snow depth, humidity, pressure, UV index, and wind speed will also 

be considered in the training-based model that has not been formulated in the previous 

modeling methods. This learning-based prediction model is free of circuit-based modeling 

methods complexity and with appropriate training algorithm can predict the output energy 

production of the PV system accurately.  

 

6.2 Future Work  

Regarding the research work of this thesis, some prospective points for the future 

studies of this research are listed here:  

• Development of an advanced PV model with a hybrid version of the PSO algorithm 

to reduce the simulation time especially for the large–scale PV arrays. 

• Modeling of the tilt angle impact of PV modules on snow power losses.   

• Investigating the appropriateness of bifacial PV modules as a candidate that utilizes 

additional sunlight of backside to improve the efficiency of snowy solar systems. 

• Appropriate design of PV system to minimize snow and mismatch losses taking into 

consideration interconnection of PV panels, different arrangements of power 

electronics converters and optimal mounting angle. 

• Evaluating the PV modules lifetime and payback period in the snowy regions. 

• Developing a suitable snow removal method to alleviate the snow losses in PV sites. 

• Implementing prediction model using the hybrid algorithms of machine learning to 

improve the accuracy of the model in snowy conditions.   
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APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

119 
 

    Modeling Codes Under Uniform Snow Coverage 

 

In this section, the software implementation is presented in greater detail for PSO-

based algorithm of modeling for the first objective of thesis. This will entail a look at the 

general structure of modeling algorithm for the PV modules under uniform snow coverage 

based on the m-File codes in MATLAB environment to ensure everything operates in a 

controlled manner. 

 Objective Function   

function f=ofun(x) 

 

V=[0,0.264101968586330,0.528203937172660,…]; 

I=[7.12661538459698,7.12662441402581,…]; 

Vt=1.620068971992636; 

 for s = 1 : size(V,2) 

     og(s) = x(1)-x(2)*(exp((V(s)+I(s)*x(3))/Vt/x(4))-1)-

(V(s)+I(s)*x(3))/x(5)-I(s); 

 end  

% objective function (minimization)  

f=sqrt((1/size(V,2))*sum(og.^2)); 

 

 

 Run PSO Algorithm   

tic  

clc  

clear all  

close all  

rng default  

  

%%data sheet information of PV module 

  

Iscn = 8.21;             %Nominal short-circuit voltage [A]  

Vocn = 32.9;            %Nominal array open-circuit voltage 

[V]  

Impo = 7.61;              %Array current @ maximum power 

point [A]  

Vmpo = 26.3;             %Array voltage @ maximum power point 

[V]  

%Pmax_e = Vmp*Imp;       %Array maximum output peak power [W]  
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Kv = -0.123;            %Voltage/temperature coefficient 

[V/K]  

Ki = 0.0032;              %Current/temperature coefficient 

[A/K]  

Ns = 54;                %Nunber of series cells 

a = 1.3; 

  

Npp= 1 ; % Number of Modules in Parallel 

Nss= 1; %Number of Modules is series 

  

Rsn=0.221; %Series resistance obtained at STc 

Rpn=415.405; %Parallel resistance obtained at STC 

  

C0=1.006; 

C1=-0.006; 

C2=-0.117; 

C3=-11.082; 

  

  

%% PV model calculation  

  

Gn = 1000;               %Nominal irradiance [W/m^2] @ 25oC 

Tn = 25 + 273.15;        %Nominal operating temperature [K] 

  

% Enter Arbitrary Insolation and Temperature 

T = 75 + 273.15; 

G = 851;  

  

Geff = G/Gn; 

  

k = 1.3806503e-23;   %Boltzmann [J/K] 

q = 1.60217646e-19;  %Electron charge [C] 

  

Vtn = Ns * k * Tn / q;           %Thermal junction voltage 

(nominal)  

Vt  = Ns * k * T  / q;           %Thermal junction voltage 

(current temperature) 

  

  

%Updating Vmp & Imp for different temperature and insolation 

level 

  

Imp = (C0*Geff+C1*Geff^2)*(Impo+Ki*(T-Tn)); 

Vmp = Vmpo + C2*a*Vt*log(Geff) + (C3*(a*Vt*log(Geff))^2)/Ns + 

Kv*(T-Tn); 

Pmax_e = Vmp*Imp 

dT = T-Tn; 
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Voc = Vocn + a * Vt * log(Geff) + Kv * dT; 

Isc = (Iscn + Ki*dT) *G/Gn;       % Actual short-circuit 

current 

 

%% PROGRAM STARTS HERE 

  

% Modeling algorithm - here we are obtaining the PV model 

parameters 

  

% Reference values of Rs and Rp   

% These values are not used in the modeling proces but they 

will  

% be displayed at the end. 

  

dT = T-Tn; 

  

Voc = Vocn + a * Vt * log(Geff) + Kv * dT; 

  

Ion = ((Vocn-Rsn*Iscn)/Rpn-Iscn)/(exp(Rsn*Iscn/(Vtn*a))-

exp(Vocn/Vtn/a)); 

Ipvn = Iscn + Ion*(exp(Rsn*Iscn)/(a*Vtn)-1) + Rsn*Iscn/Rpn; 

  

%Ipvn = (Rs+Rp)/Rp * Iscn;         % Nominal light-generated 

current 

Ipv = (Ipvn + Ki*dT) *G/Gn;       % Actual light-generated 

current  

Isc = (Iscn + Ki*dT) *G/Gn;       % Actual short-circuit 

current 

Io = (Ipv-Voc/Rp)/(exp(Voc/(a * Vt))-1); % Actual diode 

saturation current 

 

Rs_max = (Voc - Vmp)/ Imp; 

Rp_min = Vmp/(Isc-Imp) - Rs_max; 

  

% Initial guesses of Rp and Rs 

Rs = 0; 

Rp = Rp_min; 

 

 

%% experimental I-V data  

 

V=[0,0.264101968586330,0.528203937172660,…]; 

I=[7.12661538459698,7.12662441402581,…]; 

Vt=1.620068971992636; 

 

% bounds of variables for PSO optimization  
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LB=[Ipv Ion 0 1 Rp_min];         %lower bounds of variables  

UB=[Ipvn Io Rs_max 1.5 Rp];      %upper bounds of variables  

 

% pso parameters values  

m=5;            % number of variables  

n=100;          % population size  

wmax=0.9;       % inertia weight  

wmin=0.4;       % inertia weight  

c1=2;           % acceleration factor  

c2=2;           % acceleration factor 

%   constriction factor for inertia weight 

% kappa = 1; 

% phi1 = 2.05; 

% phi2 = 2.05; 

% phi = phi1 + phi2; 

% chi = 2*kappa/abs(2-phi-sqrt(phi^2-4*phi)); 

% w = chi;             % Intertia Coefficient 

% c1 = chi*phi1;       % Personal Acceleration Coefficient 

% c2 = chi*phi2;       % Social Acceleration Coefficient 

% wdamp=0.9; 

  

  

% pso main program-------------------------------------------

---------start  

maxite=10000;    % set maximum number of iteration   

maxrun=20;      % set maximum number of runs need to be  

for run=1:maxrun  

    run  

    % pso initialization-------------------------------------

---------start  

    for i=1:n  

        for h=1:m  

            x0(i,h)=round(LB(h)+rand()*(UB(h)-LB(h)));  

        end  

    end  

    x=x0;       % initial population  

    v=0.1*x0;   % initial velocity 

     

% objective function (minimization)  

     

    for i=1:n  

        f0(i,1)=ofun(x0(i,:));  

    end  

    [fmin0,index0]=min(f0);      

    pbest=x0;               % initial pbest  

    gbest=x0(index0,:);     % initial gbest  
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    % pso initialization-------------------------------------

-----------end   

  

    % pso algorithm------------------------------------------

---------start  

    ite=1;      

    tolerance=1;  

    while ite<=maxite && tolerance>10^-12  

          

        w=wmax-(wmax-wmin)*ite/maxite; % update inertial 

weight  

           

        % pso velocity updates  

        for i=1:n  

            for h=1:m  

                v(i,h)=w*v(i,h)+c1*rand()*(pbest(i,h)-

x(i,h))...  

                        +c2*rand()*(gbest(1,h)-x(i,h));  

            end  

        end  

   

        % pso position update  

        for i=1:n  

            for h=1:m  

                x(i,h)=x(i,h)+v(i,h);  

            end  

        end  

   

        % handling boundary violations  

        for i=1:n  

            for h=1:m  

                if x(i,h)<LB(h)  

                    x(i,h)=LB(h);  

                elseif x(i,h)>UB(h)  

                    x(i,h)=UB(h);  

                end  

            end  

        end  

   

        % evaluating fitness  

        for i=1:n  

            f(i,1)=ofun(x(i,:));  

        end  

   

        % updating pbest and fitness  

        for i=1:n  

            if f(i,1)<f0(i,1)  
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                pbest(i,:)=x(i,:);  

                f0(i,1)=f(i,1);  

            end  

        end  

   

        [fmin,index]=min(f0);   % finding out the best 

particle  

        ffmin(ite,run)=fmin;    % storing best fitness  

        ffite(run)=ite;         % storing iteration count  

   

        % updating gbest and best fitness  

        if fmin<fmin0  

            gbest=pbest(index,:);  

            fmin0=fmin;  

        end      

   

        % calculating tolerance  

        if ite>100;  

            tolerance=abs(ffmin(ite-100,run)-fmin0);  

        end  

   

        % displaying iterative results  

        if ite==1  

            disp(sprintf('Iteration    Best particle    

Objective fun    inertia weight '));  

        end  

        disp(sprintf('%8g  %8g          %8.4f           

%8.4f',ite,index,fmin0,w));      

        ite=ite+1; 

%         w = w * wdamp; 

         

    end  

    % pso algorithm------------------------------------------

-----------end  

    gbest;  

    fvalue=ofun(gbest);  

    fff(run)=fvalue;  

    rgbest(run,:)=gbest;  

    disp(sprintf('--------------------------------------'));  

end  

% pso main program-------------------------------------------

-----------end  

disp(sprintf('\n'));  

disp(sprintf('***********************************************

**********'));  

disp(sprintf('Final Results-----------------------------'));  

[bestfun,bestrun]=min(fff)  
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best_variables=rgbest(bestrun,:)  

disp(sprintf('****-----<<<Extraction Of PV cell  

Parameters>>>---<<one diode>>--***')); 

 disp(sprintf('   Ipv    io     Rs     a      Rp ')); 

 disp(sprintf('------------------------------------')); 

 disp(sprintf('  %8.9f  %8.9f  %f   %f  %f 

',rgbest(bestrun,:))) 

disp(sprintf('***********************************************

**********')); 

toc 

Ipv=rgbest(bestrun,1); 

Io=rgbest(bestrun,2); 

Rs=rgbest(bestrun,3); 

a=rgbest(bestrun,4); 

Rp=rgbest(bestrun,5); 

  

% Solving the I-V equation for several (V,I) pairs by 

extracted PV parameters  

  

  

Ix= zeros(1,size(V,2));    % Current vector 

  

for h = 1 : size(V,2) %Calculates for all voltage values  

     

% Solves g = I - f(I,V) = 0 with Newton-Raphson 

   

g(h) = Ipv-Io*(exp((V(h)+Ix(h)*Rs)/Vt/a)-1)-

(V(h)+Ix(h)*Rs)/Rp-Ix(h); 

   

while (abs(g(h)) > 0.0001) 

       

g(h) = Ipv-Io*(exp((V(h)+Ix(h)*Rs)/Vt/a)-1)-

(V(h)+Ix(h)*Rs)/Rp-Ix(h); 

glin(h) = -Io*Rs/Vt/a*exp((V(h)+Ix(h)*Rs)/Vt/a)-Rs/Rp-1; 

I_(h) = Ix(h) - g(h)/glin(h); 

Ix(h) = I_(h);    

   

end   

  

end % for h = 1 : size(V,2) 

  

  

% Calculates power using the I-V equation 

  P = (Ipv-Io*(exp((V+I.*Rs)/Vt/a)-1)-(V+I.*Rs)/Rp).*V; 

%   P = I.*V; 

   

  Px = (Ipv-Io*(exp((V+Ix.*Rs)/Vt/a)-1)-(V+Ix.*Rs)/Rp).*V; 
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  Pmax_m = max(P); 

   

   

   

%% Outputs Curves  

  

 % I-V curve 

 figure(1)  

 grid on 

 hold on  

 title('Adjusted I-V curve'); 

 xlabel('V [V]'); 

 ylabel('I [A]'); 

 xlim([0 max(V)*1.1]); 

 ylim([0 max(I)*1.1]); 

 plot(V,I,'LineWidth',3,'Color','r')  

 

plot(V,Ix,'pentagram','LineWidth',2,'MarkerSize',7,'Color','b

')  

 plot([0 Vmp Voc ],[Isc Imp 0 

],'o','LineWidth',2,'MarkerSize',7,'Color','c')  

  

% P-V curve 

 figure(2)  

 grid on 

 hold on  

 title('Adjusted P-V curve'); 

 xlabel('V [V]'); 

 ylabel('P [W]'); 

 xlim([0 Vocn*1.1]); 

 ylim([0 Vmp*Imp*1.1]);   

 plot(V,P,'LineWidth',3,'Color','r')  

 

plot(V,Px,'diamond','LineWidth',2,'MarkerSize',7,'Color','b')  

 plot([0 Vmp Voc ],[0 Pmax_e 0 

],'o','LineWidth',2,'MarkerSize',7,'Color','c') 

  

  

  

% PSO convergence characteristic 

figure(3) 

grid on 

hold on 

plot(ffmin(1:ffite(bestrun),bestrun),'LineWidth',2,'Color','r

');  

xlabel('Iteration');  

ylabel('Fitness function value');  
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title('PSO convergence characteristic')  

%############################################################

############## END  
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   Modeling Codes Under Nonuniform Snow Coverage 

In this section, the software implementation is presented in greater detail for PSO-

based algorithm of modeling for the second objective of thesis. This will entail a look at the 

general structure of modeling algorithm for the PV modules under nonuniform snow 

coverage based on the m-File codes in MATLAB environment to ensure everything 

operates in a controlled manner.  

 

C.1     Multi-objective Function  

function f=o1fun(x1) 

 

V=[0    4.784671    4.784671    4.784671,…]; 

I=[4.984672 4.984672    4.984672    4.98467,…]; 

Vt=1.3635; 

cp=97; 

cp2=109; 

 

  for s = 1 : cp 

   og(s)= x1(1)-x1(2)*(exp((V(s)+I(s)*x1(3))/Vt/x1(4))-1)-

(V(s)+I(s)*x1(3))/x1(5)-I(s); 

   

  end 

 f=sqrt((1/cp)*sum(og.^2)); 

end 

 

function f=o2fun(x2) 

V=[0    4.784671    4.784671    4.784671,…]; 

I=[4.984672 4.984672    4.984672    4.98467,…]; 

Vt=1.3635; 

 

cp=97; 

cp2=109; 

  for s = cp : cp2 

   og(s)= x2(1)-x2(2)*(exp((V(s)+I(s)*x2(3))/Vt/x2(4))-1)-

(V(s)+I(s)*x2(3))/x2(5)-I(s); 

   

  end 

 f=sqrt((1/(size(V,2)-cp))*sum(og.^2)); 

end 
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function f=o3fun(x3) 

V=[0    4.784671    4.784671    4.784671,…]; 

I=[4.984672 4.984672    4.984672    4.98467,…]; 

Vt=1.3635; 

 

cp=97; 

cp2=109; 

  for s = cp2 : size(V,2) 

   og(s)= x3(1)-x3(2)*(exp((V(s)+I(s)*x3(3))/Vt/x3(4))-1)-

(V(s)+I(s)*x3(3))/x3(5)-I(s); 

   

  end 

 f=sqrt((1/(size(V,2)-cp))*sum(og.^2)); 

end 

 

C.2 Run PSO Algorithm   

 

tic  

clc  

clear all  

close all  

rng default  

  

%%data sheet information of PV module 

Iscn = 9.12;             %Nominal short-circuit voltage [A]  

Vocn = 37.5;            %Nominal array open-circuit voltage 

[V]  

Impo = 8.56;              %Array current @ maximum power 

point [A]  

Vmpo = 30.4;             %Array voltage @ maximum power point 

[V]  

%Pmax_e = Vmp*Imp;       %Array maximum output peak power [W]  

Kv = -0.31e-2;            %Voltage/temperature coefficient 

[V/K]  

Ki = 0.41e-2;              %Current/temperature coefficient 

[A/K]  

Ns = 60;                %Nunber of series cells 

a = 1.5; 

  

Npp= 1 ; % Number of Modules in Parallel 

Nss= 1; %Number of Modules is series 

  

Rsn=0.221; %Series resistance obtained at STc 

Rpn=415.405; %Parallel resistance obtained at STC 
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C0=1.006; 

C1=-0.006; 

C2=-0.117; 

C3=-11.082; 

  

  

%% PV model calculation  

  

Gn = 1000;               %Nominal irradiance [W/m^2] @ 25oC 

Tn = 25 + 273.15;        %Nominal operating temperature [K] 

  

% Enter Arbitrary Insolation and Temperature 

T = -9.43388889 + 273.15; 

G = 690.3;  

  

Geff = G/Gn; 

  

k = 1.3806503e-23;   %Boltzmann [J/K] 

q = 1.60217646e-19;  %Electron charge [C] 

  

Vtn = Ns * k * Tn / q;           %Thermal junction voltage 

(nominal)  

Vt  = Ns * k * T  / q;           %Thermal junction voltage 

(current temperature) 

  

  

%Updating Vmp & Imp for different temperature and insolation 

level 

  

Imp = (C0*Geff+C1*Geff^2)*(Impo+Ki*(T-Tn)); 

Vmp = Vmpo + C2*a*Vt*log(Geff) + (C3*(a*Vt*log(Geff))^2)/Ns + 

Kv*(T-Tn); 

Pmax_e = Vmp*Imp 

dT = T-Tn; 

  

Voc = Vocn + a * Vt * log(Geff) + Kv * dT; 

Isc = (Iscn + Ki*dT) *G/Gn;       % Actual short-circuit 

current 

  

%% experimental I-V data   

V=[0    4.784671    4.784671    4.784671,…]; 

I=[4.984672 4.984672    4.984672    4.98467,…]; 

Vt=1.3635; 
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% cp=size(V,2); 

cp=97; 

cp2=109; 

  

LB1=[3 2.0114e-9 0.0260 0.3039 500];  %lower bounds of 

variables  

UB1=[5 11e-9 0.5 2 1000];             %upper bounds of 

variables  

  

LB2=[0.1 1.434e-16 0.099 0.5 100];   %lower bounds of 

variables  

UB2=[1 11e-16 1 2 500];              %upper bounds of 

variables  

  

LB3=[0.1 1.434e-16 0.099 0.5 100];  %lower bounds of 

variables  

UB3=[1 11e-16 1 2 500];             %upper bounds of 

variables  

  

% pso parameters values  

m=5;            % number of variables  

n=100;          % population size  

wmax=0.9;       % inertia weight  

wmin=0.4;       % inertia weight  

c1=2;           % acceleration factor  

c2=2;           % acceleration factor 

%   constriction factor for inertia weight 

% kappa = 1; 

% phi1 = 2.05; 

% phi2 = 2.05; 

% phi = phi1 + phi2; 

% chi = 2*kappa/abs(2-phi-sqrt(phi^2-4*phi)); 

% w = chi;             % Intertia Coefficient 

% c1 = chi*phi1;       % Personal Acceleration Coefficient 

% c2 = chi*phi2;       % Social Acceleration Coefficient 

% wdamp=0.9; 

  

  

% pso main program-------------------------------------------

---------start  

maxite=10000;    % set maximum number of iteration   

maxrun=50;      % set maximum number of runs need to be  

for run=1:maxrun  

    run  

    % pso initialization-------------------------------------

---------start  

    for i=1:n  
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        for h=1:m  

            x1_0(i,h)=round(LB1(h)+rand()*(UB1(h)-LB1(h))); 

            x2_0(i,h)=round(LB2(h)+rand()*(UB2(h)-LB2(h)));  

            x3_0(i,h)=round(LB3(h)+rand()*(UB3(h)-LB3(h)));  

        end  

    end  

    x1=x1_0;       % initial population  

    v1=0.1*x1_0;   % initial velocity 

    x2=x2_0;       % initial population  

    v2=0.1*x2_0;   % initial velocity 

    x3=x3_0;       % initial population  

    v3=0.1*x3_0;   % initial velocity 

% objective function (minimization)  

     

    for i=1:n  

        f1_0(i,1)=o1fun(x1_0(i,:)); 

        f2_0(i,1)=o2fun(x2_0(i,:)); 

        f3_0(i,1)=o3fun(x3_0(i,:)); 

    end  

    [f1min0,index1_0]=min(f1_0);      

    p1best=x1_0;               % initial pbest  

    g1best=x1_0(index1_0,:);     % initial gbest 

    

    [f2min0,index2_0]=min(f2_0);      

    p2best=x2_0;               % initial pbest  

    g2best=x2_0(index2_0,:);     % initial gbest 

     

    [f3min0,index3_0]=min(f3_0);      

    p3best=x3_0;               % initial pbest  

    g3best=x3_0(index3_0,:);     % initial gbest 

     

    % pso initialization-------------------------------------

-----------end   

  

    % pso algorithm------------------------------------------

---------start  

    ite=1;      

    tolerance1=1; 

     tolerance2=1; 

     tolerance3=1; 

    while ite<=maxite && tolerance1>10^-12 && tolerance2>10^-

12 && tolerance2>10^-12 

          

        w=wmax-(wmax-wmin)*ite/maxite; % update inertial 

weight  

           

        % pso velocity updates  
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        for i=1:n  

            for h=1:m  

                v1(i,h)=w*v1(i,h)+c1*rand()*(p1best(i,h)-

x1(i,h))...  

                        +c2*rand()*(g1best(1,h)-x1(i,h));  

                     

                v2(i,h)=w*v2(i,h)+c1*rand()*(p2best(i,h)-

x2(i,h))...  

                        +c2*rand()*(g2best(1,h)-x2(i,h));  

             

               v3(i,h)=w*v3(i,h)+c1*rand()*(p3best(i,h)-

x3(i,h))...  

                        +c2*rand()*(g3best(1,h)-x3(i,h));  

            

            end  

        end  

   

        % pso position update  

        for i=1:n  

            for h=1:m  

                x1(i,h)=x1(i,h)+v1(i,h); 

                x2(i,h)=x2(i,h)+v2(i,h); 

                x3(i,h)=x3(i,h)+v3(i,h); 

            end  

        end  

   

        % handling boundary violations  

        for i=1:n  

            for h=1:m  

                if x1(i,h)<LB1(h)  

                    x1(i,h)=LB1(h);  

                elseif x1(i,h)>UB1(h)  

                    x1(i,h)=UB1(h);  

                end  

            end  

        end 

        % handling boundary violations     

        for i=1:n  

            for h=1:m  

                if x2(i,h)<LB2(h)  

                    x2(i,h)=LB2(h);  

                elseif x2(i,h)>UB2(h)  

                    x2(i,h)=UB2(h);  

                end  

            end  

        end 

        % handling boundary violations     
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        for i=1:n  

            for h=1:m  

                if x3(i,h)<LB3(h)  

                    x3(i,h)=LB3(h);  

                elseif x3(i,h)>UB3(h)  

                    x3(i,h)=UB3(h);  

                end  

            end  

        end 

   

        % evaluating fitness  

        for i=1:n  

            f1(i,1)=o1fun(x1(i,:)); 

            f2(i,1)=o2fun(x2(i,:)); 

            f3(i,1)=o3fun(x3(i,:)); 

        end  

   

        % updating p1best and fitness  

        for i=1:n  

            if f1(i,1)<f1_0(i,1)  

                p1best(i,:)=x1(i,:);  

                f1_0(i,1)=f1(i,1);  

            end  

        end 

         

         % updating p2best and fitness  

        for i=1:n  

            if f2(i,1)<f2_0(i,1)  

                p2best(i,:)=x2(i,:);  

                f2_0(i,1)=f2(i,1);  

            end  

        end 

         

        % updating p2best and fitness  

        for i=1:n  

            if f3(i,1)<f3_0(i,1)  

                p3best(i,:)=x3(i,:);  

                f3_0(i,1)=f3(i,1);  

            end  

        end 

   

        [f1min,index1]=min(f1_0);   % finding out the best 

particle  

        ff1min(ite,run)=f1min;    % storing best fitness  

        ff1ite(run)=ite;         % storing iteration count  

     %%%%%%%%%%%%%%  
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        [f2min,index2]=min(f2_0);   % finding out the best 

particle  

        ff2min(ite,run)=f2min;    % storing best fitness  

        ff2ite(run)=ite;         % storing iteration count  

     %%%%%%%%%%%%%%%%%%%%%  

        [f3min,index3]=min(f3_0);   % finding out the best 

particle  

        ff3min(ite,run)=f3min;    % storing best fitness  

        ff3ite(run)=ite;         % storing iteration count  

   

        % updating gbest and best fitness 1 

        if f1min<f1min0  

            g1best=p1best(index1,:);  

            f1min0=f1min;  

        end      

     

        % updating gbest and best fitness 2 

        if f2min<f2min0  

            g2best=p2best(index2,:);  

            f2min0=f2min;  

        end    

           % updating gbest and best fitness 2 

        if f3min<f3min0  

            g3best=p3best(index3,:);  

            f3min0=f3min;  

        end   

   

        % calculating tolerance  

        if ite>100;  

            tolerance1=abs(ff1min(ite-100,run)-f1min0);  

        end  

        if ite>100;  

            tolerance2=abs(ff2min(ite-100,run)-f2min0);  

        end  

        if ite>100;  

            tolerance3=abs(ff3min(ite-100,run)-f3min0);  

        end 

        % displaying iterative results  

        if ite==1  

         disp(sprintf('Iteration  Best particle1  

Objectivefun1  Best particle2   Objectivefun2  Best particle3   

Objectivefun3  inertia weight '));  

        end  

 disp(sprintf('%8g  %8g  %8.4f     %8g     %8.4f     %8.4g   

%8.4f   %8.4f' 

,ite,index1,f1min0,index2,f2min0,index3,f3min0,w));      

        ite=ite+1; 
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%         w = w * wdamp; 

         

    end  

    % pso algorithm------------------------------------------

-----------end  

    g1best;  

    f1value=o1fun(g1best);  

    fff1(run)=f1value;  

    rg1best(run,:)=g1best;  

    disp(sprintf('--------------------------------------'));  

       

    g2best;  

    f2value=o2fun(g2best);  

    fff2(run)=f2value;  

    rg2best(run,:)=g2best;  

    disp(sprintf('--------------------------------------')); 

     

    g3best;  

    f3value=o3fun(g3best);  

    fff3(run)=f3value;  

    rg3best(run,:)=g3best;  

    disp(sprintf('--------------------------------------')); 

end  

% pso main program-------------------------------------------

-----------end  

disp(sprintf('\n'));  

disp(sprintf('***********************************************

**********'));  

disp(sprintf('Final Results1-----------------------------'));  

[bestfun1,bestrun1]=min(fff1)  

best_variables1=rg1best(bestrun1,:)  

disp(sprintf('\n'));  

disp(sprintf('***********************************************

**********'));  

disp(sprintf('Final Results2-----------------------------'));  

[bestfun2,bestrun2]=min(fff2)  

best_variables2=rg2best(bestrun2,:) 

disp(sprintf('\n'));  

disp(sprintf('***********************************************

**********'));  

disp(sprintf('Final Results3-----------------------------'));  

[bestfun3,bestrun3]=min(fff3)  

best_variables3=rg3best(bestrun3,:) 

disp(sprintf('****-----<<<Extraction Of PV cell  Parameters 

zone 1>>>---<<one diode>>--***')); 

 disp(sprintf('     Ipv1         io1          Rs1          a1           

Rp1 ')); 
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 disp(sprintf('----------------------------------------------

----------------')); 

 disp(sprintf('  %8.4f  %6.11f  %8.4f   %8.3f  %8.2f 

',rg1best(bestrun1,:))) 

disp(sprintf('***********************************************

**********')); 

disp(sprintf('****-----<<<Extraction Of PV cell  Parameters 

zone 2>>>---<<one diode>>--***')); 

 disp(sprintf('     Ipv2         io2          Rs2          a2           

Rp2 ')); 

 disp(sprintf('----------------------------------------------

----------------')); 

 disp(sprintf('  %8.4f  %6.11f  %8.4f   %8.3f  %8.2f 

',rg2best(bestrun2,:))) 

disp(sprintf('***********************************************

**********')); 

disp(sprintf('****-----<<<Extraction Of PV cell  Parameters 

zone 3>>>---<<one diode>>--***')); 

 disp(sprintf('     Ipv3         io3          Rs3          a3           

Rp3 ')); 

 disp(sprintf('----------------------------------------------

----------------')); 

 disp(sprintf('  %8.4f  %6.11f  %8.4f   %8.3f  %8.2f 

',rg3best(bestrun3,:))) 

disp(sprintf('***********************************************

**********')); 

toc 

%%%%%%%%%%define parameters zone 1 

Ipv1=rg1best(bestrun1,1); 

Io1=rg1best(bestrun1,2); 

Rs1=rg1best(bestrun1,3); 

a1=rg1best(bestrun1,4); 

Rp1=rg1best(bestrun1,5); 

%%%%%%%%%%%define parameters for zone 2 

Ipv2=rg2best(bestrun2,1); 

Io2=rg2best(bestrun2,2); 

Rs2=rg2best(bestrun2,3); 

a2=rg2best(bestrun2,4); 

Rp2=rg2best(bestrun2,5); 

%%%%%%%%%%%define parameters for zone 2 

Ipv3=rg3best(bestrun3,1); 

Io3=rg3best(bestrun3,2); 

Rs3=rg3best(bestrun3,3); 

a3=rg3best(bestrun3,4); 

Rp3=rg3best(bestrun3,5); 

% Solving the I-V equation for several (V,I) pairs by 

extracted PV parameters  
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%%%%curve 1 

  

Ix1= zeros(1,cp);    % Current vector 

Vx1= zeros(1,cp);     % voltage vector 

for h = 1 : cp %Calculates for all voltage values  

     

% Solves g = I - f(I,V) = 0  

   

g1(h) = Ipv1-Io1*(exp((V(h)+Ix1(h)*Rs1)/Vt/a1)-1)-

(V(h)+Ix1(h)*Rs1)/Rp1-Ix1(h); 

   

while (abs(g1(h)) > 0.0001) 

       

g1(h) = Ipv1-Io1*(exp((V(h)+Ix1(h)*Rs1)/Vt/a1)-1)-

(V(h)+Ix1(h)*Rs1)/Rp1-Ix1(h); 

g1lin(h) = -Io1*Rs1/Vt/a1*exp((V(h)+Ix1(h)*Rs1)/Vt/a1)-

Rs1/Rp1-1; 

I_1(h) = Ix1(h) - g1(h)/g1lin(h); 

Ix1(h) = I_1(h);  

Vx1(h) = V(h); 

end 

  

end % for h = 1 : cp 

  

% Solving the I-V equation for several (V,I) pairs by 

extracted PV parameters  

%%%%curve 2 

  

Ix2= zeros(1,cp2-cp);    % Current vector 

Vx2= zeros(1,cp2-cp);     % voltage vector 

for h = cp+1 : cp2 %Calculates for all voltage values  

     

% Solves g = I - f(I,V) = 0  

   

g2(h) = Ipv2-Io2*(exp((V(h)+Ix2(h-cp)*Rs2)/Vt/a2)-1)-

(V(h)+Ix2(h-cp)*Rs2)/Rp2-Ix2(h-cp); 

   

while (abs(g2(h)) > 0.0001) 

       

g2(h) = Ipv2-Io2*(exp((V(h)+Ix2(h-cp)*Rs2)/Vt/a2)-1)-

(V(h)+Ix2(h-cp)*Rs2)/Rp2-Ix2(h-cp); 

g2lin(h) = -Io2*Rs2/Vt/a2*exp((V(h)+Ix2(h-cp)*Rs2)/Vt/a2)-

Rs2/Rp2-1; 

I_2(h) = Ix2(h-cp) - g2(h)/g2lin(h); 

Ix2(h-cp) = I_2(h);  

Vx2(h-cp) = V(h); 

end 
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end % for h = cp : cp2 

% Solving the I-V equation for several (V,I) pairs by 

extracted PV parameters  

%%%%curve 2 

  

Ix3= zeros(1,size(V,2)-cp2);    % Current vector 

Vx3= zeros(1,size(V,2)-cp2);     % voltage vector 

for h = cp2+1 : size(V,2) %Calculates for all voltage values  

     

% Solves g = I - f(I,V) = 0  

   

g3(h) = Ipv3-Io3*(exp((V(h)+Ix3(h-cp2)*Rs3)/Vt/a3)-1)-

(V(h)+Ix3(h-cp2)*Rs3)/Rp3-Ix3(h-cp2); 

   

while (abs(g3(h)) > 0.001) 

       

g3(h) = Ipv3-Io3*(exp((V(h)+Ix3(h-cp2)*Rs3)/Vt/a3)-1)-

(V(h)+Ix3(h-cp2)*Rs3)/Rp3-Ix3(h-cp2); 

g3lin(h) = -Io3*Rs3/Vt/a3*exp((V(h)+Ix3(h-cp2)*Rs3)/Vt/a3)-

Rs3/Rp3-1; 

I_3(h) = Ix3(h-cp2) - g3(h)/g3lin(h); 

Ix3(h-cp2) = I_3(h);  

Vx3(h-cp2) = V(h); 

end 

  

end % for h = cp2 : size(V,2) 

  

% Calculates power using the I-V equation 

%   P = (Ipv-Io*(exp((V+I.*Rs)/Vt/a)-1)-(V+I.*Rs)/Rp).*V; 

  P = I.*V; 

   

  Px1 = (Ipv1-Io1*(exp((Vx1+Ix1.*Rs1)/Vt/a1)-1)-

(Vx1+Ix1.*Rs1)/Rp1).*Vx1; 

  Px2 = (Ipv2-Io2*(exp((Vx2+Ix2.*Rs2)/Vt/a2)-1)-

(Vx2+Ix2.*Rs2)/Rp2).*Vx2; 

  Px3 = (Ipv3-Io3*(exp((Vx3+Ix3.*Rs3)/Vt/a3)-1)-

(Vx3+Ix3.*Rs3)/Rp3).*Vx3; 

  Pmax_m = max(P); 

   

   

   

%% Outputs Curves  

  

 % I-V curve 

 figure(1)  

 grid on 
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 hold on  

 title('Adjusted I-V curve'); 

 xlabel('V [V]'); 

 ylabel('I [A]'); 

 xlim([0 max(V)*1.1]); 

 ylim([0 max(I)*1.1]); 

 plot(V,I,'LineWidth',3,'Color','r')  

 

plot(Vx1,Ix1,'pentagram','LineWidth',2,'MarkerSize',7,'Color'

,'b') 

 

plot(Vx2,Ix2,'pentagram','LineWidth',2,'MarkerSize',7,'Color'

,'k') 

 

plot(Vx3,Ix3,'pentagram','LineWidth',2,'MarkerSize',7,'Color'

,'g') 

%%%% dot line of each zone 

 plot(Vx1,Ix1,':','LineWidth',2,'Color','b') 

 plot(Vx2,Ix2,':','LineWidth',2,'Color','k') 

 plot(Vx3,Ix3,':','LineWidth',2,'Color','g') 

%  plot([0 Vmp Voc ],[Isc Imp 0 

],'o','LineWidth',2,'MarkerSize',7,'Color','c')  

  

% P-V curve 

 figure(2)  

 grid on 

 hold on  

 title('Adjusted P-V curve'); 

 xlabel('V [V]'); 

 ylabel('P [W]'); 

 xlim([0 Vocn*1.1]); 

 ylim([0 Vmp*Imp*1.1]);   

 plot(V,P,'LineWidth',3,'Color','r')  

 

plot(Vx1,Px1,'diamond','LineWidth',2,'MarkerSize',7,'Color','

b') 

 

plot(Vx2,Px2,'diamond','LineWidth',2,'MarkerSize',7,'Color','

k')  

 

plot(Vx3,Px3,'diamond','LineWidth',2,'MarkerSize',7,'Color','

g')  

%%%%% dot line of each zone  

 plot(Vx1,Px1,':','LineWidth',2,'Color','b') 

 plot(Vx2,Px2,':','LineWidth',2,'Color','k') 

 plot(Vx3,Px3,':','LineWidth',2,'Color','g') 
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%  plot([0 Vmp Voc ],[0 Pmax_e 0 

],'o','LineWidth',2,'MarkerSize',7,'Color','c') 

  

  

  

% PSO convergence characteristic 

figure(3) 

grid on 

subplot(311) 

plot(ff1min(1:ff1ite(bestrun1),bestrun1),'LineWidth',2,'Color

','r'); 

grid on 

ylabel('Fitness function zone1 value');  

title('PSO convergence characteristic') 

subplot(312) 

plot(ff2min(1:ff2ite(bestrun2),bestrun2),'LineWidth',2,'Color

','b'); 

grid on 

xlabel('Iteration');  

ylabel('Fitness function zone2 value') 

subplot(313) 

plot(ff3min(1:ff3ite(bestrun3),bestrun3),'LineWidth',2,'Color

','m'); 

grid on 

xlabel('Iteration');  

ylabel('Fitness function zone3 value');  

  

%############################################################

############## END 
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   Specification of PV Panels and Measurement 

Equipment  

 

C.1 Canadian Solar‘s PV panel (CS6P-260P polycrystalline) 

 

Table C.1 Electrical data of CS6P-260P polycrystalline in STC. 

Specification Data 

Nominal Max. Power (Pmax)  260 W 

Opt. Operating Voltage (Vmp)  30.4 V 

Opt. Operating Current (Imp)  8.56 A 

Open Circuit Voltage (Voc)  37.5 V 

Short Circuit Current (Isc)  9.12 A 

Module Efficiency  16.16% 

Operating Temperature  -40°C ~ +85°C 

Max. System Voltage  1000 V (IEC) or 1000 V (UL) 

Module Fire Performance  TYPE 1 (UL 1703) or CLASS C 

(IEC61730) 

Max. Series Fuse Rating  15 A 

Application Classification  Class A 

Power Tolerance  0 ~ + 5 W 
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Table C.2 Mechanical data of CS6P-260P polycrystalline. 

Specification Data 

Cell Type  Poly-crystalline, 6 inch 

Cell Arrangement  60 (6 ˣ 10) 

Dimensions  1638 ˣ 982 ˣ 40 mm (64.5 ˣ 38.7 ˣ 1.57 in) 

Weight  18 kg (39.7 lbs) 

Front Cover  3.2 mm tempered glass 

Frame Material  Anodized aluminium alloy 

J-Box  IP67, 3 diodes 

Cable  4 mm2 (IEC) or 4 mm2 & 12AWG   

1000 V (UL) , 1000 mm (39.4 in)   

(650 mm (25.6 in) is optional) 

Connectors Friends PV2a (IEC), Friends PV2a (IEC), 

Friends PV2b (IEC / UL) 

Standard  

Packaging  

26 pieces, 515 kg (1135.4 lbs)  

(quantity & weight per pallet) 

Module Pieces per Container 728 pieces (40‘ HQ) 

  

Table C.3 Temperature characteristics of CS6P-260P polycrystalline. 

Specification Data 

Temperature Coefficient (Pmax)  -0.41% / °C 

Temperature Coefficient (Voc)  -0.31% / °C 

Temperature Coefficient (Isc)  0.053% / °C 

Nominal Operating Cell Temperature  45±2° 
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C.2 ET Solar‘s PV panel (ET-M53695 monocrystalline) 

 

Table C.4 Electrical data of ET-M53695 monocrystalline in STC. 

Specification Data 

Peak Power (Pmax) 95W 

Cell Efficiency 17.56% 

Module Efficiency 14.47% 

Maximum Power Voltage (Vmp) 18.52V 

Maximum Power Current (Imp) 5.13A 

Open Circuit Voltage (Voc) 22.5V 

Short Circuit Current (Isc) 5.57A 

Power Tolerance 0 to +5W 

Maximum System Voltage DC 1000V 

Normal Operating Cell Temperature 44.4±2℃ 

Series Fuse Rating (A) 10A 

Number of Bypass Diode 3 

 

Table C.5 Mechanical data of ET-M53695 monocrystalline. 

Specification Data 

Cell type 125mm x 125mm 

Number of cells 36 cells in a series 

Weight 8.23 kg (18.14lbs) 

Dimensions 1205×545×35mm 

Max Load 2400Pascals ( 50 lb/ft2) 

 

Table C.6 Temperature characteristics of ET-M53695 monocrystalline. 

Specification Data 

Temperature Coefficient (Pmax)  -0.47 %/ ℃ 

Temperature Coefficient (Voc)  -0.336 %/ ℃ 

Temperature Coefficient (Isc)  0.042 %/ ℃ 
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C.3 First Solar‘s PV panel (FS-275 thin film) 

Table C.7 Electrical data of FS-275 thin film in STC. 

Specification Data 

Nominal Power(+/-5%)      75 W 

Voltage at PMAX     68.2 V 

Current at PMAX     1.10 A 

Open Circuit Voltage     89.6 V 

Short Circuit Current ISC 1.23 A 

Maximum System Voltage VSYS      1000 (600 UL2) V 

Limiting Reverse Current IR(A)      2 A 

Maximum Series Fuse 2 

 

 

Table C.8 Mechanical data of FS-275 thin film. 

Specification Data 

Length 1200mm 

Width  600mm 

Weight 12Kg 

thickness 6.8mm 

Area 0.78m2 

Leadwire  4.0mm2, 610 mm 

Connectors Solarline 1 type connector 

Bypass diode None 

Cell type  CdS/CdTe semiconductor, 116 active cells 

Frame Material  None 

Cover Type  3.2mm heat strengthened front glass laminated to 

3.2mm tempered back glass 

Encapsulation Laminate material with edge seal 

 

Table C.9 Temperature characteristics of FS-275 thin film. 

Specification Data 

Temperature Coefficient (Pmax)  -0.25 %/ ℃ 

Temperature Coefficient (Voc)  -0.20 %/ ℃ 

Temperature Coefficient (Isc)  0.04 %/ ℃ 
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C.4 HT Instruments I-V 400 PV Panel Analyzer 

 

Table C.10 Electrical specification of HT Instruments I-V 400 at STC. 

Specification Range of Data 

VDC voltage   5.0−999.9 V 

I DC Current   0.10−15.00 A 

P MAX Maximum Power   50−9999 W 

Irradiance  1.0−100 mV 

Temperature  -20−100 ℃ 

 

Table C.11 General specification of HT Instruments I-V 400 at STC. 

Specification Data 

Features 128x128pxl custom LCD with backlight 

Memory capacity 256kbytes 

Saved data 249 curves (I-V curve test) 

internal power supply 6x1.5V alkaline batteries type LR6, AA, AM3, MN 

1500 

PC communication port optical/USB 

Dimensions (L x W x H) 235 x 165 x 75mm 

Weight (batteries included) 1.2kg 

Reference temperature 23°C - 5°C 

Working temperature 0° - 40°C 

Working humidity <80%HR 

Storage temperature (batt. not included) -10 to 60°C 

Storage humidity <80%HR 

Safety IEC/EN61010-1 

Safety of measurement accessories IEC/EN61010-031 

I-V curve measurement: IEC/EN60891 (I-V curve 

test) 

Insulation double insulation 

Pollution degree 2 

Overvoltage category CAT II 1000V DC, CAT III 300V AC to ground 

Max 1000V among inputs P1, P2, C1, c2 

Max altitude of use 2000m 
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