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SOMMAIRE  

 

La représentation réaliste des déformations d’objets 3D reste un domaine de 

recherche actif, notamment pour les déformations dont le comportement ne peut pas 

être décrit simplement en termes de paramètres d'élasticité. Plusieurs méthodes ont 

été proposées dans la littérature pour modéliser des objets déformables. La plupart de 

ces méthodes supposent que les paramètres décrivant le comportement de l'objet sont 

connus à l'avance ou que les valeurs de ces derniers sont choisies manuellement en 

les ajustant jusqu'à ce que la forme et le comportement de l'objet paraissent 

plausibles. Ce n'est pas un processus facile et ne peut pas être adopté lorsqu'une 

certaine précision du modèle est souhaitée. Ces problématiques justifient l’intérêt 

porté au développement des nouvelles méthodes qui ne tiennent pas compte des 

matériaux de l’objet, comme notre méthode proposée.  

Dans cette thèse nous proposons une nouvelle méthodologie pour la modélisation et à 

la prédiction de la déformation d’objets souples qui ne font pas d’hypothèses sur les 

matériaux de l’objet. Nous capitalisons sur les solutions d’intelligence informatique, 

notamment sur la combinaison de la technique de neural-gas avec les réseaux de 

neurones à propagation avant (feedforward neural network).  

Une nouvelle approche basée sur l'ajustement du neural-gas est proposée pour décrire 

les particularités d'une déformation sur la surface 3D sélectivement simplifiée de 

l'objet, sans avoir de connaissance des matériaux de l'objet. Une procédure 

d'alignement, un regroupement basé sur la distance et l'inspiration de 

l'échantillonnage stratifié sont des blocs de soutien supplémentaires à cette fin. 

Une série de réseaux de neurones à propagation avant (feedforward neural network) 

est ensuite entraînée pour prévoir la correspondance entre les paramètres de force 
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caractérisant l'interaction avec l'objet et la modification de la forme de l'objet, tels que 

capturés par la méthode de gaz neuronal ajusté. Cette méthode permet de prédire la 

position des nœuds gazeux neuronaux pour des amplitudes de force et des angles non 

mesurés. Des tests sur des ensembles de données ont permis de valider l’approche et 

évaluer sa performance par rapport aux travaux de la littérature.  

Cette méthode est améliorée et adaptée pour pouvoir prédire la déformation d'un objet 

en utilisant des forces importantes pouvant atteindre 100 N. Alors que, dans la 

première version de notre méthode, nous avons prédit les objets en augmentant la 

force utilisée dans l'entraînement des réseaux de neurones jusqu'à un maximum de 5 

N. Dans la première version de notre méthode, nous avons utilisé 3 réseaux par 

cluster (5 clusters pour représenter chaque objet déformé) et dans la version 

améliorée, nous avons utilisé un seul réseau pour prédire l'objet entier. De cette façon, 

nous avons réduit le nombre d'opérations et le temps de calcul est devenu beaucoup 

plus court.   

Nous avons adapté notre méthode de prédiction pour pouvoir transférer 

l'apprentissage entre plusieurs réseaux de neurones. Par cette méthode, nous pouvons 

prédire la déformation d'un petit objet en utilisant de grands objets déformés et 

prédire la déformation sur un grand objet en utilisant de petits objets déformés. Cette 

méthode fonctionne en utilisant des objets qui ont les mêmes formes et matériaux. 

Enfin, la méthode proposée est comparée à une méthode de modélisation classique 

pour la modélisation d'objets déformables, la méthode des éléments finis (FEM). 

 

 



vi 

 

ABSTRACT 

 

The realistic representation of deformations is still an active area of research, 

especially for soft, deformable objects whose behavior cannot be simply described in 

terms of elasticity parameters. Several methods have been proposed in the literature 

for modeling deformable objects. Most of these methods assume that the parameters 

describing the object behavior are known in advance or values for these parameters 

are chosen by manually tuning them until the object shape and behavior seems 

plausible. This is not an easy process and cannot be adopted when a certain accuracy 

of the model is desired. All the issues in these methods justify the interest in the 

development of new methods that do not make assumptions on the material of the 

object, such as our proposed method.  

In this thesis, we propose original solutions to the modeling and prediction of the 

deformation of soft objects that do not make assumptions about the material of the 

object and that capture its deformation behavior implicitly. For this purpose, we 

capitalize on computational intelligence solutions, namely on a combination of neural 

gas fitting with feedforward neural network prediction.   

A novel approach based on neural gas fitting is proposed to describe the 

particularities of a deformation over the selectively simplified 3D surface of the 

object, without requiring knowledge of the object material, and obtain a compact 

representation of the object shape. An alignment procedure, distance-based 

clustering, and inspiration from stratified sampling are additional supporting blocks 

for this purpose.  
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Feedforward neural networks are then trained to predict the mapping between the 

force parameters characterizing the interaction with the object that creates the 

deformation and the change in the object shape, as captured by the fitted neural gas 

network. As such, the proposed method can predict the position of neural gas nodes, 

and thus the shape of an object for force magnitudes and angles that were not 

measured. Tests on datasets made it possible to validate the approach and assess its 

performance against the work of the literature.  

This method is improved and adapted to be able to predict the deformation of an 

object using large forces up to 100 N. While in the first version of our method we 

predicted the objects by increasing the force used in training neural networks up to a 

maximum of 5 N. In the first version of our method, we used 3 networks per cluster 

(5 clusters to represent each deformed object) and in the improved version, we used a 

single network for predict the whole object. In this way, we have reduced the number 

of operations and the computation time has become much shorter. 

We adapted our prediction method to be able to transfer learning between several 

neural networks. By this method, we can predict the deformation of a small object 

using large deformed objects and predict the deformation on a large object using 

small deformed objects. This method works by using objects that have the same 

shapes and materials.  Finally, the proposed method is compared with a classical 

modeling method for deformable object modeling, the finite-element method (FEM). 
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CHAPTER 1  

1. INTRODUCTION 

Modeling and prediction of 3D deformed objects is an important problem in machine 

vision and robotics. As such, researchers have proposed methods and solutions to deal 

with it for various fields such as computer simulation and animation [1, 2], surgical 

training and treatment [3, 4, 5], robot manipulation [6, 7, 8], mechanical engineering [9] 

and in other fields [10, 11, 12]. These methods allow studying the behavior of 3D objects 

by analyzing, simulating, modeling and predicting their deformations.  

Among the methods proposed in the literature on this topic, the most popular are: mass-

spring models [13,14,15,16], finite-element (FEM) representations [9,11,12,17], surfels 

[18,19,20,21], mesh-free deformation [22,23,24,25], Green functions [26] and Non-

uniform rational basis spline NURBS [27]. In a mass-spring system, the structure of a 

mesh consists of mass points and springs: a mass is associated with each vertex and a 

spring with each edge. The method is well established, and several authors used such 

systems for modeling 3D objects. The resulting models can be simulated in real time 

[28], but these systems make different assumptions about the material of the object, such 

as its isotropy or homogeneity [29]. Moreover, the choice of the values of the parameters 

in this system is carried out manually for most of methods and the distribution of the 

mass on the vertices of the objects which must be defined a priori.  

In the finite element method (FEM), the object is divided into small finite elements, for 

example into small triangles. These elements are interconnected by nodal points situated 

on their boundaries. To characterize the state of the displacement over each element, a set 

of equilibrium equations is defined. These equilibrium equations are derived over each 

element to characterize the unified behavior of the object. The FEM models have more 

precision than the mass-spring models [30], but they are computationally expensive and 

make assumptions about the material of the object [31]. 
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Surface elements method (surfels) models an object as surfels, sample points without 

explicit connectivity.  However, the main drawback is related to the problem of surfels 

initialization when dealing with natural scenes such as cloth, printed material, textured 

surfaces such as wood, etc. [32]. These sets are usually selected to satisfy some 

equilibrium equations [33]. These use only nodes and therefore do not require 

maintaining connections between them. However, mesh-free methods are often unstable 

when treatments are required to implement derived boundary conditions [34]. Finally, in 

the NURBS (Non-uniform rational B-spline) method, the geometrical object complexity 

is decoupled to provide a low dimensional space describing realistic deformations [35]. 

However, this method has not been widely applied for representing a 3D scattered non-

ordered data set [35].  

Most of these methods assume that values of the physical parameters describing the 

object behavior (e.g., elasticity parameters) are known a priori. Therefore, they cannot be 

used in some applications in the real life as in the robotics domain. One solution is to 

estimate the physical parameters by manual tuning until satisfactory results are obtained 

and use these approximate models. While this can be used for certain types of 

applications, it cannot be employed where accuracy is expected, as an improper choice of 

parameters can lead to undesired behavior. 

Recently, learning-based approaches have been investigated for predicting 3D object 

deformation. Among these methods we can mention deep networks, feedforward neural 

networks, self-organizing maps and neural gas networks. Deep learning architectures 

require large datasets for training, accompanied by long computations, rendering them 

unusable for complicated deformed objects in real-time applications [137, 138, 141, 142]. 

Additionally, some deep learning solutions are sensitive to the object properties, such as 

its texture [138, 139], or make use of volumetric models that tend to require expansive 

computing storage [150]. In terms of methods based on feedforward neural architectures, 

the existing solutions do not predict the entire object shape; they only predict local 

deformation as 2.5D profiles [140] or predict if a point belongs or not to the surface of a 

3D object [145] and, thus, require additional computational effort to recreate the object 

shape by testing virtually the entire 3D space. Regarding neural gas networks [140, 146] 
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and self-organizing maps [148, 149], while interesting for reducing the computational 

cost, they are only appropriate for representing roughly the shape of the object (for 

example to avoid collisions for a mobile robot). Therefore, they cannot be used 

independently when accurate object models are desired. 

Moreover, to deal with realistic scenarios and real datasets (e.g., robotic applications), 

novel methods need to follow a complex sequence of steps, namely: 1) acquisition of 3D 

data, 2) cleaning and simplification of 3D data to improve computational speed, 3) choice 

of the methods for modeling and prediction, and 4) reconstruction of the predicted 3D 

object models based on the selected model. In terms of data acquisition, realistic 

deformation prediction requires experimental measurements acquired through physical 

interaction with the object in order to capture its behavior when subjected to various 

forces. These measurements can be carried out based on instrumented indentation tests. 

Such tests usually involve the monitoring of the evolution of the force (e.g., its 

magnitude, direction, and location) using a force-feedback sensor. The active indentation 

probing needs to be accompanied by a visual capture of the deformed object to collect 

geometrical data characterizing the local surface deformation as a result of the 

interaction.  

Once 3D shape data is acquired, an object model is usually constructed. Modeling of 

large and complex deformable objects requires in general more computations and also 

more memory storage which becomes fast a challenge to their deployment in real-time 

scenarios where computation and memory resources are limited (e.g., robots, drones, 

etc.). As such, several methods have been proposed for reducing the complexity of 3D 

objects by reducing the number of faces and vertices of deformed 3D objects, while 

preserving as much as possible the similarity to the non-simplified object. However, each 

of the existing techniques has specific issues. For example, random sampling can discard 

important features of an object, whereas uniform sampling requires the sampling density 

to be high uniformly over the entire surface to preserve details in the object shape. In 

sequential sampling, once the object has been sampled, one must verify whether the 

sequence of selected samples is significant or not. Stratified sampling is a technique that 

generates samples by subdividing the sampling domain into non-overlapping partitions 
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(clusters) and by sampling independently from each partition. The issue with this 

technique is to find a way to efficiently sample from each cluster. Finally, a few 

techniques have been proposed for sampling 3D objects using unsupervised techniques, 

such as neural gas and self-organizing maps. However, these depend on carefully selected 

parameters and tend to take a long computation time to properly identify the points to be 

sampled. This justifies the interest in developing novel sampling methods or novel 

sampling method combinations for 3D objects to improve not only the compactness of 

their representation, but also the quality of sampled data in terms of preserving the main 

(salient) objects geometric properties. 

1.1. Objectives 

As briefly described in the previous section, we have identified have three major 

problems in the state of the art, that we try to address in this thesis. The first problem is 

the need for an accurate prediction method that can be applied in a variety of real-world 

applications (e.g., robotics, manufacturing, etc.) involving contact forces with physical 

objects for which explicit knowledge of the physical parameters is not available. The 

second problem is related to ensuring that these methods are computationally efficient so 

as to facilitate their deployment in real-time scenarios where computation and memory 

resources are limited (e.g., robots, drones, etc.). The third problem is related to the 

capacity of the methods to deal with the variability of objects in terms of size and 

physical properties. To address these issues, we outline the following objectives of the 

thesis: 

1) Develop an automatic and universal method for predicting 3D object 

deformations based on machine intelligence. This method combines an efficient 

object representation and supervised learning based on neural networks.  

 

2) Build a simplified representation of 3D objects that reduces the number of 

vertices while preserving the salient geometric features of the objects. This 

representation leads to a reduction in computation time and in the memory 

storage.  
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3) Develop a transfer learning capability to account for the within class variability 

(shape and material) of objects. This consists mainly in enabling the method to 

account for different sizes of the same object as well as slightly varying physical 

parameters of the objects.  

Our ultimate goal is to develop a method for modeling and predicting of the deformation 

of soft objects that does not make assumptions about the material and size of the object. 

This method must be able to predict as accurately as possible object deformations, while 

also operate with the minimum cost possible in terms of computing time and memory 

storage. As such, it can be deployed in real-world applications such as robots exploring 

their environment in an attempt to learn object properties, predict their deformations 

without knowing their physical parameters and, as a consequence, efficiently manipulate 

them.  

1.2. Methodology 

We briefly summarize the general methodology in this thesis in the following steps:  

1) Data acquisition and preparation: This procedure contains four parts, namely: data 

acquisition, data synchronization, data cleaning, and data alignment. It is important to 

mention that this step is required for collecting real data over 3D object. However, 

beyond collecting real data, we have also made use of modeling software to generate 

additional data for 3D objects with different material and sizes for training and testing our 

system in a more comprehensive and rigorous way. 

2) Object simplification: This procedure contains three steps:  simplification of the mesh, 

reducing the number of vertices using inspiration from stratified sampling and a fitting 

procedure based on the neural gas algorithm. 

3) Model selection: Several architectures of feedforward neural networks are tested to 

select an appropriate model for each object class (shape and material). We generated 

training examples for each object by applying different magnitudes of point forces to the 

object at rest and measured the corresponding deformation induced by the force. 
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4) Prediction: After training a selected neural network for each object, we used it to make 

predictions on new instances of deformations of the same object class by applying 

different force magnitudes. We showed in several experiments that our method is able to 

efficiently predict not only the deformation of elastic objects, but also the one of elasto-

plastic and rigid objects. We tested several classes of objects and compared the 

performance of our method with a classical method, the FEM. 

4) Transfer learning: This step is aimed at minimizing the training phase when dealing 

with similar object classes (i.e. objects having the same shape and/or material). We argue 

that a learning produced by training a model to predict the deformation of a given object 

class can be exploited to reduce the computational time of model training for similar 

object classes (e.g., objects with the same material with different size, objects of the same 

size but with different material). This can be achieved by fine tuning the original model 

to adapt it to the new object class.     

To analyse the performance of our solution, we reconstructed the deformed 3D objects 

after each step of the proposed method and computed two categories of error measures: 

Metro errors [36] and perceptual errors [37], in additional to a visual comparison that 

allowed us to detect possible distortions in the object shape. 

1.3. Contributions  

The contributions of this thesis revolve around the outlined objectives, and can be 

summarized in the following three points: 

1. We propose an automatic and accurate method for predicting 3D soft object 

deformations that does not make assumptions about the material of the objects 

(Objective 1). We capitalize on computational intelligence, namely on selectively-

densified simplification, stratified sampling, neural gas and feedforward neural 

networks. The proposed method avoids recovering elasticity parameters which 

cannot be precisely and accurately identified for certain materials such as foam or 

rubber, as those used in the context of this work. Therefore, we eliminate the need 

to make assumptions on the material, such as its homogeneity or isotropy, 
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assumptions that are often encountered in the literature. This is achieved through 

the use of several configurations and architectures of feedforward neural networks 

that are trained to map the complex relationship between the force and the 

corresponding position of neural gas nodes over each cluster. Once trained, the 

networks can be used to predict deformations for forces (magnitude, angle of 

application and point of application) for which the network has not been trained.  

2. We propose a preprocessing method to create compact 3D object representation 

by innovatively combining selectively-densified simplification, stratified 

sampling and neural gas fitting (Objective 2). The selectively-densified 

simplification technique allows us to reduce the computation time by simplifying 

only the non-deformed parts of the object, while the subsequent stratified 

sampling technique further reduces the time while preserving as much as possible 

the similarity with the original non-simplified object. Finally neural gas fitting 

allows us to capture accurately the fine differences around the deformed zone and 

over the surface of the object that are missed by the previous sampling steps. This 

preprocessing reduces the complexity of the deformed objects by creating 

compact and accurate representation and thus brings savings in computation time 

for the subsequent object modeling. 

3. We improve our prediction method using the transfer of learning between neural 

networks models. This allows us to use the learning of a pre-trained network on 

one object to accelerate the training of another object given that the physical 

properties of the objects are similar except for their size and/or slight geometrical 

differences (Objective 3). Therefore, we can predict the deformation of a small 

ball from training on large ball and vise-versa. Transfer of learning also allows us 

to use less data to train the second neural network, and therefore reduce the 

training time. 

4. We analyze the performance of our method on 3D objects with various shapes, 

sizes and materials. We demonstrate that, while our method with the automated 

choice of parameters is much faster to predict deformations than FEM (a desired 

ability for real-time applications where the decision time is important), the models 

are slightly less accurate than the ones obtained by using FEM. However, we have 
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also demonstrated that by modifying the selectively-densified simplification step 

we can reach the same performance as FEM if that is preferable for a specific 

practical application, at the price of a slightly higher computation time, but still 

lower than the one used by FEM. 

1.4. Thesis Organisation  

This thesis is organized as follows. Chapter 2 discusses the relevant literature on the 

topics of interest for this thesis. It provides a brief discussion of 3D object deformation 

methods, of vision-based measurements to collect data and of the reconstruction of 3D 

objects from collected data. It also provides an overview of methods for modeling 3D 

deformable objects, clustering and sampling methods. This chapter sheds the light on the 

several issues and problems that are solved or covered by the existing literature. 

Chapter 3 presents our proposed method for modeling and prediction of 3D objects. We 

discuss the proposed framework and the different steps required to implement it.  Among 

these steps, we will consider: data simplification, data alignment, sampling (clustering) 

and selectively-densified mesh construction using a formulation of neural gas fitted 

simplification and neural network prediction of neural gas nodes position. We will also 

introduce our solution for merging QSlim, a classical, efficient, uniform simplification 

algorithm with neural gas networks in order to construct more accurate and compact 

object models based on the inherent capability of neural gas to concentrate on regions of 

interest over the surface of an object. This hybrid solution allows to create compact 

models (QSlim), while also maintaining a high resolution and thus a better quality of the 

model in deformed areas over the surface of the object (neural gas). 

We then present the proposed prediction method for the behavior of deformable 3D 

objects under interaction using feedforward neural networks. The use of these networks is 

an efficient way to provide real-time estimates while using raw and noisy data, as 

opposed to using different approximations and assumptions about the object material, 

which are nowadays found in the literature. A rationale is provided for the various 

choices of architectures studied. Finally, the issue of transfer learning between 
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feedforward neural networks is also studied to enable the use of pretrained network to 

make predictions for other objects. 

Chapter 4 presents experimental results obtained by using our proposed method as well as 

an in-depth study on the impact of various parameters involved (i.e., number of nodes in 

the neural gas network, learning rate, feedforward network architecture, etc.). It presents 

the modeling and prediction results obtained as well as a comparison with the FEM 

method to demonstrate the performance of our method with respect to a classical existing 

solution. The conclusions along with the future work are presented in Chapter 5.   
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CHAPTER 2   

LITERATURE REVIEW  

2. Introduction 

The interest areas of this thesis cover three major directions of research, namely methods 

for data acquisition and reconstruction of 3D deformable objects from collected data 

(sections 2.1, 2.2 and 2.3), modeling of 3D deformable objects (section 2.4) and the 

prediction of object deformations (section 2.5). Research related to our work has been 

carried in a number of fields with varying goals, starting from physics-based deformable 

models to computer vision, computer graphics, computer simulation and animation, 

engineering, mechanics, surgical training and treatment, etc. In this thesis, we focus on 

the acquisition and modeling of soft deformable 3D objects and the subsequent prediction 

of their deformation when subjected to forces of various magnitudes and angles of 

application, at various locations over their surface.  

Current research in the area of deformable objects is in general focused towards the 

modeling of inherently elastic objects. Researchers concern themselves with simulations 

meant to address issues related to the computational cost of increasingly complex models 

and the requirements for realistic interaction with deformable models, and less with 

accurate object modeling. As a response to the difficulties encountered in conducting 

strain-stress relationship measurements for objects made of materials that exhibit 

nonlinear behavior, or when a model is available for the object’s material, but its material 

properties are not known, the choice for the selection of elastic parameters is left to the 

user. The latter can choose some values for these parameters according to some a priori 

knowledge regarding the deformable object model. Usually, an expert is asked to observe 

an object and provide a feedback on the nature of deformation that the object exhibits. 

This is a subjective measure and while it can be used for certain types of applications (i.e. 
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gaming), it cannot be employed where a certain degree of accuracy is expected (i.e. 

virtual training, robotic manipulation, etc.).  

There are four main categories of solutions encountered in the literature for acquiring the 

deformation of objects: indentation, vibration-based measurements, sound-based 

measurements, vision-based measurements and combinations of these. The most popular 

for daily engineering problems are indentation and vision-based measurements and they 

will be thus used in the context of this thesis. The principle employed is to apply a 

deformation force (indentation) and make use of vision sensors to capture the deformed 

object surface as a result of force application. 

2.1. 3D Object Deformation by Indentation 

The deformation of an object is created using instrumented indentation tests, which are 

meant to elicit the elastic behavior of objects [47]. These tests usually imply monitoring 

the evolution of the applied force using a force feedback sensor and a visual sensor to 

capture the surface deformation resulted as a consequence of the applied force. Several 

researchers in the literature make use of this approach to deform 3D objects in various 

fields of research, such as medical simulation, mechanics and engineering, computer 

graphics and several other fields.  

Frank et al. [6] use a physical system consisting of a mobile platform with a 7-degree of 

freedom (DoF) manipulator that is equipped with a force-torque sensor and a depth 

camera. The force-torque sensor allows to deform the object and the depth camera to 

observe the object from different viewpoints and measure the corresponding deformation 

forces.  

In the work of Petit et al. [30], an object is deformed by a single contact force which acts 

vertically and is applied by a tool mounted on a robotic arm, equipped with a force sensor 

at the wrist. They assume a pointwise contact on a point of known position on the surface 

of the object. 

Following indentation probing, two main interaction point detection methods are 

proposed in the literature to represent the contact between a probing tip ad the surface of 

the object when a force is applied, namely the single point-based method and the ray-
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based method. In this first method, the interaction between the tip and the object is 

considered as a single point [48,49]. In the second method, more than one interaction 

point is considered between the tip and the object [50,51,52,53].  

Most of the modeling techniques developed in the literature use the point-based method 

in which the probe is simply represented as a single point [54] (for more details see 

chapter 3, sections 3.2.1 and 3.2.1). Some modeling techniques use the ray-based method 

that considers that the interaction between the probe and the object occurs at several 

points [50,51,52,53].  Srinivasan et al. [52] used two interaction points that move and 

exchange forces along the line that connects them. McNeely et al. [53] modeled the probe 

as a set of surface points. In their approach, objects are divided into voxels. Multiple 

collisions are detected between the surface points of the probe and voxels of the object to 

reflect forces. Then, the force acting on the object is obtained as the sum of all forces 

from such point-voxel intersections. The disadvantage of this method is that it is difficult 

to model thin or small objects. To handle the ray-based method in the simplest possible 

manner, Ho et al. [50] consider the interaction between the probe and the object as being 

represented by a number of interaction points forming a polygon or a line depending on 

the movement of the probe. The disadvantage of this method is that it is more 

complicated and more expensive in terms of computation than the single point-based 

method.  

2.2. Methods for 3D Visual Data Acquisition 

To capture the geometry of an object, the indentation procedure needs to be accompanied 

by the observation of the deformed object surface. Several methods were used to acquire 

3D data from deformed objects, including the acquisition of data from images 

[55,56,57,58], the acquisition of data using laser scanners [59,60,61,62] and using depth 

cameras, such as the Kinect [55,56,57,63]. These will be described briefly in the next 

sections. 

2.2.1. Methods Used to Estimate 3D Data from Images 

The problem of estimating 3D data from images has been the main focus in computer 

vision and in other fields over the years. It is the process of finding 3D information from 
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2D data. As images are taken around the target object from various viewpoints, some 

points on the object surface can be visible only in some of the views which can cause 

difficulties when reconstructing the object shape.  

Rohe et al. [55] introduced a technique to extract 3D objects from a set of images 

acquired by a single camera using finite element technique. They created synthetic finite 

element images with arbitrary points of view.  

Merras et al. [56] present a technique for collecting 3D data of a human face from a 

sequence of images. Their method is based on the estimation of the projection matrices of 

the cameras to determine the 3D point cloud and then reconstruct the 3D mesh of the 

face. 

To collect 3D data from objects, Zhang et al. [57] propose a method based on an un-

calibrated image sequence captured orderly around a scene. They rotate a platform with a 

fixed camera to capture 2D images. After establishing a number of key-points in the 

images for each two images selected, the points are matched, and a dense 3D model is 

reconstructed. 

Ze-tao et al. [58] extract feature points from images using the Harris operator and then 

match corresponding points between images. To determine the coordinates of 3D points, 

they calculate the fundamental matrix with extrinsic and intrinsic parameters of camera. 

In their work, Lin et al. [64] capture images from arbitrary viewpoints using a virtual 

multi-camera system. The images are captured by a virtual camera with the position and 

orientation synthesized from the locations of the physical cameras and allow for the 

subsequent 3D model reconstruction.  

Ding et al. [65] make use of a digital camera that is turned around an object of interest to 

acquire a series of images from a number of locations and at various angles. Several 

matching pairs of images are then employed to reconstruct the corresponding 3D cloud 

points.  

Fritsch et al. [66] use multiple cameras mounted on a rectangular shaped frame in order 

to collect images from multiple views at once. By using an automated software pipeline, 
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they compute a 3D point clouds for each image. Then, the 3D point clouds obtained from 

all the images taken from the multiple views are registered and connected. 

Wang [67] read and arrange 2D image slices to be able to obtain 3D data. The process 

starts with the identification of matching pixels in each two closest images as being the 

projection of the same point. All the images are projected into a common space prior to 

analysing the correspondence between the images, and then triangulation is employed to 

reconstruct the 3D points. 

Huang et al. [68] present an approach for automatic 3D reconstruction of objects depicted 

in web images. They analyze jointly a collection of images of different objects along with 

a smaller collection of existing 3D models, where the latter guides the reconstruction 

process. The images are analyzed and reconstructed together to create 3D models. The 

main problem with this type of solution is that it requires a huge amount of storage space 

and analysis time to rebuild each object and sometimes it does not provide accurate 

object models. 

2.2.2. Acquisition of 3D Data by Laser Scanners 

There are many different 3D scanning technologies each with its own limitations, benefits 

and costs [69, 70, 71, 72]. 3D laser scanning is another well-known technique used to 

acquire 3D data. 

Lee et al. [59] apply a terrestrial laser scanning technology for collecting 3D data in an 

indoor environment. Similarly, Cheng et al. [60] discuss a method for modeling buildings 

using laser-scanning technology in which a building is separated into several stations and 

each station is scanned separately in order to capture its shape and contents. A software is 

then used to register the resulting data and a mesh is built on the point cloud to construct 

the 3D building model. 

Bartol et al. [61] provide a comprehensive review of 3D scanning technologies and shape 

estimation for body measurements. Li et al [73] developed a technique to acquire 3D data 

for the human body by laser scanning. The data is registered, denoised and simplified 

before rebuilding the body surface model. 
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Buonamici et al. [74] present a system for 3D scanning of human arms. Their system is 

composed by a 3D optical scanner based on stereoscopic depth sensors and by an 

acquisition software responsible for the processing of the raw data. 

Lin et al. [75] propose a method that uses a robotic hand to pick up non-rigid objects 

resting on a table. The configuration consists of a Barrett hand and a 3D laser scanner. 

Navarro-Alarcon et al. [76] develop a strategy to control the 3D shape of non-rigid 

objects by capturing visual characteristics which quantify the deformation. They used two 

robots that hold the object while deforming it and a stereo vision system built with two 

sensors.  

2.2.3. Acquisition of 3D Data by Kinect Camera 

A cheaper alternative to laser scanners for capturing 3D data are depth cameras, such as 

Kinect cameras. A method for acquiring 3D data by using multiple Kinect cameras is 

presented by Ruchay et al. [77]. They capture two types of data by each Kinect, the depth 

information in the form of point clouds (a set of points with 3D coordinates) and the color 

images. Then, they map the coordinates between the data coming from each Kinect for 

registering the depth and color images to reconstruct the 3D object.  

Gupta et al. [78] developed an indoor mapping system for data collection in a building 

environment. They used a Kinect Sensor and a Stereo Labs ZED Camera. In their 

experimentation, the results of indoor mapping obtained by the Kinect sensor and the 

ZED camera are compared in terms of speed and memory usage. The ZED camera is 

faster at recording high-resolution depth maps than the Kinect, whereas the Kinect 

camera requires less amount of memory space than the ZED camera to store the point 

cloud.  

The work in [79] uses depth images acquired by a Kinect sensor from different 

viewpoints to generate point clouds and makes use of the iterative closest point (ICP) 

algorithm to register two adjacent point clouds in order to create a full 3D object model. 

Xu et al. [80] present a system to build complete 3D models using the Kinect sensor and 

a rotatable platform. The Kinect is fixed on a tripod. The rotatable platform is controlled 

by a motor at a constant speed. The authors calibrate the relationship between the 
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rotatable platform and the Kinect and thus derive the parameters used for registering 

partial point clouds in real time. Finally, the Poisson reconstruction method is used to 

construct the mesh surface from collected point clouds. 

Delgado et al. [82] used a platform consisting of a robot hand equipped with a Tekscan 

tactile sensor on the fingertips and a Kinect camera with an eye-in-hand configuration. 

Their collected visual data from the Kinect sensor are used to detect the deformation. 

2.3. Reconstruction of 3D Objects from Collected Data  

Several methods were used to reconstruct objects from 3D point clouds. Rodriguez et al. 

[83] developed an algorithm for accurate real-time reconstruction of 3D deformable 

objects using a single Kinect sensor. Their reconstruction process consists of the 

following steps: capture in time of RGB-D information with a Kinect sensor, registration 

using a modified iterative closest point algorithm, and dynamic construction and 

refinement of a dense 3D object model.  

Chen et al. [84] developed an algorithm to reconstruct a 3D object from cloud points 

based on the idea of region growing. From their side, Ruchay et al. [85] propose a new 

method for dense 3D object reconstruction using an RGB-D sensor at high rate. In order 

to obtain a dense shape of a 3D object, they used the Iterative Closest Point algorithm 

[181].  

Wiemann et al. [86] present an approach to compute polygonal reconstructions from 

arbitrarily large point clouds. Their approach mainly concentrates on the limitation of the 

memory that usually occurs when handling large scale point cloud data on standard 

computers. They serialized the data into partitions on a shared storage into geometrically 

coherent chunks. These partitions are then sent to the slave nodes, which perform the 

necessary computations on their assigned parts.  

Osmanković et al. [87] used combined information captured by a thermal camera and a 

laser scanner to reconstruct a 3D model of the environment for a mobile robot. Other 

authors build deformable object models from pure kinematic motion trajectories [186]. 

The expectation-minimization algorithm finds the most probable node positions for the 

model given the measurements. Most of the experimentation is performed in a controlled 
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environment against a green background, which limits its applicability to real-world 

conditions.  

Wang et al. [88] address the issue of reconstruction and tracking of deformable objects 

and propose an approach for non-rigid reconstruction with a Kinect camera. A depth scan 

is performed using a Kinect sensor. The depth sequence is divided into several local 

segments, and a global optimization method is employed to merge all the segments. 

Finally, a partial 3D model of the object of interest is generated using Poisson surface 

reconstruction.  

Li et al. [89] present a novel and highly efficient framework to generate dense point 

clouds for representing the 3D shape of deformed objects. Given a single image of an 

object of interest, taken from an arbitrary viewpoint, their method can generate multiple 

partial surfaces of the object. The final 3D object representation is obtained by fusing the 

point cloud surfaces into a single point cloud. 

2.4. Simplification, Clustering and Sampling Methods in the Context of 3D Object 

Modeling 

The simplification of an object involves creating a simpler version of the original object, 

using fewer elements (faces and vertices). The aim is to obtain a simplified representation 

in order to improve the processing time, while preserving as much as possible the 

similarity with the original non-simplified object. 

In this context, Garland et al. [90] developed a surface simplification algorithm for 

polygonal models based on iterative contractions of pairs of vertices.  

Guéziec [40] present a technique for simplifying a triangulated surface by approximating 

the surface with another surface of lower triangle count, while taking into account the 

approximation error with respect to the original surface. 

Clustering and sampling are two important methods often used in 3D object modeling for 

reducing the complexity of the deformed objects, which in turn leads to a reduction in the 

computation time. 
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Clustering is a process in which a group of data are partitioned into a number of clusters, 

in which, ideally, similar [91,92] data are assigned to the same cluster, and dissimilar 

[93,94] data are assigned to different clusters. Several algorithms have been proposed in 

the literature for clustering [63, 95, 96, 97] for applications such as medical image 

processing [98, 99], biomedical [100], classification [101, 102] and data mining [103, 

104]. 

Sampling is a method used to choose sample points from data with the aim to reducing its 

complexity. There are several sampling methods in the literature, among these methods 

we can mention: random sampling [41], sequential sampling [42], uniform sampling [43], 

systematic sampling [44], and stratified sampling [105].   

In random sampling, all points representing an object have the same probability of being 

chosen at any stage during the sampling process. Although this type of sampling is easy 

to understand, it is not easy to implement for large datasets and randomly-selected 

samples can miss important features of an object. 

In sequential sampling, a sequence of samples is taken from an object. Once the object 

has been sampled, it is verified whether the sequence of samples taken is significant or 

not. When the sequence of samples extracted is not significant, the whole procedure is 

repeated. In this method, one doesn’t know in advance how many times the process must 

be repeated to acquire sufficient data to represent an object. 

In uniform sampling, samples are spread such that the probability of a surface point being 

sampled is equal for all surface points. This method has the advantage of being easy to 

implement and it covers all the surface of the object. However, its cost is high because 

when a high density is required in some regions on the surface of the object (regions with 

minute details), the sampling density must be uniformly high over the entire surface. 

In systematic sampling, sampled points are chosen from the data collected by selecting 

random starting (seed) points. Once the number of these samples is decided, the entire 

population size is divided by this number. Then a number of points from the data 

collected must be assigned to each member of the sample points. These points assigned 

for each member are chosen based on the distance to that member. This method is easy to 
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implement but the disadvantage is that the results achieved depend on the selection of the  

random starting points. 

Sometimes, data are divided into different groups or clusters sharing the same 

characteristics. This is where it is important to divide data into clusters before sampling. 

In stratified sampling, samples are collected by subdividing the domain into non-

overlapping clusters [105], and then by sampling independently from each group. Using 

this method, one can ensure that an adequate sampling is applied to all groups in the 

partition. This method ensures a high degree of representativeness of all the clusters in 

the domain. However, it requires a prior knowledge about the areas to be sampled at 

higher resolution, if desired, in the application. 

Rodolà et al. [106] used a technique of sampling based on the concept of relevance. They 

define the relevance for each point over a mesh taking into consideration how similar the 

point is to the points around it (i.e. similar points, more distinctive points, and less 

relevant points). Similar points are considered those having a unique normal orientation 

with respect to their surroundings, most distinctive points correspond to ridges or corners, 

and the least distinctive ones are those in flat areas. 

Turk [107] used a uniform sampling technique that produces samples evenly distributed 

over the surface of an object. The obtained sample points are re-triangulated to produce a 

simplified version of the original mesh. 

In their work, Ghosh et al. [43] present a method based on uniform sampling. Their 

method first decomposes the model into approximately convex pieces and then uses 

uniformly sampling on the surfaces of these pieces. 

Nehab et al. [105] use a stratified technique for modeling 3D objects. Their algorithm is 

divided into three steps. The first step is the voxelization of the model. The next step 

produces one sample for each voxel. They register all triangles in the interior of each 

voxel bounding box and on triangle is chosen from each voxel, and from this triangle a 

new sample is produced. To compute the sample positions, they integrate the probability 

density function over all area of the model. The final step constrains the minimum 

distance between samples by removing samples that are too close to each other. 



20 

Finally, Shih et al. [108] proposed three novel non-uniform sampling algorithms: 

adaptive sampling, local adjustment sampling, and finite element centroid sampling. 

Their adaptive sampling algorithm makes use of a recursive surface subdivision process. 

In local adjustment sampling, a set of predefined starting points are chosen, and the local 

optimum position of each nodal point is found. In the finite element sampling, the 

centroids of the surface triangle mesh produced from the finite element method are 

considered as representative samples. The authors compared the three algorithms and 

concluded that adaptive sampling is better for different classes of objects. 

2.5. Modeling of 3D Deformable Objects  

Several solutions have been proposed in the literature for modeling deformable objects. 

These include mass-spring models [13,14,15,16], finite-element (FEM) representations 

[109,110,111,112], Green functions [26], Non-uniform rational basis spline (NURBS) 

representations [27], surfels [113], mesh-free deformation [114] and subvoxel 

triangulations [115]. These techniques are described in more detail in the following 

sections. 

It is important to mention that most of these techniques assume that the parameters 

describing the object behavior (e.g., elasticity parameters) are known a priori or values 

for these parameters are chosen by manual tuning until the results seem plausible. This is 

a subjective process and while it can be used for certain types of applications, it cannot be 

employed where accuracy is expected, as an improper choice of parameters can lead to 

undesired behavior. To overcome this problem, several researchers propose estimating 

the parameters based on a comparison between the real and simulated object subject to 

interactions. This is the approach that we will be using in this work. 

2.5.1. Mass-Spring Systems for Modeling Surface Deformation 

A mass-spring system is a model described as a graph with a node at each vertex and a 

spring along each edge. Generally, all the vertices are connected by springs and a mass is 

assigned for each vertex. As such, the structure of a mesh consists of mass points and 

springs (Figure 2.1 a). The edge connecting the two vertices with mass 𝒎𝒊 and 𝒎𝒋 is 

represented by a spring with stiffness 𝐊𝒊𝒋 (Figure 2.1 b).  
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                            (a)                                  (b) 

Figure 2.1. (a) Structure of a mesh, and (b) spring between two vertices (adapted from 

[1]). 

When external forces are applied on the object, all the vertices in the region where these 

forces act are displaced which, in turn, creates spring forces in the object. These spring 

forces propagate inside the object and finally the springs come to rest. In physics, it is 

very important to make sure that springs do not oscillate forever but come to rest over 

time. To ensure this behavior and ensure realistic simulations of deformable objects 

modeled as mass-spring systems, dampers are combined to springs. The internal force of 

a spring between two vertices 𝑽𝒊 and 𝑽𝒋 is given by [116]: 

𝐅𝒊𝒋 =  𝐊𝒊𝒋(|𝐩𝒋 − 𝐩𝒊| − 𝐥𝒊𝒋)
𝐩𝒋 − 𝒑𝒊

 |𝐩𝒋 − 𝐩𝒊|
 (1) 

 

 

where 𝐊𝒊𝒋 is the stiffness coefficient of the spring,  |𝐩𝒋 − 𝐩𝒊| is the magnitude of the 

displacement of the current state of the spring, 𝐥𝒊𝒋 is the rest length of the spring. To 

simulate the effect of an external force applied on the object, one can make use of the 

Lagrange’s equations [117]: 

𝐅𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍 = 𝐟𝒓𝒆𝒔𝒖𝒍𝒕(𝐱𝒊) + 𝜸𝒊�̇�𝒊 + 𝐦𝒊�̈�𝒊 (2) 

where 𝐅𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍 is the external force applied at each vertex 𝒊. Three different forces, 

namely the elasticity force, the curvature force and the constraint force are summed to 

form 𝐟𝒓𝒆𝒔𝒖𝒍𝒕(𝐱𝒊) [117]. The symbols  𝐱𝒊, �̇�𝒊 and �̈�𝒊 designate respectively the positions, 
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velocities and accelerations of the 𝒊th vertex . 𝐦𝒊 are the nodal masses and 𝜸𝒊 are the 

damping factor. The equations of motion for the whole mass-spring system are given by 

[2]: 

𝑭 = 𝑲𝒖 + 𝑫�̇� + 𝑴�̈� (3) 

where 𝑭 is the total of external forces on the nodal points, 𝑴 is the mass matrix, 𝑫 is the 

matrix of damping coefficients, 𝑲 is the stiffness matrix, and 𝒖, �̇� and �̈� are, 

respectively, the displacement, velocity and acceleration vectors.  

2.5.1.1. Applications of Mass-Spring Models 

Mass-spring models were employed in many applications for shape modeling [118], 

computer simulation and animation [1,2] and in surgical training and treatment [3,4,5]. 

Closer to the topic of this thesis, several authors make use of mass-spring systems for 

modeling 3D objects.  

Zaidi et al. [13] model 3D deformable objects represented mass-spring systems in an 

interaction with a robot multi-fingered hand. The springs are considered linear, but the 

global behavior of the deformable objects is nonlinear due to large displacements and 

rotations. The contact forces are generated according to the relative positions between the 

fingertips and the boundary surface of the deformable object mesh.  

Arnab et al. [116] study the feasibility of employing a surface mass spring system capable 

to emulate soft volume behaviour. They introduce volume springs for which stiffness is 

extracted on the surface mesh based on the node, the neighbouring triangular elements 

and the object centre. 

In [120], the stiffness properties of mass-spring models are estimated by applying force 

constraints at different locations on the object, recording the resulting displacements and 

comparing the reference and the estimated model using particle filters. In a similar way, 

Choi et al. [121] track the global position of moving deformable balls painted in red 

against a blue background in a video stream. They adjust the elasticity parameters of a 

mass-spring model of the ball by optimizing the differences between the object model 

and the real object. 
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2.5.1.2. Advantages and Disadvantages of Mass-Spring Models  

Mass-spring models can be easily implemented because the physics of these models is 

simple and can be understood easily. Moreover, these models can be simulated in real 

time [28], but involve assumptions about the material of the object, such as its isotropy or 

homogeneity [29]. Compared with FEM models described in the next section, mass-

spring models are easier to implement and effective in computation, but their accuracy is 

in general significantly lower [122]. 

When using mass-spring models, problems can be encountered when choosing the system 

parameters. Properties like the length and stiffness of strings, the mass distribution on the 

vertices of the object and the topology of the mesh have to be defined a priori. Choosing 

values for these parameters is a difficult and lengthy trial-and-error process as the results 

vary widely for various settings. 

2.5.2. Finite Element Method (FEM) 

In this method, the object is divided into many small finite elements interconnected by 

nodal points situated on their boundaries (see Figure 2.2). A set of interpolation functions 

called equilibrium equations is defined and used to characterize the state of the 

displacement over each element. After deriving these functions over each element, they 

are assembled to characterize the unified behavior of the object. The equilibrium 

equations are given by [123]: 

𝑭 = 𝑲𝒖 + 𝑫�̇� + 𝑴�̈� (4) 

where 𝑭 is the composite vector of forces that act on the object, 𝑲 is the stiffness matrix, 

𝑫 is the damping matrix, 𝑴 is the mass matrix of the structure, 𝒖 is the composite vector 

of displacements, �̇�  is the vector of the nodal point velocities (the first derivative of 𝒖) 

and �̈� is the vector of the nodal point accelerations (the second derivative of 𝒖). The 

damping matrix constructed using the mass matrix and stiffness matrix [124] is defined 

as: 

𝑫 = 𝜶𝑴 + 𝜷𝑲 (5) 
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where 𝜶 and 𝜷 are the parameters for damping matrix. 

 

Figure 2.2. Each small triangle represents a finite element. 

2.5.2.1. Applications of Finite Element Method  

FEM can be used in many applications, such as surgical simulations [125,126], animation 

[17], mechanical engineering [9] and other fields [10, 11, 12]. Several authors have used 

the FEM for modeling 3D objects. The authors in [127] present a nonlinear FEM model 

formulated with Green strain tensor for simulating large deformation and deformations 

with rotation.  

To track the geometry of a deformable object, Wuhre et al. [128] combined a volumetric 

elastic model with a tracking-based approach to improve the estimation of the unobserved 

deformable side of the object. When a force is applied to the object, a linear FEM is 

employed to model physical deformations. 

Petit et al. [129] propose to track 3D elastic objects in RGB-D data. A rigid 

transformation from the point cloud to a linear tetrahedral FEM model representing the 

object is estimated based on the iterative closest point (ICP) algorithm. Linear elastic 

forces exerted on vertices are computed from the point cloud to the mesh based on closest 

point correspondence and the mechanical equations are solved numerically to simulate 

the deformed mesh.  

The authors of [130] present a genetic-based solution to identify stiffness properties of 

mass-spring-systems by using a linear FEM model as a reference. While the method 

seems to support isotropic and anisotropic reference models, only simulated results are 
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presented. The material is isotropic when the elastic behavior is uniform in all 

orientations. The anisotropy varies systematically depending to the orientation.  

In order to determine the elasticity properties of deformable objects, Frank et al. [6] 

propose to minimize the difference between the real object in interaction with a force-

torque sensor and captured as a point cloud and the simulated object in the form of a 

linear FEM model. However, their method only works on homogeneous and isotropic 

materials. These methods justify the interest in the development of new methods that do 

not make assumptions on the material of the object, such as the one proposed in this 

thesis.  

2.5.2.2. Advantages and Disadvantages of FEM Models   

In general, FEM models have more precision than the mass-spring models [30]. With the 

FEM, one can easily model complex geometries and irregular shapes [131].  However, 

the main limitation of the FEM is the fact that it is computationally expensive [31]. 

2.5.3. Surface Elements (Surfels) 

A surfel is a point sample of an object surface that comprises geometric attributes [18]. 

Surfels are thus sample points without explicit connectivity. Each comprises several 

attributes like the depth, texture color, displacement mapping and normal. Different 

levels of texture colors can be pre-filtered and stored per surfel. 

2.5.3.1. Applications of Surfels Method  

Several authors used the surfels in the literature. Pfister et al. [18] propose a surfel-based 

method for rendering objects with rich shapes and textures. They sample the surfaces of 

complex geometric models to enable conversion of geometric objects and their textures to 

surfels. During the sampling process, the computation of some attributes as texture, 

bump, or displacement mapping is performed. Andersen et al. [19] reconstruct the 

geometry and object surface by representing it as a collection of surfels, associated with 

each data point. Ruggeri et al. [20] develop a 3D object retrieval system, which comprises 

a surfelization technique for converting polygonal mesh models into a corresponding 

surfel-based representation. Carceroni et al. [21] model multi-view scenes captured from 
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video streams as a set of surfels, each surfel being described by its shape, texture, bump 

map and motion. They showed that, given camera parameters and knowing the position 

of light sources, they can recover the surfel parameters. 

2.5.3.2. Advantages and Disadvantages of Surfels Method 

Surfels are well suited to modeling dynamic geometric objects. Unlike FEM and mass-

springs models, there is no need to compute topology information, such as connection 

between vertices. In addition, every geometric model in form of a polygonal mesh can be 

converted into surfels [132]. However, problems might be encountered with the 

initialization of surfels. They also require the scene surface to be sufficiently textured. 

Unfortunately, this quality is difficult to find in natural scenes (cloth, printed material, 

textured surfaces such as wood, etc.) [32]. 

2.5.4. Mesh-Free Methods 

Mesh-free methods are commonly used in applications in engineering [23], in 

electromagnetics [24], and in computer graphics and animation [25]. These methods use 

sets of points scattered on the boundaries of the object (Figure 2.3). These sets of points 

represent the problem domain and its boundaries and are carefully selected to satisfy 

automatically the equilibrium equations [33]. These methods do not require a known 

relationship between the nodes [22,133]. In terms of disadvantages, they are often 

unstable when treatments are required to implement derived boundary conditions [34].  

 

Figure 2.3. Sets of nodes scattered on the boundaries represent the problem domain and 

its boundaries for mesh-free object representations. 
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2.5.5. Green Functions  

The estimation of deformable models can be based on discrete Green functions. This 

technique is used to model the global deformation of a solid by a discrete Green function 

matrix. Supposing that the domain of the problem is a solid 𝑻, with its boundary  𝜞, and 

supposing that we have two boundaries prescribed 𝜞𝟎 and 𝜞𝟏,  the boundary 𝜞𝟎 is for the 

displacements and the boundary 𝜞𝟏 is for the tractions (see Figure 2.4), Green’s functions 

are employed to relate a field of displacement vectors 𝒖 to a field of traction vectors 𝒑 on 

the boundary of the elastic solid [26].  

 

Figure 2.4. Green function representations: on the boundary 𝜞𝟎 displacements are 

prescribed and, on the boundary, 𝜞𝟏 tractions are prescribed (adapted from [26]). 

The displacement and traction vectors at each vertex are denoted by 𝒖𝒌 and 𝒑𝒌, 

respectively. These vectors are combined into block vectors 𝒖 and 𝒑, respectively. For a 

given boundary, the block vectors 𝒖 and 𝒑 can be rearranged such that all prescribed 

values are collected in a block vector �̅�. Entries 𝒗𝒌̅̅ ̅ = 𝒖𝒌̅̅̅̅  if the vertex 𝒌 is on the surface 

𝜞𝟎, while 𝒗𝒌̅̅ ̅ = 𝒑𝒌̅̅ ̅ if the vertex 𝒌 is on the surface 𝜞𝟏.  

We introduce the complementary displacement and traction vectors into a block vector 𝒗. 

The matrix relating the prescribed values �̅� and the block 𝒗 is the discrete Green’s 

functions matrix, supposing this matrix is 𝑴. 𝒗 and �̅�  are related by: 

𝒗 = 𝑴�̅� (6) 

The Green’s functions matrix 𝑴 is determined from displacement and traction boundary 

conditions. In simulation, a discrete Green's function and the input vector of prescribed 
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tractions and displacements allows one to calculate the deformed shape of an object as 

well as the reaction forces [26].  

2.5.6. Non-Uniform Rational B-Spline (NURBS)  

A non-uniform rational B-spline (NURBS) based deformation function allows to 

decouple the geometrical object complexity, providing a low dimensional space to 

describe realistic deformations [35]. NURBS allow control of curvatures defined by 

control points and weights. Some sections of a defined shape can be shortened or 

elongated relative to other sections (Figure 2.5).  

 

Figure 2.5. Non-uniform rational B-spline (NURBS) (adapted from [134]). 

The main idea for modeling 3D objects using NURBS [95] is to define an initial 3D mesh 

object and deform it subsequently, by matching it with the depth and color data extracted. 

Unlike mass-spring and FEM methods, the deformation is not described by a 

displacement for every vertex in the mesh, but by using a deformation function that 

allows realistic approximation of the object surface [27]. One can create a NURBS 

surface function to track the deformation, then make an approximation of the object 

surface with this function. This process involves the minimisation of the distances to the 

NURBS surface of all mesh vertices. After the NURBS surface is fitted to the 3D object 

model, vertices are registered to the NURBS surface function. 

B-Spline surface modeling possesses many properties such as boundedness, continuity, 

and invariance to affine transformations that make it very suitable and attractive for 

surface representation and 3D object modeling. Despite their numerous attractive 
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properties, however, B-Splines have not been widely applied for representing a 3D 

scattered non-ordered data set [35]. 

2.6. Neural Network Predicting and Modeling of 3D Objects 

Several methods in the literature used the neural networks to model and predict 3D 

objects; among these methods we can mention deep networks, particle graph network, 

convolutional neural networks, feedforward neural networks, self-organizing maps and 

neural gas networks.  

Wang et al. [135] proposed a deep network able to predict body deformations under 

external forces from a single RGB-D image. The network is trained on a collection of 

different objects generated by a physical finite element model simulator. To train the 

network, they used a single RGB-D depth image of the deformable object, the type of 

material, the size of the force and the location of the force. The network is able to output 

a predicted 3-D deformation of the object. They applied their network to the problem of 

safe and fast navigation of mobile robots carrying payloads over different obstacles and 

floor materials. Their architecture is composed of two main neural networks: a generator 

neural network G and a discriminator neural network D. The generator G used for 

training, while the discriminating neural network uses the data produced by the generator 

and determines whether the predicted outputs are realistic. The performance of their 

solution is demonstrated for soft materials such as foam. 

Valencia et al. [136] discuss the use of Growing Neural Gas (GNG) and Particle Graph 

Networks (PGN) to capture the deformation of non-rigid objects from real world scenes. 

Growing Neural Gas (GNG), presented in [137] is a type of unsupervised learning 

algorithm that demonstrated interesting capabilities to represent complex changing 

structures in the context of non-rigid object manipulation. Particle Graph Network (PGN) 

model [138] uses particles to represent complex entities. PGN represents each entity as a 

graph neural network which has the ability to predict by learning parameters from data. 

The authors employ PNG in conjunction with GNG to predict the shape of non-rigid 

deformable objects from real world observations. While interesting, the proposed method 

requires a lot of processing. 
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Hu et al. [139] present a method to manipulate and predict the deformation of objects 

using deep neural networks. Based on 3D point cloud extracted from the 2D images, the 

authors compute a feature vector using a 135-dimension histogram. In order to learn the 

deformation function, they used a neural network with five layers, with a 30-16-8-6 

architecture. The problem with their algorithm is the long computation, rendering it 

unusable for complete, complicated deformed objects.  

Pumarola et al. [200] proposed a method for predicting the 3D shape of a deformable 

textured surface of object from a single view RGB image using deep learning methods. 

and demonstrate its use on a bending paper and a deforming t-shirt. Deep learning 

techniques require large amount of data to be trained, which is a limitation of such 

models. Moreover, the approach is designed based on textures, making it hard to use on 

low-textured surfaces.   

Tsoli et al. [141] presented a deep learning method to predict and reconstruct a 

deformable 3D surface without texture from a single RGB image, under various lighting 

conditions. No explicit assumption about the shape of the object observed is made. They 

use a deep neural network to learn how to map image patches to their corresponding 

geometries. The input image is divided into overlapping patches and a depth map, as well 

as a normal map, are estimated for each patch using deep learning. They found that 

different areas of the deformable object have similar types of deformation, for example 

similar wrinkles appear in different areas of the surface of a cloth. To solve this problem, 

they proposed learning local models of shape variations from image patches which they 

combined in a global reconstruction of the object observed. This method cannot be 

applied on objects with texture and requires a large dataset to be able to learn, so the 

processing time is long. 

Arriola-Rios and Wyatt [142] developed a multimodal learning framework to monitor 

and predict the deformations exerted by a robot in a single point contact scenario. They 

incorporated force and visual information into their development. They focused on 

learning to predict what happens when an elastic or plastic object is pushed by a robot 

finger. They studied the possibilities to predict the deformations of the object’s shape and 

the behavior of the object after contact by the robot terminates.  
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Wang et al. [143] proposed a deep network to predict the deformation on non-rigid 3D 

objects for tasks such as as robot manipulation, terrain deformation assessment, and in 

general for predicting in the context of end-to-end learning of physical models of the 

environment.  

Yumer et al. [144] introduced an end-to-end solution to manipulate shape deformation 

using a volumetric Convolutional Neural Network (CNN) that learns deformation flows 

in 3D. The network architecture takes the voxelized representation of the shape as input 

and generates a flow deformation at the output.  

Deng et al. [145] introduced a method based on the neural articulated shape 

approximation that enables efficient representation of articulated deformable objects 

using neural indicator functions. They propose a neural model of articulated objects to 

predict and model shapes by networks that encode a piecewise rigid decomposition. The 

articulated deformation is accomplished by using the linear blend skinning (LBS) 

algorithm [146] that deforms vertices of a mesh surface.  

Li et al. [147] introduce a predictive, model-driven approach for robotic manipulation of 

3D deformable objects using a precomputed, simulated database of deformable object 

models. To validate their approach, they developed a comprehensive pipeline for 

manipulating clothing, as in a typical laundry task.  

Orts-Escolano et al. [148] proposed a method based on neural gas algorithm, an artificial 

neural network introduced by Thomas Martinetz and Klaus Schulten [149]. Neural gas is 

used over a raw point cloud to provide a 3D structure which has less information than the 

original 3D data but preserves the 3D topology.  

Garcia-Rodriguez et al. [150] proposed a method based on the neural gas model to 

reconstruct objects from the point cloud obtained from overlapped multiple views using 

low cost sensors. To validate their proposal, compared their results with those obtained 

by a self-organizing map (SOM), another artificial neural network that uses unsupervised 

learning to reduce the input space of the training samples. SOM is essentially another 

method for dimensionality reduction. However, the main problem is that it suffers from 

boundary problems, and the modeled objects generally do not look good [151]. 
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Frey [152] developed a method based on Dynamical Deformation Network (DDN) that is 

able to capture deformation over time in voxel data. They represent the deformed 3D 

object as voxels and a DDN, a deep generative model is demonstrated to be able to learn 

the deformation characteristics of 3D objects and capture the deformation.  

2.7. Other Methods for Modeling and Prediction Deformable 3D Objects 

Puig and Daniilidis [153] subdivide a deformable surface in smaller patches using visual 

and depth information. They use thin-plate splines with a minimal number of control 

points. Object deformations are computed based on tracking the node positions and 

solving the dynamic equations of Newton’s second law. The main disadvantage of this 

technique is its complexity and computation time. 

Aguiar et al. [154] built a system to capture the shape of 3D objects by combining 

surface- and volume-based shape deformation and a mesh-based analysis-through-

synthesis framework. However, the high cost limits the practical application of such a 

system.   

Caccamo et al. [155] proposed a system for modeling the deformation of elastic surfaces 

using an RGB-D camera, and a robotic arm equipped with a 3 fingered gripper that 

carries a 3D force sensor. They developed a framework to estimate the deformability 

parameters using the initial and final point cloud of the object extracted before and after 

physical interaction. 

Elbrechter et al. [156] model a piece of paper in an interaction with a robot hand as a 2D 

grid of nodes connected by links that specify the bending constraints and a stiffness 

coefficient. However, the parameters of their model are tuned manually.  

Park et al. [157] use a method that can monitor topological changes of the deformable 

surface using geometric measures containing notions of robust alignment, active region 

and minimal surface.  

Conti et al. [158] have proposed an alternative method to model deformable objects that 

generates and connects together a surface and a volumetric representation based on the 

middle axis of a solid. Their algorithm separates local and global deformation and renders 
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them together with variable levels of resolution. This method is based however on a 

complex geometric representation.  

Li et al. [159] integrate the extended finite element (XFEM) in their system in order to 

model the deformation of a dissected body. They develop a semi-progressive cutting 

method based on a local neighborhood search on the tetrahedral mesh.  

Sederherg et al. [160] use the free-form deformation technique for deforming solid 

geometric models. Their method can deform surface primitives of any type or degree: 

planes, quadrics, parametric surface patches, or implicit surfaces and can be applied 

locally or globally. 

The authors in [161] use extensive pre-computations of deformations. The problem in 

their approach, is that pre-computing deformations becomes quickly unfeasible when the 

number of possible user input configurations grows exponentially.   

Oliviera et al. [163] propose an approach in virtual medical training, which combines 

methods and models to simulate elastic deformations and reach equilibrium between 

visual and haptic realism. They manipulate 3D objects representing human organs and 

tissues described by parameters such as shape, topology, color, volume, texture, and 

physical properties such as elasticity and stiffness. Authors of [164,165] present a method 

for simulating deformation of 3D objects that represent human organs through many 

tissue layers, in which the following physical parameters are considered: modulus of 

elasticity, girth and density.   

Alambeigi et al. [166] simulate and control the deformation of 3D objects in medical 

surgery using a robot. 

The authors of [167] track deformable objects from a sequence of point clouds by 

identifying the correspondence between points in the cloud and a model of the object 

composed of a collection of linked rigid particles, governed by dynamical equations. 

They apply their method for analyzing the motion of the left ventricle of the heart. 

Park et al. [168] use a technique based on a class of physics-based deformable models 

whose parameters are functions. The latter allow to capture the local shape variation of 
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complex objects. In [169], common deformation techniques, such as axial deformation, 

are employed to track objects. Then, parametric features are grouped into systems of 

primitive constraints based on user specification. Finally, parametric features are 

reconstructed by minimizing the changes in the deformed model.  

Yu et al. [170] use an RGB video as input to capture the deformations of generic shapes 

and the depth estimation. Bin et al. [171] use a multi-body system consisting of rigid 

bodies coupled by spring and damper elements to model objects undergoing large 

deformations.  

Mero et al. [172] use a mixed model based on FEM and mesh free methods. They build a 

3D deformable model which can be included in a general application of virtual reality in 

a medical surgery simulator. They construct a multiresolution model that can be used to 

obtain real-time response when a user interacts with the object. 

Hui et al. [173] proposed a robotic system for modeling and classifying deformable 

objects as elastic, plastic or elasto-plastic, according to the material from which they are 

made, and to support the recognition of the category of these objects. They used a three-

finger hand robot to manipulate the object and a Kinect sensor to acquire visual and depth 

data. Drimus et al. [174] also propose an object modeling and classification system which 

comprises a mixture of rigid and non-rigid objects. Jiménez [174] presented an overview 

of techniques for modeling and manipulating planar and linear deformable objects such 

as thin sheets and tissue.  

A few comprehensive overview papers on the topic of modeling and manipulating 

deformable objects are published as well in the literature. Sanchez et al. [176] presented a 

review of recent approaches focusing on applications for handling deformable objects in 

domestic and industrial environments. In the same direction, Nadon et al. [177] provide a 

comprehensive overview of recent advances in modeling and manipulation of non-rigid 

objects. They described several methods and technologies used to measure the shape and 

estimate the material and physical properties of non-rigid deformable objects.                                                                                        
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2.8. Summary and Discussion of the Work in the Literature 

In this chapter, we described methods that cover the three main domains of research 

related to the work in this thesis, namely data acquisition and reconstruction of 3D 

deformable objects, modeling of 3D deformable objects and prediction of deformable 

objects. 

Several methods were used to acquire 3D data from deformed objects. Among these, we 

described the acquisition of data from images, using laser scanners and using Kinect 

cameras. The problem with the acquisition of data from images is that some points can be 

visible only in some of the views, which causes difficulties when modeling the object. 

Laser scanners can scan with precision, but are in general slow for real-time applications. 

In the context of this work, we chose the Kinect camera because the data collection takes 

less time than using a scanner. Moreover, it is considered that this sensor provides 

sufficient precision for the kind of research work proposed in this paper. 

This section also discussed various methods and solutions to reconstruct 3D objects from 

collected data. The main problem for object reconstruction is that when the object is 

complex, it requires a huge amount of storage space and analysis time to rebuild it. 

Several solutions have been proposed as well in the literature for modeling deformable 

objects. These include: mass-spring, finite-element (FEM), surfels, mesh-free, Green 

functions and Non-uniform rational basis spline NURBS. Each solution has its specific 

advantages, but at the same time its own issues: mass-spring models are easy to 

implement and effective in computation, but their accuracy in general is significantly 

lower. FEM models have more precision than the mass-spring models, but the main 

limitation of the FEM is that it is computationally expensive. In the surfels method, there 

is no need to compute topology information such as connection between vertices, but 

they require the scene surface to be sufficiently textured. Mesh-free methods do not use 

meshes, but they are often unstable when treatments are required to implement derived 

boundary conditions. B-Spline surface modeling possesses many properties such as 

boundedness, continuity, and invariance to affine transformations, but it not been widely 

applied for representing a 3D scattered non-ordered data set [35].  
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Several solutions have been also proposed in the literature for modeling and predicting 

deformable objects using neural networks. These include deep networks, particle graph 

networks, feedforward neural networks, self-organizing map and neural gas networks. 

While all the methods are interesting and have their specific advantages, most solutions 

make assumptions on the material of the deformable object. Deep learning solutions 

require large amounts of data for training and many solutions involve long processing 

time. Other solutions cannot predict a deformable object with a texture, while yet other 

solutions require higher precision sensors with real-time acquisition capacity.  

The discussion of all these methods led us to a good understanding of the problems 

encountered in these three areas, highlighting the need to find new and complete 

solutions to address these problems. Reducing the complexity of deformed objects 

without losing the similarity to their original versions is an issue often encountered in the 

literature. Solving this issue helps us achieve two goals, the first is that we can obtain 

more precision in modeling and prediction method and the second is the reduction of 

computation time and memory storage. Most of modeling and predicting techniques 

assume that the parameters describing the object behavior are known in advance or values 

for these parameters are chosen by manually tuning them until the object shape and 

behavior seems plausible. This is not an easy process and cannot be adopted when a 

certain accuracy of the model is desired. Therefore, the interest in the development of 

novel methods that do not make assumptions on the material of the object, such as the 

one proposed in this thesis, is well justified. The aim of this work is to model and predict 

the deformation of objects without any assumption on its material and without explicit 

computation of elastic parameters. We describe the details of the proposed method in 

Chapter 3 and present experimental results in Chapter 4.  
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CHAPTER 3  

Proposed Method for 3D Deformable Object Modeling and Prediction 

In this chapter, we propose a novel method for the modeling and prediction of 3D object 

deformations. It is a data driven approach for constructing implicit, compact 

representations for deformable object shape and behavior (without assumption on the 

object shape or material). To achieve this, we capitalize on computational intelligence 

techniques, namely on unsupervised learning algorithms, such as neural gas networks and 

clustering-based stratified sampling for object representation/modeling, and on 

supervised learning algorithms, i.e. feedforward neural networks, for predicting 3D 

deformations.  

Our method is based on a full framework for acquiring, modeling and predicting 

deformable object behavior (Figure 3.1). It begins with data acquisition. A 3D point 

cloud is collected by a Kinect sensor, while forces are exerted by means of the probing tip 

of a force-torque sensor. A neural gas fitting is proposed to describe the particularities of 

a deformation over the selectively simplified 3D surface of the object, without requiring 

prior knowledge about the object material. An alignment procedure, distance-based 

clustering, and inspiration from stratified sampling are supporting blocks of this process. 

A series of feedforward neural networks is then trained to learn the mapping between the 

force parameters characterizing the interaction with the object and the change in the 

object shape. To identify the most appropriate network to represent the deformable object 

shape and behavior, several neural network architectures were compared such as three 

feedforward networks (i.e. one for each 3D coordinate, x, y, z), as well as a single 

feedforward network with one hidden layer or with two hidden layers to preserve the 

coherence of 3D coordinates. Finally, it is demonstrated that learning can be transferred 



38 

from one neural network to another for objects with similar materials and shapes. For 

example, it allows to predict small objects from large objects and large objects from small 

objects of similar shape and material. 

The inherent parallel structure and the potential for hardware implementation of neural 

networks provide an efficient way to ensure real-time prediction while still using real, 

raw noisy data, as opposed to the use of different approximations and assumptions on the 

object material, found nowadays in the literature. Therefore, the proposed method avoids 

estimating elasticity parameters which cannot be precisely and accurately identified for 

certain materials such as sponge or rubber, as those used in the context of this work. This 

means that the proposed method does not need to make assumptions on the material, such 

as its homogeneity or isotropy, assumptions that are often encountered in the literature. 

Due to this property, the proposed method can be used as is to characterize any object 

material deformation, including elastic, elasto-plastic, and even rigid objects; it is 

applicable as long as the object’s material doesn’t break or tear when forces with too 

large magnitudes are exerted on its surface. 

Figure 3.1 summarizes the main steps of the proposed method for data acquisition, 

modeling, and prediction for 3D deformable objects and will be described in detail in the 

following sections. 

 

Figure 3.1. Proposed framework for deformation data acquisition and preparation, object 

simplification, modeling, and prediction. 
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3.1. Data Acquisition 

The experimental platform, illustrated in Figure 3.2 a, contains a Kinect sensor and an 

ATI force-torque sensor equipped with a probing tip. The Kinect is employed to collect 

3D point clouds representing deformable objects by turning the sensor around the object 

of interest following the trajectory marked by blue arrows in Figure 3.2 a, and integrating 

the partial collected point clouds using a commercially available software Skanect [178].  

Meanwhile, a constant force is applied on the object using the force-torque sensor.  

Three-dimensional data are collected over the surface of the object with various force 

magnitudes at various angles of the force-torque sensor with respect to the normal plane 

on the surface. The interaction parameters with the force-torque sensor are recovered via 

a serial port. A Tera Term [179] script is used to initiate the data transfer and collect in 

real-time the measured force magnitude over the x, y, and z axes sent by the sensor. The 

force magnitude F at point P at the moment t can then be computed as the norm of the 

three orthogonal force components along the x-, y-, and z-axes of the force/torque 

sensor’s reference frame returned by the sensor: 

𝐹𝑃  =  √𝐹𝑥
2  +  𝐹𝑦

2  +  𝐹𝑧
2 (7) 

It is important to mention that the raw data collected required to be corrected due to the 

fact that a probing tip was attached to the sensor and its weight had an influence on the 

measured force components. As well, it is also important to mention that only the force 

exerted on the object and captured by the sensor is considered, and not the reaction force 

of the objects as a result of the interaction with the object; the latter is reflected only in 

the change of shape that is visually captured by the Kinect. At the same time with the 

force data acquisition, images of the setup (an example is shown in Figure 3.2 b) are 

collected using a camera during each measurement step, each for 30 s, in order to recover 

with the help of image processing software the angle between the probing tip and the 

object surface. In particular, the probing tip is extracted from each image based on color 

information and morphological operations are applied to eliminate noise. The resulting 

probing tip is thinned (i.e., the image is simplified into a topologically equivalent image 

in which the skeleton of the probing tip is obtained by mathematical morphological 
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operations) to enable the computation of the angle with respect to the normal plane on the 

object surface. The angle is computed between the obtained skeleton representing the 

probing tip and the direction parallel to the top-bottom side of the image. 

 
 

(a) (b) 

Figure 3.2 (a) Experimental platform for collecting data on deformable object 

deformation behavior and (b) example of an image for angle data calculation. 

3.2. Data Preparation 

As previously mentioned, the data preparation procedure contains four steps, namely: 

data synchronization, data cleaning, data alignment, and data simplification. A 

synchronization process is required to associate the surface deformation with the 

corresponding angle and force magnitude measurements as they are collected at different 

sampling rates. The 3D models initially collected contain undesired elements present in 

the visual scene. These are eliminated in part manually and in part automatically using 

the random sample consensus (RANSAC) algorithm [180]. To ensure a simple 

interpolation between the various states of deformation and enable similar processing on 

the data collected over the surface of the objects, we first align the objects such that the 

deformed zone is situated on the top of the object. In a second step, we perform a fine 

alignment between each deformed object and the reference model using the iterative 

closest point (ICP) algorithm [181].   
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3.2.1. Data Synchronization 

Because of the different sampling rates of the force-torque sensor, the angle information 

collection, and the 3D data acquisition, a synchronization process is required in order to 

associate the correct surface deformation with the corresponding angle and force 

magnitude measurements. This is achieved by calculating the mean of all measurements 

collected over the time it takes for the 3D model to be acquired (e.g., in the interval t1 − 

t2), namely: (1) the mean of the measured force magnitude values returned by the force-

torque sensor for each component of the force along the x, y, z axes, respectively: 

𝐹𝑎𝑗  =  ∑ 𝐹𝑗

𝑡2

𝑡=𝑡1

𝑛,⁄  (8) 

where j = {x, y, z} and n is the number of readings returned by the sensors in the interval 

t1 − t2 and (2) the mean of the force angle computed over the series of images:  

𝑎𝑃𝑎  =  ∑ 𝑎𝑃

𝑡2

𝑡=𝑡1

𝑚,⁄  (9) 

where m is the number of images captured (similar to the ones in Figure 3.2 b) in the 

interval t1 − t2. The deformed object model is therefore considered to be the result of the 

application of a force with a magnitude equal to the computed average magnitude along 

the x, y, z axes respectively: 𝐹𝑎𝑥, 𝐹𝑎𝑦, and 𝐹𝑎𝑧 (Equation (8)), and 𝐹𝑃𝑎  =

 √𝐹𝑎𝑥
2  +  𝐹𝑎𝑦

2  +  𝐹𝑎𝑧 
2 , which is applied at an angle equal to the calculated average angle 

value, 𝑎𝑃𝑎 (Equation (9)). 

3.2.2. Data Cleaning 

The 3D data collected using the Kinect sensor contains undesired elements, such as the 

table on which the object is placed, the fixed landmarks required by the software to 

merge data from multiple viewpoints, and the probing tip, as can be noticed in Figure 3.3 

a. These are eliminated in part automatically (e.g., table and landmarks) and in part 

manually (e.g., the probing tip that is acquired as part of the object). Since the object is 

placed on a table during experimentation (Figure 3.2), an efficient way to remove most of 

the background is to locate the planar surface representing the table and extract it from 
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the RGB-D data. The flat surface identification is viewed as a plane-fitting problem, 

which is resolved with the random sample consensus (RANSAC) algorithm [182].  

Once the best plane model is obtained by the algorithm, the flat surface and the 

background information, represented by the inliers of this model, are removed from the 

point cloud. To automatically remove the landmark, only the largest component 

remaining in the scene, which is the object, is considered for further processing. This is a 

reasonable assumption, because the landmark used during experimentation is relatively 

small with respect to the size of the object (shown in the bottom right corner of the table, 

in Figure 3.3 a). The holes in the object around the probing tip resulting from its removal 

are filled using Meshmixer [183], a mesh processing software, in order to obtain clean 

representations of the deformable object. Figure 3.3 b shows an instance of cleaned 3D 

data, while Figure 3.3 c and 3.3 d encode in color the regions that are displaced during an 

interaction with a soft and a strong force, respectively.  

    

             (a)                 (b)               (c)               (d) 

Figure 3.3. (a) Raw data collected; (b) preprocessed data; and (c, d) deformation 

distributions with respect to the non-deformed object when applying a light and a strong 

force, respectively; regions in blue are not deformed, and the deformation is getting 

stronger from green to red. 

By comparing the initial non-deformed object with a deformed object using 

CloudCompare [184], one can notice in blue the regions that are not deformed (least 

error), while for the areas going from green to yellow, orange, and red, the deformation is 

getting stronger (larger errors). Figures 3.3 c and 3.3 d show that, in fact, not only the 

area around the probing tip is affected by the interaction, but a much larger area of the 
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object. Such behavior is extremely difficult, if not impossible, to capture by existing 3D 

modeling techniques, such as mass-spring system or FEM. 

3.2.3. Data Simplification 

Large and complex object models make the interaction with the object more difficult and 

require more calculations and more memory for storage. The goal is thus to create 

simplified objects of the original object with fewer elements (i.e. number of faces) while 

maintaining the main characteristics of the original model. 

In order to better characterize the deformation around the probing point, instead of using 

the entire collected pointcloud M, we first construct a selectively-densified mesh, Ms (of 

which an example is shown Figure 3.5 a), in which the area around the point of 

interaction between the probing tip and the object surface is preserved at higher 

resolution, while the other areas are simplified. This ensures that the small deformed area 

around the probing tip has a higher density of points with respect to the rest of the 

object’s surface. To achieve this goal, similar to the approach proposed in [90], the QSlim 

[185] algorithm was adapted to only simplify points that are not the interaction point with 

the probing tip and its n-degree immediate neighbors. 

Algorithm 1 summarizes the proposed object simplification process. For experimentation, 

we chose 12-degree neighbors for the ball and 8-degree neighbors for the cube and the 

sponge, respectively. These were selected in such a way that the entire deformation area 

is covered in all deformed instances of the object within this neighborhood. Details on the 

selection of 12 and 8 neighbors, respectively, are provided in the Chapter 4 (section 4.3) 

that presents the experimental results of the thesis. This process allows us to define an 

equal number of faces for all the instances of a deformed object, as the number of faces is 

a parameter to be provided in the simplification process. It therefore ensures a uniform 

representation of all deformed instances of an object. 
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Algorithm 1. Object simplification using QSlim adapted. 

Input: M = cleaned acquired mesh 

Output: Ms = simplified mesh (denser around probing point) 

Step 1: 

Identify the point of intersection I of the probing tip with the object mesh: I = [X, Y, Z], I   M 

Step 2: 

  // simplification of mesh M to obtain selectively-densified mesh MS  

  Calculate INN = the n-nearest neighborhood of point I in M 

  // identify only edges that do not belong to INN 

   Initialize MS = {e(u,v) | e(u,v)  M−INN} 

  // apply QSlim 

Compute quadric error at each vertex of MS 

Determine contraction cost at each edge e(u,v) in MS 

Create ordered list of edges based on cost 

Step 3:  

Remove the edge e(u,v) with lowest cost 

Use quadric error to choose the optimal contraction target 

Contract u and v and recalculate costs for the adjacent edges in MS 

While desired number of faces not reached, repeat Step 3 

 

3.2.3.1. QSlim for Surface Simplification 

QSlim is a surface simplification algorithm which can rapidly produce high quality 

approximations of polygonal models. The algorithm uses iterative contractions of vertex 

pairs to simplify models. It is assumed that the model consists of triangles only [185]. 

This implies no loss of generality, since every polygon in the original model can be 

triangulated as part of a preprocessing phase. When two faces are intersecting at the same 

point, this point is shared between the two faces rather than using two distinct points (i.e. 

one point for each face). A geometric error approximation is maintained by this algorithm 

at each vertex of the object model. This error is represented using quadric matrices.  

In the classical QSlim [185], the algorithm contracts the edge between two vertices at a 

single point when an edge connects them, so one or more faces can be removed.  
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Unconnected sections of the model are joined by moving the nearest points in each 

section to the same position.  Let v1 and v2 two vertices non-connected, let v1 belongs to 

the section 1 and v2 belongs to the section 2, we move v1 and v2 to a new position v and 

we connect the two sections on v. A sequence of pair contractions is applied until the 

desired number of faces is reached. 

In our adapted algorithm (Algorithm 1), we first identify 𝐈, the point of intersection of the 

probing tip with the mesh of the object and compute 𝐈𝐍𝐍, the set of n-neighbors closest 

to this point.  We then compute ns, the set of vertices do not belong to 𝐈𝐍𝐍, as we aim to 

simplify all the other areas of the object. Based on the identified edges belonging to ns, 

we calculate the quadric error at each vertex, determine the cost of contraction at each 

edge, then create an ordered list of edges based on cost. Finally, we remove the edge with 

the lowest cost, and repeat this process until we reach the desired number of faces. 

Finally, after all the iterations, we recompute all edges and re-establish connections 

between vertices.  

Among the advantages of our adapted version of the QSlim algorithm, we mention the 

following:  

1) It allows us to reduce the computation time and simplify just the non-deformed part, 

close the holes and re-establish the connection between the deformed and the simplified 

non-deformed parts of the model. Several other algorithms [38, 39, 40] can simplify the 

entire model by iteratively contracting edges. These methods cannot join unconnected 

regions.   

2) The simplified models obtained by our adapted algorithm preserve better the primary 

features of the original model, because we do not simplify in the model the deformed area 

around the probing tip. The algorithm can thus simplify complex models even more 

rapidly and brings thus additional savings in computation time. 

 3.2.4. Data Alignment 

In order to ensure a simpler interpretation of the deformation (e.g., comparison for 

various angles and forces) and a similar treatment of the deformation over the surface of 

an object, the objects are realigned such that the deformed zone is situated on the top of 
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the object. This operation is especially useful for symmetrical objects, such as the ball, 

but improves the interpretation of the deformed zone for all types of objects. The 

alignment procedure is executed in two stages: In the first stage, the object is rotated such 

that the contact point with the force-torque tip is aligned along the y axis. The z axis 

points in this case towards the user, y is the up-down direction and x is the left-right 

direction, as shown from two viewpoints in Figures 3.4 a and b, while Figure 3.4 c shows 

an example of the aligned model, Ma_axis, when compared to a reference model, Mr. The 

latter is selected to be the one in which the strongest force (with respect to the capabilities 

of the sensor used) is applied in the normal direction on the top of the object, but other 

deformed models could be used as well. The reason to choose a reference model that is 

already deformed instead of its non-deformed initial state is to ensure a better alignment 

of the two models around the deformation zone.   

In a second stage, a fine alignment is performed between the reference model, Mr and 

each simplified and aligned model, Ma_axis, using the iterative closest point (ICP) 

algorithm [181]. In order to ensure good results, the latter requires the two models to be 

roughly aligned, from which stems the necessity of the initial axis alignment in the first 

stage. An example of color-encoded differences obtained using CloudCompare [184] 

between the non-deformed object model and a model in which a light force (4 N) is 

applied on the top at an angle of 75 degrees with respect to the y axis is shown after the 

axis alignment, but prior to ICP alignment in Figure 3.4 c and after ICP alignment in 

Figure 3.4 d. One can notice that after the ICP alignment, the differences focus mainly on 

the deformed zone and not over the entire surface of the ball (e.g., there are more blue 

areas around the ball surface, showing a better fitting). The combined transformation 

(translation and rotation) matrix returned by ICP is saved in order to allow the 

repositioning of the deformed zone at its correct place over the surface of the object. 

This step is summarized in Algorithm 2. 
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Algorithm 2. Object alignment. 

Input: Ms = selectively densified mesh 

      Mr = reference mesh  

Output: Ma = aligned mesh with reference object 

Step 1: 

    // Rough axis alignment  

   Align Ms along y axis to obtain Ma_axis  

Step 2: 

    // ICP refinement 

    For each point P  Ma_axis find the closest point Pr  Mr 

      Calculate mean-squared error between P and Pr 

      Estimate the combination of translation and rotation to ensure best alignment between P and 

Pr based on the computed error   

      Transform the source points using the transformations to obtain Ma 

       Store the transformation matrix. 

While error larger than threshold repeat Step 2  

 

    

              (a)           (b)             (c)               (d) 

Figure 3.4. (a) Aligned model with x, y, z axes, (b) x, y view; and difference between a 

model when a light force is applied on the top at an angle of 75° with respect to the y axis 

and the reference model (c) before using the ICP (iterative closest point) and (d) after 

using the ICP (iterative closest point)  alignment. 
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3.3. Object Deformation Characterization 

The object deformation characterization procedure comprises three steps, namely: data 

sampling, neural gas network fitting, and neural network prediction of neural gas nodes. 

Once the object is aligned using the ICP algorithm, it is clustered and sampled to reduce 

the complexity of each instance of deformed objects and to better characterize the 

deformation area. After identifying the number of clusters, we use stratified sampling to 

randomly select points with varying proportions from each cluster.  

A neural gas network is fitted over the sampled points and takes the form of the object 

while preserving more details in regions with local geometry changes [130]. This 

property allows to ensure that fine differences around the deformed zone and over the 

surface of the object can be captured accurately in the model.  

After obtaining the neural gas fitting for each instance of a deformable object, a 

feedforward neural-network architecture learns a mapping between the measured 

parameters characterizing the interaction with the object (force magnitude, angle, etc.) 

and the change in the object shape (captured implicitly by neural gas nodes) due to the 

interaction. To identify the most appropriate network to represent deformable object 

shape and behavior, several neural network architectures were compared such as three 

feedforward networks (i.e. one for each 3D coordinate), as well as a single feedforward 

network with one hidden layer or two hidden layers to preserve the shape coherence of 

the object by considering the existing link between 3D coordinates (instead of 

considering them separately).  

3.3.1. Data Sampling 

To enable the characterization of the object deformation, it is necessary to reduce its 

complexity.  

In this thesis, this issue is addressed in part by using a lower number of points from the 

selectively-densified mesh, using inspiration from stratified sampling and in part by the 

neural gas fitting procedure described in the next section.  
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Stratified sampling is a technique that generates samples by subdividing the sampling 

domain into non-overlapping partitions (clusters) and by sampling independently from 

each partition. In particular, the ICP aligned mesh, Ma, is clustered according to the 

distance to the initial non-deformed mesh. We computed the Hausdorff distance between 

each instance of the deformed object and the non-deformed object to detect the number of 

clusters. After obtaining the interval of distances between each instance of the deformed 

object and the non-deformed object, we normalize them in order to ensure a uniform 

processing over the entire surface of the object. The normalized interval between the 

deformed mesh and each instance of the object under study is gradually split in an 

increasing number of equal intervals (number of clusters to be used) and the points in the 

deformed area (probing tip and its immediate neighbors) are compared with the cluster 

situated at the largest distance. This cluster normally corresponds to the deformed area. It 

is desired that the largest possible number of points in the deformed area are situated in 

this cluster. Figure 3.5 shows our method for choosing the number of clusters. In step 1, 

we split the interval of distances into two clusters, then we compared the deformed area 

around the probing tip with the cluster C2 (cluster with largest distance). We stop the 

process when we find the largest possible number of points in the deformed area situated 

in this cluster. Subsequently, in step 2, we split the interval of distances into three clusters 

and we repeat the same process done in step 1. We stop the process when we find the 

largest possible number of points of the deformed area situated in the cluster with largest 

distance. Then, at each step i (i between 4 and N-1), we split the interval of distances into 

i + 1 clusters and we repeat the same process done in step 1. At the end of the process, we 

retain the step that has the maximum number of clusters and which has the largest 

possible number of points in the deformed area situated in the cluster with largest 

distance. Once the number of clusters is identified, points are sampled randomly but in 

various proportions from each cluster to identify the adequate amount of data to be used. 

The proportions were varied during experimentation, by taking into consideration the fact 

that a good representation is desired specifically in the deformed area and therefore more 

samples are desired for regions in which the deformation is larger. In the context of this 

work, we gradually decreased the percentage of points sampled from the farthest cluster to 

the closest cluster representing the deformed zone. We chose the percentage of sampling 
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points from each cluster by monitoring the evolution of errors between the sampled model 

and the original model (results are presented in Chapter 4, section 4.1.3).  

 

Figure 3.5. Clustering method based on the distance between the mesh of each deformed 

instance and the initial non-deformed mesh. 

3.3.2. Neural Gas Networks 

Neural gas networks are subsequently used in an attempt to improve the quality of the 

object model. After the application of stratified sampling, a comparison was performed 

between the reconstructed object and the non-simplified reference object using 

CloudCompare. Figure 3.6 a shows the color-coded comparison between the initial full 

resolution ball and the reconstructed ball after stratified sampling. Figure 3.6 b shows the 

color-coded comparison between the initial ball at full resolution and the ball 

reconstructed after neural gas execution. One can notice that a very good match is 

associated in both cases with the deformed zone (represented in blue), but that the errors 

are lower after neural gas tuning (Figure 3.6 b) due to a better distribution of faces over 

the surface of the object. 
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              (a)                       (b) 

Figure 3.6. Color-coded results for the ball with respect to the initial full-resolution 

model: (a) selectively-densified mesh around the probing point for a ball; and (b) final 

mesh for a ball after using neural gas. 

We have therefore chosen to use the neural gas network to capture these fine differences; 

such differences are very difficult to capture using other classical 3D modeling 

techniques such as mass-spring models and FEM, for example. The choice of this 

network is also justified by the fact that it converges quickly, reaches a lower distortion 

error, and better captures finer details, as opposed to other architectures that obtain larger 

distortions and tend to smooth fine details, such as self-organizing architectures [45, 46] 

that we presented in the literature review. The neural gas network is a suitable model 

because of its flexibility and excellent quality of representation of different real-world 

objects [150]. The proposed algorithm (Algorithm 3) takes unorganized three-

dimensional data points as input and generates a 3D (topology-preserving) pointcloud 

that better represents the 3D object.  

To understand the functionality on the neural gas method, let 𝐩(𝐗) denote the probability 

distribution of the sampled points obtained by the stratified sampling method, and let 

𝐰𝐢 (i = 1, … , N) denote a finite number of feature vectors which will cover and represent 

all the sampled points. The number of neurons represented by the feature vectors 𝐰𝐢 is 

less than or equal to the number of sampled points. In the context of this work, the 

number of neurons is considered equal to the number of sample points in order to 

preserve the degree of accuracy of the model. During learning, in each time a data point 𝐱 

is randomly chosen from each 𝐩(𝐗). Then the distance of the feature vectors to the given 
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data vector 𝐱 is determined in order to create an ordered list of feature vectors wih respect 

to this distance. Let  𝐢𝟎 denote the index of the closest feature vector distant to  𝐱 ,  𝐢𝟏 the 

index of the second closest feature vector distant to  𝐱, and  𝐢𝐍−𝟏 the index of the feature 

vector most distant to 𝐱.  And let 𝐤 denote a variable representing the ranking of each 

feature vector with respect to the input 𝐱. 𝐤 = 𝟎 for the first closet feature vector to the 

input 𝐱, 𝐤 = 𝟏 for the second feature vector, 𝐤 = 𝟐  for the third closet feature vector and 

so on. The algorithm first determines the ranking of the feature vectors 𝐰𝐢𝟎
,  𝐰𝐢𝟏

, … ,

𝐰𝐢𝐍−𝟏
 (𝐤 = 𝟎, … , 𝐍 − 𝟏), 𝐍 is the number of feature vectors. After ranking, each feature 

vector is adjusted by using the formula [189]: 

        𝐰𝐢𝒌

𝐭+𝟏 = 𝐰𝐢𝒌

𝐭 + 𝜶(𝒕) 𝒆−𝒌/ʎ(𝒕)(𝐱 − 𝐰𝐢𝒌

𝐭 )                                  (10) 

where 𝒕 is the time step, α is the learning rate and  ʎ  is the characteristic decay constant, 

and α(t) and ʎ(t)  are slowly decreased with increasing t to ensure the convergence of the 

learning algorithm.   𝛂(𝐭) and ʎ(𝐭) are formulated, as in [46], as: 

𝛂(𝐭) = 𝛂𝐨(𝛂𝐓/𝛂𝐨)𝐭/𝐓,         ʎ(𝐭) = 𝛌𝟎(𝛌𝐓/𝛌𝐨)𝐭/𝐓 

𝐓 represents the training length. The initial and final values for α(t) and ʎ(t)  must be 

chosen at the beginning of the algorithm [46, 189]. αo and λo are the initial values for 

α(t) and ʎ(t). αT and λT are the final values for α(t) and ʎ(t). During experimentation, 

we tried different values for αo, αT, λo, λT, and we noticed that the best results obtained 

are by using the same values suggested in [149, 189], namely αo = 0.5, αT = 0.05, λo =

N/2 (N is the number of sampled points) and λT = 0.001. The sampled data resulting 

from the process described in the last section (section 3.3.1), is fitted with a neural gas 

network. The input point cloud for the neural gas contains in this case the X, Y, and Z 

coordinates of the points sampled from the clusters. While the fact that the neural gas 

map size has to be chosen a priori is in general a drawback, it is an advantage in the 

context of the current thesis, as it maintains a constant size for the representation of a 

deformed object regardless of the initial size of the object collected by the Kinect. A 

complete description of neural gas is available in [149], and of its adapted version for 3D 

pointclouds in [46]. The neural gas fitting process used in this thesis is summarized in 

Algorithm 3. 
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Algorithm 3. Neural gas fitting. 

Input:   Psi = stratified sampled points from clusters C1 to C5  

Output:  NG = fitted neural gas network  

Initialize neural gas network NG and set parameters:  

          O = {P1, … Pi, …, PNS}, Pi = [Xi, Yi, Zi]   Psi 

𝛼(𝑡) = 𝛼𝑜(𝛼𝑇/𝛼𝑜)𝑡/𝑇; 𝜆(𝑡) = 𝜆𝑜(𝜆𝑇/𝜆𝑜)𝑡/𝑇; 

   Initialize the weights 𝑤𝑖  with small random values; 

  // apply neural gas adaptation over O to obtain the neural gas map: NGi = {P1, …, Pj, …, PN}| Pj = 

[Xj, Yj, Zj], j = 1, …, N; 

   while t < T          

       Select a point Po at random from O        

       for j = 1:1:N 

         Sort weights according to the distance to Po 

         Update weights 𝑤𝑗(𝑡 + 1) = 𝑤𝑗(𝑡) + 𝛼(𝑡)ℎ𝜆(𝑘𝑗(𝑥, 𝑤𝑗))[𝑥(𝑡) − 𝑤𝑗(𝑡)];    

                 where  ℎ𝜆 (𝑘𝑗(𝑥, 𝑤𝑗)) = 𝑒𝑥𝑝(−𝑘𝑗(𝑥, 𝑤𝑗)/𝜆(𝑡)) 

         Reduce learning rate α 

      end         

end 

 

3.3.3. Feedforward Neural Networks 

Once a neural gas representation is built for each instance of a deformable object, a 

network architecture is trained to map the complex relationship between the force and 

angle data and the corresponding position of neural gas nodes over each cluster, and thus 

to capture implicitly the deformation behavior of an object. Feedforward neural network 

architectures are used for this purpose. Such fully-connected networks consist of a 

number of neurons, organized in layers, with each neuron in a layer being connected with 

all the neurons in the next layer [190]. Each connection may have a different weight. The 

weights on the connections encode the knowledge of a network. Data is entered at the 

inputs and passes through the network, layer by layer, until it arrives at the outputs. With 
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this kind of network, there is no feedback between layers. Therefore, they are called 

feedforward neural networks. To identify the appropriate architecture to use, several 

types of feedforward neural networks were compared. We started by using a series of 

two-layer feedforward networks (i.e. a network with one hidden layer), three per each 

cluster of an object, corresponding to the X, Y, and Z coordinates, respectively. After, we 

have tested three feedforward networks per each object. In an attempt to preserve the link 

between the 3D coordinates of the object shape, we also tested a single feedforward 

network with a single hidden layer or with two hidden layers. The following sections 

describe these various configurations. 

3.3.4. Prediction of Neural Gas Nodes Position Using Three Neural Network for 

Each Cluster 

In a first configuration, a series of two-layer feedforward networks, three per each cluster 

of an object (section 3.3.1), denoted NNX, NNY, and NNZ in Figure 3.7, and 

corresponding to the X, Y, and Z coordinates, respectively, is trained to map the complex 

relationship between the force and angle data and the corresponding position of neural 

gas nodes over each cluster.  

 

Figure 3.7. Feedforward architecture for neural gas node prediction using three neural 

networks per each cluster. 
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Each network takes as inputs the force components Fx, Fy, and Fz, the angle a, the 

coordinates XT, YT, and ZT of the point of intersection I of the object with the probing tip, 

and a series of X, Y, and Z coordinates. In an attempt to simplify the complex learning 

scenario, the network learns to map between the neural gas nodes representing the 

reference model Mr of an object and any deformed stage of the object. Therefore, the X, 

Y, and Z coordinates in the input will correspond to neural gas nodes representing the 

reference model Mr and are denoted Xref, Yref, Zref, respectively, in Figure 3.6. Each 

network contains 20 sigmoid hidden neurons, linear output neurons and uses the scaled 

conjugate gradient backpropagation for training. 

3.3.5. Prediction Using Three Neural Networks for Each Object 

In the second configuration, three neural networks per each object, denoted NNX, NNY, 

and NNZ (Figure 3.8) are trained to map the complex relationship between the force data 

and the corresponding position of neural gas nodes over each object. Instead of using 

three neural networks per each cluster (as in the previous section), we train only three 

neural networks on the neural gas nodes that represent the object in an attempt to reduce 

the number of operations and computing time and to identify the type of network that can 

provide a better prediction performance. Each network takes as inputs the force 

components Fx, Fy, and Fz, the coordinates XT, YT, and ZT of the point of intersection I of 

the object with the probing tip, and a series of X, Y, and Z coordinates (denoted Xref, Yref, 

Zref, respectively) that correspond to neural gas nodes representing the reference model 

Mr. The first network takes the X as inputs, the second network takes the Y as inputs and 

the third network takes the Z as inputs.  
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Figure 3.8. Feedforward architecture for neural gas node prediction using three neural 

networks per each object. 

3.3.6. Prediction Using a Single Neural Network with One Hidden Layer for Each 

Object 

In a further attempt to improve the performance (i.e. reduce the number of operations and 

the computing time) while also considering the link between the 3D coordinates of an 

object (i.e. its shape), we performed additional tests by using one single neural network 

with one hidden layer and after with two hidden layers (next section).  

Initially, a single neural network with one hidden layer, denoted NN (Figure 3.9) is 

trained, as in the previous two configurations, to capture implicitly the complex 

relationship between the force data and the corresponding position of neural gas nodes 

over each object. This network takes as inputs the force components Fx, Fy, and Fz, the 

coordinates of the point of intersection I (XT, YT, and ZT) of the object with the probing 

tip, and the same coordinates used in the previous section, representing the reference 

model (Xref, Yref, Zref,).   
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Figure 3.9. Feedforward architecture for neural gas node prediction using one neural 

network with one or two hidden layers. 

3.3.7. Prediction Using a Single Neural Network with Two Hidden Layers for Each 

Object 

In a last attempt, we trained a single neural network with two hidden layers for each 

object (Figure 3.9). This neural network takes the same inputs as the network used in the 

previous section (section 3.3.6).  As it will be demonstrated in the experimental results in 

Chapter 4, we have identified this configuration as being the best in terms of 

performance.  

3.3.8. Transfer of Learning Using Neural Networks with Two Hidden Layers 

As described in Chapter 1, this thesis also aims to develop a transfer learning capability 

to account for the within class variability (shape and material) of objects. This consists 

mainly in enabling the method to account for different sizes of the same object as well as 

slightly varying physical parameters of the objects by using the learning of a pre-trained 

network on one object to accelerate the training of another object given that the physical 

properties of the objects are similar except for their size and/or slight geometrical 

differences. As training a model from scratch represents a lot of work and requires a lot 
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of data, the transfer of learning allows to use less data and thus to reduce the training 

time. For this purpose, we used two neural networks. The first neural network is used to 

capture implicitly the object model and the second one is fine-tuned and used for 

prediction (Figure 3.10). For example, we train the first neural network on data of small 

deformable ball. We transfer its learning to the second neural network, then we fine-tuned 

the second neural network on data representing a large ball and we use it to predict 

deformations for the large ball.  

 

Figure 3.10. Transfer of learning between two neural networks for predicting a small 

object using a network trained on the large object. 

In order to transfer the learning between the two neural networks, it is necessary that they 

have the same number of layers and the same number of neurons on each layer. After 

training the first neural network, we transfer its learning to the second neural network 

with the same architecture by transferring the weights matrices between the input and the 

first hidden layer, between the first hidden layer and the second hidden layer and between 

the second hidden layer and the output layer. Then, we fine-tune and use the second 

neural network for prediction. All the related details are presented in Chapter 4, section 

4.6. 
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3.3.9. Deformed Object Reconstruction  

Once the series of feedforward neural networks is trained, they can be used conjunctly to 

predict the position of neural gas nodes for force magnitudes and angles that were not 

measured, and therefore for data with which the network was not trained. The X, Y, Z 

coordinates of points predicted for each cluster by the series of the neural networks are 

assembled together to provide an estimate of the entire object shape. In order to 

reconstruct the object, one solution would be to construct a mesh directly over the 

predicted points, using for example a Poisson surface reconstruction [191]. However, this 

is not an optimal solution in this case, due to the fact that, during the simplification 

process we concentrated the effort in the deformed area and sampled much less points for 

the rest of the object. If the neural gas nodes are used as predicted, the quality of the 

model will be significantly deteriorated over most of the surface of the resulting mesh.  

A solution to deal with this problem is to use the adapted data simplification algorithm 

that we presented in section 3.2.3, but to constrain the number of triangles in the mesh to 

be equal to the average number of faces in the reference mesh model, Ms, representing 

the various deformation instances of an object. In this case, instead of performing a 

simplification operation, the adapted algorithm will force the redistribution of faces in 

those areas in which changes occurred as a result of the deformation. This is the solution 

chosen in this thesis. 

3.4. Model Validation 

To evaluate the results of the object representation and prediction using the proposed 

approach, as well as allow the selection of parameters, the similarity of the reconstructed 

model obtained in section 3.3.9 is compared to the cleaned object model (collected by the 

Kinect) qualitatively (visually) and quantitatively (error calculation). The difference 

between the acquired data belonging to a real object and its simplified version is 

visualized using CloudCompare [184]. Using the obtained, simplified representation as 

one model and the original full-resolution mesh of the object as another model, the 

difference between them will highlight the areas most affected by errors. For a 

quantitative measure of errors, the Metro tool [36] allows, in a similar manner, to 

compare two meshes (e.g., the original, full-resolution mesh, and its simplified version) 
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based on the computation of a point-surface distance and returns the maximum and mean 

distance, as well as the variance (RMS). The lower this error is, the better the quality of 

the simplified object is.  

Since our interest is in improving the perceptual quality of the models, another measure, 

the perceptual error [186], is also employed. It is based on the structural similarity metric 

(SSIM). The latter was proposed based on the observation that human visual perception is 

highly adapted to extract structural information in a scene [186]. The inverse of this 

metric can be employed as an error measure, because a lower similarity between the 

simplified mesh and the initial mesh implies a higher error. Since this measure is meant 

to be applied on images, therefore, to compute it, images are captured over the simplified 

models of objects from various viewpoints and are compared with the images of the 

initial, non-simplified object from the same viewpoints. In the current case, the object is 

turned around the y axis for 360°, 15° at a time, and images are collected over the 

resulting 25 viewpoints. This measure is reported for each deformed instance of an object 

as an average over these viewpoints. These errors are briefly described in the following 

sections. 

3.4.1. Quantitative Error Computation Using Metro  

The Metro tool [36] is used to compare the triangulated mesh for each un-simplified 

(original) object with its simplified representations. As a triangular mesh is represented 

by a set of points (vertices) and by a set of triangles (faces) describing how the vertices 

are linked together, the approximation error between two meshes can be found using the 

distance between the surfaces of the two meshes. Supposing that 𝐒𝟏 is the surface of the 

first mesh, 𝐒𝟐 is the surface for the second mesh and 𝒑 is a given point on the surface 𝐒𝟏. 

The distance between 𝒑 and 𝐒𝟐 is defined by [192]: 

𝐞(𝒑, 𝐒𝟐) = 𝐦𝐢𝐧 𝐝(𝐩, 𝐩′),     𝒑′ ∈ 𝑺𝟐                                 (11) 

where d is the Euclidean distance between the two points 𝐩 and  𝐩′ (Figure 3.11). 
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Figure 3.11. The distance between 𝐩 and 𝐒𝟐 is the Euclidian minimal distance between 𝐩  

and 𝐩′, where 𝐩′ belongs to 𝐒𝟐  (adapted from [192]). 

The distance between the two surfaces 𝐒𝟏 and 𝐒𝟐  is defined by [192]: 

𝐄(𝐒𝟏, 𝐒𝟐) = 𝐦𝐚𝐱 𝐞(𝐩, 𝐒𝟐)    𝐩 ∈ 𝐒𝟏      (12) 

It is important to note that the definition of the distance between two surfaces is not 

symmetric, as it can be observed in Figure 3.12. 

 

Figure 3.12. In this example, d(𝐒𝟐, 𝐒𝟏) is smaller than d(𝐒𝟏, 𝐒𝟐), since here d(𝐩𝟐, 𝐒𝟏) < 

d(𝐩𝟏, 𝐒𝟐) (adapted from [192]). 

𝐄(𝐒𝟏, 𝐒𝟐) ≠ 𝐄(𝐒𝟐, 𝐒𝟏)                                (13) 

The Hausdorff distance is obtained by taking the maximum of 𝐄(𝐒𝟏, 𝐒𝟐) and 𝐄(𝐒𝟐, 𝐒𝟏), 

and this distance is defined as: 

𝐝𝐡(𝐒𝟏, 𝐒𝟐) = 𝐦𝐚𝐱 (𝐄(𝐒𝟏, 𝐒𝟐), 𝐄(𝐒𝟐, 𝐒𝟏))                       (14) 
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The mean distance between the two surfaces 𝐒𝟏  and 𝐒𝟐  is defined as the surface integral 

of the distance divided by the area of 𝐒𝟏  as [36]: 

𝐝𝐦𝐞𝐚𝐧(𝐒𝟏, 𝐒𝟐) =
1

|𝐒𝟏|
∫ 𝐞(𝐩, 𝐒𝟐)𝐝𝐬                                 (15) 

The root mean square error is defined by [192]: 

𝐝𝐫𝐦𝐬(𝐒𝟏, 𝐒𝟐) = √
1

|𝐒𝟏|
∫ 𝐞(𝐩, 𝐒𝟐)𝟐𝐝𝐬       

(16) 

To compute numerically the values of this error measure, we used the Metro tool [36]. It 

is a tool that allows to compare the difference between a triangulated mesh and its 

simplified representation without requiring knowledge on the simplification approach 

used to build the meshes. It evaluates the difference between two meshes based on the 

approximate distances defined in this section and returns the numerical results of the 

surface area and the mesh volume of the two objects compared. It also provides the 

number of connected components of each mesh, the total volume of the difference 

between the two meshes, and the maximum, the mean and the mean square root error. 

This tool can also display information on the number of triangles and number of vertices 

for each mesh. In our case, we only make use of the computed maximal distance, the 

mean and the mean square errors computed between the two meshes.  

3.4.2. Perceptual Errors 

The structural similarity index measure (SSIM) is a technique to quantify the visible 

errors between a reference image and a deformed image using properties of the human 

visual system [37]. As this measure can only be applied to images, in the context of this 

thesis, images are captured over the simplified 3D models of objects from various 

viewpoints. These are compared with the images of the initial, non-simplified 3D object 

from the same viewpoints, as discussed at the end of this section.  

To compare a reference and a deformed image, the SSIM-based method uses three 

images: a luminance image, a contrast image and a structure image. The luminance is the 

phenomenon where the visibility is lower in the bright regions in the deformed image. 

The contrast is the phenomenon where the visibility is lower when we have texture 
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regions in the deformed image. The structural information in an image is defined as those 

attributes that represent the objects in the scene, independently of the luminance and 

contrast. First, the luminance images are compared, then the contrast images are 

compared, and finally the structural images are compared. Then the three comparisons 

are combined to compute the similarity measure. Figure 3.13 shows a diagram illustrating 

the quality assessment system, adapted from [37]. In the figure, 𝐢𝐦𝟏 and 𝐢𝐦𝟐 represent 

the two images that we want to compare. All the following mathematical formulas are 

extracted from [37]. 

 

Figure 3.13. Diagram of the quality assessment system adapted from [37].  

Assuming that µ𝐢𝐦𝟏  is the estimation of the mean intensity of the image 𝐢𝐦𝟏 and µ𝐢𝐦𝟐 is 

the estimation of the mean intensity of the image 𝐢𝐦𝟏, where: 

µ𝐢𝐦𝟏  =
1

N
∑ 𝐱𝐢

N
i=1   (17) 

µ𝐢𝐦𝟐  =
1

N
∑ 𝐲𝐢

N
i=1                   (18) 

The luminance comparison function 𝐥(𝐢𝐦𝟏, 𝐢𝐦𝟐) is a function of µ𝐢𝐦𝟏  and  µ𝐢𝐦𝟐, and it 

is given by: 
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𝐥(𝐢𝐦𝟏, 𝐢𝐦𝟐) =
𝟐µ𝐢𝐦𝟏µ𝐢𝐦𝟐+𝐂𝟏

µ𝐢𝐦𝟏
𝟐 +µ𝐢𝐦𝟐

𝟐 +𝐂𝟏
           (19) 

where 𝐂𝟏 is a constant to avoid instability when µ𝐢𝐦𝟏
𝟐 + µ𝐢𝐦𝟐

𝟐  is very close to zero. 

𝐂𝟏  = (𝐊𝟏 𝐋)2                               (20) 

𝐊𝟏 is a small constant and L is the rang of the pixel values (L=255 for 8-bit grayscale 

image). 

The estimation of the signal contrast is given by the square root of variance: 

𝛔𝐢𝐦𝟏  = (
1

N−1
∑ (𝐱𝐢 − µ𝐢𝐦𝟏)2N

i=1
)1/2                (21) 

𝛔𝐢𝐦𝟐  = (
1

N−1
∑ (𝐲𝐢 − µ𝐢𝐦𝟐)2N

i=1
)1/2                (22) 

The contrast comparison function  𝐜(𝐢𝐦𝟏, 𝐢𝐦𝟐) is defined by:  

𝐜(𝐢𝐦𝟏, 𝐢𝐦𝟐) =
𝟐𝛔𝐢𝐦𝟏𝛔𝐢𝐦𝟐+𝐂𝟐

𝛔𝐢𝐦𝟏
𝟐 +𝛔𝐢𝐦𝟐

𝟐 +𝐂𝟐
                             (23) 

In this formula, 𝐂𝟐 is a constant to avoid instability when µ𝐢𝐦𝟏
𝟐 + µ𝐢𝐦𝟐

𝟐  is very close to 

zero and calculated as: 

𝐂𝟐  = (𝐊𝟐 𝐋)2                                                   (24) 

where 𝐊𝟐 is a small constant and 𝐋 is the rang of the pixel values (L=255 for 8-bit 

grayscale image). The structure comparison function 𝐬(𝐢𝐦𝟏, 𝐢𝐦𝟐)  is defined as: 

𝐬(𝐢𝐦𝟏, 𝐢𝐦𝟐) =
𝟐𝐜𝐨𝐯𝐢𝐦𝟏𝐢𝐦𝟐+𝐂𝟑

𝛔𝐢𝐦𝟏𝛔𝐢𝐦𝟐+𝐂𝟑
                              (25) 

where 𝐂𝟑 is a constant to avoid instability when 𝛔𝐢𝐦𝟏𝛔𝐢𝐦𝟐 is very close to zero, and 

computed as: 

𝐂𝟑 = 𝐂𝟐/𝟐                                                        (26) 

and cov𝐢𝐦𝟏𝐢𝐦𝟐 is the covariance of 𝐢𝐦𝟏 and 𝐢𝐦𝟐 given by:  
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𝐜𝐨𝐯𝐢𝐦𝟏𝐢𝐦𝟐 =  
1

N
∑ (𝐱𝐢 − 

N

i=1
µ𝐢𝐦𝟏)(𝐲𝐢 − µ𝐢𝐦𝟐)        (27) 

By combining the equations (13), (17) and (19), the structural similarity (SSIM) index 

between 𝐢𝐦𝟏 and 𝐢𝐦𝟐 [193] :  

𝐒𝐒𝐈𝐌(𝐢𝐦𝟏, 𝐢𝐦𝟐)  =
(𝟐µ𝐢𝐦𝟏µ𝐢𝐦𝟐+𝐂𝟏)(𝟐𝐜𝐨𝐯𝐢𝐦𝟏𝐢𝐦𝟐+𝐂𝟐)

(µ𝐢𝐦𝟏
𝟐 +µ𝐢𝐦𝟐

𝟐 +𝐂𝟏)(𝛔𝐢𝐦𝟏
𝟐 +𝛔𝐢𝐦𝟐

𝟐 +𝐂𝟐)
            (28) 

The perceptual error is given by: 

𝐏𝐞𝐫𝐜𝐞𝐩𝐭𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫 = 𝟏 − 𝐒𝐒𝐈𝐌(𝐢𝐦𝟏, 𝐢𝐦𝟐)             (29) 

Because this measure is meant to be applied to images, we apply it to captured images 

over the simplified models of 3D objects from various viewpoints and we compare with 

the images of the initial, non-simplified object (or with the FEM model when performing 

the comparison with this classical method) from the same viewpoints. To achieve this, the 

object is turned around the Y axis for 360°, 15° at a time, and images are collected over 

the resulting 25 viewpoints. This measure is then reported for each deformed instance of 

an object as an average over these 25 viewpoints. 
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CHAPTER 4 

4. EXPERIMENTAL RESULTS  

This chapter shows results obtained by our proposed method and discusses the 

implementation issues and the choice of various parameters involved. To implement our 

method, all the computations were performed on a Pentium III, 2Ghz CPU, 64-bit 

operating system, 4Ghz memory machine using MATLAB. 

4.1. Preprocessing 

This section presents experimental results for parameter tuning and validation of the 

preprocessing steps of our method. It is aligned with objective 2 (chapter 1, section 1.1) 

and contribution 2 (chapter 1, section 1.3). 

The proposed method (chapter 3, sections 3.2.3, 3.2.4, 3.3.1 and 3.3.2) for modeling and 

predicting deformable object shapes is validated by using a soft rubber ball, a rubber-

coated foam cube, and a foam sponge (see Figure 4.1 a). Starting from the cleaned mesh, 

instead of using the entire collected point clouds (Figure 4.1 b), an alignment procedure is 

performed to ensure a simpler interpretation of the deformation and a similar treatment of 

the deformation over the surface of an object (Chapter 3, section 2.3.4), then a 

selectively-densified mesh (Figure 4.1 c) is first constructed, in which the area around the 

point of interaction between the probing tip and the object surface is preserved at higher 

resolution, while the other areas are simplified. This is achieved by adapting the QSlim 

algorithm to only simplify points that are not the interaction point with the probing tip 

and its immediate neighbors.  

Figure 4.1 d shows the stratified sampled data chosen for neural-gas mapping. Figures 4.1 

e and 4.1 f show the neural-gas-tuned simplification obtained for each object and the 

neural-gas-tuned simplified objects. 
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        (a)        (b)         (c)        (d)        (e)         (f) 

Figure 4.1. (a) Object model; (b) initial object mesh; (c) mesh with higher density in the 

deformed area; (d) stratified sampled data for neural-gas mapping; (e) neural-gas-tuned 

simplification; and (f) neural-gas-tuned simplified object. 

4.1.1. Choice of Simplification Parameters and Obtained Simplification Results 

The two important parameters used in the simplification process are the percentage of the 

number of faces chosen to simplify the object and the number of neighbors chosen 

around the probing tip. 

The proposed simplification procedure ensures a uniform representation of the object by 

defining an equal number of faces, representing 40% of the faces in the initial model for 

all the instances of a deformed object. This value (i.e. 40%) is chosen by monitoring the 

evolution of the errors and the computation time for an increasing percentage (from 10% 

to 100%) and finding the best compromise between the two, as illustrated in Figure 4.2. 

This figure shows the evolution of the error measures detailed in sections 3.5.1 and 3.5.2, 

namely of the Metro errors (Figure 4.2 a), the perceptual error (Figure 4.2 b), and of the 

computation time (Figure 4.2 c), error measures calculated as an average over the entire 

surface of the three objects under study, with the percentage of faces used for 

simplification. One can notice that, as expected, the error decreases with an increase in 
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the number of faces. At the same time, the computation time increases slightly with a 

larger number of faces, and therefore the best compromise is found between these two 

opposing criteria. The abrupt descent in Metro error and the relatively low computation 

time around 40% of the number of faces guided our choice for the selection of this 

parameter.  

 

(a) 

 

(b) 

 

(c) 

Figure 4.2. Evolution of: (a) Metro error; (b) perceptual error; and (c) computation time 

with the number of faces used for data simplification. 
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A second parameter that affects the simplification algorithm is the number of immediate 

neighbors that are preserved around the probing tip. Initially (in our publication [188]), 

we used 12 immediate neighbors for all the objects. In the current work, 12-degree 

immediate neighbors are preserved for the rubber ball and 8-degree immediate neighbors 

for the foam sponge and the cube. Only values within this range (8 to 12) are tested, 

because they allow us to correctly capture the entire deformed area over the 3D point 

clouds collected. Within this range, the number of neighbors is chosen by selecting the 

model that results in the lowest perceptual error (or the highest perceptual similarity) with 

respect to the original, non-simplified mesh. Table 4.1 shows the evolution of the 

perceptual errors with the size of the neighborhood (n) around the probing tip and 

justifies the choice of the neighborhood size based on the highest similarity. 

Table 4.1. Perceptual similarity measures according to neighborhood size, n. 

 
      Ball       Cube        Sponge 

n = 8/n = 10/n = 12 n = 8/n = 10/n = 12 n = 8/n = 10/n = 12 

Overall perceptual similarity 

(%) 
71.38/71.38/71.38 79.3/78.87/78.5 83.75/83.37/82.81 

Perceptual similarity (%)  

in the deformed zone 
84.65/84.11/85.00 93.67/93.48/93.49 91.24/90.82/90.93 

 

 

Table 4.2. Error measures and computing time for objects after simplification. 

Object 

Name 

Overall Metro 

Error (e−3) 
Overall Perceptual 

Error (Similarity 

%) 

Metro Error in 

Deformed Area 

(e−5) 

Perceptual Error 

(Similarity%) in 

Deformed Area 

Computing 

Time/Object 

Max/Mean/Rms Max/Mean/Rms 

Ball 17.672/2.948/3.713 0.2862 (71.38%) 46.277/4.496/7.548 0.1407 (85.93%) 0.139 s 

Cube 13.128/0.600/2.265 0.2070 (79.30%) 42.755/3.321/6.765 0.0633 (93.67%) 0.033 s 

Sponge 4.088/0.113/0.540 0.1625 (83.75%) 42.471/3.159/6.388 0.0876 (91.24%) 0.058 s 

Average 11.629/1.220/2.173 0.2186 (78.15%) 41.834/3.659/6.900 0.0972 (90.28%) 0.077 s 
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Table 4.2 (for more details see Annex A, Tables 4.2.1, 4.2.2 and 4.2.3) presents the Metro 

and perceptual errors computed over the entire surface of the object and over the 

deformed area for all the objects. The overall perceptual similarity obtained is 71.38% for 

the ball, 79.30% for the cube, 83.75% for the sponge, with an average of 78.14% for the 

three objects together. Over the deformed area of the object, the average perceptual 

similarity is 85.93% for the ball, 93.67% for the cube, 91.24% for the sponge and 90.28% 

for the three objects together. The results for the selective simplification around the 

probing tip with the above detected values for the parameters are shown for the three test 

objects in Figure 4.1c. 

4.1.2. Clustering and Sampling Results 

After obtaining the selectively-densified mesh as described in the previous section, a 

stratified sampling technique, as detailed in section 3.3.1, is employed to only retain a 

subset of data for neural-gas fitting. This clustering and sampling process is applied to 

reduce the complexity of each instance of deformed objects and to better characterize the 

deformation area. In particular, the mesh is initially clustered according to the Hausdorff 

distance with respect to the initial non-deformed mesh. It is desired that the highest 

possible number of points from the deformed zone is situated in the farthest cluster.  

The two parameters to be tuned in the clustering and sampling process are the number of 

clusters and the percentage of points (3D coordinates) sampled from each cluster.  

To identify the number of clusters to be employed, in an initial attempt (in our 

publication [188]), during testing, the number of points of the deformed zone in the 

farthest cluster was monitored, and the process was stopped once the largest number of 

points in the deformed zone was found in this cluster. A number of five clusters was thus 

identified to ensure the best results. Subsequently, in this section, a more thorough 

analysis led to a better definition of the area around the deformation zone by increasing 

the number of clusters and regrouping the ones at the largest distance to cover the entire 

deformation area. In this case, an equal number of five clusters were used, but by 

identifying seven clusters and then regrouping the three farthest together.  



71 

Figure 4.3 shows the difference, for each of the test objects, between the use of five and 

seven clusters. One can notice that in all three cases, the use of seven clusters and the 

combination of clusters at the farthest distance more accurately represents the 

deformation area. For example, for the case of the ball, the combination of the red, 

fuchsia, and orange clusters in Figure 4.3 b results in a more accurate representation of 

the deformation area than the black cluster in Figure 4.3 a. The same conclusion can be 

reached by comparing Figure 4.3 c and d to Figure 4.3 e and f, respectively. 

  
 

(a) (b) (c) 

 
  

(d) (e) (f) 

 

Figure 4.3. Clusters for ball: (a) 5 clusters; (b) 7 clusters; for cube: (c) 5 clusters and (d) 7 

clusters; and for sponge: (e) 5 clusters and (f) 7 clusters. 

Figure 4.1 d shows the clusters, with red points belonging to the farthest cluster from the 

initial object (deformed zone) and orange, yellow, green, and blue points being 

increasingly closer to the initial mesh (blue = perfect match), for the combination of 90% 

from the farthest (red) cluster, 80%, 70%, and 60%, respectively, from the 2nd, 3rd, and 

4th cluster, and 50% from the closest distanced cluster points (blue). While a higher 

percentage might achieve better results, it will also result in a higher computation time. 

Table 4.3 (for more details see Annex B, tables 4.3.1, 4.3.2 and 4.3.3) shows the Metro 

and perceptual errors computed over the entire surface of the object and over the 

deformed area. The perceptual similarity obtained is 79.76% for the ball, 73.06% for the 
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cube, 76.54% for the sponge, with an average of 76.46% for the three objects together. 

Over the deformed area of the object, the average of perceptual similarity is 93.135% for 

the ball, 94.53% for the cube, 90.64% for the sponge resulting an average of 92.77% for 

the three objects together. By comparing the similarity between the objects after 

simplification and after clustering and sampling, one can notice that the average of 

similarity for the three objects increases in the deformed zone (increase of 2.49%) and 

decreases slightly over the whole surface of the object (decrease of 1.68%).  

Table 4.3. Error measures and computing time for objects after clustering and sampling. 

Object 

Name 

Overall Metro 

Error (e−3) 
Overall Perceptual 

Error (Similarity 

%) 

Metro Error in 

Deformed Area 

(e−5) 

Perceptual Error 

(Similarity%) in 

Deformed Area 

Computing 

Time/Object 

Clustering/Sa

mpling Max/Mean/Rms Max/Mean/Rms 

Ball 17.647/3.000/3.824 0.2023 (79.76%) 25.73/0.83/2.31 0.0687 (93.14%) 0.083 s/0.037 s 

Cube 13.111/0.353/1.725 0.2693 (73.06%) 39.37/2.63/6.27 0.0547 (94.53%) 0.025 s/0.028 s 

Sponge 4.075/0.066/0.409 0.2346 (76.54%) 42.078/4.9/6.89 0.0936 (90.64%) 0.039 s/0.031 s 

Average 14.104/1.140/1.986 0.2350 (76.46%) 35.73/2.79/5.16 0.0723 (92.77%) 0.049 s/ 0.032 s 

 

4.1.3. Neural Gas Results 

The stratified sampling process detailed in the previous section is not sufficient to 

adequately capture the object shape, as the fine differences around the deformed zone and 

over the object surface (see Figure 3.3 c-d in Chapter 3) might not be appropriately 

represented, which is the reason why a tuning of the selectively densified mesh is also 

executed using a neural gas network. A neural gas network is adapted, as explained in 

sections 3.3.2 and 3.3.3, and tuned over the resulting sampled data in section 4.1.2 for 25 

iterations. It uses a number of neurons equal to the number of points sampled from the 

different clusters and a number of faces equal to the average of the number of faces over 

the selectively densified meshes. The object model is then constructed using the method 

proposed in section 3.3.9. Figure 4.4 presents the color-coded comparison with the initial 

full resolution object obtained using CloudCompare for each of the three objects after the 

construction of the selectively-densified mesh and after the neural gas tuning. One can 
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notice that a very good match is associated in both cases with the deformed area (shown 

in blue), but that the errors are lower in each case after neural gas tuning due to a better 

distribution of faces over the surface of the object.  

Figure 4.4. Color-coded results for the ball, sponge, and cube with respect to the initial 

full-resolution model: (a) selectively-densified mesh around the probing point for a ball 

for 𝐹𝑃𝑎 = 4.5 N, 𝑎𝑃𝑎 = 10°; (b) final mesh for a ball for 𝐹𝑃𝑎 = 4.5 N, 𝑎𝑃𝑎 = 10°; (c) 

selectively-densified mesh around the probing point for a sponge for 𝐹𝑃𝑎 = 3.7 N, 𝑎𝑃𝑎 = 

49°; (d) final mesh for a sponge for 𝐹𝑃𝑎 = 3.7 N, 𝑎𝑃𝑎 = 49°; (e) selectively-densified 

mesh around the probing point for a cube for 𝐹𝑃𝑎 = 5 N, 𝑎𝑃𝑎 = 85°; and (f) final mesh for 

a cube for 𝐹𝑃𝑎 = 5 N, 𝑎𝑃𝑎 = 85°. 

One of the parameters to be tuned is the number of iterations for the neural gas. It was 

obtained by monitoring the evolution of the errors and of the computation time for an 

increasing number of neurons and number of iterations (10, 15, 20, 25, 30, 35, 40, 45, 50, 

75 and 100).  

 

           (a) 

 

            (b) 

 

                (c) 

 

              (d) 

 

           (e) 

 

              (f) 
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(a) 

 

(b) 

 

(c) 

Figure 4.5. Evolution of perceptual error: (a) in relation with the number of iterations; (b) 

in relation with the number of neurons; and (c) evolution of computation time with the 

number of iterations. 



75 

Figure 4.5 a, shows the evolution of the perceptual errors in the deformed area in relation 

with the increase in the number of iterations, Figure 4.5 b shows the evolution of the 

perceptual errors in the deformed area in relation with an increasing number of neurons in 

the neural gas map and Figure 4.5 c shows the evolution of the computation time. It can 

be noticed that an increase in the number of iterations leads to a decrease in the 

perceptual error. At the same time, the computation time increases with a larger number 

of iterations, and therefore the best number of iterations is found as a compromise 

between these two opposing criteria. As a consequence, the number of iterations chosen 

is 25. 

The Metro and perceptual errors computed over the entire surface of the object and over 

the deformed area are presented in Table 4.4 (for more details, see Annex C, Tables 4.4.1, 

4.4.2 and 4.4.3). An average perceptual similarity of 91.66% is obtained for the ball, 

81.65% for the cube, 80.02% for the sponge and an overall 84.45% over the three objects. 

Over the deformed area of the object, the average perceptual similarity is of 98.474% for 

the ball, 97.68% for the cube, 91.63% for the sponge, resulting in an overall average of 

95.93%. 

Table 4.4. Error measures and computing time for objects after neural gas fitting. 

Object 

Name 

Overall Metro 

Error (e−3) 
Overall Perceptual 

Error (Similarity 

%) 

Metro Error in 

Deformed Area 

(e−5) 

Perceptual Error 

(Similarity%) in 

Deformed Area 

Computing 

Time/Object

/Iteration 

Neural Gas Max/Mean/Rms Max/Mean/Rms 

Ball 54.2/1.42/2.37 0.0830 (91.66%) 11.37/0.16/0.78 0.0155 (98.47%) 25.966 s 

Cube 23.33/2.05/3.76 0.1835 (81.65%) 26.16/0.30/1.51 0.0139 (97.68%) 5.047 s 

Sponge 36.46/2.65/4.9 0.1991 (80.02%) 40.67/1.01/3.38 0.0872 (91.63%) 7.056 s 

Average 37.99/2.04/11.03 0.1552 (84.45%) 20.06/0.49/1.89 0.0388 (95.93%) 12.689 s 

 

When comparing the similarity between the objects before and after neural gas using, one 

can notice that the average perceptual similarity for the three objects increases in the 

deformed zone (increase of 5.65%) and also on the surface of the whole object (increase 

of 6.30%). For example, for the ball, the overall perceptual similarity obtained for the ball 
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is 91.66% (an improvement of 20.28% compared to the simplification) and 98.474% (an 

improvement of 12.54%) over the deformed area.  

4.1.4. Choice of Number of Interaction Points 

In our method, we used one interaction point to represent the point of contact between the 

probing tip and the object. To justify this choice and evaluate impact of using more than 

one interaction point, we tested as well the ray-based points interaction method [50-54]. 

This method considers the interaction with the object as a line or polygon [54]. For 

example, given the point of interaction of the probe with the object (denoted I), the two 

points with the shortest distance from point I are identified (Figure 4.6) based on the 

Euclidean distance between I and all the other points on the surface. Additional points 

could be considered as well, but the computation time will be longer which is not desired 

in the context of this work. Figures 4.6 a, b and c show respectively the non-simplified 

deformed ball with the three interaction points I, A and B, the deformed zone area around 

the probing tip when one interaction point is used and when three interaction points (I, A 

and B) are used. Figures 4.6 d, e and f illustrate the difference between the deformed zone 

area when using one interaction point (green color) and when using three interaction 

points (blue color), for the three test objects respectively. One can notice that the 

difference between the blue and green colored areas occurs far from the point of 

interaction of the probing tip.  

To study the impact of the two interaction methods (one point interaction and ray-based) 

on the preprocessing steps of our method, we compared the quality of the object models 

obtained using these two methods. For experimentation we used 10 deformed instances 

for the ball, 8 instances for the cube and 8 instances for the sponge and also employed 12 

neighbors around the interaction points for the ball and, 8 neighbors for the cube and the 

sponge (as detailed in section 4.1.1). This leads clearly to a larger number of points when 

using 3 interaction points than the number of points obtained one interaction point is 

used. It is thus expected that a slightly better accuracy will be obtained when using 3 

interaction points. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.6. (a) Original deformed ball; (b) deformed zone around the probing tip with one 

interaction point; (c) deformed zone around the probing tip with three interaction points; 

difference between the two deformed zones for (d) the Ball; (e) for the cube; (f) for the 

sponge. 

To confirm this, we computed the Metro and perceptual error between objects obtained 

based on one interaction point and based on three interaction points. Using one 

interaction point, the overall perceptual similarity achieved is on average 81.52% over the 

entire surface of the object and roughly 95.47% over the deformed area; while using three 

interaction points, results in an average 82.06% over the entire surface and 96.10% over 

the deformed area. It can be noticed that, using three interaction points, we indeed 

obtained a slight, but insignificant improvement both for the entire object (0.54%) and in 

the deformed area (0.63%). This is the reason why we chose to perform the subsequent 

experimentation for one interaction point only. 

4.2. Evaluation of the Impact of Preprocessing Steps 

As noticed in the first three steps of our method, there are gains and losses resulting from 

the choice of simplification, clustering, sampling and neural gas tuning, from the 

similarity point of view, both on entire object surface and in the deformed area. Table 4.5 
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summarizes the average Metro and perceptual errors after each preprocessing step, and 

Table 4.6 presents the gains, losses, and the impact of each step on our method.  

Table 4.5. Average Metro and perceptual errors for all preprocessing steps. 

 Simplification Clustering & Sampling Neural Gas 

Overall Metro Error 

(e−3) 

Max/Mean/Rms 

11.629/1.220/2.173 

Max/Mean/Rms 

14.104/1.140/1.986 

Max/Mean/Rms 

37.99/2.04/11.03 

Overall Perceptual 

Error (Similarity %) 

0.2186 (78.16%) 0.235 (76.47%) 0.1552 (84.46%) 

Metro Error in 

Deformed Area (e−5) 

Max/Mean/Rms 

41.834/3.659/6.900 

Max/Mean/Rms 

35.73/2.79/5.16 

Max/Mean/Rms 

20.06/0.49/1.89 

Perceptual Error 

(Similarity%) in 

Deformed Area 

0.0972 (90.28%) 0.0723(92.77%) 0.0388 (95.93%) 

Computation 

Time/Object 
0.077 s 

Clustering/Sampling 

0.049 s/0.032 s 
12.68 s/iteration 

 

Table 4.6. Impact of each preprocessing step. 

 Simplification Clustering & Sampling Neural Gas 

Gains 

Low computation time of 

0.077 seconds. 

 

2.77% more similarity in the 

deformed area. Low 

computation time of 0.049 

seconds for clustering and 

0.032 seconds for sampling. 

7.99% more similarity overall 

the surface of the object. 

3.17% more similarity in the 

deformed area. 

Losses 

Lost similarity of 21.84% 

over the surface of the object 

and 9.72% in the deformed 

area due to the simplification 

of 40% (but results in gains in 

computation time for the 

modeling, as it will be further 

shown in the thesis). 

Lost 1.69% of similarity 

overall the surface of the 

object during sampling. 

No losses but slightly higher 

computation time (12.68 

seconds per iteration). 

Complexity 

Order of complexity: O(n), 

n is the number of points 

represent the object. 

 

Order of complexity: O(nk), n 

is the number of points 

represent the object and k is 

the number of clusters. 

 

Order of complexity: O(n2),  

n is the number of points 

represent the object. 
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The simplification, clustering, and stratified sampling are executed in an attempt to 

reduce the computation in the subsequent steps especially in neural gas and further on for 

the object shape deformation modeling. 

4.3. Model Selection and Learning by Neural Network 

As described in section 3.3.4, we proposed to use a series of feedforward neural networks 

to capture implicitly the behavior in terms of surface deformations represented as neural 

gas nodes and the interaction characteristics (i.e. force magnitude, angle of application, 

point of application).  

Several neural network architectures were studied and tested as described in Chapter 3, 

sections 3.3.4 - 3.3.6. To train each type of architecture, experiments were performed 

using different forces (magnitude, angle, point of application) as the ground truth and the 

corresponding deformed instances for each object. For example, in the case of the ball 

each original deformed ball used for training had 5670 vertices and 11336 faces. 

Following the preprocessing steps (i.e. simplification at 40%, clustering, sampling and 

neural gas), the number of vertices is reduced for each deformed instance of ball to 1681 

vertices. As such, for the 10 deformed instances, a total number of 16810 vertices is 

obtained, from which 50% (8405 vertices) is used for the training, 5% (841 vertices) for 

validation and the remaining 45% for testing (7564 vertices).  

In order to identify the best type of neural network architecture to use for object modeling 

and shape deformation prediction method, we performed experiments during which we 

increased the number of neurons in the hidden layer between 3 and 100 (i.e. 3, 9, 10, 20, 

30, 45, 60, 75 and 100) for the case when using three distinct networks, one for each 

coordinate, and in the case when using a single network with one hidden layer. We then 

tested, as described in Chapter 3 (section 3.3.7) the case when using one neural network 

with three layers (two hidden layers and one output layer). In this case, we also tested for 

an increasing number of neurons in the two hidden layers between 3 and 100, while 

maintaining always a lower number of neurons in the second layer to preserve the 

pyramid structure of the multi-layer feedforward architecture, as suggested in the 

literature (i.e. we tested 2-1, 6-3, 7-3, 14-6, 22-8, 35-10, 45- 15, 55-20 and 82-18). For 

each test, we computed the validation and testing errors, as well as the training time. 
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Figure 4.7 a shows the evolution of the validation error obtained using the different types 

of network architectures studied. Note that the minimal average of validation error using 

three networks together (with 45 neurons in the hidden layer) is 1.69e-5 (Figure 4.7 a, 

graph in blue). The minimum mean validation error using a single network with a hidden 

layer with 75 neurons is 1.50e-5 (Figure 4.7 a, graph in red).  The minimum average of 

validation error for a single network with two hidden layers with 100 neurons is 1.46e-5 

(Figure 4.7 a, graph in green; this case corresponds to an architecture with 82 neurons in 

the first hidden layer and 18 neurons in the second hidden layer).  Figure 4.7 b shows the 

evolution of testing error for the different types of network architectures. The minimal 

testing error is 1.79e-5 when using three neural networks together, 1.62e-5 when using a 

single neural network with one hidden layer and 1.49e-5 when using a single neural 

network with two hidden layers. From the tested architectures, the smallest testing error is 

1.46e-5 using a single network with two hidden layers using a total of 100 neurons (i.e. 

with 82 neurons in the first layer and 18 neurons in the second hidden layer). This was 

therefore identified as the best architecture and used in further experiments. 

Figure 4.7 c shows the evolution of training time. It can be noticed that the training time 

increases with an increase in the number of neurons for all the network architectures 

tested. There is therefore a trade-off to be considered between the number of neurons to 

be trained and the computation time. 

 
(a) 
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(b) 

 
(c) 

Figure 4.7. (a) Validation errors obtained using three kinds of neural networks; (b) testing 

errors obtained using three kinds of neural networks; and (c) evolution of training time. 

4.4. Prediction Results  

This section presents experimental results for the proposed method for predicting 

deformations on 3D objects using different neural network architectures. It is aligned 

with objective 1 (Chapter 1, section 1.1) and contribution 1 (Chapter 1, section 1.3). 

4.4.1. Prediction Using Three Neural Network per Each Cluster 
Figure 4.8 shows a few examples of predicted deformed instances of objects obtained 

with the proposed method based on three neural networks, one for each cluster (as 

detailed in section 3.3.4, Chapter 3). The objects are shown such that the deformation is 

situated along the y axis, and the x axis points towards the left side of the ball, while the z 
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axis points towards the top of the image (as in Figure 3.4 a). Studying Figure 4.8 a that 

shows, for example, the difference between the ball model for Fx = 3, Fy = 17, and Fz = 

−226 and the predicted ball model for Fx = 2, Fy = 14, and Fz = −226, one can notice that 

there is a difference of force of 1 N along the x axis. Again, CloudCompare is used to 

encode in color the differences—blue representing a perfect match and the error increases 

from green, to yellow, orange, and red. The difference along the x axis is visible in the 

figure, in green, on the right side of the model. As one expects, the network was able to 

predict this movement of the object’s surface along the x axis. 

 

    

(a) (b) (c) (d) 

Figure 4.8. The color-coded difference between: (a) the ball model for Fx = 3, Fy = 17, Fz 

= −226 and the predicted ball model for Fx = 2, Fy = 14, Fz = −226, (b) the ball model for 

Fx = −35, Fy = 13, Fz = −252 and the predicted ball model for: Fx = −35, Fy = 11, Fz = 

−252, (c) the ball model for Fx = −10, Fy = 6, Fz = −204 and the predicted ball model: Fx 

= −10, Fy = 5, Fz = −200; and (d) the cube model and the predicted cube model. 

Additionally, there is a difference between the forces applied on the y axis that is larger 

than the one over the x axis (i.e., 3 N). This difference is visible in green, red, and yellow 

around the deformation zone, as expected. For the case in Figure 4.8 b, the force 

difference is mainly along the y axis and is reflected by differences in the deformation 

zone, as one might expect. A certain error appears around the sides of the object, as 

reflected by the green-bluish patches. The last example for the ball is for a force that 

affects the z and y directions, and it is again correctly predicted. Finally, an example is 

shown for the estimation of the cube for a force varying with 4 N the along y axis. The 

difference shown in red, yellow, and green is mainly concentrated around this axis as 

well. Table 4.7 summarizes the difference between some of the forces used for training 



83 

and those used for prediction. It is important to state that the force magnitudes shown in 

the table are the raw forces measured using the force-torque sensor, where the weight of 

the probing impacted the measurements. 

Table 4.7. Forces used for training and prediction. 

Real Measurements Forces 

used for Training 

Fx/ Fy/ Fz 

Forces used for Prediction 

 

Fx/ Fy/ Fz 

Difference over x, y and z axes 

 

 

 

1/1/1 1/3/1 2 N over y axis 

1/-1/1 1/-1/2 1 N over z axis 

1/1/-1 2/1/-1 1 N over x axis 

3/17/44 4/17/46 1 N over x axis, 2 N over z axis 

2/17/-48 3/17/-49 1 N over x axis, 1 N over z axis 

3/17/-226 2/14/-226 1 N over x axis, 3 N over y axis 

 

To quantify the errors obtained for neural network training and prediction, we computed 

the Metro [36] and the perceptual [37] errors over the object surface and in the deformed 

area. Table 4.8 illustrates the values of the prediction errors when the networks are tested 

over previously unseen data, for 26 test cases (10 for the ball, 8 for the cube and 8 for the 

sponge), including those illustrated in Figure 4.8.  

The overall perceptual similarity obtained is on average 76.17% for the ball, 92.02% for 

the cube, 93.54% for the sponge and 87.24% for the three objects together. Over the 

deformed area of the object, we obtained an average of perceptual similarity of 90.64% 

for the ball, 99.21% for the cube, 99.52% for the sponge and 96.46% for the three objects 

together. 
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Table 4.8. Error measures for objects predicted. 

Object 

Name 

Overall Metro 

Error (e−3) Overall Perceptual 

Error (Similarity %) 

Metro Error in 

Deformed Area 

(e−5) 

Perceptual Error 

(Similarity%) in 

Deformed Area 
Max/Mean/Rms Max/Mean/Rms 

Ball 20.08/3.02/4.11 0.2383 (76.17%) 67.31/0.84/1.6 0.0936 (90.64%) 

Cube 5.48/0.18/0.71 0.0798 (92.02%) 42.89/0.23/1.89 0.0070 (99.21%) 

Sponge 2.65/0.65/0.83 0.0646 (93.54%) 2.71/0.0015/0.092 0.0053 (99.52%) 

Average 9.40/1.28/1.88 0.1276 (87.24%) 37.63/0.36/1.19 0.0353 (96.46%) 

 

It is important to notice that the differences in the force magnitude are not significant in 

the test scenarios with respect to the real measurements. The networks are only able to 

accurately predict within a limited region around the measured areas and for forces that 

do not differ significantly in magnitude and angle (i.e., about 4–5 N in force magnitude 

and 2–3° in angle), as it will be also shown in the next section for the case of one single 

network. This is an important aspect that needs to be taken into consideration when 

designing solutions based on the training of neural networks for predicting deformable 

object behavior, and any data-driven solution in general. A large number of real data 

measurements are required to ensure a more accurate prediction.  

4.4.2. Prediction Using Neural Network with Two Hidden Layers 

To test the prediction method, as described in section 4.3, we also used a neural network 

architecture with two hidden layers (i.e. the one with 82 neurons in the first layer and 18 

in the second layer, being identified as the best choice). In this section, we present results 

for the ball model, after training it on the dataset described in section 4.3. After training 

the neural network, several deformed instances of the ball were predicted by increasing 

the force magnitude that was used in training. As such, we considered normal forces 

applied at a fixed location on the top of the ball (as the instances are aligned) and with 

increased force magnitudes between 1 N and 100 N.  
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Figure 4.9. (a) Prediction Metro error for the ball; (b) perceptual error for the ball; and (c) 

average distance obtained by using CloudCompare. 
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Figures 4.9 a and b present the average of Metro and perceptual errors, while Figure 4.9 c 

illustrates the average distance computed using CloudCompare achieved during 

experimentation. Figures 4.10 a to f present the points clouds and the corresponding 

meshes of the ball predicted for various force magnitudes (1 N, 5 N and 100 N).  

 
  

 

(a) (b) (c) (d) 

 
 

  

(e) (f) (g) (h) 

 

   

(i)    

Figure 4.10. Ball point clouds predicted with a force of: (a) 1 N; (b) 5 N; (c) 100 N; Ball 

mesh predicted with a force of: (d) 1 N; (e) 5 N; (f) 100 N; Ball color-coded by 

CloudCompare: (g) 1 N; (h) 5 N; (i) 100 N. 

Figures 4.10 g, h and i show the color-coded difference between the predicted ball and 

the one deformed with the same force (and that was not used for training). CloudCompare 

encodes in color the differences between two object meshes, with blue representing a 

perfect match and the error increases from green, to yellow and red. One can notice that 

the Metro error and the average distance obtained increase with an increase in the 
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magnitude force and that the shape of the predicted deformed ball moves away from the 

overall shape of the original ball (becomes more and more deformed). This is obvious 

when we observe the cloud points and the color-coded representation of the predicted 

balls for forces greater than 5 N. This problem is due to two factors: (1) the forces used 

for training the network are not in the same range as the ground truth measurements using 

the force-torque sensor (in which case the weight of the probing tip impacted the 

magnitude of the force applied); and (2) the number of instances used to train the neural 

network is not sufficient for training (only 10 deformed instances) and thus to achieve 

better results than those obtained. This aligns with the observations in the previous 

section, regarding the fact that the proposed method is accurate only within 4-5N, and 

that additional data is required to improve the prediction capability. The next section 

presents results when additional training samples are used. 

4.4.3. Generation of Additional Data for Neural Network Training 

In an attempt to increase the performance of the prediction capabilities, we increased the 

number of deformed objects used to train the neural network. In particular, we increased 

the data available for training 5 times by using 50 deformed instances of the objects with 

force magnitudes between 1 N and 50 N, applied in the normal direction (i.e. 

perpendicular to the local surface) at the top of the object (as instances are aligned).  Due 

to our inability to perform additional real measurements in the context of the pandemic, 

the solution chosen was to make use of a software solution, namely the Ansys academic 

software simulator [197, 198] (for more details see Annexes D, E, F and G). Ansys is a 

3D finite element mesh generator providing a complete modeling method with parametric 

inputs and advanced visualization capabilities. It is divided into four modules: materials 

choice, geometry, structure and modeling, method and results. Using this software, one 

can design and deform 3D objects, and exert different forces on the object, such as nodal 

forces, nodal pressure, body forces or body pressure. To create and deform 3D objects, 

one starts with the choice of materials (see Annex E), then creating the 3D object (Annex 

F), meshing the object, then exerting forces on the object, followed by building and 

exporting the deformed mesh (Annex G). 
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To be able to create similar objects to the real ones we used, several steps were required. 

For example, to create a ball similar to the real one, in a first step, the geometry of the 

non-deformed ball was exported to the Ansys software, and several trials were performed 

to identify a material (i.e. rubber) that performed similarly to the ball used in the ground 

truth. As explained in Annex B, each material has specific parameters and the matrices of 

stiffness, damping and mass are defined by default for each material. It is important to 

state that our method does not imply the estimation of material parameters, and this 

estimation is only required to create additional data, in an attempt to demonstrate that the 

lack of data is the main reason of the limitation of our method in the previous sections. 

After choosing the material, we linked it with the geometry of the ball, and then meshed 

the geometry to obtain a deformed mesh. In a second step, the type and values of the 

forces to be applied on the object are to be defined to obtain a deformation similar to the 

one obtained using the force torque sensor on the real ball. As such, we had to identify an 

appropriate choice of forces to correspond to the real force-torque measurements using 

the Ansys software. To achieve this, we deformed the mesh representing the ball by 

Ansys while applying different magnitudes of forces and angles as nodal forces. Among 

the various options available in Ansys to apply forces such as nodal force, body force on 

the face, body force on the edge, body force on the vertices and pressure force on the 

geometry of the object, the nodal force was the one that led to the best results (i.e. more 

similarity with the real deformed ball).  Forces were applied at the same interaction points 

used in the ground truth to deform each instance of the ball. Therefore, using Ansys, we 

deformed the ball mesh using the same force measured by the force torque sensor and 

compared the deformed instances of the ball, we compared them with the real instances 

of the ball deformed in the ground truth.  

To evaluate the performance of our prediction method for various materials, we also 

created three additional objects (Figure 4.11) of different materials, and for each of them, 

we created 50 deformation instances. These objects are a flexible polyethylene foam 

cylinder, a flexible polyurethane foam cube and a flexible rubber and foam toy table 

(20% rubber and 80% foam). Table 4.9 presents the different force magnitudes used 

during experimentation. All forces exerted are between 1 N and 50 N. These forces were 

exerted in the normal direction on the top of each object. Each deformed instance of the 
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rubber ball has 5670 vertices and 11336 faces. From each one, as it was stated in the 

previous sections, we used 1681 vertices (after simplification at 40%, clustering, 

sampling and neural gas fitting). This led to a dataset of 50 deformed instances, and a 

total of 84050 vertices. From these, we used the same percentages as in the previous 

section, namely 50% (42025 vertices) for training the neural network, 5% (4203 vertices) 

for validation and 45% for testing (37822 vertices).  

Table 4.9. Forces exerted over x, y and z axis in the additional dataset. 

Fx Fy Fz Fx Fy Fz Fx Fy Fz 

1 18.1 45.7 16.6 49 44.1 34.3 26.1 34.7 

2.10 23.5 20.9 17.1 28.8 44.8 36 29.7 35.7 

2.30 42.5 16.3 17.4 40 33.7 36.1 43.6 44.2 

2.40 36.4 14.2 17.7 35.8 40.5 36.8 1.30 41.3 

2.70 46.9 30.5 18.1 15.4 12.3 39.7 22.3 19.5 

3.50 10.3 33.7 20 27.5 35.8 40 3.60 21.9 

4.20 39.4 27.9 20.2 1.10 22.5 40.6 23.8 44.1 

4.70 44.2 20.4 22.5 41.9 24.2 43.9 49.2 46.7 

6.10 28 10.3 24.5 27.2 33.3 43.9 46.7 36 

6.10 44.8 33.2 25.2 14.3 20.3 44.2 29.9 6.10 

7.60 14.3 14.2 27.2 32.3 24.9 44.7 18.6 41.7 

9.50 13.5 49.4 29.1 33.4 1 46.1 32.7 21.9 

9.80 18.6 22.8 29.3 25.2 19.4 46.5 47.2 13.8 

11.6 6.70 45 31 6.90 39.2 48.2 21.7 37.8 

12.9 47 38.1 32.6 33.4 7.40 48.6 28 48.6 

13.4 15 45 33.4 37.5 43.2 48.7 39 29.9 

15.2 41.5 28.7 33.8 32.3 22.7    

 

The same percentages of points for training, validation, and testing (50%, 5% and 45%) 

were used for all objects. For the cylinder, the total number of points is 47350 vertices 

(23675 vertices for training, 2368 vertices for validation and 21307 vertices for testing); 
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for the cube, 58400 vertices (29200 vertices for training, 2920 vertices for validation and 

26280 vertices for testing) and for the table 26450 vertices are used (13225 vertices for 

training, 1323 vertices for validation and 11902 vertices for testing). Before proceeding 

with the prediction, we studied the various types of neural network architectures (i.e. 

three networks (one for each coordinate), a single network with a single hidden layer and 

a single network with two hidden layers) and repeated the same tests as in section 4.3 but 

using the newly generated data. 

For each type of network, we increased the number of neurons in the hidden layers 

(between 3 and 100) to identify an appropriate size. Then, we monitored the validation 

and testing errors obtained by the networks. After performing these tests, we reached to 

the conclusion that the best type of neural network (the neural network with the smallest 

test error) is the one with two hidden layers with 82 neurons in the first hidden layer and 

28 neurons in the second layer. The following sections present prediction results for each 

of the objects using the newly created data and the chosen architecture. 

4.4.4. Prediction of the Ball Using Additional Data 

To test the prediction capabilities of the network for the ball, we trained the network with 

two hidden layers using 50 deformed ball instances. After training, we predicted various 

deformed instances of the ball by increasing the force magnitude between 1 N and 100 N. 

Figures 4.12 a, b and c show respectively the evolution of the Metro, perceptual errors 

and average distance error for the predicted balls obtained.  

When comparing the average of errors computed (Figure 4.12) with those obtained in 

Section 3.4.2 (using 10 deformed instances), one can notice that the errors here are much 

smaller. Example with a force increased by 20 N the overall Metro, perceptual errors and 

the distance average are respectively 2.56e-3, 2.62e-1 and 2.03e-3, while using 10 

deformed instances these errors are respectively 1.87e-2, 2.94e-1 and 1.19e-2.  
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Figure 4.11. (a) Polyethylene foam cylinder; (b) polyurethane foam cube; (c) rubber and 

foam table; the associated mesh for (d) cylinder; (e) cube; and (f) table; sample forces 

exerted on: (g) cylinder; (h) cube and (i) table; and associated mesh deformation for: (j) 

cylinder; (k) cube and (l) table. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

 
 

 

(j) (k) (l) 
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Figure 4.12. (a) Prediction Metro error for the ball; (b) prediction perceptual error; and 

(c) average distance obtained by using CloudCompare. 

The level of similarity is increased and remains relatively stable up to 60 N (Figures 4.12 

and 4.13) while by using 10 deformed instances the level of similarity is increased and 

remains relatively stable up to 20 N.  
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Figure 4.13. Ball point clouds predicted with a force of: (a) 1 N; (b) 5 N; (c) 60 N; Ball 

mesh predicted with a force of: (d) 1 N; (e) 5 N; (f) 60 N; Ball color-coded by 

CloudCompare for: (g) 1 N; (h) 5 N; (i) 60 N; Ball color-coded by CloudCompare 

displayed on the other side for: (j) 60 N. 

In spite of the loss of similarity for higher magnitude forces, these results demonstrate 

that the addition of data helps, as expected, to improve the quality of the neural network 

model and thus its ability to generate better predictions. 

  
 

 

(a) (b)                (c) (d) 

    

(e) (f)             (g) (h) 

 

  

 

 

 

(i) (j)   
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4.4.5. Prediction of the Cylinder 

Similar to the model of the ball, we trained and tested the same neural network 

architecture, using the same parameters (Table 4.9) and the same amount of training data, 

i.e. 50 deformed instances, for the cylinder.  

 

Figure 4.14. (a) Prediction Metro error for the cylinder; (b) prediction perceptual error for 

the cylinder; and (c) average distance obtained by using CloudCompare. 
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To predict various deformed instances of this object, we increased the force magnitude, 

as in the case of the ball (between 1 N and 100 N). The evolution of average of Metro 

errors, perceptual errors and the average distance for the predicted cylinders is shown in 

Figures 4.14 a, b and c respectively. Figures 4.15 a to e present the cylinder points cloud 

predicted for forces increased between 1 N and 30 N, while Figures 4.15 f and j show the 

predicted mesh for forces increased by 1 N and 30 N, respectively. Finally Figures 4.15 h 

and i show the color-coded differences between the predicted cylinder and the deformed 

cylinder, from two viewpoints, for the same force using CloudCompare. 

    

(a) (b) (c) (d) 

    
  (e) (f) (g) (h) 

  

  

(i) (j)   

 

Figure 4.15. Cylinder point clouds predicted with a force increased of: (a) 1 N; (b) 5 N; 

(c) 10 N; (d) 20 N; (e) 30 N; mesh predicted with a force increased of (f) 1 N; (g) 30 N; 

Cylinder color-coded by CloudCompare for: (h) 1 N; (i) 30 N; Cylinder color-coded by 

CloudCompare displayed on the other side for: (j) 30 N. 
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4.4.6. Prediction of the Cube 

For the prediction of the deformations over the surface of the cube, we repeated the same 

process we used for the ball and the cylinder. Figures 4.16 a, b and c present respectively 

the evolution of the average of Metro errors, perceptual errors and the average distance 

for the predicted deformations for the cube.  
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Figure 4.16. (a) Prediction Metro error for the cube; (b) prediction perceptual error for the 

cube; and (c) average distance obtained by using CloudCompare. 

    

(a) (b)                  (c)               (d) 

    

(e) (f)                 (g)               (h) 

   

 

(i) (j) (k)  

Figure 4.17. Cube point clouds predicted with a force increased of: (a) 1 N; (b) 5 N; (c) 

10 N; (d) 20 N; (e) 30 N; (f) 40 N; mesh predicted with a force increased of (g) 1 N; (h) 

40 N; Cube color-coded by CloudCompare for: (i) 1 N; (j) 40 N; Cube color-coded by 

CloudCompare displayed on the other side for: (k) 40 N. 

Studying Figures 4.17 that illustrates results for the cube predicted for forces increased 

between 1 N and 40 N, one can notice that in presence of sufficient data the network is 

able to capture implicitly the shape deformation generated by various magnitude of force. 

Figures 4.17 i and j show the color-coded objects built using CloudCompare that result by 

comparing the predicted cube with the deformed cube obtained with the same force. 
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4.4.7. Prediction of the Table 

Finally, for the case of the table, Figures 4.18 a, b and c show respectively the evolution 

of the average Metro, perceptual error and average distance errors.   

 

 

Figure 4.18. (a) Prediction Metro error for the table; (b) perceptual error for the table; and 

(c) average distance obtained using CloudCompare. 

Figures 4.19 a to d show the point clouds predicted for forces increased between 1 N and 

20 N, while Figures 4.19 e and f show the predicted mesh and the color-coded objects 
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obtained using CloudCompare for forces of 1 N and 20 N. The conclusions are similar as 

well to the ones achieved for the previous objects. 

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

 

 

 

  

(i)    

Figure 4.19. Table point clouds predicted with a force increased of: (a) 1 N; (b) 5 N; (c) 

10 N; (d) 20 N; mesh predicted with a force increased of (e) 1 N; (f) 20 N; Table color-

coded by CloudCompare for: (g) 1 N; (h) 20 N; Cube color-coded by CloudCompare 

displayed on the other side for: (i) 20 N. 

4.4.8. Prediction of Elasto-Plastic and Rigid Objects 

To further expand the testing of the proposed method, we also tested it on  an elasto-

plastic (i.e. a cylinder of 50% foam and 50% ABS Plastic) object, a semi-rigid object (i.e. 

a cylinder of tin, which remains relatively rigid when a small force is applied) and a rigid 
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object (i.e. a cylinder of wood). This goes beyond the initial intention of this work to 

model deformable objects and demonstrate that the proposed method can be used without 

changes to capture objects that are not fully deformable (such as elasto-plastic and rigid). 

An elasto-plastic object is an object that has elastic and plastic behavior, while a rigid 

object has an unaltered body in general. While the tin cylinder is not rigid, it remains 

rigid for small forces, so we only tested it under this condition. The wood cylinder is 

rigid, and it cannot be deformed. For each cylinder, we used the same approach as for the 

soft cylinder; as such, we have created 50 deformed instances using different forces and 

applied the preprocessing steps of our method (simplification, stratified sampling and 

neural gas fitting). Then, we trained the same neural network architecture as in the 

previous sections (with two hidden layers) and predicted multiple instances of each 

object.  

As for the previous objects, Figures 4.20 a to c illustrate respectively the evolution of the 

average Metro, perceptual error and the average distance errors for the predicted elasto-

plastic cylinder with increased force magnitudes between 1 N and 100 N. 

Figures 4.21 a illustrates the original non-deformed elasto-plastic cylinder and Figures b, 

c and d show the points cloud, the mesh and the color coded representation obtained by 

CloudCompare for a predicted elasto-plastic cylinder with a force of 20 N. 
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Figure 4.20. (a) Prediction Metro error for the elasto-plastic cylinder; (b) prediction 

perceptual error for the elasto-plastic cylinder; and (c) average distance obtained by using 

CloudCompare. 

   
 

(a) (b) (c) (d) 

Figure 4.21. (a) Non-deformed elasto-plastic cylinder; (b) points clouds predicted for a 

force of 20 N applied on the top right corner; (c) mesh predicted with a force 20 N; and 

(d) cylinder using CloudCompare mapping of errors between the modeled and predicted 

cylinder. 
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Figure 4.22 shows the average errors for the predicted rigid cylinder of tin, with the same 

forces used for the elasto-plastic cylinder. For the elasto-plastic and the tin cylinders the 

level of similarity is increased and remains stable up to 20 N (Figure 4.20 and Figure 

4.22), while in the case of the rigid cylinder of wood, the level of similarity remains more 

than 90% because it is not deformable (Figure 4.24). 

 

Figure 4.22. (a) Prediction Metro error for the tin cylinder; (b) prediction perceptual error 

for the tin cylinder; and (c) average distance obtained by using CloudCompare. 
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(a) (b) (c) (d) 

Figure 4.23. (a) Tin cylinder; (b) points cloud predicted for a force of 20 N applied on the 

top right corner; (c) mesh predicted with a force 20 N; and (d) cylinder using 

CloudCompare. 

Figure 4.23 a shows the original non-deformed tin cylinder and Figures b,c and d show 

the points cloud, the mesh and the color encoded difference between the reference object 

and a predicted  rigid cylinder for a force of 20 N, respectively. In this case, the object 

deforms much less for the applied force, as one can notice in Figure 4.23d. The impact of 

the force is more local and impacts less the entire area of the object. In this case, the 

green areas are mostly due to prediction errors. Finally, Figure 4.24 a illustrates the 

results for the wood cylinder, including the point cloud (b), the selectively simplified 

mesh (c) and the color coded representation for a predicted wood cylinder for a force of 

20 N (d), respectively.  

 
  

 

(a) (b) (c) (d) 

Figure 4.24. (a) Non-deformed rigid cylinder; (b) points cloud predicted for a force of 20 

N applied on the cylinder; (c) mesh predicted with a force 20 N; and (d) cylinder 

encoding the difference between the predicted and reference model using CloudCompare. 
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The rigid cylinder is not deformable, and thus constitutes a special, extreme case for our 

prediction method. The computed Metro and perceptual errors are minimal in this case 

(converge to 0) and the similarity to the original non-deformable is more than 90%. One 

can notice that the proposed prediction method works for this extreme case without any 

adjustment. All these results demonstrate that the proposed method can deal successfully 

with various types of materials. 

4.5. Comparison with FEM Method 

To further evaluate our proposed modeling and predicton method, we compared it with a 

classical solution for the modeling of deformable objects, namely the FEM method. We 

chose FEM because it is one of the well-known methods and its use expands over many 

areas [9,10,11,12,17,125,126]. To perform the comparison, we compared objects 

predicted by our method with objects whose deformation was modeled through FEM 

based on the same interaction parameters. To obtain a quantitative measure, we computed 

the Metro errors, the perceptual errors as well as the average distance errors between the 

two objects. To deform the objects based on the FEM method, we used the Ansys 

academic software simulator which is a FEM generator.  

Figure 4.25 shows an example of the steps used to import and deform the original non-

deformed mesh of the ball measured in ground truth, with Figure 4.25 a showing the 

original non-deformed mesh and Figure 4.25 b the nodal force of 1,73 N (Fx=1, Fy=-1 and 

Fz=1) applied on the ball. The pink color represents the nodes to which the force was 

applied. It is important to clarify that this is for illustration purposes, as during our tests 

we focused on a single point of interaction (as detailed in section 4.1.4). Figure 4.25 c 

shows the different scales (15 clusters) of deformation after applying this force, while 

Figure 4.25 d shows the 5 different clusters of deformation after applying this force. In 

these figures, the most deformed region is illustrated in red and the least deformed in 

blue. 

We compared our method with the FEM method by applying both methods on the objects 

in section 4.3.5, and the results are presented in the following sections. All results are 

shown for the chosen two hidden-layer architecture with 82 neurons in the first layer and 
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18 in the second layer (identified in section 4.3) as well as with the identified best 

parameters for the preprocessing steps (identified in section 4.1). 

  

(a) (b) 

  

(c) (d) 

Figure 4.25. (a) Original mesh; (b) nodal force applied; (c) 15 scales of deformation after 

applied the nodal force; and (d) scales of deformation divided in 5 clusters. 

 

4.5.1. Comparison for the Ball  

In the case of the ball object, to compare our prediction method with the FEM method, 

we predicted deformed instances of the ball using our prediction method, and then we 

deformed the object mesh using the Ansys software using the same interaction 

parameters (i.e. same force magnitudes and angle and point of application that we used 

for prediction) and also by increasing the force magnitude, as illustrated in the first 

column of Table 4.10. We then compared the results by computing the average of Metro 

errors, perceptual errors and the average distance between the objects.  
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The first column in Table 4.10 represents the force magnitude range. The first range is 

between 0.25 N and 2 N and the last one between 80 N and 100 N. For example, in the 

first range [0.25 2[, we increased the force magnitude used in training between 0.25N and 

1.75N (i.e. performed tests for 0.25 N, 0.50 N, 0.75 N, 1 N, 1.25 N, 1.50 N and 1.75 N, 

respectively). The same process was repeated for the other ranges; for example, in the last 

range between 80 N and 100 N, tests were performed for 80 N, 85 N, 90 N, 95 N and 100 

N respectively. Table 4.10 summarizes the comparison results obtained for the ball (for 

the case when using 10 deformed instances for training). The columns 2, 3 and 4 of Table 

4.10 represent, respectively, the average of Metro and perceptual errors, and the average 

distance error obtained by CloudCompare. As one can notice, the results show that our 

method achieves a Metro error average of 34.17e-3 and a similarity average of 68.67%. 

These results are not very accurate, the reason being the one that we identified before, 

namely the lack of sufficient data to train the network.  

Table 4.10. Metro and perceptual error and distance average for the ball. 

Force range in 

Newton 

Metro Error 

Max/Mean/Rms (e-3) 

Overall Perceptual Error 

(Similarity %) 

Average Distance Obtained by 

CloudCompare (e-3) 

[0.25 2[ 21.039/4.741/6.608 0.2738 (72.62%) 4.429 

[2 5[ 23.998/6.268/8.139 0.2783 (72.17%) 5.861 

[5 10[ 32.348/9.876/12.057 0.2788 (72.12%) 9.344 

[10 20[ 42.995/14.273/17.112 0.2832 (71.68%) 13.654 

[20 30[ 49.824/19.952/23.161 0.2972 (70.28%) 19.159 

[30 40[ 52.791/26.251/29.507 0.3028 (69.72%) 25.226 

[40 60[ 113.314/46.064/54.102 0.3421 (65.79%) 44.907 

[60 80[ 121.159/49.095/58.409 0.3699 (63.01%) 48.121 

[80 100] 156.408/91.182/98.487 0.3943 (60.57%) 90.760 

Average 68.208/29.745/34.176 0.3133 (68.67%) 29.051 

 

We therefore repeated the same comparisons but using the 50 deformed instances 

(obtained as detailed in section 4.3.4). Table 4.11 represents the errors measures obtained, 
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and also the average prediction time obtained by our method and by the FEM method for 

this case.  

One can notice that, the Metro error and the average distance remain relatively stable 

when a force between 0.25 N and 59 N is used. As such, the Metro error remains smaller 

than 2.93e-3, the perceptual similarity greater than or equal 73.46% and the average 

distance smaller than or equal 2.36e-3. All these errors increase when using forces of 

larger magnitudes. These error measures show an improvement with respect to the results 

in Table 4.10, the performance of our method is still lower in terms of accuracy than the 

one of FEM. However, the prediction time achieved is much smaller (i.e. 0.026 seconds) 

than the deformation time taken by the FEM method (i.e. 6.67 seconds). 

Table 4.11. Metro and perceptual error and distance average for the ball when using 

additional training data. 

Force range 

in Newton 

Metro Error 

Max/Mean/Rms (e-3) 

Overall Perceptual 

Error (Similarity 

%) 

Average 

Distance (e-

3) 

Prediction 

Time (our 

method) 

Deformation 

Time (FEM) 

[0.25 2[ 6.903/2.800/2.926 0.2595 (74.05%) 2.260 0.045 s 6.763 s 

[2 5[ 6.978/2.723/2.847 0.2598 (74.02%) 2.200 0.032 s 6.401 s 

[5 10[ 7.107/2.623/2.750 0.2607 (73.93%) 2.095 0.026 s 6.932 s 

[10 20[ 7.286/2.557/2.699 0.2612 (73.88%) 2.043 0.025 s 6.672 s 

[20 30[ 7.445/2.572/2.758 0.2616 (73.84%) 2.040 0.024 s 7.215 s 

[30 40[ 7.587/2.658/2.888 0.2614 (73.86%) 2.114 0.020 s 6.328 s 

[40 60[ 10.149/2.928/3.371 0.2654 (73.46%) 2.364 0.025 s 6.742 s 

[60 80[ 16.281/4.477/5.449 0.2704 (72.96%) 3.852 0.021 s 6.129 s 

[80 100] 23.247/7.221/8.627 0.2719 (72.81%) 6.469 0.024 s 6.849 s 

Average 10.760/3.469/3.924 0.2635 (73.65%) 2.897 0.027 s 6.670 s 
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4.5.2. Comparison Using the Cylinder, the Cube and the Table 

Additional tests were performed for the additional, synthetic objects (i.e. cylinder, cube 

and table that we used in the prediction method). The same forces were used as in the 

case of the ball to predict deformed instances of these objects. For the training of the 

neural network, we used again 50 deformed instances of each object. For each object, we 

computed the error measure as well as the average prediction time taken by our method 

and by the FEM method. Tables 4.12, 4.13 and 4.14 show respectively the comparison 

results obtained for the cylinder, cube and table. One can notice in Table 4.12 that the 

Metro error and the average distance remain stable for forces between 0.25 N and 59 N. 

The Metro error remains smaller than or equal 1.47e-3, the perceptual error and the 

average distance remains smaller than or equal 1.37e-3. These errors increase using a 

force between 60 N and 100 N. We obtain an average Metro error of 6.27e-3 and an 

average distance of 6.11e-3 for forces between 80 N and 100 N. 

Table 4.12. Metro, perceptual errors and distance average for the cylinder. 

Force range 

in Newton 

Metro Error 

Max/Mean/Rms (e-3) 

Overall Perceptual 

Error (Similarity 

%) 

Average 

Distance (e-3) 

Prediction 

Time (our 

method) 

Deformation 

Time (FEM) 

[0.25 2[ 2.357/0.647/0.782 0.2108 (78.92%) 0.575 0.022 s 5.600 s 

[2 5[ 2.630/0.637/0.772 0.2116 (78.84%) 0.566 0.046 s 5.423 s 

[5 10[ 2.740/0.644/0.776 0.2157 (78.43%) 0.576 0.025 s 5.619 s 

[10 20[ 2.844/0.675/0.811 0.2655 (73.45%) 0.606 0.024 s 5.562 s 

[20 30[ 2.750/0.744/0.900 0.2734 (72.66%) 0.678 0.021 s 5.5267 s 

[30 40[ 2.996/0.871/1.024 0.2921 (70.79%) 0.799 0.020 s 5.656 s 

[40 60[ 4.590/1.476/1.723 0.3057 (69.43%) 1.370 0.022 s 5.531 s 

[60 80[ 9.518/3.603/4.208 0.3230 (67.7%) 3.424 0.021 s 5.648 s 

[80 100] 16.414/6.274/7.110 0.3656 (63.44%) 6.113 0.031 s 5.552 s 

Average 5.204/1.730/2.018 0.2737 (72.63%) 1.634 0.026 s 5.569 s 
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As in the case of the ball, the prediction time taken by our method (i.e. 0.025 seconds) is 

much smaller than the deformation time by the FEM method (i.e. 5.568 seconds). Similar 

conclusions can be drawn for the other objects in Tables 4.13 and Table 4.14. 

Table 4.13. Metro and perceptual error and distance average for the cube. 

Force range 

in Newton 

Metro Error 

Max/Mean/Rms (e-3) 

Overall Perceptual 

Error (Similarity 

%) 

Average 

Distance (e-3) 

Prediction 

Time (our 

method) 

Deformation 

Time (FEM) 

[0.25 2[ 8.286/1.276/2.112 0.2765 (72.35%) 1.233 0.026 s 5.105 s 

[2 5[ 8.242/1.2763/2.106 0.2759 (72.41%) 1.237 0.024 s 5.068 s 

[5 10[ 8.224/1.265/2.0936 0.2761 (72.39%) 1.239 0.022 s 5.182 s 

[10 20[ 8.239/1.258/2.092 0.2763 (72.37%) 1.208 0.020 s 5.000 s 

[20 30[ 8.301/1.273/2.0937 0.2758 (72.42%) 1.217 0.024 s 5.057 s 

[30 40[ 8.170/1.393/2.172 0.2744 (72.56%) 1.343 0.020 s 5.031 s 

[40 60[ 8.334/1.810/2.455 0.2911 (70.89%) 1.753 0.025 s 5.071 s 

[60 80[ 7.575/2.267/2.756 0.2943 (70.57%) 2.189 0.022 s 5.102 s 

[80 100] 9.073/3.039/3.329 0.2979 (70.21%) 2.948 0.023 s 5.093 s 

Average 8.272/1.651/2.356 0.2820 (71.80%) 1.596 0.023 s 5.079 s 

 

Finally, Table 4.15 summarizes the results achieved for the four objects (ball, cylinder, 

cube and table). The average Metro error for these objects is 4.82e-3, while the average 

similarities of these objects is 72.65% and the distance average is 4.03e-3. We can notice 

that, again, the average prediction time of our method (i.e. 0.024 seconds) is much 

smaller than the average deformation time taken by FEM (i.e. 5.36 seconds) for all 

objects. This makes our method more appropriate for applications in which the speed of 

prediction is important. 
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Table 4.14. Metro and perceptual error and distance average for the table. 

Force 

range in 

Newton 

Metro Error 

Max/Mean/Rms (e-3) 

Overall Perceptual 

Error (Similarity 

%) 

Average 

distance (e-

3) 

Prediction 

time (our 

method) 

Deformation 

time (FEM) 

[0.25 2[ 12.772/2.299/3.331 0.2140 (78.6%) 2.473 0.022 s 4.105 s 

[2 5[ 12.814/2.214/3.243 0.2471 (75.29%) 2.364 0.018 s 4.188 s 

[5 10[ 12.867/2.180/3.204 0.2478 (75.22%) 2.303 0.020 s 4.203 s 

[10 20[ 14.283/2.627/3.797 0.2577 (74.23%) 2.781 0.012 s 4.059 s 

[20 30[ 19.239/4.555/6.519 0.2618 (73.82%) 4.887 0.021 s 4.083 s 

[30 40[ 21.418/5.520/7.682 0.2974 (70.26%) 5.873 0.017 s 3.923 s 

[40 60[ 34.071/16.398/18.405 0.3062 (69.38%) 16.728 0.016 s 4.414 s 

[60 80[ 35.266/20.780/21.349 0.,3125 (68.75%) 21.736 0.016 s 4.126 s 

[80 100] 41.236/23.594/25.370 0.3267 (67.33%) 24.733 0.0215 s 4.104 s 

Average 22.663/8.907/10.322 0.2746 (72.54%) 9.319 0.0182 s 4.134 s 

 

Table 4.15. Metro and perceptual error and average distance for all objects. 

Force 

range in 

Newton 

Metro Error 

Max/Mean/Rms (e-3) 

Overall 

Perceptual 

Error 

(Similarity %) 

Average 

Distance (e-3) 

Prediction 

Time (our 

method) 

Deformation 

Time (FEM) 

Ball 10.760/3.469/3.924 0.2635 (73.65%) 2.897 0.027 s 6.670 s 

Cylinder 5.9821/2.3969/2.6787 0.2737 (72.63%) 2.3008 0.026 s 5.569 s 

Cube 8.2713/1.6509/2.3563 0.2820 (71.80%) 1.596 0.023 s 5.079 s 

Table 22.6631/8.9075/10.3222 0.2746 (72.54%) 9.3199 0.0182 s 4.134 s 

Average 11.9191/4.1061/4.8203 0.2735 (72.65%) 4.0284 0.024 s 5.363 s 
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4.5.3. Tuning of Preprocessing Steps of the Proposed Prediction Method to Achieve 

Same Accuracy as FEM  

Table 4.15 demonstrated that for the best choice of parameters that was identified for the 

preprocessing steps and the chosen neural network architecture (two hidden layers with 

100 neurons), the proposed method, while much faster than the FEM method does not 

achieve the same quality of model (the average perceptual error is on average 72.65% and 

the mean Metro error is 4.11e-3). For this reason, additional tests were performed to 

identify how a different choice of preprocessing parameters can lead to a similar quality 

to the one achieved by FEM and identify the computational time required by our method 

to achieve this quality.  

Table 4.16 shows that by modifying the percentage of points preserved during the 

selectively-densified simplification in the processing step of our method (section 3.2.3, 

Chapter 3) from the initial 40% to higher percentages leads to an increase in the training 

time, but also in the performance. The tests in this figure are reported for the case of the 

ball object. Increasing the percentage of points preserved during selectively densified 

simplification to 75% (instead of 40% preserved during the previous experiments) 

reaches virtually the same performance (99.77% similarity) as the FEM method. While 

the training time increases, the prediction time remains much smaller than the one 

incurred by FEM.  

Table 4.16. Increasing quality of prediction by modifying the parameters of selectively-

densified simplification (i.e. the percentage of points retained in the simplification). 

Selectively-densified 

simplification % 

Overall Perceptual Error 

(Similarity %) 

Prediction 

Time (our 

method) 

Training Time / 

Iteration (our 

method) 

40% 0.2636 (73.61%) 0.033 s 81.188 s 

45% 0.2313 (76.87%) 0.039 s 97.634 s 

55% 0.1565 (84.35%) 0.073 s 145.242 s 

65% 0.0735 (92.66%) 0.098 s 156.744 s 

75% 0.0023 (99.77%) 0.430 s 310.474 s 
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4.6. Experimental Results for the Learning Transfer  

This section presents experimental results that demonstrate the adaptability of our method 

for objects of different size, shapes and material by transfer of learning between neural 

networks, in particular demonstrates the ability to predict small objects from large objects 

and large objects from small objects. It is aligned with objective 3 (Chapter 1, section 

1.1) and contribution 3 (Chapter 1, section 1.3). 

For this purpose, two series of tests were executed. In the first test, we used the point 

clouds which represent 50 deformed instances of each object to tune the second network 

Net2. Then, in an attempt to reduce the training time, we have performed experiments 

using less data for tuning Net2. As such, we performed a second series of tests using only 

20% of the data (point clouds which represent 10 deformed instances). In each test 

performed, we computed the training time of the neural network after the learning 

transfer and we compared it to the training time without it (when no transfer of learning is 

performed) to study the gains of using the transfer of learning.  

As explained in Chapter 3, section 3.3.8, we used two neural networks (Net1 and Net2) to 

transfer the learning between objects of different sizes. Each network has two hidden 

layers (82 neurons in the first layer and 18 neurons in the second layer); this is the best 

architecture that was identified and used during experimentation (section 4.3). The first 

neural network is used to capture implicitly the object model and the second fine-tuned 

and used for prediction (Figure 3.10, Chapter 3).  For example, to predict small objects 

from large objects, we train the first neural network Net1 using the deformed instances of 

the large object. After training of Net1, we transfer its learning to a second neural 

network Net2 by initially transferring from Net1 to Net2 all the weights matrices and 

biases as follows: (1) the weights matrix between the neurons of the input and the first 

hidden layer (matrix of 82 by 9); (2) the weights matrix between the neurons of the first 

and second hidden layers (matrix of 18 by 82); (3) the weights matrix between the 

neurons of the second hidden layer and the output layer (matrix of 3 by 18);(4) the biases 

between the input and the first hidden layer (vector of 82 by 1); (5) the biases between the 

first and second hidden layers (vector of 18 by 1), and (6) the biases between the second 

hidden and the output layer (vector of 3 by 1).  



113 

Once the architecture of Net2 constructed, we fine-tune it (train it shortly) using new data 

representing the deformed instances of the small object. Finally, the deformation for 

small objects is predicted using the tuned Net2. We proceed in a similar way for the 

prediction of large objects based on pretrained networks using small objects. For 

experimentation, we used the same objects used in the last sections (ball, cylinder, cube 

and table) and created (using Ansys) other objects of the same shape as these four objects 

but with different sizes (i.e. specific details on the number of vertices are provided in the 

following sections). 

4.6.1. Transfer of Learning and Prediction for the Small Ball  

To transfer the learning and predict the small balls, we used 50 deformed instances of the 

large ball with the different forces presented in Table 4.9. Following simplification, 

clustering, sampling, and neural gas tuning (with the parameters discussed in section 4.1) 

we obtained 1681 vertices for each instance, resulting in a total of 84050 vertices which 

represent all the large deformed balls. From these, we used, as for all the other 

experiments performed, 50% for training Net1, 5% for validation and 45% for testing. 

After the training and testing of Net1, we transferred its learning to Net2 (as explained in 

the previous section), and we fine-tuned Net2 on data representing deformed instances of 

the small ball. We have used 19050 vertices that represent all the deformed small balls. 

After training, we used it Net2 to predict the deformation on small balls with forces that 

we did not use during training. Table 4.17 presents a comparison of computation times 

without transfer of learning and with transfer of learning with different quantities of 

training data. We train Net2 without transfer of learning and we stopped the training 

when we obtained a small training error (i.e., mse=2.76e-5). For tuning Net2, we also 

stopped the training when we obtained the same small training error (i.e., mse=2.76e-5).  

Note that, the time taken to tune Net2 (413 seconds using 50 instances deformed of the 

small ball for training and 96.88 seconds using 10 deformed instances) is much smaller 

than the one taken without the transfer of learning (the training time is 512.50 seconds). 

The average Metro error for the predicted small ball is 4.30e-3 and the average of 

perceptual similarity is 73.26%. 
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Table 4.17. Average training time and prediction errors for small balls. 

Training Time 

Without Learning 

Transfer (s) 

Training Time Using Learning 

Transfer (s) 

Overall Metro 

Error (e-3) 

Max/Mean/Rms 

Overall Perceptual 

Error 

(Similarity %) 50 instances 10 instances 

512.50  431.60 96.88  10.626/4.301/4.689 0.2674 (73.26 %) 

  

4.6.2 Transfer of Learning and Prediction of the Large Ball 

In this case, the process is similar with the one in the previous section, but the transfer 

occurs from a small ball to a larger size one. As such, for evaluating the transfer, we train 

Net1 using 84050 vertices (coming from 50 deformed instances of the ball). After we 

transfer its learning to Net2, and tune Net2 on data representing 50 deformed instances of 

a newly created large ball. As each instance contains 4197 vertices, we use a total of 

209850 points for training Net2. After training, we used it to predict the deformation on 

the large ball (with forces that we did not use in training). Table 4.18 presents the 

computation time for training Net2 after the learning transfer and a comparison with the 

time required to train Net2 without transfer of learning.  

Table 4.18. Average of training time and prediction errors for the large ball. 

Training Time 

Without Learning 

Transfer (s) 

Training Time Using Learning 

Transfer (s) 

Overall Metro 

Error (e-3) 

Max/Mean/Rms 

Overall Perceptual 

Error 

(Similarity %) 50 instances 10 instances 

1320.97 655.441 s 145.705 s 5.782/0.816/1.11 0.2308 (76.91%) 

 

We stopped the training of Net2 when we obtained a good performance (i.e., mse=1.94e-

5). One can note that the training time without transfer of learning is very high (1320.97 

seconds) with respect to the training time with transfer of learning (413 seconds using 50 

deformed instances of the large ball for training and 96.88 seconds using 10 deformed 
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instances). The average Metro error for the predicted large ball is 0.816e-3 and the 

average of perceptual similarity is 76.91%. 

4.6.3. Transfer of Learning and Prediction of Other Objects 

To further demonstrate the abilities of our transfer method, we applied it on the three 

objects (cylinder, cube, and table) that were used for the prediction method. We repeated 

in this case the same process described in the previous section for training Net2 without 

transfer of learning or with transfer of learning. We also repeated the same series of tests 

the deformation on large objects (large cylinder, large cube and large table) from small 

objects. Table 4.19 summarizes the results obtained. 

Table 4.19. Average of training time and prediction errors for the three objects. 

 Training 

Time 

Without 

Learning 

Transfer (s) 

Training Time Using 

Learning Transfer (s) 

Overall Metro 

Error (e-3) 

Max/Mean/Rms 

Overall Perceptual 

Error (Similarity %) 

Object 50 instances 10 instances 

Cylinder 578.904 s 393.164 s 116.035 s 2.96/0.422/0.599 0.2834 (71.66%) 

Cube 343.829 s 158.540 s 98.353 s 2.133/0.363/0.496 0.2656 (73.44%) 

Table 281.076 s 188.508 s 48.857 s 5.32/1.145/1.467 0.2862 (71.38%) 

Average 401.269 s 246.737 s 87.748 s 3.47/0.643/0.85 0.2784 (72.16 %) 

 

As one can notice, the average Metro error for all the objects is 0.64e-3 and the average 

perceptual similarity is 72.16%. 

Finally, we have also tested the ability of predicting an elasto-plastic object starting from 

a network trained on a deformable foam object with a slightly different shape as well 

(ball vs. cylinder). For experimentation, we trained the first neural network (Net1) on the 

dataset representing 50 deformed instances of the foam ball (same deformed instances 

used in section 4.6.1). After training Net1, we transferred its learning to Net2 an fine-

tuned it on a dataset representing 50 deformed instances of an elasto-plastic cylinder (the 
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same one used in section 4.4.8). Table 4.20 shows the computation time that we took to 

train Net2 with and without the learning transfer method. We again stopped the training 

of Net2 when we obtained a good performance (i.e., mse=4.48e-5). As for the previous 

objects, the time to train Net2 after the transfer of learning transfer method is lower than 

the one obtained without transfer of learning. The average Metro error for the predicted 

cylinder is 0.816e-3 and the average of perceptual similarity is 61.57%. One can notice 

that, as expected, the performance is deteriorated in this case with respect to the case 

when we predict for the same object shape or same object material. 

Table 4.20. Average of training time and prediction errors for the elasto-plastic cylinder. 

Training Time 

Without Learning 

Transfer (s) 

Training Time Using Learning 

Transfer (s) 

Overall Metro 

Error (e-3) 

Max/Mean/Rms 

Overall Perceptual 

Error 

(Similarity %) 50 instances 10 instances 

560.225 s 426.297 s 184.334 s 5.782/0.816/1.11 0.2309 (61.57%) 

 

Overall, the training time using the transfer of learning is shorter for all the objects that 

we used in the experiments (Tables 4.17, 4.18, 4.19 and 4.20). Metro and perceptual 

errors tend to remain stable whether we use learning transfer or not because we can 

achieve almost the same performance by training the neural network. We can conclude 

that, with the learning transfer, we save a lot of training time and we are able to predict 

objects of different sizes and similar materials with a relatively good performance. 

However, the performance decreases, as expected, when transferring learning from one 

object to another object different in both shape and material (elasto-plastic cylinder from 

a foam ball).  
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CHAPTER 5 

5. CONCLUSION 

In this thesis, we addressed the problem of 3D object deformation through a novel 

computational intelligence approach. This approach is aimed at building a system that 

learns from examples how to predict automatically deformations of 3D objects that are 

subjected to point forces. To build such a system, three major issues have been addressed. 

The first issue is related to the need for a learning-based system that can be applied in a 

variety of real-world applications (e.g., robotics, manufacturing, etc.) involving contact 

forces with physical objects for which explicit knowledge of the physical parameters is 

not available. The second issue is related to ensuring that the prediction is performed in a 

computationally efficient way so as to facilitate that the system can be deployed in real-

time scenarios where computation and memory resources are limited (e.g., robots, drones, 

etc.). The third issue is related to the capacity of the system to deal with the variability of 

objects in terms of size and physical properties.  

To address the first issue, we proposed a method based on feed-forward networks (FFN) 

for predicting the 3D deformation of elastic and elasto-plastic objects that are subjected to 

point forces. The prediction does not make any assumption about the material of the 

objects. The whole prediction system is composed of a preprocessing step that simplifies 

the representation of objects and a prediction module that maps an input object, on which 

a force is applied at a certain point, to a deformed version of it.  

To address the second issue, we proposed a novel preprocessing method to create 

compact 3D object representation by combining selectively-densified simplification, 

stratified sampling and neural gas fitting. This combination reduces the complexity of the 

deformed objects by creating compact and accurate representations of them; thus, 

allowing to bring savings in computation time and memory requirements.  
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To address the final issue, we improved our prediction method using transfer learning 

between neural networks models. This allowed us to use the learning of a pre-trained 

network on one object to accelerate the training of another object network given that the 

physical properties of the objects are similar except for their size and/or slight 

geometrical differences. Therefore, we can predict the deformation of a small ball from 

training on large ball and vise-versa. Transfer of learning is also useful to reduce the 

amount of data required for training the feedforward neural network architectures.  

Our prediction system has been successfully tested and validated using several examples 

of object deformations and achieved promising results. Among other things, our system 

allows to predict deformations in a similar way to FEM despite the lack of knowledge 

about the physical parameters of the objects. Our prediction is also computationally 

efficient, which makes it applicable to any real-time scenario.   

Although we proposed an efficient and promising method to address the challenges in the 

literature for 3D deformation estimation, there are still some limitations for predicting 

accurately complex object deformations. First, since surface point clouds (vertices) are 

processed separately, the predicted deformations might not be consistent with the local 

geometry of the object. Second, all objects have to be aligned in the world coordinate 

system in order to be processed correctly. Consequently, alignment errors could result in 

prediction errors. To address the first issue, one potential way is to consider the local 

geometry of objects. To address the second issue, the objects themselves could be 

endowed with an intrinsic coordinate system (i.e. spherical or geodesic coordinates). 

We can apply our prediction method in several fields such as robotics, manufacturing, 

and agriculture. Our method can be adapted and tested in the context of robotic 

manipulation tasks, in which the force-torque sensor measurements will be replaced by 

force measures exercised at the level of each robotic finger. For example, robotic arms 

could be designed to automatically evaluate the ripeness of fruits and vegetables and also 

help harvest them automatically without damaging them. As such, the robotic arm 

requires the ability to detect, recognize, and determine if the fruit or vegetable is ripe 
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enough to be picked or rotten (to throw it away). In a more general context, the same 

technology can be applied in other industries where robots are required to explore 

(sometimes dangerous, contaminated or inaccessible) environments autonomously and to 

handle and predict the deformations on new objects without knowing their physical 

parameters.   
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Annex A – Error measures after simplification 

Table 4.2.1. Error measures and computing time for ball object after simplification. 

Ball # 

Overall Metro 

Error (e-3) Overall Perceptual 

Error (Similarity %) 

Metro Error in 

Deformed Area 

(e−5) 

Perceptual Error 

(Similarity%) in 

Deformed Area 

Computing 

Time/Object 

Max/Mean/Rms Max/Mean/Rms 

1 17.076/3.289/4.024 0.2945 (70.55%) 36.13/3.82/7.03 0.1437 (85.63%) 0.156 s  

2 15.816/2.136/2.617 0.2504 (74.96%) 44.12/4.65/8.82 0.1202 (87.98%) 0.172 s  

3 24.75/3.757/4.833 0.3246 (67.54%) 55.41/4.43/8.66 0.1534 (84.67%) 0.078 s  

4 12.872/1.481/2.067 0.2787 (72.13%) 51.13/4.38/8.54  0.1347 (86.53%) 0.125 s  

5 26.67/2.512/3.941 0.2905 (70.95%) 45.92/4.46/8.56 0.1769 (82.31%) 0.140 s  

6 13.804/2.002/2.433 0.3078 (69.22%) 46.72/4.5/8.5 0.1529 (84.71%) 0.125 s  

7 18.178/3.434/4.221 0.3125 (68.75%) 39.91/4.51/8.52 0.1564 (84.36%) 0.172 s  

8 18.186/2.88/3.592 0.2512 (74.88%) 50.24/4.63/8.84 0.1195 (88.05%) 0.172 s  

9 15.217/3.195/3.876 0.2677 (73.23%) 42.81/4.27/8.01 0.1197 (88.03%) 0.125 s  

10 14.155/4.789/5.523 0.2839 (71.61%) 50.38/5.31/1.02 0.1293 (87.07%) 0.125 s  

Average 17.672/2.948/3.713 0.2862 (71.38%) 46.277/4.496/7.548 0.1407 (85.93%) 0.139 s 

 

Table 4.2.2. Error measures and computing time for cube object after simplification. 

Cube # 

Overall Metro Error 

(e−3) 
Overall Perceptual 

Error (Similarity 

%) 

Metro Error in 

Deformed Area (e−5) 
Perceptual Error 

(Similarity%) in 

Deformed Area 

Computing 

Time/Object 

Max/Mean/Rms Max/Mean/Rms 

1 21.443/1.134/4.061 0.2082 (79.18%) 46.88/3.79/7.52 0.0653 (93.47%) 0.016 s  

2 11.213/0.45/1.757 0.2073 (79.27%) 46.59/3.52/7.19 0.0560 (94.40%) 0.046 s  

3 14.427/0.643/2.445 0.2042 (79.58%) 34.12/2.94/6.09 0.0572 (94.28%) 0.031 s  

4 9.798/0.443/1.675 0.2078 (79.22%) 40.56/2.85/6.08 0.0581 (94.19%) 0.063 s  

5 13.187/0.568/2.19 0.2072 (79.23%) 44.29/3.56/7.08 0.0613 (93.87%) 0.031 s  

6 8.623/0.379/1.473 0.2078 (79.22%) 43.32/3.55/7.05 0.0661 (93.39%) 0.063 s  
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7 12.303/0.552/2.12 0.2072 (79.26%) 47.7/3.29/7.01 0.0772 (92.28%) 0.047 s  

8 14.029/0.633/2.397 0.2061 (79.39%) 38.58/3.07/6.12 0.0651 (93.49%) 0.031 s  

Average 13.128/0.600/2.265 0.2070 (79.30%) 42.755/3.3213/6.765 0.0633 (93.67%) 0.033 s 

 

Table 4.2.3. Error measures and computing time for sponge object after simplification. 

Sponge # 

Overall Metro 

Error (e−3) 
Overall Perceptual 

Error (Similarity 

%) 

Metro Error in 

Deformed Area (e−5) 
Perceptual Error 

(Similarity%) in 

Deformed Area 

Computin

g 

Time/Obje

ct Max/Mean/Rms Max/Mean/Rms 

1 4.699/0.122/0.597 0.1620 (83.80%) 43.11/3.47/7.26 0.1041 (89.59%) 0.078 s  

2 4.312/0.115/0.563 0.1620 (83.80%) 44.09/3.01/6.22 0.0809 (91.91%) 0.109 s  

3 3.4/0.095/0.448 0.1621 (83.79%) 43.11/3.45/7.36 0.1097 (89.03%) 0.078 s  

4 2.714/0.89/0.387 0.1624 (83.76%) 42.11/2.97/6.01 0.1015 (89.85%) 0.031 s  

5 4.174/0.118/0.562 0.1626 (83.74%) 49.78/2.94/5.74 0.0748 (92.52%) 0.031 s 

6 4.545/0.125/0.6 0.1623 (83.77%) 37.41/3.05/5.77 0.0753 (92.47%) 0.078 s 

7 4.718/0.131/0.63 0.1616 (83.84%) 41.5/3.05/6.34 0.0764 (92.36%) 0.063 s 

8 4.142/0.11/0.534 0.1619 (83.58%) 38.66/3.33/6.4 0.0779 (92.21%) 0.109 s  

Average 4.088/0.113/0.540 0.1625 (83.7503%) 42.471/3.159/6.388 0.0876 (91.24%) 0.058 s 
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Annex B – Error measures after clustering and sampling 

Table 4.3.1. Error measures and computing time for ball object after clustering and 

sampling. 

Ball # 

Overall Metro 

Error (e−3) Overall Perceptual 

Error (Similarity 

%) 

Metro Error in 

Deformed Area 

(e−5) 
Perceptual Error 

(Similarity%) in 

Deformed Area 

Computing 

Time/Object 

Clustering/Sam

pling Max/Mean/Rms 
Max/Mean/Rm

s 

1 16.83/3.25/4.0 0.2129 (78.70%) 22.7/0.57/2.43 0.070 (93.01%) 0.081 s/0.029 s 

2 16.012/2.23/2.78 0.17003 (82.99%) 21.97/0.32/2.49 0.0523 (94.78%) 0.080 s/0.027 s 

3 24.75/3.70/4.80 0.2345 (76.55%) 28.22/1.19/2.26 0.0818 (91.82%) 0.083 s/0.026 s 

4 12.872/1.47/2.20 0.1984 (80.16%) 24.3/1.42/2.44 0.0613 (93.87%) 0.078 s/0.028 s 

5 26.67/2.64/4.23 0.1902 (80.98%) 28.88/0.49/2.29 0.0692 (93.08%) 0.079 s/0.026 s 

6 13.793/2.06/2.53 0.2269 (77.31%) 23.91/1.01/2.08 0.0760 (92.40%) 0.082 s/0.112 s 

7 18.132/3.6/4.41 0.2316 (76.84%) 27.69/0.66/2.1 0.0874 (90.26%) 0.081 s/0.027 s 

8 18.168/3.00/3.8 0.17097 (82.90%) 23.97/1.25/2.2 0.0520 (94.80%) 0.095 s/0.030 s 

9 15.151/3.51/4.19 0.1876 (81.24%) 28.09/1.15/2.37 0.0657 (93.43%) 0.087 s/0.029 s 

10 14.093/4.56/5.31 0.2004 (79.96%) 27.55/0.25/2.41 0.0609 (93.91%) 0.085 s/0.032 s 

Average 17.647/3.00/3.8 0.2024 (79.76%) 25.73/0.83/2.31 0.0687 (93.14%) 0.083 s/0.037 s 

 

Table 4.3.2. Error measures and computing time for cube object after clustering and 

sampling. 

Cube # 

Overall Metro 

Error (e−3) 
Overall Perceptual 

Error (Similarity 

%) 

Metro Error in 

Deformed Area 

(e−5) 

Perceptual Error 

(Similarity%) in 

Deformed Area 

Computing 

Time/Object 

Clustering/Sa

mpling Max/Mean/Rms Max/Mean/Rms 

1 21.41/0.73/3.25 0.2685 (73.15%) 38.71/2.73/6.43 0.052 (94.80%) 0.024 s/0.023 s 

2 11.2/0.24/1.27 0.2657 (73.43%) 38.36/2.38/6.13 0.0597 (94.03%) 0.026 s/0.025 s 

3 14.4/0.39/1.91 0.2709 (72.91%) 39.82/2.98/6.16 0.0507 (94.93%) 0.025 s/0.026 s 
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4 9.73/0.24/1.21 0.2735 (72.64%) 39.35/2.97/6.06 0.0527 (94.73%) 0.025 s/0.022 s 

5 13.19/0.32/1.63 0.2644 (73.56%) 39.38/2.16/6.47 0.0551 (94.49%) 0.023 s/0.024 s 

6 8.61/0.21/1.09 0.2755 (72.45%) 39.99/2.66/6.32 0.0542 (94.58%) 0.025 s/0.025 s 

7 12.30/0.32/1.62 0.2717 (72.83%) 40.31/2.62/6.24 0.0576 (94.24%) 0.025 s/0.050 s 

8 14.01/0.37/1.83 0.2649 (73.51%) 39.05/2.56/6.32 0.0554 (94.46%) 0.029 s/0.027 s 

Average 13.11/0.35/1.71 0.2694 (73.06%) 39.37/2.63/6.27 0.0547 (94.53%) 0.025 s/0.028 s 

 

Table 4.3.3. Error measures and computing time for sponge object after clustering and 

sampling. 

Sponge # 

Overall Metro 

Error (e−3) Overall Perceptual 

Error (Similarity %) 

Metro Error in 

Deformed Area 

(e−5) 

Perceptual Error 

(Similarity%) in 

Deformed Area 

Computing 

Time/Object 

Clustering/Sa

mpling Max/Mean/Rms Max/Mean/Rms 

1 4.699/0.066/0.43 0.2326 (76.74%) 42.09/5.8/6.55 0.0931 (90.69%) 0.031 s/0.036 s 

2 4.312/0.073/0.46 0.2268 (77.32%) 42.29/5.93/6.52 0.0941 (90.59%) 0.038 s/0.023 s 

3 3.4/0.053/0.33 0.2424 (75.76%) 42.09/5.01/7.15 0.0916 (90.84%) 0.048 s/0.022 s 

4 2.714/0.058/0.31 0.2349 (76.51%) 42.44/4.89/7.19 0.0942 (90.58%) 0.035 s/0.030 s 

5 4.142/0.065/0.40 0.2294 (77.06%) 42.04/5.11/6.74 0.0941 (90.59%) 0.030 s/0.027 s 

6 4.545/0.093/0.52 0.2436 (75.64%) 42.99/4.04/7.22 0.0943 (90.57%) 0.034 s/0.037 s 

7 4.646/0.058/0.41 0.2399 (76.01%) 41.44/4.4/6.88 0.0941 (90.59%) 0.059 s/0.024 s 

8 4.142/0.063/0.40 0.2269 (77.31%) 41.21/4.02/6.88 0.0933 (90.67%) 0.038 s/0.049 s 

Average 4.075/0.066/0.41 0.23457 (76.54%) 42.078/4.9/6.89 0.0936 (90.64%) 0.039 s/0.031 s 
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Annex C – Error measures after neural gas 

Table 4.4.1. Error measures and computing time for ball object after neural gas. 

Ball # 

Overall Metro 

Error (e−3) 
Overall Perceptual 

Error (Similarity 

%) 

Metro Error in 

Deformed Area 

(e−5) 

Perceptual Error 

(Similarity%) in 

Deformed Area 

Computing 

Time/Object/

Iteration 

Neural Gas Max/Mean/Rms Max/Mean/Rms 

1 53.3/1.5/2.4 0.0898 (91.02%) 11.6/0.2/1 0.0241 (97.59%) 35.512 s 

2 53.3/1.5/2.5 0.0918 (90.82%) 14.2/0.2/0.8 0.0157 (98.43%) 27.795 s 

3 53.3/1.3/2.2 0.0555 (94.45%) 10.3/0.1/0.6 0.0087 (99.13%) 28.045 s 

4 56.3/1.3/2.2 0.0552 (94.48%) 10.6/0.1/0.6 0.0105 (98.95%) 17.741 s 

5 53.3/1.5/2.4 0.0886 (91.14%) 11.2/0.1/0.8 0.0141 (98.59%) 21.543 s 

6 56.3/1.5/2.4 0.0893 (91.07%) 11.2/0.1/0.8 0.0148 (98.52%) 25.902 s 

7 53.3/1.4/2.4 0.0885 (91.15%) 11.2/0.2/0.8 0.015 (98.50%) 18.308 s 

8 56.3/1.4/2.4 0.0884 (91.16%) 11.2/0.2/0.8 0.0162 (98.38%) 30.406 s 

9 53.3/1.4/2.4 0.0932 (90.68%) 11.1/0.2/0.8 0.018 (98.197%) 30.484 s 

10 53.3/1.4/2.4 0.0933 (90.67%) 11.1/0.2/0.8 0.0155 (98.45%) 23.923 s 

Average 54.2/1.42/2.37 0.083 (91.66%) 11.37/0.16/0.78 0.0155 (98.47%) 25.966 s 

 

Table 4.4.2. Error measures and computing time for cube object after neural gas. 

Cube # 

Overall Metro 

Error (e−3) 
Overall 

Perceptual Error 

(Similarity %) 

Metro Error in 

Deformed Area 

(e−5) 

Perceptual Error 

(Similarity%) in 

Deformed Area 

Computing 

Time/Object/It

eration 

Neural Gas Max/Mean/Rms Max/Mean/Rms 

1 21.1/2/3.6 0.1849 (81.51%) 29.5/0.3/1.5 0.0275 (97.25%) 5.076 s 

2 27.9/2.1/3.9 0.1781 (82.19%) 25.5/0.2/1.4 0.009 (99.095%) 4.882 s 

3 23.7/2.1/3.8 0.1801 (81.99%) 21.4/0.2/1.2 0.0131 (98.69%) 5.107 s 

4 23.4/2/3.7 0.1889 (81.11%) 23.7/0.3/1.4 0.0174 (98.26%) 4.934 s 

5 21.1/2/3.7 0.1851 (81.49%) 25.2/0.4/1.8 0.0343 (96.57%) 5.432 s 

6 22.3/2/3.7 0.1876 (81.24%) 25.2/0.3/1.5 0.0379 (96.21%) 5.153 s 
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7 23.7/2.1/3.9 0.1817 (81.83%) 23.7/0.3/1.4 0.0173 (98.27%) 4.845 s 

8 23.4/2.1/3.8 0.1817 (81.83%) 23.7/0.2/1.1 0.0139 (98.61%) 4.951 s 

Average 23.325/2.05/3.7625 0.1835 (81.65%) 26.16/0.30/1.51 0.0139 (97.679%) 5.047 s 

 

Table 4.4.3. Error measures and computing time for sponge object after neural gas. 

Sponge # 

Overall Metro 

Error (e−3) 
Overall 

Perceptual Error 

(Similarity %) 

Metro Error in 

Deformed Area 

(e−5) 

Perceptual Error 

(Similarity%) in 

Deformed Area 

Computing 

Time/Object/I

teration 

Neural Gas Max/Mean/Rms Max/Mean/Rms 

1 32.1/2.4/4.4 0.1983 (80.17%) 32/0.8/2.6 0.0852 (91.48%) 7.753 s 

2 35.7/2.7/5 0.1994 (80.06%) 37.8/0.8/2.9 0.0512 (94.88%) 7.692 s 

3 37.1/2.7/4.9 0.1991 (80.09%) 37.9/0.9/3.1 0.0494 (95.07%) 7.155 s 

4 43/2.9/5.6 0.2036 (79.64%) 40.1/1.3/3.8 0.1321 (86.79%) 7,224 s 

5 35.9/2.5/4.5 0.1984 (80.16%) 37.9/0.9/3 0.079 (92.097%) 7.253 s 

6 33.7/2.7/5 0.2028 (79.72%) 37.8/1.1/3.4 0.0978 (90.22%) 6.548 s 

7 37.1/2.7/4.9 0.1977 (80.23%) 37.9/1/3.3 0.0649 (93.56%) 6.583 s 

8 37.1/2.6/4.9 0.1991 (80.09%) 37.8/1/3.4 0.0872 (91.28%) 6.242 s 

Average 36.46/2.65/4.9 0.1991 (80.02%) 40.67/1.01/3.38 0.0872 (91.63%) 7.056 s 
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Annex D - Ansys academic software simulator 

Ansys academic software [195] is developed by ANSYS company, this company 

employs nearly 4,000 professionals and students, many of whom are expert M.S. and 

Ph.D.-level engineers in finite element analysis and design optimization. ANSYS has 

been recognized as one of the world's most innovative companies by prestigious 

publications such as Bloomberg Business Week and FORTUNE magazines. ANSYS 

Academic engineering simulation software is a free software used by thousands of 

universities around the world for researchers to solve complex engineering problems, and 

for students of third cycle to produce data for their master's or doctoral theses. ANSYS 

Academic engineering simulation software offers a complete solution for FEM. This 

solution goes through several steps. We start with the choice of materials, then draw the 

3D object, meshing the object, then exert forces on the object, finally build and export the 

deformed mesh. 

Annex E - Choice of materials 

We can choose among hundreds of materials such as rubber, foam, steel, silicone and 

plastic [196]. We can choose two or more type of materials for one object; for example, 

we can choose rubber with plastic. We have the option to group different materials 

together. We can decide the percentage of each material in the object. Example, we can 

choose an object with 40% rubber, 20% foam and 40% plastic. Each material has several 

characteristics that we can choose by ourselves. With each material we have different 

parameters and different values of these parameters. Some parameters are defined by 

default independently of the type of material of the object. For example, the stiffness, the 

damping and the mass matrices. By using some commands under Ansys, we can export 

these matrices easily and use it in MATLAB. 

Annex F - Geometry and creation of 3D objects 

Ansys academic software is connected to several other software to ensure a complete 

solution. Among these software, we have the two software SpaceClaim [197] and 

DesignerModeler [198] that we can use to create the geometry of any kind of 3D objects. 

We can easily create 3D objects as cube, sphere and cylinder. We can create large and 

small complex objects by specifying their parameters. For example, we can create a large 
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sphere with a radius of 9 cm, then modify the radius to 3mm to create a small sphere. We 

can design a complex geometry by ourselves and then transform it easily into a 3D 

object. We can import any kind of geometry or mesh from other software and transform it 

to 3D object.  After creating the object by SpaceClaim or DesignerModeler we can send 

it automatically to Ansys and associate it with any materials. 

 

 


