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RÉSUMÉ

Android est le système d’exploitation le plus populaire et le plus utilisé au monde pour les
téléphones intelligents. L’une des raisons de cette popularité est l’accessibilité gratuite aux
applications. Malheureusement, cette flexibilité d’installation et d’utilisation de toute applica-
tion surtout celle créée par des tiers a conduit à l’augmentation de propagation d’applications
malveillantes qui visent à nuire aux utilisateurs et à leur vie privée.

Dans cette thèse, différentes méthodes sont présentées et expérimentées dans l’intention de
résoudre le problème de la détection d’applications malveillantes Android. L’analyse des
données d’un système de détection en type hybride (statique et dynamique) est développée.

L’exploration de l’efficacité des modèles utilisant deux types de fonctionnalités différentes, à
savoir les permissions et les appels systéme, mènera, pour commencer, à la réduction de celles
indésirables grâce à une phase d’abstraction. Ensuite, différents modèles de classification sont
utilisés pour déterminer si une application donnée est infectée ou bénigne. Les métriques de
performance des différents modèles sont ensuite comparées pour identifier la technique qui
offre les meilleurs résultats à cet effet de détection des logiciels malveillants.

On conclut pour finir que l’approche basée sur l’analyse hybride est plus efficace que l’analyse
statique ou dynamique séparée.



TABLE DES MATIÈRES

Membres du jury i

Résumé ii

Liste des tableaux vii

Table des figures ix

Remerciement x

Introduction 1

Chapter 1 14

1 A Survey of Malware Detection in Android Apps : Recommendations and
Perspectives for Future Research 17
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 2 56

2 Behavioral classification of Android applications using system calls 59
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2 Dataset creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3 Experiment 1 : System calls . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.4 Experiment 2 : TF–IDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.5 Experiment 3 : N-grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.6 Experiment 4 : Relative Ordering . . . . . . . . . . . . . . . . . . . . . . . . 74
2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.8 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 3 79



v

3 TwinDroid : A Dataset of Android app System call traces and Trace Generation
Pipeline 81
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 The Twindroid Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3 Trace Generation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.5 Previous and Future Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 4 90

4 Comparing the effectiveness of Static, Dynamic and Hybrid Malware detection
on a Common Dataset 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 Hybrid analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Conclusion et recommandations 106

Bibliographie 111





LISTE DES TABLEAUX

1.1 Comparison of surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 A summary of the recommendations listed in the paper. . . . . . . . . . . . . 43
1.3 The datasets used in the papers we surveyed . . . . . . . . . . . . . . . . . . 45
1.4 Advantages and disadvantages of the top five ML algorithms used in literature 48
1.5 Recapitulative table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.5 Recapitulative table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.5 Recapitulative table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.5 Recapitulative table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.1 Summary of the Malware families used in this study . . . . . . . . . . . . . . 62
2.2 Summary of the app’s categories used in this study . . . . . . . . . . . . . . 62
2.3 System calls and their equivalences . . . . . . . . . . . . . . . . . . . . . . . 65
2.4 Top 10 system calls in terms of their occurrence according to Bhatia et al. (20)

and in our dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.5 Frequency ratio of some system calls . . . . . . . . . . . . . . . . . . . . . . 67
2.6 The classification rates of traces - System calls . . . . . . . . . . . . . . . . . 68
2.7 The classification rates of traces - TF-IDF . . . . . . . . . . . . . . . . . . . 69
2.8 The classification rates of traces - TF-IDF normolized . . . . . . . . . . . . . 70
2.9 Top 5 2-grams system calls in term of their presence in our dataset . . . . . . 72
2.10 The classification rates of the N-grams binary . . . . . . . . . . . . . . . . . 73
2.11 The classification rates of the N-grams occurrence . . . . . . . . . . . . . . . 73
2.12 The classification rates of traces - Experiment 5 . . . . . . . . . . . . . . . . 76

3.1 Content of the TwinDroid dataset. . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Result of applying the VirusTotal scan to the apps in the TwinDroid dataset . 96
4.2 Classification using statically gathered data of apps with (yes) and without

(No) abstraction phase (abs.) . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 List of parameters used for classification as supplementary features. . . . . . 102
4.4 The classification rates for dynamic data of apps with (yes) and without (No)

parameters (par.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5 Accuracy and precision of hybrid classification. . . . . . . . . . . . . . . . . 104





TABLE DES FIGURES

1.1 ML used by Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1 Sample of an application trace . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2 2-grams and 3-grams example . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3 Histogram of TP rates of N-grams . . . . . . . . . . . . . . . . . . . . . . . 74
2.4 The best TP rates and ROC area of our expirements . . . . . . . . . . . . . . 78

3.1 Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Overview of the Trace Generation Pipeline. . . . . . . . . . . . . . . . . . . 85
3.3 Sample of an application trace . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 List of the resource features that does not have above 50% correlation with
any permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 The top 20 features correlated with the class of the samples, malware or benign
class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99





REMERCIEMENT

Je tiens à remercier dans un premier temps, Monsieur Raphaël Khoury pour avoir accepté
de m’encadrer. En effet, sa collaboration, sa persévérance, ses conseils précieux, la clarté
et la richesse de son savoir, son esprit critique et son raisonnement empreint de précision
m’ont toujours inspiré et aidé. Permettez-moi Monsieur de vous exprimer ma plus profonde
gratitude.

À mes parents les plus chers au monde pour tous les sacrifices qu’ils ont faits pour moi, toute
la confiance qu’ils m’accordent et tout l’amour dont ils m’entourent. Une reconnaissance
éblouissante et particulière à mon cher mari qui a voulu me voir réussir et n’a pas cessé de
me fournir son soutien. Merci à ma fille "Sofines" de me permettre de vivre une vie très bien
animée.

J’ai une pensée pour mes ami(e)s rencontrés à Chicoutimi BelGacem, Massiva, Imène, Souhail,
Maissa, Yessine, Ahmed, Amine, Rihana, Fadwa, Dounia et Nesrine pour avoir animé mes
années d’étude. Je voudrais aussi me souvenir de mon amie de la France Sabrine.

Pour finir, je remercie toutes les personnes intéressées par ce projet, en espérant qu’elles
puissent trouver dans cette thèse des explications utiles pour leurs propres travaux.





INTRODUCTION

Le directeur de la recherche et du développement de Motorola aux États-Unis, Martin Cooper,
a inventé en 1973 le premier téléphone portable, ((34)). L’usage de ces appareils a subi une
croissance fanatique qui en a fait l’une des technologies les plus consommables. En 2016
le nombre total d’abonnements à la téléphonie mobile atteignait environ 7,5 milliards et
augmentait d’environ 3% l’année d’après, ((99)), et près de 80% de la population mondiale
utilisaient des réseaux GSM terrestres.

Avec les progrès technologiques, les téléphones mobiles d’aujourd’hui ont évolué en « télé-
phones intelligents ou Smartphone » avec des fonctionnalités plus sophistiquées qu’auparavant.
Le premier téléphone intelligent était IBM Simon, lancé en 1993 aux États-Unis, ((37)). Et
puis Nokia a présenté son premier téléphone intelligent appelé Nokia Communicator en 1996,
((70)).

Aujourd’hui, les plateformes logicielles utilisées dans les téléphones intelligents sont diverses.
Parmi les plus utilisées on trouve les suivantes :

— Android qui a été fondé à Palo Alto, en Californie, en octobre 2003, (68), par Andy
Rubin, Rich Miner, Nick Sear et Chris White. Il est décrit comme un système d’exploi-
tation mobile et il a été vendu à Google en 2005.
En 2014 un milliard de téléphones intelligents sont équipés par Android. Gartner 1 esti-
mait que 60% des appareils mobiles se servaient des systèmes d’exploitation Android
en 2015.Ce système d’exploitation est mis à disposition de nombreux fabricants de
téléphones (Samsung, Acer, HTC, LG, Sony et Huawei) qui doivent respecter certaines
conditions liées aux services de Google.

— iOS d’Apple. Le premier iPhone OS a été publié le 29 juin 2007 par Apple, ((19)).
L’iOS a la deuxième place après Android dans les systèmes d’exploitation mobile les
plus consommés dans le monde, avec environ 239,2 millions de téléphones intelligents

1. Société de recherche et de conseil en technologie de l’information basée à Stamford, Connecticut US.
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équipés en 2021, ((33)) . Cependant, il fonctionne uniquement sur les propres produits
d’Apple. Il faut toujours passer par l’Apple Store pour installer sur un iPhone ou iPad
les applications désirées.

— Chrome OS a été crée par Google en 2010, ((90)). Au début de sa création, il a été
destiné pour la navigation web seulement et totalement distinct d’Android mais ces
dernières années certaines applications Android deviennent compatibles avec lui.

— Windows Phone de Microsoft. Le 21 octobre 2010, Microsoft a lancé son premier
système d’exploitation mobile ((108)), avec un design basé sur le design de Windows
8. Windows Phone est remplacé en 2015 par Windows 10 Mobile.

Sur l’ensemble du marché des systèmes d’exploitation de téléphone intelligent (OS), Android
a encore renforcé son avance sur iOS d’Apple en septembre de 2022, en assurant une part
de marché de 71,55% à 27,8% pour iOS, ((114)). Ce qui démontre bien l’accroissement
exponentiel de l’utilisation de ce type d’appareil.

CONTEXTE

La nécessité d’un téléphone dépasse le fait de téléphoner et envoyer des messages. Les
téléphones intelligents permettent de faire bien d’autres choses grâce à des applications :
échanger des photos, se connecter aux réseaux sociaux, enregistrer et réaliser de la vidéo et de
l’audio, dessiner, accéder à Internet et bien plus encore. La variété et le besoin d’utilisation
du téléphone mobile sont infinis, d’où la croissance de nombre d’applications de téléphone
intelligent. Non seulement les places de marché officielles d’applications 2 , comme Google
Play et App Store les plus connus, mais plusieurs autres (F-Droid, AppChina, AppBrain,
YAAM Market, etc.) disposent des applications pour téléphones intelligents, ce qui augmente
la popularité et l’utilisation. Mais une telle célébrité attire aussi les cybercriminels qui lancent
des applications malveillantes sur le marché afin de voler des données personnelles. Le
téléphone intelligent devient un nouvel abri pour les logiciels malveillants faisant des activités
malveillantes. Le Symantec Internet Security Threat Report (ISTR) indique que 38% des
utilisateurs de téléphones intelligents ont été victimes de cybercriminalité en 2013, ((120)).

VULNÉRABILITÉS DES APPLICATIONS ANDROID

Il existe plusieurs programmes indésirables qui portent le nom de « malware ». Le terme
« malware » est une combinaison du mot malveillant (malicious) et logiciel (software). Un
malware pourrait se définir comme étant un logiciel parasite présent sur un appareil, se
propageant rapidement grâce à une faille d’un autre logiciel ou une erreur de l’utilisateur.

2. "Magasin d’applications ou app store, est une plateforme en ligne d’applications destinées à des systèmes
d’exploitation informatiques public."
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L’histoire des logiciels malveillants pour les téléphones intelligents commence dès 2004
avec l’apparition du premier ver, Cabir. Cabir a été développé à l’origine comme preuve
de concept par un groupe des professionnels connu sous le nom 29A, ((74)). Il ciblait les
appareils fonctionnants sous Symbian OS. Une fois l’appareil est infecté, le mot « Caribe
» était affiché sur l’écran de l’appareil. Si Bluetooth était activé, Cabir se propulserait sur
d’autres appareils, incitant les utilisateurs à accepter de le télécharger. Il était un virus de
preuve de concept, conçu pour démontrer que le code malveillant pourrait être créé pour
Symbian afin d’améliorer la sécurité de n’importe quel système que leur création cible. Le
code source du ver a cependant été publié sur Internet, ce qui a entraîné que des gens ayant
une intention plus espiègle l’ont utilisés. À cause de cela, Cabir a commencé à infecter petit à
petit des téléphones partout dans le monde.

Pour Android, l’un des premiers virus est apparu en 2011 avec DroidDream 3. Ce logiciel
malveillant peut obtenir un accès racine aux appareils fonctionnant sous Android à des
informations sensibles telles que les numéros d’identification uniques de l’appareil, l’identité
internationale d’abonné mobile (IMSI) et l’identité internationale d’équipement mobile (IMEI),
ainsi que la langue de l’appareil, le modèle de téléphone et dans certains cas l’ID utilisateur.
Cela signifie que le logiciel pourrait potentiellement prendre le contrôle de tout l’appareil
et des données qui y sont stockées. Cette éventualité s’est produite au courant de la même
année, avec la découverte du malware DroidKungfu, ((59)) par des chercheurs américains. Il
peut prendre le contrôle de l’appareils et ses fonctions, y compris les données personnelles de
l’utilisateur.

Les logiciels malveillants mobiles sont en plein évolution. Un logiciel malveillant cible le vol
des données et aide à gagner de l’argent. Les activités courantes incluent le suivi de l’emplace-
ment de notre appareil, l’utilisation d’audio et de vidéo pour nous surveiller, le détournement
de textes de notre banque, la facturation de frais sur notre téléphone, la messagerie de nos
contacts, la collecte d’informations sur l’appareil et l’installation d’applications et de fichiers
afin de contrôler notre appareil.

L’un des types de logiciel malveillant le plus connu et qui affecte le plus des personnes dans le
monde est la fraude par SMS, (46). Les achats à distance avec des cartes bancaires falsifiées
sont également à la hausse. Les détails de la carte peuvent être obtenus illégalement par des
courriels non sollicités, des appels téléphoniques ou des attaques numériques, tels que des
programmes malveillants et des piratages de données, puis utilisés pour effectuer des achats
malhonnêtes sur Internet ou par téléphone.

3. https://www.webopedia.com/TERM/D/droiddream.html

https://www.webopedia.com/TERM/D/droiddream.html
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INSTALLATION DES MALWARES

Afin de distribuer un logiciel malveillant sur un téléphone intelligent, les cybercriminels se
servent des applications les plus connues. Ils infiltrent un code malveillant dans une application
et la proposent en téléchargement sur les magasins de téléchargement. Ce code servira à
installer des comportements malveillants ou exploiter des données sensibles, personnelles
ou professionnelles sur l’appareil. Prenons l’exemple du malware MysteryBot qui a ciblé
les applications Outlook, Skype, Messenger, Viber, WhatsApp, Yahoo Mail et plus d’autres
applications, ((121)). Une fois la fausse version de l’application est installée, MysteryBot
sera capable d’enregistrer ce que l’utilisateur écrit, d’envoyer des SMS malveillants à ses
contacts, de transférer tous ses appels vers un autre numéro et le plus scandaleux est d’obtenir
de l’argent en échange de l’accès aux photos et vidéos de l’utilisateur après avoir encrypté le
contenu de l’appareil.

Parmi les techniques courantes que les logiciels malveillants utilisent pour s’installer, on
trouve :

— Le reconditionnement (repackaging). Les créateurs des logiciels malveillants choi-
sissent généralement des applications populaires à reconditionner ou à infecter, ce
qui augmente les chances que les victimes téléchargent leur version non autorisée.
Pour ce faire, le hacker télécharge l’application originale, ajoute des nouvelles instruc-
tions ou classes java pour écouter et manipuler les informations échangées entre deux
téléphones ; sms, services de surveillance etc. et publie la version modifiée. Les appli-
cations reconditionnées se trouvent généralement dans des magasins d’applications
tiers. Ces magasins ont tendance à définir des limites d’acceptation inférieures à celles
de Google.
Des chercheurs allemands ont réussi à construire une base d’applications recondition-
nées qui a été publiée sur leur site Androzoo 4.

— Les mises à jour. Même caractéristique que la technique de «repackaging», mais en
plus le hacker cache les éléments malveillants pour éviter la détection par l’ajout de
quelques instructions permettent de télécharger du code supplémentaires au moment
de l’exécution de l’application. L’algorithme 1 donné par (82), est un exemple du code
qui permet de créer un nouveau fichier "AppSMS.apk" et l’utilise comme paramètre
pour le programme d’installation du package Android sur un périphérique.

— La fausse application consiste à imiter l’application originale en utilisant les mêmes
ressources : images ou pages html. Lors de son installation sur l’appareil et lorsque
l’utilisateur s’identifie pour accéder à l’application, le programme malveillant ajouté
dans cette application imitée, envoie les informations à un serveur et affiche un message
d’erreur à l’utilisateur comme illustre l’algorithme 2 de (82). Cet algorithme montre
comment obtenir le login et le mot de passe des utilisateurs, envoyer des données à un
serveur et afficher un message d’erreur.

4. https://androzoo.uni.lu/

https://androzoo.uni.lu/
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Algorithm 1 Exemple d’une fonction de mises à jour
private void FUpdates()
{
File localFile = new File (getFilesDir(), "AppSMS.apk") ;
if localFile.exists() then

Uri localUri = Uri.fromFile (localFile) ;
Intent localUri = new Intent ("android.intent.action.VIEW", localUri) ;
localIntent.setData(localUri) ;
localIntent.setClassName("com.PackageInstallerActivity",
"com.android.packageinstaller.PackageInstallerActivity") ;
startActivity(localIntent) ;
finish() ;

end if
}

Algorithm 2 Exemple d’un code qui récupére les informations de l’utilisateur
String str1= ((EditText) findViewById(2131099663)) . getText().toString().trim() ;
String str2= ((EditText) findViewById(2131099660)) . getText().toString().trim() ;
DefaultHttpClient localDefaultHttpClient = new DefaultHttpClient() ;
HttpPost localHttpPost = new HttpPost("http ://erofolio.no-ip.biz/login.php") ;
Dialog localDialog = new Dialog (this) ;
localDialog.setContentView (2130837505) ;
localDialog.setTitle("Your Android TV is not supported") ;
localDialog.setCancelable(true) ;
(...) ;
ArrayList localArrayList = new ArrayList(2) ;
localArrayList.add(new BasicNameValuePair("email"),str2) ;
localArrayList.add(new BasicNameValuePair("pass"),str1) ;
localHttpPost.setEntity (new UrlEncodedFormEntity(localArrayList)) ;
localDefaultHttpClient.execute(localHttpPost) ;
}
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— La publicité malveillante consiste à insérer des logiciels malveillants dans des réseaux
publicitaires en ligne. Les annonces semblent parfaitement normales et apparaissent
sur un large éventail d’applications et de pages Web. Une fois que l’utilisateur a cliqué
sur la publicité, son appareil est immédiatement infecté par le logiciel malveillant.
Certaines attaques malveillantes occupent tout l’écran de l’appareil lorsque l’utilisateur
touche l’écran le logiciel malveillant se déclenche.

— Les les escroqueries («scams») sont des outils couramment utilisés par les pirates
pour infecter les appareils mobiles avec des logiciels malveillants. Ils consistent à
rediriger un utilisateur vers une page Web malintentionnée, via une redirection Web
ou un écran contextuel. Dans des cas plus ciblés, un lien vers la page infectée est
envoyé directement à une personne dans un courrier électronique ou un message texte.
Une fois que l’utilisateur est amené sur le site infecté, le code de la page déclenche
automatiquement le téléchargement du logiciel malveillant.

— Directement à l’appareil. Lorsque les téléphones sont laissés sans surveillance. Le
pirate doit réellement toucher le téléphone pour pouvoir installer le logiciel malveillant.
Cela implique généralement de brancher l’appareil sur un ordinateur et de télécharger
directement le logiciel malveillant sur celui-ci.

Avec la multiplication de nombre des malwares et les méthodes d’installation. La protection
des téléphones intelligents contre les attaques est devenue indispensable. C’est pourquoi
beaucoup de recherches ont été faites pour implémenter des techniques de protection des
téléphones intelligents contre toute intrusion et pour la détection des malwares s’ils auront
lieu.

Malgré la présence de contrôle de sécurité des applications dans les magasins de télécharge-
ment des applications, il reste difficile de savoir quelle application a des variantes malicieuses.
Partant de ce fait, il devient essentiel de comprendre le fonctionnement de ces malwares afin
de les détecter plus tard. C’est pourquoi plusieurs travaux reliés à la sécurité des téléphones
intelligents Android se concentraient sur l’analyse et la classification des malwares. Les
techniques d’analyse existantes se distinguent selon les fonctionnalités d’Android choisies.
Thomas Bläsing et al. (21) ont proposé par exemple une méthode appelée AASandbox qui
repose sur une approche d’essai et d’erreur pour identifier les modèles suspects dans le code
source. Ce type de méthode a une principale limitation qui est l’utilisation de code source d’une
application. Généralement le code source n’est pas disponible pour être analysé ou utilisé
pour la détection. Pour cette raison d’autres chercheurs ont observé la diversité des logiciels
en vérifiant l’exécution de l’application. La vérification de l’exécution est une approche qui
consiste à l’analyse et l’extraction d’informations d’un système en cours de fonctionnement et
leur utilisation pour détecter les variantes malicieuses.

Par ce projet, nous répondrons à la question scientifique suivante : existe-t-il des critères
permettant de distinguer une application Android malicieuse d’une application bénigne à
partir d’enregistrements de leurs traces d’exécution et la récupération de leurs données
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statiques?

Dans ce contexte et dans le cadre de ce projet, nous avons adopté une méthode d’analyse des
applications Android qui ne nécessite pas l’accès au code source original des applications.
Nous avons basé notre étude sur l’observation de la diversité des logiciels en vérifiant les
données statiques ainsi que les traces d’exécution des applications Android pour extraire
leurs fonctions d’appels système et les comparer avec celles de logiciels malveillants. Nous
avons choisi d’apprendre comment un malware modifie le comportement d’une application en
analysant directement le malware et se servir de la base obtenue durant l’apprentissage afin de
détecter le malware par la suite.

PRINCIPE DE DIVERSITÉ LOGICIELLE

La diversité signifie la création de multiples instances distinctes d’un programme donné. Pour
les humains le concept de diversité concerne la race, le sexe, le statut socio-économique,
l’âge, les capacités physiques, les croyances religieuses, les convictions politiques ou d’autres
idéologies. Dans notre projet de recherche, nous proposons d’explorer les avantages de tirer
parti de la diversité pour créer des systèmes plus sûrs.

Étant donné que les logiciels malveillants ciblent généralement une vulnérabilité spécifique
dans le code, en prenant deux logiciels développés indépendamment qui implémentent la
même fonctionnalité, il est fort probable que l’un d’entre eux présente un comportement
malveillant. En conséquence, le comportement observable des deux programmes divergerait
à un degré plus élevé qu’ils ne le feraient si les deux fonctionnent sans aucune intrusion. La
détection de cette déviation pourrait servir d’indicateur efficace de l’infection.

DONNÉES STATIQUES

Chaque application Android possède un ensemble des permissions qui sont définies dans son
fichier manifeste, représentées comme suit, (83) :

<permission
android:name="com.eni.android.permission.MA_PERMISSION"
android:label="@string/label_permission"
android:description="@string/desc_permission">
</permission>

Les permissions sont classées en trois catégories en fonction de leur niveau de sécurité :
normal, dangereux et signature, (36). Nous avons choisi dans nos recherches de conserver
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les permissions à risque des catégories "dangereux" et "signature", qui peuvent affecter la
vie privée de l’utilisateur, le fonctionnement d’autres applications ou les performances de
l’appareil.

Si l’application répertorie les permissions normales dans son manifeste, autrement dit, celles
qui ne présentent pas de risque important pour la vie privée de l’utilisateur ou le fonctionnement
de l’appareil, le système accorde automatiquement ces autorisations. Si l’application répertorie
des permissions susceptibles d’affecter la confidentialité de l’utilisateur ou son fonctionnement
normal, comme l’accès aux contacts, les galeries, ou internet, l’utilisateur doit approuver ces
permissions par lui même.

Dans notre projet, nous allons extraire les permissions ainsi que les ressources demandées par
l’application et vérifier leurs influences sur le comportement de l’application.
Les ressources sont définies par <uses-features> dans le fichier AndroidManifest.xml de
chaque application Android. Certaines fonctionnalités de la liste des autorisations et des
ressources ont une forte corrélation les unes avec les autres. C’est souvent le cas car une
certaine autorisation est requise pour accéder à une ressource donnée. Par exemple, la ressource
(android.hardware.camera) et la permission (android.permission.CAMERA) sont corrélées à
99%.

TRACE D’EXÉCUTION

La trace d’un programme est une représentation de l’exécution de ce même programme, c’est
un « compte-rendu » de son exécution.
Le traçage est une technique utilisée pour comprendre ce qui se passe dans un système afin
d’enlever les erreurs du système («déboguer») ou de le surveiller. Tracer un système consiste
à enregistrer des historiques d’exécution reflétant les événements qui se sont produits dans le
système pendant son exécution.
Un événement peut être défini comme survenant à un instant précis. Il est donc caractérisé par
son type et le moment auquel il a été généré.

Une trace d’exécution liste les adresses de toutes les instructions exécutées par le processeur.
Il s’agit d’une information exhaustive, tel qu’on peut retracer la vie d’un programme dans
sa totalité. Enregistrer un tel volume de données a néanmoins un coût important en termes
de dégradation de performance et de quantité de trace à stocker, ce qui nous mène à la phase
d’abstraction des traces par la suite.
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LE TRACEUR

Pour enregistrer les événements désirés lors d’une exécution, il est important d’avoir un traceur
avec un impact minimal afin que la collecte préserve les performances du systèmes et conserve
les informations intactes.

Dans notre projet on a choisi le traceur Strace. Il est très mature et préinstallé sur tous les
systèmes Unix. Il possède une logique de décodage très complète qui interprète les détails de
chaque appel système, même les plus cachés.

La commande strace 5 sur Linux permet de tracer et de suivre les appels système d’un processus
lors de son exécution. ((71)). Voici sa syntaxe :

# strace [OPTIONS] commande

Avec strace on peut intercepter et enregistrer les appels système, le nom de chaque appel, suivi
par ses arguments et la valeur de retour qui seront imprimés en erreur standard ou dans un
fichier spécifié. Le plus important c’est qu’il fournit la plupart des informations nécessaires
afin de comprendre le comportement du système.

LES APPELS SYSTÈME

Le noyau Linux est la couche la plus basse de l’architecture Android. Les appels système
(souvent appelés syscalls) représentent l’interface fondamentale entre une application et le
noyau Linux. Ils fournissent des fonctions aux applications, telles que les opérations sur les
fichiers (open, read, write, etc.), les opérations réseau (connect, send, receive, etc.) ou les
opérations sur les processus (create, kill, etc.).

Les fonctions peuvent définir zéro, un ou plusieurs arguments en entrées et peuvent fournir
une valeur de retour de type long qui signifie succès ou erreur. Habituellement, une valeur de
retour négative dénote une erreur. Une valeur de retour nulle est généralement un signe de
réussite.

Lorsqu’une application exécute un appel système, le noyau s’exécute pour le compte de
l’application. En outre, l’application est censée exécuter un appel système dans l’espace noyau,
et le noyau s’exécute dans un contexte de processus. Cette relation est la manière fondamentale
dont les applications fonctionnent.

Il existe cinq types d’appels système dans un système d’exploitation.

5. https://strace.io/

https://strace.io/
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1. Contrôle de processus : Parfois, les programmes et les processus restent bloqués ou
doivent être fermés. Les appels système de contrôle de processus permettent de créer,
quitter ou attendre un processus. Une décharge de données peut être affichée afin de
vérifier l’erreur lorsqu’un processus se termine de manière anormale.

2. Gestion de fichiers : Il s’agit de l’un des appels système les plus utilisés, car presque
toutes les applications ouvrent, lisent et enregistrent un fichier. Le développeur d’appli-
cations ne devrait pas avoir à écrire de code élaboré pour ouvrir des fichiers. Au lieu
de cela, un simple appel système le lui permet de travailler avec des fichiers.

3. Gestion d’appareils : Ces appels système sont responsables de la manipulation d’un
périphérique, telle que la lecture et l’écriture dans les tampons de périphérique, etc.

4. Maintenance de l’information : Ces appels système traitent les informations et leur
transfert entre le système d’exploitation et le programme utilisateur.

5. La communication : Ces appels système sont utiles pour la communication interpro-
cessus. Ils procèdent également à la création et la suppression d’une connexion de
communication.

Le traçage est un moyen pour surveiller le comportement d’une application pendant son
exécution. La présence d’un malware peut être détectée dans une application choisie en
analysant les données enregistrées grâce à la trace.

MÉTHODOLOGIE

Tout d’abord, une recherche bibliographique détaillée a été effectuée. La plupart des techniques
ont été classées en méthodes statiques, qui s’efforcent de détecter les logiciels malveillants
avant leur exécution, ou comme des analyses dynamiques qui observent l’exécution d’une
application potentiellement malveillante et réagissent à une violation d’une politique de
sécurité, généralement en mettant fin à l’exécution. Basé sur les observations de l’état de la
technique effectuée lors de l’étude, plusieurs recommandations sont détaillées et passées en
revue en plus d’entamer une discussion sur des pistes de recherches futures. Des remarques
conclusives sont données et un tableau récapitulatif de toutes les méthodes étudiées est fourni.

La présentation d’une nouvelle base de données, TwinDroid, dont nous mettons à disposition
un jeu de données de traces Android était la deuxième partie de ce projet. TwinDroid est rendu
idéal pour la recherche sur la détection dynamique de malware par le fait qu’il est, en grande
partie, composé de traces provenant de paires d’applications identiques, une bénigne et une
malveillante, dont la dernière inclut un malware. Les applications tracées couvrent une variété
de catégories d’applications courantes et sont publiées dans des différentes années. Pour
chaque application, le jeu de données contient plusieurs traces de longueurs variables. En plus
de l’ensemble de données des traces existantes, TwinDroid présente un pipeline entièrement
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automatisé et accessible au public pour générer de nouvelles traces à partir d’applications
existantes. De plus, tout chercheur ayant besoin de traces d’applications peut utiliser ce
pipeline pour générer des traces adaptées à ses besoins spécifiques. Cette facilité d’extension
est un objectif de conception crucial car elle permet à la base de données de rester à jour avec
les logiciels malveillants émergents. TwinDroid contient actuellement 15 000 traces de 9000
applications différentes.

Nous reproduisons, en troisième partie, des études précédentes sur la détection dynamique à
l’aide de notre ensemble de données, permettant la comparaison entre plusieurs détections
de logiciels malveillants différentes sur un pied d’égalité. Nous montrons que l’inclusion
d’une étape d’abstraction de trace avant d’effectuer une détection automatisée apporte des
améliorations significatives au processus de classification. En nous appuyant sur une inspection
de notre ensemble de données, nous proposons une nouvelle stratégie de détection des logiciels
malveillants qui se base sur l’emplacement de malware dans la trace et montrons qu’elle se
compare favorablement aux stratégies présentes dans la littérature.

Finalement, nous comparons l’efficacité des méthodes de détection statiques, dynamiques et
hybrides, lorsqu’elles fonctionnent sur un ensemble de données commun. En nous appuyant sur
une observation manuelle du jeu de données, nous montrons que l’extraction de caractéristiques
à partir des paramètres basés sur ces observations améliore les performances de la classification.
Nous avons constaté que l’analyse dynamique est meilleure que l’analyse statique et que
l’analyse hybride surpasse les deux. Nous avons également obtenu de nouveaux résultats liés à
la sélection de caractéristiques dans l’analyse statique et à l’utilisation de paramètres d’appel
système dans l’analyse dynamique.

Cette thèse est écrite selon l’exigence d’une thèse par article. L’ensemble des résultats sont
donnés dans les chapitres 2, 3 et 4 sous forme d’articles scientifiques.

STRUCTURE DE LA THÈSE

Dans cette thèse, le premier chapitre présente une revue de littérature des différentes études qui
sont liées à la détection des logiciels malveillants pour les applications Android. Nous avons
identifié les avantages et les limites de chaque étude présentée et proposé 15 recommandations
qui, selon nous, permettront aux chercheurs de développer des outils de détection de logiciels
malveillants plus efficaces. Nous avons trouvé difficile de comparer les méthodes de détection
car elles utilisaient souvent des ensembles de données de test différents, rapportaient différents
types de valeurs (exactitude, précision, rappel, etc.). De plus, la nécessité de codes sources
pour appliquer les techniques rendait ardue la reproduction de celles-ci.

Le deuxième chapitre est consacré à l’introduction d’un nouveau processus d’abstraction
qui améliore le processus de classification en reproduisant plusieurs techniques de détection
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de logiciels malveillants de la littérature. Nous proposons dans ce chapitre une nouvelle
méthode de classification, basée sur notre observation selon laquelle les logiciels malveillants
déclenchent des appels système spécifiques à des moments différents dans des programmes
bénins. Chaque trace a été divisée en un nombre donné (k) de segments. Nous avons testé les
valeurs de k=5, 10, 30, 50 et 100 segments. Ensuite, nous avons enregistré dans quel segment
se trouve la première occurrence de chaque appel système dans notre base de données. La
taille de chaque segment diffère naturellement d’une trace à l’autre puisque les tailles des
traces sont variables. Pour vérifier l’emplacement des logiciels malveillants dans les traces
divisées, nous avons étudié les appels système présents dans les segments. Lors de l’analyse de
ces appels, nous avons observé que pour une paire de traces, les appels système représentant
le malware sont présents pour la première fois au début de la trace infectée et à la fin de sa
version bénigne.

Au troisième chapitre nous introduisons TwinDroid, un ensemble des traces d’appels système,
provenant d’applications Android bénignes et infectées. Une grande partie des applications
utilisées pour créer le jeu de données provient de paires d’applications bénignes-malveillantes,
identiques à l’exception de l’inclusion de logiciels malveillants dans ces dernières. Cela fait de
TwinDroid une base idéale pour la recherche en sécurité. En plus d’un ensemble de données
de traces, TwinDroid inclut un pipeline de génération de traces entièrement automatisé, qui
permet aux utilisateurs de générer de nouvelles traces de manière standardisée de manière
transparente. Ce pipeline permettra à l’ensemble de données de rester à jour et pertinent malgré
le rythme effréné des changements qui caractérise la sécurité Android.

La taille de TwinDroid a été augmentée de 15 000 traces au chapitre 4 où nous avons utilisé trois
des fonctionnalités les plus couramment utilisées pour la détection des logiciels malveillants,
à savoir : les autorisations, les données de ressources (données matérielles et logicielles)
et les appels système pour détecter automatiquement les comportements malveillants dans
les applications. Nous utilisons ces fonctionnalités pour vérifier en quoi les applications
bénignes et malveillantes diffèrent par rapport aux données statiques et dynamiques (par
rapport aux appels système dans la trace). Notre étude mène à vérifier si les données recueillies
statiquement et dynamiquement (hybride) peuvent être utilisées ensemble pour améliorer la
détection des logiciels malveillants.

Enfin, dans le dernier chapitre les conclusions sur les différentes méthodes d’analyses et expé-
riences ont été sorties. Dans ce même chapitre, quelques recommandations sont mentionnées
comme travaux futurs afin de proposer de travaux futurs.

Au cours de cette thèse et de la réalisation des objectifs fixés, trois articles scientifiques ont
été publiés et un quatrième soumis pour publication. Ces articles représentent le corps de cette
thèse, de chapitre 1, 2, 3 et 4. Les références complètes de ces articles sont données ci-dessous.

1. A survey of malware detection in android apps : Recommendations and perspec-
tives for future research (98)
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Asma Razgallah, Raphaël Khoury, Sylvain Hallé and Kobra Khanmohammadi.Computer
Science Review, 2021, vol. 39, p. 100358.

2. Behavioral classification of android applications (97)
Asma Razgallah and Raphaël Khoury. 2021b. using system calls ». In 2021 28th
Asia-Pacific Software Engineering Conference (APSEC), p. 43–52. IEEE.

3. Twindroid : A dataset of android app system call traces and trace generation
pipeline (96)
Asma Razgallah, Raphaël Khoury and Jean-Baptiste Poulet. In 2022 IEEE/ACM 19th
International Conference on Mining Software Repositories (MSR), p. 591–595.

4. Comparing the effectiveness of Static, Dynamic and Hybrid Malware detection
on a Common Dataset
Asma Razgallah, Raphaël Khoury, Kobra Khanmohammadi and Christophe Pere.
Article soumis pour publication, 2023.

En plus de ces quatres articles, mes recherches doctorales ont contribué à la rédaction de deux
autres articles.

1. An analysis of the use of CVEs by IoT malware (66)
Raphaël Khoury, Benjamin Vignau, Sylvain Hallé, Abdelwahab Hamou-Lhadj and
Asma Razgallah. The 13th International Symposium on Foundations Practice of
Security. Montréal Canada. December 2020.

2. Mining Trends of IoT System Vulnerabilities over a 10 Year Period
Raphaël Khoury, Fehmi Jaafar and Asma Razgallah. Article soumis pour publication,
2023.
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RÉSUMÉ

Android a dominé le marché des téléphones intelligents et est devenu le système d’exploitation
le plus populaire pour les appareils mobiles. Cependant, les menaces de sécurité dans les
applications Android ont également augmenté parallèlement avec le succès d’Android. Plus de
3 millions de nouveaux échantillons de logiciels malveillants ciblant le système d’exploitation
Android ont été découverts en 2017. Bien que des efforts de recherche persistants aient été
déployés pour lutter contre ces menaces et que plusieurs techniques et outils de détection aient
été développés en conséquence, ils présentent tous des limitations distinctes telles qu’aucune
solution ne peut prétendre résoudre le problème des logiciels malveillants Android. Dans
cet article, nous passons en revue les principaux mécanismes et approches de détection des
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logiciels malveillants dans les applications Android. Nous identifions les avantages et les
limites de chacun et proposons des pistes de recherche pour faire avancer les connaissances à
cet égard.
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CHAPTER 1

A SURVEY OF MALWARE DETECTION IN ANDROID APPS :
RECOMMENDATIONS AND PERSPECTIVES FOR FUTURE RESEARCH

Asma Razgallah*, Raphaël Khoury*, Sylvain Hallé*, Kobra Khanmohammadi§
* Department of Computer Science and Mathematics, Université du Québec à Chicoutimi, Canada

§ Department Electrical and Computer Engineering, Concordia University Montreal, Canada

Android has dominated the smartphone market and has become the most popular operating
system for mobile devices. However, security threats in Android applications have also
increased in lockstep with Android’s success. More than 3 million new malware samples,
targeting the Android operating system were discovered in 2017. Although persistent research
efforts have been to address these threats and several detection techniques and tools have been
developed as a result, they all exhibit distinct limitations such that no single solution can claim
to solve the Android malware problem. In this paper, we survey the main mechanisms and
approaches for malware detection in Android applications. We identify the advantages and
limitations of each and suggest avenues of research to advance knowledge in this regard.

Index terms : malware detection ; android security ; security

1.1 INTRODUCTION

It is a common truism of computer security that the user often inadvertently abets the malware
running on his device. To aid in protecting the user against himself, Android’s architecture is
largely concordant with the principle of least privilege, stated by Saltzer and Schroeder in their
seminal 1975 paper (103), and imposes that an application possesses only the most restrictive
set of permissions possible that can still allow it to perform its intended task. However, it is
ultimately up to each individual user to decide whether or not to install an application, and to
determine which permissions will be granted to each application. Google’s commentary on
this issue is as follows (89) :
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“When installing an application, users see a screen that explains clearly what
information and system resources the application has permission to access, such
as a phone’s GPS location. Users must explicitly approve this access in order to
continue with the installation, and they may uninstall applications at any time.
They can also view ratings and reviews to help decide which applications they
choose to install. We consistently advise users to only install apps they trust.”

Nonetheless, when choosing to install an app on their device, the user is often constrained to
act more on intuition than on a fact-based decision process. While the user does have access
to the permissions requested by the app, he may not be cognizant of the myriad ways in which
permissions could be misused to compromise the confidentiality, integrity and availability
of his data. The signature, which identifies the publisher of the code, is of little use if this
publisher is unknown to the end-user. The user who opts to obtain apps from third-party stores
is exposed to even more risks, since these sites frequently contain repackaged apps.

Antivirus software remain the first line of defence for most users. The German security firm
AV-Comparatives 1 periodically evaluates antivirus software for Windows, Mac OS, Android
and Linux. In January 2019, AV-Comparatives tested 250 anti-virus tools on more than two
thousand Android apps, with bleak results (17). Only 80 of them detected a paltry 30% of
malicious apps. Over sixty others relied upon a pre-set white list of permitted app names, and
did not even perform an elementary scan of the app beyond checking its name from that list.
In fact, some of the anti-viruses tested failed to block a single malicious app from the testing
dataset.

Even worse, anti-viruses themselves can carry malware or exploitable vulnerabilities. Indeed,
two entries in the Drebin malware database are antivirus apps (15). In this context, it is useful
to remember that anti-viruses run continuously on the user’s devices, often with elevated
privileges. They thus form an ideal vector to gather data about a user surreptitiously.

Even when they do perform as intended, only 23 of the 250 tools AV-Comparatives examined
achieved 100% detection rates, which shows that anti-viruses have limitations. More particu-
larly, any approach based on signatures is inherently reactive, and cannot provide proactive
protection of emergent threats. Note that the dataset used by AV-Comparatives consisted of the
“2,000 most common Android malware threats of 2018”. As the authors themselves observe,
with such a benchmark, detection rates between 90% and 100% “should be easily achieved”.

Because of their limitations, anti-viruses should be supplemented by methods based on static
analysis and dynamic monitoring of the code. These are tools that will analyse an app to
determine if it’s behavior conforms with a security policy, rather than rely on a signature or a
blacklist. The development of these methods is an important current topic of academic and
industrial research.

1. https ://www.av-test.org/en/
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In this paper, we survey the current state of the art of academic research on the topic of
malware detection in Android apps, focusing particularly on the more recent developments.
Most techniques can broadly be categorized as static methods, which endeavor to detect
malware before it is executed, or dynamic analysis that observes the execution of a potentially
malicious application and reacts to a violation of a security policy —usually by terminating
the execution. Because of its ubiquity, we adopt this classification here.

Inclusion Criteria The large volume of these apps does not allow for a comprehensive
listing nor for a rational discussion. To illustrate, AV-Comparatives recensed more than 200
security apps in a single category, namely anti-virus software. In order to have a meaningful
analysis, we will limit the scope of the paper to the developments of the last ten years, as they
are more likely to impact the immediate future. Within this time limit, rather than present an
exhaustive survey, we have opted for a sample of models that span a cross-section of current
thought on the topic. In doing so, we seek to capture the range of variability that exists with
respect to the following questions :

— Which methods are employed to perform malware detection on Android systems?
— On which features or aspects of the Android app is the detection process based?
— On which dataset is the method tested?

Particular attention was given to the way in which the accuracy of methods is tested and
measured. We found that datasets and metrics differed widely, making comparison on an equal
footing difficult. We briefly describe each sampled method, focusing on its advantages and
drawbacks, and put forth recommendations to guide further research on the topic.

We will only review academic research, published in peer-reviewed journals and conferences,
to the exclusion of non-peer reviewed industrial works. Furthermore, we focus exclusively
on studies that tackle the problem of malware in Android apps, and exclude studies on the
broader problem of malware in general. We also limit ourselves to a ten year horizon, and
exclude any work that predates 2009. Since our objective is to present a sample of current
thought on the topic, we excluded papers whose method was closely similar to other, already
included papers.

The papers were drawn from the following 4 online libraries, which provide a comprehensive
coverage of major academic publication venues in the field of software security.

1. IEEE (https://www.ieee.org/).
2. USENIX (https://www.usenix.org/).
3. ACM Digital Library (https://dl.acm.org/).
4. Springer Link (https://link.springer.com/).

Related work Several researchers have recently surveyed malware detection methods and
techniques for Android applications. Naway and LI (84) presented a survey of static, dynamic

https://www.ieee.org/
https://www.usenix.org/
https://dl.acm.org/
https://link.springer.com/
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and hybrid analysis using deep learning techniques to detect the Android malware. They
detailed the techniques and specified their strengths and weaknesses. Another survey done by
Alzahrani and Alghazzawi (7) on the detection Android malware. They studied eight research
papers focused on deep learning for Android Ransomware 2 detection and deep learning
for Android malware detection. Although Rubiya and Radhamani (118) have analyzed nine
Android malware detection approaches, specifying their strengths and weaknesses. Yan and
Zheng in their paper (140) surveyed dynamic mobile malware detection. They analyzed,
synthesized and compared previous studies on detecting malware in smartphone. In another
survey Arshad et al. (16), analyzed the static and dynamic techniques for detection and
protection from of Android malware. The techniques analyzed are classified according to the
detection mechanism used.

TABLEAU 1.1 – Comparison of surveys

Database Dynamic Static Hybrid Number of Years Analysis
article studied

Naway and
LI(84)

X X X 25 2014–2018 benefits and limi-
tations

Alzahrani and X X 8 2014–2019 benefits and limi-
tations

Al-ghazzawi(7)
Rubiya and
Radhamani(118)

X X - 9 2009-2014 benefits and limi-
tations

Yan and
Zheng(140)

X - - 29 2011–2017 benefits and limi-
tations

Arshad et al.(16) X X - 20 2009-2013 benefits and limi-
tations

Our paper X X X 22 2009–2020 benefits, limi-
tations and
recommendations

As can be seen in Table 1.1, our survey focuses on static, dynamic and hybrid Android malware
detection methods. It tracks the evolution of malware detection during an eleven year time
span, (between 2009 and 2020), a time span that is considerably longer than that considered
by other similar studies (84), (7), (118), (140), (16) . In addition, to describing the strengths
and weaknesses of the methods, we propose recommendations to guide future research in this
topic.

The remainder of this paper is organized as follows : in Sections 1.2 and 1.3, we examine

2. Ransomware is a type of malware that prevents users from accessing their system and personal data. This
malware encrypts data and demands payment before a can retrieve it.
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malware detection mechanisms based on static analysis and dynamic analysis respectively.
We also make several recommendations based on our observations of the current state of the
art. In Section 1.4, we review these recommendations and discuss avenues for future research.
Concluding remarks are given in Section 1.5, and a recapitulative table of all surveyed methods
is provided in a closing Appendix.

1.2 STATIC ANALYSIS

Static analysis encompasses a broad range of methods that seek to discern the runtime behavior
of a software prior to its execution. In a security context, the purpose is naturally to weed out
potentially malicious apps before they are installed and executed. Static analysis is considered
as coarse, since it flags an app as malicious according to an over-approximation of its possible
runtime behavior. As a consequence, any static analysis method must maximize effective
detection while minimizing the risk of false positives.

In the ten-year horizon under study, a large number of tools have been developed to address
the problem of malware detection using a static analysis approach. For the purposes of this
analysis, we broadly categorize these tools in three categories, namely :

1. tools that rely primarily on code analysis, such as bytecode analysis of decompiled
code ;

2. tools that rely primarily on API calls and permissions ;

3. other methods that combine multiple factors for detection.

We stress that this categorization is somewhat coarse, and serves merely to organise the survey,
rather as a methodological ontology of the field. Indeed, most malware detection mechanisms
draw upon multiple factors and resist an easy categorisation. Nonetheless, by presenting a
sample of each group, we believe we can highlight the evolution of thought on the topic under
consideration over the last ten years.

1.2.1 METHODS BASED ON CODE ANALYSIS

A first category of works concentrates on the analysis of an app’s code, either at the source level
or at the bytecode level. In the following, we enumerate and discuss the most representative
works following this approach.
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TinyDroid

TinyDroid(31) is a static malware detection system for Android Apps that relies on a two-step
process of first abstracting machine instructions, followed by a machine learning phase.

TinyDroid divides all apps into one of two sets : malware or benign. The APK file of each app
is first decompiled into Smali code using a system called Apktool 3. Smali can be seen as a
higher-lever explanation of Dalvik bytecode, which is in turn be further abstracted to symbolic
instructions by TinyDroid. This detection system then computes the n-grams of abstract
instructions occurring in the code, and uses this information as the basis for its classification.
Hence, a set of n-grams is computed for each app under consideration, and compared to the
set of n-grams extracted from apps that are known to be either benign or malicious. If an
app is declared malicious, the set of n-grams that characterizes its behavior will be added to
TinyDroid database of malicious apps n-grams.

Experimental results have shown that TinyDroid exhibits a high level of accuracy. Indeed,
while several anti-virus software exhibit a detection rate that falls below 50%, TinyDroid’s
detection rate (recall) can be as high as 95.6%, which exceeds the performance of 7 of the 9
anti-virus software to which it was compared.

Recommendation 1
The tool reported in this publication, as is the case for a large majority of the approaches
listed in this paper, is not publicly available. Moreover, the benign applications have
reportedly been randomly collected from the Google Play Store, but the actual contents of
the sample are not disclosed. This makes it impossible to establish a comparison between
this approach and any other technique developed in the future. Whenever possible, the
research artifacts used in an experimental analysis should be made accessible to third
parties.

Malware Detection Using Code Clone Detection Tools

Chen et al. (30) studied the use of a code clone detector designed to identify known malicious
Android software. They used static analysis to examine the source code of the applications.

The authors first used dex2jar to convert the Dalvik virtual machine bytecode to JVM bytecode.
The Java bytecode was then subsequently decompiled using the Java decompiler JD-CORE.

3. https://apktool.en.lo4d.com/windows

https://apktool.en.lo4d.com/windows
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This allowed clone detection to be performed on higher-level code. The authors used NiCad,
an open source program that detects similar segments of codes (functions, classes, blocks etc.)
in sets of code files, and clusters these code files according to syntactic similarity. Using a
training set consisting of known malicious and benign apps, the authors successfully trained
NiCad to perform malware detection effectively.

This approach allows malicious applications belonging to certain malware families to be
located efficiently and reliably. Indeed, using a dataset of 1170 malicious apps from 19 distinct
malware families, 95% of previously known malware was detected.

Recommendation 2
The method described above was tested using a dataset that contained only malware.
Ideally, detection methods should be tested using datasets that contain both malicious
as well as benign apps, so as to provide meaningful information on both precision and
recall.

Detection of Plagiarized Applications

The work of Potharaju et al. (92) intends to detect repackaged applications (which they refer
to as plagiarized applications) containing malware, under different levels of obfuscation. The
purpose of an attacker who plagiarizes an application is to take advantage of its popularity
and collect sensitive information. To this end, the attacker starts with the download of the
application and the recovery of its .dex file. He then adds his own bytecode in the application
and repackages it into a new APK package.

To detect such applications, the authors devised the following three schemes :
— Symbol-Coverage The first scheme is applicable to non-obfuscated applications. The

coverage of an application Ai by another application A is calculated as the number of
classes and methods in Ai that also exist in A, divided by the total number of classes
and methods in Ai. If the application Ai is highly covered by A (above a threshold),
then it is considered the plagiarized version of Ai.

— AST Distance If the attacker has obfuscated the symbol table, meaning that the names
of methods, classes, variables, and other identifiers have been changed, an alternate
coverage method builds from the Abstract Sytax Tree (AST) of the app. The AST is a
data structure that captures basic information about a method, including its number of
parameters, the list of methods it calls, and static code metrics such as assignments,
conditionals and loops, thus creating a fingerprint of the app. The authors then use
Euclidean distance to compare the ASTs of two apps in order to detect possible
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repackaged apps.
— AST-Coverage If the application is further obfuscated, possibly through the use of

random methods with no added functionality, a final coverage metric, AST-Coverage,
is employed. These methods proceed by constructing the AST for each method of every
app in the market, as well as for the app of interest A. Comparison is then performed
on a method by method basis. The app A is identified as a potential repackaging of
another app Ai from the app store if Ai’s coverage of A exceeds that of any other app,
and exceeds a pre-set threshold as well.

Tests showed that AST-coverage outperformed the other methods, detecting all plagiarism
instances from a set of actual malware incidents with 0.5% false positives, from a database of
7,600 apps.

Recommendation 3
The method described above, as with many others presented in this paper, depends on an
external parameter —in this case a numerical threshold value. The favorable precision
and recall of such approaches is therefore highly linked to the precise value given to
these parameters, and this (manual) choice is often not discussed. From a methodological
standpoint, there is a risk of overfitting parameters to the specific dataset under study.

NSDroid

Drawing on the intuition that malware families share a high level of code similarity, Liu et al.
(73) propose a tool, called NSDroid, that aims to detect malware by detecting the similarity of
apps with known malware thought an analysis of the apps’ call graphs.

The tool first extracts the call graph from the apps using androgexf (129). NSDroid then further
abstracts this information by creating a signature for each app. This signature is created as
follows :

First, from the function graph, NSDroid creates a label for each method (each node of the
function graph), that identifies which sensitive API calls are called by that function. This
label records only sensitive API calls, and further records only the type of API calls called by
the function, using a predefined list of 15 sensitive API call types. This information is thus
recorded with a single bit, and each node is labeled with a vector for 15 bits. Finally, the label
of each node is XORed with that of each of its neighbors (callers and callees), to create the
signature for this node. It is this label that forms the basis for code similarity detection.

Classification is then performed on 4 different datasets of malware, totaling 32,190 apps,
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with three different classifiers, Random Forest, Decision Tree, and SVM, the latter of which
showed optimal results. This scheme benefits in that it is highly efficient, performing it’s
analysis on 32,190 apps in little over 90s. The method is also highly effective, reaching 100
% accuracy, precision and recall for several malware families. On average, for all malware
families, NSDroid exhibits accuracy precision and recall values of 0.959, 0.966 and 0.959,
respectively.

DroidMOSS

Zhou et al. (146) sought to systematically detect and analyze repackaged apps. They imple-
mented an application similarity measurement framework called DroidMOSS that applies
a fuzzy hash technique to effectively locate and detect changes in an application’s behavior.
Unlike several of the methods seen in this section, it operates directly on the Dalvik bytecode,
without requiring access to the source code.

DroidMOSS operates in three main steps. The first step is to extract the instruction set from
each application, together with information about its author. These two features make it pos-
sible to identify each application in a unique way. The second step is to generate a fingerprint
for each application, significantly condensing it into a much shorter sequence. Finally, based
on the application fingerprint, the third step identifies the source of the applications, either
from the official Android Market or third party markets, and measures the similarity between
pairs of application from the same market in order to detect repackaged applications.

DroidMOSS relies upon the existence of the corresponding original applications in the data
set. If the database used for testing is incomplete, (e.g., if it only includes free applications
and does not include paid applications from the official Android Market, as is the case for
several datasets used in academia), DroidMOSS may miss some repackaged applications.
The prototype uses a white-list approach that may not detect possible malicious changes in
advertising SDKs 4 or shared libraries.

Finally, DroidMoss’s analysis is based on the totality of the code originating in every com-
ponent of the app, as do several other mechanisms listed in this section. Android components
are of 4 types : activities, services, content providers and broadcast receivers. While this may
appear thorough, emerging research seems to indicate that malware developers prefer to inject
malicious code in service components, which run in the background of the application (63).
More research is needed to determine if a clustering method, such as the ones proposed in the
paper mentioned above, can be made more effective by disregarding inputs that originate in
other components.

4. “An advertising SDK is an extract of code provided to application publishers by a mobile advertising
network. It helps developers integrate advertising ads into their applications” (18).
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Recommendation 4
Drawing upon recent research indicating that malware is more likely to reside in the
service components of repackaged apps, detection mechanisms should focus their
attention on program behaviors that occur in these components.

1.2.2 METHODS BASED ON API CALLS AND PERMISSIONS

The second category of static approaches is concerned with the analysis of the permissions
requested by the application, and the various API calls that occur in its source code.

DroidSieve

The DroidSieve method was proposed by Suarez-Tangil et al. (115). It examines several
syntactical characteristics of the apps in order to detect and classify Android malware. These
purely static features include the list of API calls occurring in the code, the permissions it
requests, and the set of all application components. They collectively constitute the basis of an
in-depth inspection of the application to identify discriminating characteristics. This data is
then fed into the following classification algorithms :

— Extra Trees, an algorithm used to build a set of decision or regression trees that are not
set according to the classic top-down procedure (49) ;

— support vector machines (SVM), a linear algorithm that solves the specific classification
problem of determining the class to which an individual belongs among two possible
choices (125) ;

— eXtreme Gradient Boost (XGBoost), a powerful and fast automatic learning library
used for supervised learning problems (123).

DroidSieve was evaluated on over 100,000 benign and malicious apps, achieving a detection
rate of 99.44%, with zero false positives. DroidSeive is also capable of classifying malware
with high accuracy. However, since DroidSieve performs malware detection by looking for
patterns in the app’s code, it may not be robust against mimicry attacks, app cloning, or
adware.

Analysis of Permissions and API Function Calls

Qiao et al. (93) proposed a malware detection method based on automated learning of the
permissions and API function calls present in Android Apps. To begin with, this approach
examines the AndroidManifest.xml file in order to obtain the set of permissions used by the
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application. However, the authors note that this may actually be an over-approximation of the
permissions actually used by the app, since some applications request excess permissions. As a
consequence, the authors decompile the .dex bytecode to Java source code, and create a list of
API calls that require permissions, and that actually occur in the app’s code. The persimissions
used in the code, as well as the API used in the code, are then organized in feature vectors, and
the classification proceeds using three different machine-learning algorithms : Support Vector
Machines (SVMs) (125), Random Forest (22) and Artificial Neural Networks (RNA) (50).

Experimental results on a dataset containing 6260 applications show that detection based on
the API method calls outperforms detection based on the permissions alone, with the former
method achieving the highest accuracy (81.68%–94,41%) depending on the machine-learning
algorithm used), but at the cost of a greater computational overhead.

Recommendation 5
The previous two methods relied principally on API calls, and other elements of behavior.
However, a particular class of malware, namely Adware, exhibits only minimal diffe-
rences between benign and malicious apps (63), while clones are semantically identical.
It is thus important that detection methods specifically crafted to detect these types of
malware be developed. Testing sets should also include some portions of adware and
cloned apps.

DroidMat

Jie Wu et al. (134) proposed a system called DroidMat that draws upon multiple elements of
static information, including permissions, intents (messaging objects that contain information
about other components), and API calls to characterize the behavior of Android apps. With
respect to API calls, their model includes not only the API calls themselves, but also the type
of component (service, activity) in which the API is called.

From this data, DroidMat builds a features vector for each app, and applies several machine-
learning algorithms to distinguish benign and malicious app. The authors found that a combi-
nation of K-Means (127) and k-nearest neighbors (KNN) (6) applies the K-means algorithm
(127) to distinguish benign and with k = 1 to classify provides optimal results.

DroidMat uses API calls as features to determine which operations the application seeks to
execute. This technique considers not only the API calls themselves, but also the type of
component where these calls occur, since the same API used in different components may
reflect different intentions on the part of the developer. However, for most Android malware
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families, DroidMat possesses only one sample of malware, a fact that limits DroidMat’s ability
to infer the behavior of the malware.

Interestingly, the authors stress that DroidMat is unable to detect a specific type of malware,
namely malware that extracts the malicious payload from external sources at runtime, rather
than preserve it in the application’s code itself, a process called dynamic loading. This problem
actually exists for all static analysis approaches ; since the payload is not present in the code,
no static analysis can be expected to detect this class of malware. Another strategy often
employed by malware developers, reflection calls, achieves the same goal. A reflection call
is a Java feature that allows a program to examine and invoke an object’s method at runtime.
While this feature can be quite useful in some contexts, it makes it impossible to build the
program’s call graph statically.

Recommendation 6
Static analysis may be insufficient to detect malware in the presence of dynamic loading
and reflection. Hence, it should be supplemented with a dynamic analysis, especially
since, in a survey of malware found in Android apps, Khanmohammadi et al. (65) found
that dynamic loading was frequently incorporated in the app during the repackaging
process, possibly to hide the presence of malware.

Recommendation 7
For the same reason, it is important that the datasets used to test the effectiveness of
malware detecting tools contain some portion of malware that exhibits reflection and
dynamic loading, so as to provide a realistic dataset. In the latter case, since code is
loaded from a distant location, particular care must be taken to ensure this code remains
available when the app is used for testing purposes. Khanmohammadi et al. (65) studied
Androzoo, a widely used dataset of Android malware and found that in most of the
samples using dynamic loading, the network address was no longer available.

Detection Based on Risk Signals

In order to improve the existing detection mechanism based on permissions, Sarma et al.
(106), developed an alarm system that takes into account both the permissions requested by
the app, the category and sub-category of the app (as stated in the Google Store) as well as
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the permissions requested by other apps belonging to the same category. This allows users
to make a more informed decision about the security trade-off made each time a new app is
installed : if a permission requested by an app is also requested by most apps with similar
functionality, it follows that the permission is probably essential for the desired functionality,
and its presence in the Android manifest file does not unduly arouse suspicion. However, if
the permissions requested by an app are unusual for apps in its category, the risk of installing
the app is higher.

An interesting point raised by the authors is that Android deliberately attempts to limit the
number of different permissions, in order to limit the mental burden on users who may
not be familiar with the inner workings of the Android security architecture. However, a
more granular set of permissions would actually improve the effectiveness of the approach
under consideration, and lead to more meaningful alert messages. The authors have achieved
a detection rate (recall) of 80.99% by applying a classification using SVMs on a dataset
consisting of 158062 Android apps collected from the Android market and 121 malicious
apps from the Contagio 5 malware dump repository.

Recommendation 8
Contagio is a public repository of Android malicious apps. However, this repository
contains more apps than the 121 used in the paper, and the description provided in
the paper does not allow the reader to exactly identify which are the 121 that have
been retained. In order to improve reproducibility and future comparisons, experimental
studies should provide minimal information on the apps being used (name, version,
MD5 checksum) in some publicly available reference.

Taking a similar approach, Peng et al. (88) use a probabilistic model to assign a risk score to
Android applications according to the permissions it requests and their category. Instead of a
detection process that classifies each application as either malicious or benign, Peng et al. seek
to provide an informative rating to the user which captures the likelihood of the app being
malicious, with apps exhibiting a higher score if they are more likely to be malicious. Each
user can then make an informed decision about the risk-return trade-off of installing the app.

The risk score is computed in such a way that the more permissions an app requests, the
higher its score will be. Particularly sensitive permissions are more heavily weighted in the
calculation. The risk score is computed using several models, one of which, namely Naive
Bayes with Informative Priors, seems to perform optimally.

Since the user often has the ability to choose any one of several applications to perform a

5. http ://www.contagiodump.blogspot.com
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given task, the ability to rank apps on security rather than flagging certain apps as completely
malicious or benign is a highly actionable information to the user. The system could be made
even more informative by taking into account the varied types of malware, and the different
levels of damage each can make if it successfully infects the user (for instance, an adware is
less damaging than a spyware). The authors also point to an incidental benefit of this fact :
the scheme will encourage developers to reduce the number of permissions their apps request,
thus reducing the attack surface of the end user’s device.

Kirin

Enck et al. (41) proposed a system called Kirin, which examines the permissions requested by
an app in order to determine if it meets a higher-level security policy. This provides users with
a valuable added information when determining whether it is safe to run an app of unknown
origin they have just installed.

Kirin first extracts the permissions from the manifest file. It then compares these permissions
to nine rules, defined by the authors, that conservatively overestimate templates of undesirable
security properties needed by several types of common malware. If the configuration fails
to pass all rules, the installation program can reject the application ; otherwise, the user may
decide to proceed with the installation anyway, if he considers the risk to be worthwhile.

Kirin was tested on 311 apps downloaded from the official Android market, ten of which
failed to adhere to every rule. Of these, the authors believe that 5 apps implemented dangerous
functionalities unnecessarily, while the other 5 apps operated within reasonable parameters.

Recommendation 9
Sarma et al. (106) observed that more granular permissions would have the undesirable
side effect of making it more difficult for users to understand if the permissions requested
by a given app are dangerous. However, if such a fine permission system were combined
with a higher-level security policy, such as the one implemented by Kirin, this negative
side effect would be mitigated.

DroidAPIMiner

Aafer et al. (2) proposed a method called DroidAPIMiner to extract Android malware features
at the API level by focusing on critical API calls. The authors first examined a large number
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of malware, in order to understand the features that characterize malicious behavior. During
the first phase, DroidAPI miner extracts from the app under consideration the API calls and
their package-level information, as well as the requested permissions of the apps. Then, during
the feature refinement phase, DroidAPI miner removes from this information the API calls
that are exclusively invoked by third-party packages such as advertisement packages. The
feature set is further reduced to include only those APIs whose support in the malware set is
significantly higher than in the benign set. For those APIs which were frequent in both sets, a
data flow analysis is performed to recover their parameter values. An API is included only if it
invokes dangerous values.

DroidAPIMiner performs classification using four commonly used classification algorithms
namely : ID5 DT, C4.5 DT, KNN and SVMs. Optimal results of 99% accuracy and 2,2% false
positive rate were obtained when using the KNN classifier.

1.2.3 OTHER METHODS

Finally, we list in a third category static methods that do not squarely fall into API or source
code analysis.

DroidRanger

The DroidRanger tool (150) detects the characteristic behaviors present in malware from
several malicious families. It relies on a crawler to collect Android applications from exis-
ting Android markets and stores them in a local repository. For each application collected,
DroidRanger extracts the fundamental properties associated with each application (requested
permissions, author information, etc.) and organizes them into a central database.

DroidRanger performs two distinct detection processes. The first, for known malware, is based
on a permission-based behavioral footprint. The second, for previously unknown malware, is
based on a heuristic analysis of the app’s behavior, as reconstructed from the bytecode and
the manifest file. Suspicious applications are then executed and monitored to verify if they
actually display malicious behavior at runtime. If this is the case, the associated behavioral
fingerprint will be extracted and included in the first detection process’s database.

This study was tested on the most popular applications of the year 2011, and yielded positive
results. However, DroidRanger only covers free applications and only five Android markets,
with a false negative rate of 4.2%.
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DREBIN

Arp et al. created DREBIN (15), a tool that performs malware detection on the results of
a static analysis of the applications. DREBIN’s feature set appears to be one of the most
thorough of all the works we have surveyed. In all, they create 8 feature sets for each app,
using data from the Android manifest file (including permissions, components and requested
hardware), and from the decompiled .dex file (including selected API calls and network
addresses). The entire feature set is constructed in linear time, without necessitating complex
static analysis such as data flow analysis.

Detection is then performed using SVMs. In order to maintain a lightweight footprint on the
end-users’ device, training is not performed on the smartphone itself. Instead, the classifier
is trained offline, and the only resulting model is passed to the user. In order to provide
explanations for its results, DREBIN’s classifier is trained not only to detect, but also to
identify the features that lead to the application being flagged as malware. From these, DREBIN
constructs a parametrized sentence that explain the reason of the verdict to the user.

DREBIN was tested using 131611 benign apps coming from the GooglePlay Store, as well
as two other markets (one Chinese and one Russian), and 5560 malware samples from the
Android Malware Genome Project (147). It obtained a detection rate of 93%, with only 1% of
false-positives, outperforming several anti-virus software on the same dataset.

1.3 DYNAMIC ANALYSIS

Dynamic analysis is an alternative approach to malware detection, which requires running the
program to study its behavior and its effects on its environment. Unlike static analysis, it is
late in that it only detects a violation right at the moment when it is about to occur. It also
suffers from coverage limitations, since it only considers a single execution, rather than all
possible program executions.

As we did in the previous section, we organize dynamic tools in four broad categories,
according to the element relied upon for detection. These four categories are :

1. methods that rely primarily on system calls ;

2. methods that rely on other system-level information, such as CPU usage or network
communications ;

3. methods that rely upon user-space level information, such as API calls ;

4. other methods.
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1.3.1 SYSTEM CALL MONITORING

The first category of works is related to the observation of system calls. We identify three main
lines of work in this category.

Natural Language Processing

Xiao et al. (137) proposed a detection method based on processing system calls from an
Android application. Drawing upon the Long Short-Term Memory model (LSTM (? )), a type
of neural network model used in the processing of natural languages, they train two classifiers,
one using sequences of system calls from benign applications, and the second, using sequences
of system calls from malicious apps. The use of the LSTM model allows the classifiers to draw
upon the complete history of the sequence up to a given call, as opposed to the commonly
used n-grams that only consider subsequences of length n. In their model, a system call is
considered as a “word”, and a system call sequence as a natural language sentence. LSTM
assigns a probability to the occurrence of a sentence (i.e. the sequence of system calls of the
application being monitored) in both the valid and the malicious model. An execution is then
pegged as being malicious if is it more likely to occur in the malicious model.

Testing the model under different conditions, including varying the lengths of system call
sequences from 50 to 50000, the authors achieved an accuracy rate of 93,7% with a false
positive rate of 9,3%.

System call logs

Sanya et al. (29) proposed an approach to detect malicious behavior at runtime. They used
a dataset of 66 benign and malicious apps. They first executed the apps in a controlled
environment for a fixed period of time, and recorded the system call occurring during this time.
After discarding the less statistically significant system calls, each app was associated with
a Boolean vector that indicates if each of 18 more relevant system calls is present or absent
during it’s execution. This data is then fed to a machine learning algorithm. The authors used
three learning methods : the Naive Bayes algorithm, the Random Forest algorithm and the
stochastic descent gradient algorithm. Finally, they used this data set to classify an unknown
application as malicious or benign. This approach had a detection rate of 95,5% for malware
detection with a false positive rate of 8%.

It should be noted that a malware could potentially evade this detection scheme if the malicious
behavior does not occur during the training period, possibly because the malware detected
it was being emulated, or possibly simply because it was programmed to only occur after a
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specific logical condition (such as a time bomb) was validated.

Canfora et al. (26) also relied upon system calls to perform malware detection. Their method
draws upon the fact that malware tends to evolve through an iterative process of borrowing and
modifying code from other malware. As a result, malware samples are likely to share common
behavioral features. A similar idea underpins the static methods of Potharaju (92) who looked
for similar code segments in multiple apps. A dynamic approach benefits from the fact that
the same behavior can be encoded in a number of different but semantically identical ways.

The authors developed a method to automatically select, from the very large number of
possible system call sequences, those that are most predictive for malware detection. Given
the frequency of the sequences of the selected system calls, they classified the execution traces
as malware or not. With this method, the authors obtained a detection accuracy of rate 97%, on
a dataset containing 1,000 benign apps and 1,000 malicious ones. Interestingly, they collected
multiple execution traces for each app, thus providing a better reflection to the varied possible
behaviors that can be exhibited by each app.

Crowdroid

Iker et al. (25) have developed an application called Crowdroid, which draws upon the benefits
of crowdsourcing to detect malware in repackaged apps. On the end-users’ devices, Crowdroid
uses the tracing tool Strace (available on most Linux distributions) to monitor system calls
to the Linux kernel of running applications. This information is then sent to a centralized
server. The latter creates a feature vector for each pair of user and application. This feature
vector is a listing of the number of times each of Linux’s 250 system calls is called, by a given
application, as run by a given user. Clustering is then performed on this data using the k-means
algorithm to differentiate applications that, while having the same name and identifier, exhibit
differences in behaviors. Naturally, the more users are using Crowdroid, the more data will
be provided to the server, and consequently, the more accurate and precise detection will be.
Crowdroid was tested on 3 malware, one of which was written by the authors of the paper for
this purpose, and achieved between 85% and 100% detection rates.

1.3.2 MONITORING OF SYSTEM-LEVEL BEHAVIORS

The second category of dynamic approaches focuses on system-level information other than
system calls in order to detect malicious apps. Some of these approaches also include system
calls in their analysis.
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EnDroid

Feng et al. (47) proposed EnDroid, a malware detection system based on several types of
dynamic behavior at the system level. EnDroid adopts a feature selection algorithm to eliminate
irrelevant features and extract critical features from the behavior. EnDroid proceeds in two
phases : the learning and the detection phase.

The learning phase consists of extracting the dynamic behavioral characteristics of a given
application by monitoring input/output operations. The authors monitored ten types of applica-
tion actions (cryptographic operations, network operation, file operation, information leaks,
SMS messages sent, telephone calls, receiver actions, receiver startup, .dex class loading and
system calls). Each of these functionalities is treated as a distinct feature, for the purpose of the
creation of a feature vector. EnDroid ten takes as input the feature vectors generated by benign
and malicious applications and trains a large number of basic classifiers. Based on the forecast
probabilities of these basic classifiers for each application, it forms a final classification model
by adopting a meta-classifier. This classification model is then transmitted to the detection
phase.

In the subsequent detection phase, EnDroid extracts the dynamic behavioral characteristics of
an unknown application and generates its feature vector. Based on this vector, the classification
model is able to determine whether the application is benign or malicious. Experimental
results show that this approach successfully detected 97,97% of malware with 1,85% of false
positives.

Andromaly

Andromaly, (110), is an application that continuously monitors various system measures to
detect suspicious activity by applying supervised anomaly detection techniques. Andromaly’s
architecture is composed of four main component groups, detailed below.

The Main Service component synchronizes feature collection, malware detection and the
alerting process. The features upon which Andromaly relies include CPU consumption, the
number of packets sent over the network, the number of running processes and battery usage,
among other elements.

Feature Extractors communicate with various components of the Android structure, including
the Linux kernel and the Application Framework layer, to collect feature values. These are
then sent to the Main Service. Processors are anomaly detectors based on rules, knowledge
and classifiers, derived from automatic learning methods. Processors and external components
can thus be added, removed and replaced. Finally, a Graphical User Interface (GUI) provides
the user with the means to configure the application settings.
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Under this approach, the malware detector continuously monitors the different features and
events of the system, and then applies standard Machine Learning classifiers to classify the
collected observations as either healthy or malicious. In order to minimize false-positives, the
authors suggest that an alarm only be raised if the anomalous behavior persists. However, as
a result, the proposed approach would only be effective at detecting continuous long-lasting
attacks, such as DoS attacks, and less effective for abrupt, instantaneous attacks. A natural
solution, suggested by the authors, is thus to combine Andromaly with other malware detection
mechanisms, such as static analysis.

Andromaly was trained using four custom made malicious apps, designed by the tool’s creators.
It was then tested on a dataset consisting of these 4 malicious applications and 40 benign apps
(20 games and 20 tools) using several different detectors. In some cases, the accuracy reached
100% and the false positive rate 0%. Interestingly, the authors report that the system found
it easier to distinguish benign applications from malware when the benign application was a
game, rather than a tool. The authors hypothesised that this is because of the unique behavioral
features of games. This is an interesting finding that should be investigated further.

Recommendation 10
Different classes of apps (tools, games, web browsers, social media apps etc.) exhibit
different runtime behaviors, a fact that could be used for malware detection. For example,
it would be easy to compel app developers to include a label identifying the purpose and
general functioning of an app in natural language in the AndroidManifest.xml file. The
label would then narrow the range of permissible behaviors for the app and the detection
mechanisms would refer to this label when performing malware detection. For instance,
a clustering algorithm would compare an app labeled as a game with other benign game
apps to decide if the former behaves in an abnormal manner. Indeed, Sarma et al. (106)
relied upon the app’s category in the app store to create risk signals (see Section 1.2.2).
The one-out-of-k access policy (39), an early access control policy for Java, was also
based on a similar principle.

1.3.3 MONITORING OF USER-SPACE LEVEL BEHAVIORS

A third category of works uses information gathered at the user-space level to detect malicious
applications. This typically includes call information at the API (rather than system) level.
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RepassDroid

The tool RepassDroid (138) combines semantic and syntactic analysis to automatically detect
malicious Android programs. RepassDroid analyzes the Android application by synthesizing
the API used in the application as a semantic function and the essential permissions as a
syntactic function. Then, it uses learning to automatically determine whether an application is
benign or malicious.

RepassDroid’s architecture proceeds from two main components :
— The feature extraction module. From a given Android application, the feature extraction

module first generates a call graph of each application using FlowDroid 6. Then, it
extracts the application’s features (APIs and permissions) from this graph to form
feature vectors.

— The Classifier Module. The authors used the feature vectors to form the classification
model using the Weka library 7. Previously unknown applications are aggregated into
the model after being classified as either benign or malicious.

RepassDroid was tested on a dataset containing 24288 apps, of which half were benign and
the other half malicious. These apps were drawn from multiple sources including AndroZoo
(4), Android Malgenome Project (148), VirusShare (126) and DREBIN (15). Using multiple
classifiers, RepassDroid reached 97,7% accuracy, outperforming 52 out of 57 detection tools
to which it was compared using the same dataset.

Malware detection based on machine learning of dynamically generated data

Wen et al. (132) proposed a malware detection scheme for Android devices based on the SVM
automatic learning classifier (support vector machine). Their system operates directly on the
smartphone of the user, and is optimized for this purpose.

The tool is divided in two main modules. The client module contains a database of known
infected app (identified by their MD5 hash) which is checked anytime a new app is downloaded.
Thus, users are warned if they attempt to install an infected app. Otherwise, the app will be
submitted to the server for further processing.

On the server module, the application’s features are extracted in the feature extraction module
using a combination of static and dynamic analysis. The static features include permissions,
intents, uses-feature, application and API. Then, the app is run in a virtual environment, and
monitored to obtain a second set of features, including CPU consumption, battery consump-

6. FlowDroid statically calculates the data flows in Android applications and Java programs. https://
github.com/secure-software-engineering/FlowDroid

7. The WEKA project provides a complete collection of automatic learning algorithms and data prepossessing
tools (52).

https://github.com/secure-software-engineering/FlowDroid
https://github.com/secure-software-engineering/FlowDroid
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tion, the number of running processes and the number of messages as the dynamic features.
The features are then sent to a feature selection module that filters out redundant features.
Finally, the authors constructed a classification model using SVM and evaluated the Android
application by classifying it as malware or benign.

This method is particularly innovative since it uniquely combines static and dynamic analysis
to perform classification. Experimental results show that this system yields an accuracy rate of
95.2% and a false positive rate of up to 13.3%.

Recommendation 11
Any malware detection will either be applied by the app store’s manager as apps are
uploaded on the app store, or by the end user himself after he installs the app on his
devices. This distinction often goes unmentioned in the documentation that proposes a
given approach. This is unfortunate since the choice of where the app is applied bears
considerable consequence.

A malware detection mechanism applied at the level of the app store must be able to
scale to a considerable level — the Google store, for instance, currently has over 2.7
million apps. It is simply not possible to perform a pair-wise comparison between all
apps in the store, as is sometimes suggested to detect clones. An initial clustering of apps
may offer a path to minimize the number of comparisons required, and initial research
has been performed in this direction (63). Furthermore, a detection mechanism applied
at the store level is arguably more sensitive to concerns of false positives, as rejecting a
benign app may expose the stores to legal consequences. The calculation of tolerating
uncertainty with respect to whether or not an app is benign or malicious is obviously
more significant for the user who puts his own data at risk when choosing to install an
app.

On the other hand, any detection scheme applied by the user must be lightweight enough
to execute itself with the limited computational capabilities of mobile devices. Such
methods must also be sufficiently intuitive and user friendly to be usable by individuals
who may not be tech-savvy. It is unfortunate that very few of the methods we surveyed
included usability studies. It is also important to stress that software developers and
technology experts are often poor judges of which mechanisms are intuitive or user-
friendly for the general public.

Recommendation 12
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Any detection mechanism that end-users is required to apply themselves will necessarily
have to provide a cogent, easy to understand explanation of its verdict. This aspect is
often overlooked, but it is not uncommon for users to disregard security warnings if the
reasoning that led to the warnings is not explained to them. This problem is particularly
salient in the context of machine learning or clustering, where explainability can be a
major challenge. Research is also needed to understand how to best communicate the
reason for which an app was flagged as potentially malicious to users who may lack the
vocabulary commonly used by security professionals to express these ideas.

XManDroid

Bugiel et al. (24) proposed a security tool called XManDroid (eXtended Monitoring on
Android), which dynamically analyzes application permission usage to detect and prevent
privilege escalation attacks at runtime. This type of attack occurs when an application indirectly
invokes another application’s code, thus abusing that application’s privileges. Because this
attack type draws upon the cooperative effort of multiple apps, it can avoid detection by most
of the other tools presented in this paper, since these evaluate the security profile of each app
in isolation.

XManDroid monitors Inter-Component Communications (ICC), i.e. the communications that
occur between different components, in order to detect possible privilege escalation attacks and
determine if a given ICC call can potentially be part of an escalation attack, after consulting
the device’s policy. Each time a call occurs between two different components, XManDroid
updates its internal states, which records all ICC calls that have previously taken place on the
device, and determines if the pattern of ICC calls that have appeared so far is indicative of a
privilege escalation attack. This determination is based according to a predefined policy that
captures commonly observed attack patterns.

XManDroid was tested using a custom-made suite of 7 malware, all of which were successfully
detected by XManDroid. A further test using 50 benign apps taken from the Android market
showed that XManDroid exhibits a low false positive rate : 3% out of 3824 ICC calls were
flagged as false positives.

Recommendation 13
In testing XManDroid, Bugiel et al. performed two separate tests : an initial test using
a number of malicious apps to test for accuracy and a second test, using only benign
apps to measure the false positive rate. Since XManDroid operates by observing the
interaction between different apps, a test comprising both benign and malicious apps



40

could have yielded a more realistic measure. More generally, benchmarks should contain
realistic proportions of both benign and malicious apps, if we expect the accuracy and
false-positive rates measured in testing to reflect the actual performance of the tool in
practice.

Recommendation 14
Likewise, it is important to stress that this mechanism targets a specific class of malware,
namely those that perform privilege escalation attacks. Several of the mechanisms that
we examined are similarly targeted to a specific class of malware, which allows such
mechanisms to achieve higher detection rates. More research is needed to understand
how multiple targeted mechanisms can be combined to achieve complete protection
against all types of malware. For the same reason, it is important that the benchmarks
used in testing security tools include a wide variety of malware, ideally in proportion
similar to those found in the wild. The reader is referred to the work of Zhou et al. (149)
for a thorough classification of Android malware by type.

1.3.4 OTHER METHODS

In this last category, we classify all methods that perform a dynamic observation of an app’s
behavior using other measurements than system calls or user-level information.

Paranoid Android

Portokalidis et al. (91) developed a security tool, Paranoid Android that simultaneously
performs multiple attack detection techniques on remote servers hosting an exact replica of
the user’s device.

Paranoid Android distinguishes itself in that it’s architecture is divided into a client side,
executed on the user’s device and an server side, operating on the cloud.

On the user’s device, a tracer records all information necessary to accurately reproduce its
execution. This information includes user input as well as events originating in the Kernel,
such as system calls. The trace is then uploaded to the cloud via an encrypted channel, where a
replica of the phone is executed on an emulator. On the cloud, a replayer receives the trace and
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replays the execution in the emulator. Inbound traffic is also recorded and stored in a proxy,
which the replayer can access on demand.

Paranoid Android is compatible with several detection methods, including dynamic analysis,
anti-viruses, memory scanners and system call anomaly detectors. The most interesting benefit
of Paranoid Android is it’s capacity to perform multiple detection mechanisms simultaneously,
and an interesting avenue of research is to see how these mechanisms could be combined
to achieve better detection or a lower false positive rate. Unfortunately, this tool exhibits a
considerable overhead, and can reduce battery life by up to 30%.

Recommendation 15
Some malware samples use emulator detection systems to evade monitoring of code

using an emulator (86). Emulator detection systems examine a selected set of features
of the underlying device at run-time to ensure that the app is running in a real device
and adapt the execution accordingly. Further research is needed to detect the presence of
emulation detection code in apps, and pinpoint such apps as possible malware.

Policy Enforcement

In the “other” category, we also list a few works whose purpose is not to detect that an
application is malicious, but rather aim at controlling the execution of the application to make
sure that some security policies are being enforced.

To this end, Falcone et al. have created RV-Droid (? ), a monitoring tool for Android applica-
tions, whose purpose is to monitor and enforce properties written in formal logic. The user
may select these properties from a repository provided by RV-Droid, or write their own. The
user may select a different property for each application. RV-Droid will then synthesize a
monitor for this property, and weave it into the app’s code using AspectJ, an aspect-oriented
framework for Java. The authors test several common specification requirements and is shown
to have only a small overhead —often below 1%.

Recommendation 16
All techniques, especially dynamic ones, require additional time and memory in order
to perform their analysis. Yet, this work is one of the few that includes a discussion of
performance impact ; most often, experimental results are solely focused on recognition
rate and false positives. Each work should minimally justify what is considered accep-
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table performance or scalability, and provide experimental measurements indicating to
what extent these requirements are met by the proposed approach.

Elish et al. (40) have applied a set of classification policies to these communicating applications
in the existing Android malware collusion detection solution, in which two or more applications
interact to perform malicious tasks. They showed that there are technical challenges associated
with the classification of inter-component communication flows. Their results show that
permission-based classification policies trigger a large number of false alarms in the pairs of
applications that interact with each other.

1.4 DISCUSSION

Researchers have long realized that traditional malware detection techniques, such as signature-
based anti-viruses, are inadequate to provide effective protection against new malware. Conse-
quently, in recent years, several techniques and tools based on behavioral analysis (static or
dynamic) have been at the core of malware identification. Table 1.5 summarizes the existing
approaches surveyed in the previous two sections, and Table 1.2 gives a summary of the
recommendations listed throughout the paper.

Open Challenges Several challenges arise when designing malware detection tools. First,
the code that potentially contains malware may be obfuscated through any one of a number of
different techniques, hindering program comprehension and static analysis. Furthermore, other
apps may contain encrypted code, which is likewise unavailable to the detection mechanisms.
This was the case for the malware DroidKungFu1 which uses a different key for each program
instance. Metamorphic malware can modify its code by rewriting itself with each infection. For
example, it can alter the names of the methods and classes in the application. The TinyDroid
technique (31) failed to detect this type of malware.

In addition, several tools (e.g. (115) and (30)) require access the source code of an application
as the basis for analysis. This naturally limits the applicability of the tools since the source
code of apps code is often unavailable. Other tools, such as DroidMat (134) and DroidRanger
(150), build models using only a limited number of malware samples ; indeed, the latter
has only been tested on free applications. The absence (or the paucity) of malware in a
detection method’s training environment can affect its effectiveness. One of our principal
recommendations is that malware be tested on realistic datasets, containing both benign and
malicious apps, in proportion to their occurrence in the wild. Likewise, the datasets should
include malware of different types (clones, adware, data-miners, etc.), since mechanisms can
be quite effective against one type of malware, but less effective against others. It would be
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1. Make the tools and techniques publicly available for reproducibility and ulterior
comparison.

2. Test on datasets that contain both benign and malicious apps.

3. Document the influence of external parameter values on the detection procedure, and
describe how such values are chosen.

4. Focus on behavior that resides in service components of repackaged apps.

5. Develop techniques specific to adware and include adware in testing datasets.

6. Address the issue of dynamic loading in the development of detection techniques.

7. Provide testing datasets that include dynamic loading, and make sure they refer to
extant network locations.

8. Provide detailed information about the exact applications being included in a testing
dataset.

9. Use fine-grained permissions whenever possible.

10. Correlate observed behaviors with the app’s intended functionality in order to get a
more precise definition of what is suspicious.

11. Clearly define when and where in an app’s lifecycle the detection technique is expected
to be applied.

12. Provide meaningful and understandable feedback to end users.

13. Create testing datasets with realistic proportions of both benign and malicious apps.

14. Include malware of various kinds in a testing dataset.

15. Address the issue of emulator detection when testing in a simulated environment.

16. Define scalability or performance requirements and measure them experimentally.

TABLEAU 1.2 – A summary of the recommendations listed in the paper.
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worthwhile for security researchers to report a breakdown of the accuracy and precision levels
of their detection mechanism by malware type, rather than an aggregate value for the entire
testing set. Finally, the datasets should also include both free and paid apps, since the Android
ecosystem contains both kinds, and since free and paid apps are likely to differ substantially
with respect to the code features they contain.

Another aspect that is largely neglected in the current state is the emerging threat of Malware
collusion. Malware collusion occurs when multiple apps, possibly from the same malicious
developers, interact with each other to perform malicious operations. Since the malicious
behavior is spread across multiple apps, current solutions, which assume that malware consists
of a standalone malicious application, may be unable to detect it. Elish et al. (40) performed
initial work on this problem, by creating a graph that captures the interaction between several
apps running on the same device. Their data structure could form the basis of an effective
detection procedure for this class of malware.

Testing datasets The fact that different projects use different datasets for testing makes
it challenging to compare the effectiveness, accuracy and false positive rates of different
mechanisms on an equal footing. For this reason, the values provided in Table 1.5 must be
interpreted with caution. We recommend that researchers either make their datasets available,
or make use of one of the already publicly available datasets of Android apps, such a Androzoo
or Drebin. To provide even greater replicability, security researchers could make the entire
evaluation process available. Tools such as LabPal (53) allow researchers to bundle an entire
experimental setup, including data and code, into single, runnable JAR file, making it easy for
anybody to download and re-run, or even alter the experiments.

In table 1.3, we summarize the testing datasets used in the papers we surveyed. In two cases,
(29) and (91), the testing set was unavailable, hindering reproducibility of the experiment. In
all other cases, we report the year of publication of the dataset, it’s creator, it’s size, whether or
not the dataset is updated regularly and whether or not it is publicly available . We also indicate
whether the database only contains malicious apps (M), benign apps (B) or both (M/B).

The datasets used in the papers are as follows :

— Google play : the official app store, operated and developed by Google. It allows
users to browse and download applications developed to run on the Android operating
system.

— Drebin dataset : the dataset contains 5 560 malware samples from 179 different
malware families. The samples have been collected in the period between August 2010
to October 2012.

— Genome dataset : The Genome repository contains 1226 malware apps categorized in
49 families of malware. This repository includes malwares dating back from 2012.

— AndroZoo dataset : AndroZoo is one of the largest datasets of Android apps. It was
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TABLEAU 1.3 – The datasets used in the papers we surveyed

Database Type Creator Date Size Updated Available
Google Play (51) B Google LLC 2008 2,9M yes yes
Drebin Dataset (15) M Arp et al. 2012 5,560 no yes
Malware Genome M Zhou et al. 2012 1,200 no no
Project (148)
Androzoo (4) M/B Li et al. 2016 10,528,559 yes yes
Contagio Malware M Mila Parkour 2008 11,960 yes yes
Dump (87)
VirusShare (126) M Cylance Inc 2011 34,564,348 yes yes
McAfee (115) M/B McAfee Inc 2012 21,330 yes –
AppChina (143) B STC Bing search 2010 600,000 yes yes

technology centre
PRAGuard (75) M Univ. of Cagliari 2015 > 10,479 no yes

Italy
Gfan (144) B Business unit 2007 > 100,000 yes yes

collected from multiple sources, including from the official Google Play app market.
AndroZoo currently contains more than 5 million different APKs. Each app is scanned
by at least ten different anti-virus products and the results of these scans are reported
in the dataset.

— Contagio : Contagio is a collection of the malware samples, threats, observations, and
analyses.

— VirusShare : VirusShare is a repository of malware samples hosted and maintained
by Corves Forensics. The firm also provides commercial services to support the
specific needs of larger organizations including enhanced API access, data feeds, and
specialized searches of VirusShare’s data.

— Mcafee : This dataset contains 8 041 benign apps and 13 289 malware. The apps were
collected between from 2012 to 2016 and use advanced coding technique.

— Appchina : AppChina is a Chinese app that allows Android users outside of China to
download Chinese apps. It allows users to find free applications and games. In 2014
it contains more than 600 000 Android apps. It has more than 30 million users and
considered like the most popular Android app store in China.

— PRAGuard : The dataset contains 10479 malware samples, obtained by obfuscating
the MalGenome and Contagio datasets with seven different obfuscation techniques.

— Gfan : Gfan is one of the largest Android app stores in China. It contains more than
100 000 android apps. Only members are allowed to download apps from Gfan.

Regularly updating the benchmarks will help counter the concept drift problem whereby a
predictive model becomes less and less accurate as time passes, because the features upon
which it relies have become outdated or obsolete. This problem is particularly salient for
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security models due to the highly dynamic nature of malware. In this respect also, tools such
as LabPal can help security researchers stay one step ahead of malware developers, by making
it easy to re-test security tools with newer datasets.

When using dynamic detection, the overhead processing costs are higher since they contribute
directly to the deterioration of process execution time. This can have serious consequences,
especially for critical real-time processes. Detecting malware while it is running is a challenge,
as any delay could lead to an infected system, and perhaps even to an unrecoverable situation.
Another important research challenge is to ensure that the detection process is sufficiently
lightweight to take place on the end-user’s device. Furthermore, dynamic detection only relates
to behavior that is ongoing at the time of analysis and thus has a more limited coverage, since
it only explores one execution path at a time.

The machine learning (ML) algorithms A variety of ML algorithms have been used in
developing malware detection frameworks. Figure 1.1 indicates the number of publications
that make use each ML present in the literature, distinguishing between static dynamic and
hybrid methods. The x-axis represents the number of publications and the y-axis represents
the ML used to classify the applications. We can see that the ML algorithm the most used for
static techniques is the SVM (Support Vector Machines) in seven publications, followed by
the KNN with three publications. However, for dynamic techniques, we find the Naive Bayes,
Decision Tree and Random Forest algorithms in three publications. The only algorithm used
in hybrid methods is the SVM. A few studies have used other algorithms such as : Histogram,
Logistic Regression, LSTM, etc.

The choice of the algorithm depends on the type of data to be processed and even the number
of samples. Table 1.4 presents the advantages and disadvantages of the top 5 algorithms used
in the articles we studied.

Comparison between methods The detection techniques proposed differ with respect to
their respective false alarm rate. A malware detection system should ideally have a low false
alarm rate, otherwise it can block the execution of valuable services that the user requires.
False alarms that are too frequent can also lead a user to turn-off or disregard his security tools,
exposing him to further danger. Tools and techniques that were developed using particularly
large test datasets that contain both benign and malicious apps seem to exhibit more favorable
results. In particular, EnDroid (47) and (88) both exhibit distinctly low false positive rates of
1.85% and 0.58% respectively, in part due to the large number of applications used for the
construction of the detection method.

As can be seen in Table 1.5, the detection process (permissions, API calls, opcodes, etc. . .) is
founded on a multiplicity of features. Given the fact that the studies conducted so far do not
use a consistent dataset of malware and benign apps, it is difficult to affirm with confidence
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FIGURE 1.1 – ML used by Publications

that a given feature is more informative than another for the purpose of malware detection.
Nonetheless, it can be intuitively inferred that using multiple features would improve the
accuracy and precision of the detection process. Indeed, the results reported by a study that
performs the same experiment with different feature sets (134) point in that direction. In that
study, the same classification process was repeated four times : first by considering only the
set of API calls and other statically available information obtained from the AndroidManifest
file, then secondly by adding intents, a third time by adding permissions, and finally by adding
both intents and permissions. The more complete feature sets yielded a more precise detection
(though the second feature set yielded a better recall). This could mean that different classes
of malware are sensitive to different features. Indeed, as mentioned earlier in this paper, some
classes of malware, such as adware, do not require additional permissions to run.

Some features are used in both static and dynamic detection mechanisms. For example, API
calls occur in 3 “static” and 3 “dynamic” entries of table1.5. It is important to stress in
this regard that these features express the fundamentally different nature of the information
involved. Statically obtained API calls are limited to the list of API calls existing in the
code. The fact that some of these calls may be present in the code, but not called in a given
execution, and the fact that some calls can be obfuscated through the use of reflection, means
that a statically computed set of API calls is necessarily an approximation. On the other hand,
dynamic analysis not only provides a precise listing of the API calls occurring during a given
execution, but also informs about the number of occurrences of each call and their relative
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TABLEAU 1.4 – Advantages and disadvantages of the top five ML algorithms used in literature

ML Advantages Disadvantages
SVM - Its high prediction accuracy. - Not suitable for larger datasets.

- Works well on smaller data sets. - Less efficient on datasets contai-
ning noise.

Random Forest - Flexible and easy to use. - The large number of trees can
make the algorithm

- Handle large data sets with higher
dimensionality.

too slow.

-It is difficult to interpret.
Decision Tree - Simple and fast to use. - It requires a long training time.

- Handles large data. - May have a more complex repre-
sentation for some

- Support incremental learning. concepts.
Naive Bayes - Easy to implement. - Less accurate compare to other

classifier.
- It is very fast.
- Handles large volumes of data.

KNN - Simple to interpret. - Can be slow with large data.
- Give a high accuracy. - Need high memory.
- Robust to noisy training data.

ordering. Naturally, one would expect that this wealth of information would result in a more
accurate and precise detection process, and some of the results reported in table 1.5 do indicate
that such is indeed the case, even though, as mentioned above, the paucity of controlled studies
using the same dataset makes it difficult to reach definitive conclusions.

Another aspect that hinders comparisons between different methods is the fact that few papers
systematically report values for false positives, accuracy, precision and recall. This is another
reason for which we advocate the use of experiment management tools such as Labpal. If an
experiment using such a tool is made available, it is a simple task for another researcher to
modify it in order to measure a different metric.

The Human Element An important area of research that is often neglected is the human
element of security. Rarely do the developers of security tools perform usability testing to
ensure that end-users will be able to effectively utilize the tools they develop. An issue of
particular concern is the manner in which the verdict of the detection process is communicated
to the end-user, since they may ignore a security warning if they do not understand the
reasoning that underlies it. This is of particular concern for methods based upon static analysis
and clustering, as the explanation why an app was flagged as malicious can be difficult to
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articulate. More research is needed to determine how craft convincing and intelligible security
alert that allows even the less tech savvy users to understand why app was flagged.

In this regard, it is also useful to recall that Schneier observed that users are more likely to
dismiss or underestimate a given risk if the risk also confers to them some benefits. Likewise
they are likely to underestimate a risk that arises from a course of action that they have chosen
to undertake (109). In the context of Android security, these observations indicate that users
will underestimate the risk associated with installing apps of unknown origin, since they
choose to do, and presumably do so because they seek to make use of the functionalities
provided by the app.

Static vs Dynamic Detection Overall, most of the techniques presented in the Sections 1.2
and 1.3 share some weaknesses. At the database level, researchers often used a limited number
of applications in order to build a model of malicious and benign behavior, as few as five
applications in one case.

Other malware detection tools are designed to target a specific type of malware to the detriment
of other categories, as for instance, Andromaly (110) which does not detect instant attacks.
Malware that deliberately reproduce a set of features similar to those produced by legitimate
applications, pose a significant challenge for security researchers. For example, if a dynamic
detection scheme monitors the configuration of API calls made by processes, a malicious
process may attempt to scatter its own API calls into sets of benign API calls to avoid detection,
(111). DroidSielver (115) for example missed the detection of such mimicry attacks.

As mentioned above, static and dynamic approaches can be seen as having mirrored advantages
and drawbacks, the former being early, approximate and applied to the entire program, while
the latter is late, precise and specific to a given execution. It is thus natural to consider
combining both static and dynamic analysis in hybrid detection systems, as several authors
have raised this possibility.

Static and dynamic analysis could work in tandem to perform a more accurate and effective
detection mechanism. In addition, such a hybrid approach could potentially yield the following
benefits :

— Static analysis can help reduce the overhead incurred by dynamic analysis, by ruling
out certain apps, or even certain components of apps as safe, so that only potentially
malicious code is monitored.

— Along the same line, dynamic analysis can be used to reduce the rate of false positives
associated with static analysis : if the evaluation of an app yields a borderline score
between benign and malicious, it can be allowed to run, but in a highly monitored
sandbox environment.

— A hybrid method could also aid in addressing the usability problem highlighted above.
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For instance, a monitor could rely upon the result of a static analysis to paint a more
complete picture of a program’s behavior. Then, if the monitor aborts the execution
because it is potentially malicious, it could draw upon it’s knowledge of the target
program’s probable subsequent behavior to offer a more complete explanation to the
user.

1.5 CONCLUSION

In this paper, we survey malware detection methods for Android, focusing on the advantages
and drawbacks of each and made recommendations for future research on the topic.

Despite the fact that a large number of solutions that have been proposed, several challenges
remains to be addressed, especially because of the rapidly evolving nature of malware. We
cite difficulties related to code obfuscation, the unavailability of source code and the emerging
problem of malware collusion as problems that require particular attention in the near future.
From our analysis of the papers we surveyed, we drew 15 recommendations that we believe
will enable researchers to develop more effective malware detection tools. We especially
recommend that researchers make available the testing datasets that they used, as well as
the experiments they perform. Indeed, we found it particularly difficult to compare detection
methods since they often used different testing datasets, are reported different types of values
(accuracy, precision, recall etc. ) as result.

We also argue that static and dynamic analysis may be combined in order to develop more
effective enforcement mechanisms. The recommendations that we offer may help guide future
research and address these challenges.

APPENDIX : RECAPITULATIVE TABLE

We provide a recapitulative table of every malware detection method we studied. For each
method or tool, we provide :

— the name of the tool and its reference ;
— its year of publication ;
— the classification method used : static (S), dynamic (D) or hybrid (H) ;
— the rate of false positives (FP), accuracy (A) , precision (P) and recall (R), when

provided ; for the sake of space, all values have been truncated to integer percentages,
with the usual definition of these terms, namely :
accuracy = t p+tn

t p+ f p+ f p+ f n
precision= t p

t p+ f p
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recall (detection rate)= t p
t p+ f n

rate of false positives= f p
f p+tn ;

— the size (Nb.) and origin of the testing sets ;
— the technique used to analyze the application ;
— for methods based on machine learning, the type of features used, the machine learning

algorithms employed and indicate any pre-processing performed on the data ;

We used the values for accuracy, precision and false positive rate as reported, and only included
these values when they were directly reported in the paper. We deliberately avoided inferring
these values from other experimental data in the paper, out of an abundance of caution. In
a few cases, the rate of false positives is not explicitly mentioned, but the paper claims it is
“low”, which has been indicated by an L in the corresponding table cell.
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NSDroid (73) 2020 S < 1% 95% 96% 95% 32190 Drebin, (131),
(105), (45)

Calculate the si-
milarity between
apps

Function call
graphs

SVM, Random
Forest, Decision
Tree

TinyDroid
(31)

2018 S 5% 95% 92% 95% 2400 Google Play, Dre-
bin dataset

Disassembled
APK file into
smali codes

Opcodes Random Forest,
Naive Bayes,
SVM, kNN

DroidSieve
(115)

2017 S L 99% 99% 99% 100000 Malgenome Pro-
ject, Drebin da-
taset, PRAGuard
dataset, McAfee
Goodware

Static analysis of
resources

Metadata of the
app, syntactic fea-
tures

Extra Trees,
SVM, Random
Forests, XGBoost

Qiao et al.
(93)

2016 S L 94% – – 6260 Google Play, Mal-
genome Project

Permissions and
API calls

Source code and
resource files

SVMs, Random
Forest, Neural
Networks

Chen et al.
(30)

2015 S – 96% 95% 94% 1170 AppChina, Mal-
genome Project

Clone detection Decompiled code –

DREBIN (15) 2014 S 1% 93% – 90% 132171 Google Play, Mal-
genome Project

Clustering of mal-
ware

Perm., API calls,
components, etc.

SVM

DroidAPI-
Miner (2)

2013 S 2% 99% – – 20000 Google Play,
McAfee, Malge-
nome Project

Extract a malware
sig. from perm.
and API calls

API calls, perm. KNN, SVM,
C4.5, ID3 (94)
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DroidMat
(134)

2012 S – 97% 96% 87% 1738 Google Play,
Contagio mobile

Clustering of
benign and
malicious apps
according to
static features

Perm., compo-
nents (Activity,
Service, Re-
ceiver), Intent
message, API

kNN, K-means,
Singular Value
Decomposition

Potharaju et al.
(92)

2012 S < 1% – – – 7600 Google Play Repackaging
detection through
detecting code
reuse

Source code –

DroidMOSS
(146)

2012 S – – – – 2400 Free apps Similarity mea-
sure

Dalvik bytecode –

DroidRanger
(150)

2012 S – – – – 204040 Google Play,
eoeMarket, al-
catelclub, gfan,
mmoovv (free
apps only)

Behavioral foot-
print based on
perm.

Permissions –

Sarma et al.
(106)

2012 S – — – 80% 158183 Google Play,
Contagio Mal-
ware Dump

attribute risk le-
vels to apps accor-
ding to perm.

Permissions SVM

Kirin (41) 2009 S – – – – 311 Google Play verify perm. upon
installation

Permissions –

Xiao et al.
(137)

2019 D 9% 93% 91% 96% 7130 Google Play, Dre-
bin dataset

System call trace System calls LSTM (Long
Short-Term
Memory)
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RepassDroid
(138)

2018 D < 1% 97% 99% 96% 24288 Google Play,
Androzoo, Mal-
genome Project,
VirusShare,
Drebin dataset

Combines API
calls and semantic
information

API, permissions Decision Tree,
Random Forest,
SVM, kNN,
Naive Bayes

EnDroid (47) 2018 D 1% 97% 95% 97% 14019 Google Play, An-
droZoo, Drebin
dataset

classification ba-
sed on system le-
vel informaton

System calls in-
put, output (SMS,
calls, network
operation)

Decision Tree,
SVM, Extra
Trees, Random
Forest, Boosted
Trees

Sanya et al.
(29)

2017 D 8% – 95% 95% 66 – runtime monito-
ring in a controled
environment to
construct a fea-
tures vector of
relevant system
calls

System call trace Naive Bayes,
Random Forest,
Stochastic Des-
cent Gradient
Algorithm

Wen et al.
(132)

2017 H 13% 95% – – 2000 Google Play, Dre-
bin dataset, Mal-
genome Project

monitoring in a
virtual environ-
ment

Perm., intentions,
API, Intent, Pre-
cesses, battery
usage

SVM

Andromaly
(110)

2012 D 12% 87% – – 44 Google Play continuously
monitors multiple
system elements

88 functionalities
(related to messa-
ging, call phone,
API)

k-Means, Logistic
Regression, Histo-
grams, Decision
Tree, Bayesian
Networks, Naïve
Bayes
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Crowdroid
(25)

2011 D – 100% – 100% 5 Google Play Sytem call moni-
toring

System calls k-means

XManDroid
(24)

2011 D 3% – – – 50 Google Play Monitoring of
perm. usage

Perm., Reference
Monitor, De-
cision Maker,
System View,
System Policy
and Decisions

–

Paranoid An-
droid (91)

2010 D – – – – – – Simulates mul-
tiple attacks on
a remote server
running a replica

system calls trace –
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RÉSUMÉ

L’augmentation exponentielle du nombre d’applications Android sur le marché s’est ac-
compagnée d’une croissance correspondante des applications malveillantes. Le risque de
reconditionnement d’applications, un processus par lequel les cybercriminels téléchargent,
modifient et republient une application qui existe déjà sur le magasin avec l’ajout de code
malveillant, est particulièrement préoccupant. La détection dynamique dans les traces d’appels
système, fondée sur des modèles d’apprentissage automatique, est apparue comme une solu-
tion prometteuse. Dans cet article, nous introduisons un nouveau processus d’abstraction et
démontrons qu’il améliore le processus de classification en reproduisant plusieurs techniques
de détection de logiciels malveillants de la littérature. Nous proposons en outre une nouvelle
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méthode de classification, reposée sur notre observation selon laquelle les logiciels malveillants
déclenchent des appels système spécifiques à des moments différents des programmes bénins.
Nous mettons en outre notre base de données à la disposition des futurs chercheurs.

MOTS CLÉS

Android, Appels système, Classification, Sécurité.



CHAPTER 2

BEHAVIORAL CLASSIFICATION OF ANDROID APPLICATIONS USING SYSTEM
CALLS

Asma Razgallah*, Raphaël Khoury*
* Department of Computer Science and Mathematics, Université du Québec à Chicoutimi, Canada

The exponential growth in the number of Android applications on the market has been
matching with a corresponding growth in malicious application. Of particular concern is the
risk of application repackaging, a process by which cybercriminals downloads, modifies and
republishes an application that already exists on the store with the addition of malicious code.
Dynamic detection in system call traces, based on machine learning models has emerged as a
promising solution. In this paper, we introduce a novel abstraction process, and demonstrate
that it improves the classification process by replicating multiples malware detection techniques
from the literature. We further propose a novel classification method, based on our observation
that malware triggers specific system calls at different points than benign programs. We further
make our dataset available for future researchers.

Index terms : Android, system calls, classification, security

2.1 INTRODUCTION

Security concerns remain omnipresent when downloading Android applications (apps), despite
the presence of security checks in the app stores, from which users obtain these apps. This
is in part because app stores often contains benign and malicious variants of the same apps.
Often an app will be downloaded from a store, decompiled, manipulated to include some form
of malware, and then recompiled and uploaded to the app store, a process termed repackaging.

Detection mechanisms performed by the app store at the time an app is being loaded have
seen limited success at eradicating this threat, in part because these methods are largely based
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on static code analysis. However, the code modifications performed as part of the repackaging
process are often comparatively small, making static detection difficult. The problem is made
more difficult by the presence of code obfuscations and encryption, which can render static
analysis ineffective. Repackage app often require the same permissions as their original
counterpart, which hinder permission-based malware detection schemes.

Furthermore, users often cannot distinguish between legitimate apps and their repackaged
counterparts containing malware, when both versions of the same application are found on the
same app stores.

Dynamic analysis thus remains as an essential last line of defence. It consists in runtime
monitoring of the apps’s behavior, in order to detect and prevent malicious behavior. This is
a topic of active research (98), and several techniques based on machine learning have been
proposed to automatically detect malicious behavior.

While, monitoring may take place at any execution layer (user-space, kernel, etc.), we have
chosen to analyze Android applications at its lowest level, by studying the interaction between
the application and the system in real time, since this strategy makes it most likely to detect
attacks static analysis failed to uncover.

In this paper, we perform multiple experiments on malware detection in system calls of
Android traces using a new dataset of system call traces from Android apps. We replicate
multiple previous experiments from the scientific literature, using a single dataset, which
allows comparison of the methods on an equal footing. Furthermore, we present a novel trace
abstraction process, which is performed prior to the classification and show experimentally
that using this abstraction improves the effective of the classifiers, and propose a new trace
classification method derived from the analysis of the traces in our dataset.

This paper makes the following contributions :
(1) We present a new dataset, TwinDroid, which we make available dataset of Android traces.
TwinDroid is composed in large part of traces from pairs of application, one benign, one
malicious, but identical but for inclusion of the malware in the latter, which makes it ideal
for research on dynamic malware detection. Our dataset is publicly availble on the author’s
repository 1. The dataset currently contains 400 traces from 151 different apps and is being
expanded.
(2) We replicate previous studies on dynamic detection using this dataset, allowing the compa-
rison between several different malware detection on equal footing.
(3) We show that the inclusion of a trace abstraction step prior of performing automated
detection yields meaningful improvements to the classification process.
(4) Drawing upon an inspection of our dataset, we propose a novel malware detection strategy
and show that it compares favorably existing strategies present in the literature.

1. https: // github. com/ AsmaLif/ TwinDroid-dataset

https://github.com/AsmaLif/TwinDroid-dataset
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The remainder of this paper is organized as follows : in Section 2.2 we present our dataset
TwinDroid and our abstraction strategies. Sections 2.3, 2.4 and 2.5 report the replication of
three experiments with their classification results. We tested a new experiment on the pairs of
traces in 2.6. Concluding remarks are given in Section 2.8.

2.2 DATASET CREATION

2.2.1 DATA COLLECTION

In order to obtain a benchmark of applications to be tested, we selected 151 applications
between October and November 2020. These applications were installed and executed on a
Google Nexus 5 mobile running Android 4.1 of API 16.

We first selected 92 infected applications 2 from the Drebin Dataset. The applications vary
as to their size and purpose, and include a cross-section of app types including games, web
browse, calendars, etc. A breakdown of the app types in our dataset is given in Table 2.2. We
also selected apps that are infected with a variety of different malware families. Table 2.1 lists
the malware families present in our dataset and indicates the number of apps infected by each
malware family. As can seen we include a wide variety of common malware families. Finally,
we endeavored to select infected version of the most popular Android apps, as well as apps
that have widely repackaged by cybercrimianals. In addition, the apps we have selected are
also drawn from a large variety of app types, as shown in Table 2.2.

We then obtained the benign applications from official Android application market (Google
Play) (51) or from APK Pure (14). In the creation of our database, we excluded any application
that meet one of the following conditions :

— the application is not free ;
— it does not run on our emulator because of version incompatibility or other reasons ;
— another version of the same app was already in our dataset. For example, the Battery

Super Charger application which repeats more than ten times in Drebin Dataset, we
keep only one copy.

We obtained benign pairs for 22 of the 92 malicious apps, and additionally, we enriched the
dataset with 39 addition benign versions, which do not have a matched malicious version.

2.2.2 TRACING PROCESS

We installed the applications on the android emulator using Genymotion (1). We then simulated
a real human using of the application with the Monkey tool (12) which simulates the interaction

2. availableat: https: // www. kaggle. com/ razgallah/ apps-base

available at: https://www.kaggle.com/razgallah/apps-base
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Malware family Apps Malware family Apps
Raden 2 DroidSheep 1
Opfake 7 lmlog 1
Plankton 24 SMSreg 1
DroidDream 7 GinMaster 2
Copycat 1 Adrd 1
FakeDoc 2 FakePlayer 1
Xsider 1 TrojanSMSDenofow 1
FoCobers 1 FakeRun 7
DroidKungFu 6 Yzhc 1
Glodream 2 Boxer 1
GingerMaster 1 Moghava 1
FakeRegSMS 2 SpyHasb 1
Dialer 1 Fakengry 1
FakeInstaller 6 Stealer 1
Iconosys 3 ExploitLinuxLotoor 1
SendPay 1 Adrd 1
Fidall 1 Fatakr 1

TABLEAU 2.1 – Summary of the Malware families used in this study

App category Apps
Benign Infected

Vehicle 2 1
Communication 9 15
Kids 2 2
Education 1 2
Food 3 1
Games 13 34
Books 3 1
Medicine 1 1
Weather 1 -
Music 8 11
Tools 4 10
Pictures 8 6
Productivity 3 4
Lifestyle 1 4

TABLEAU 2.2 – Summary of the app’s categories used in this study
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1605918097.832207 mprotect( 0x9f659000 , 8192,
PROT_READ|PROT_WRITE) = 0
1605918097.832361 getpid() = 4263
1605918097.832417 gettid() = 4263
1605918097.832469 clock_gettime(CLOCK_MONOTONIC,
{8280, 454895458}) = 0
1605918097.832686 clock_gettime(CLOCK_MONOTONIC,
{8280, 455112943}) = 0
1605918097.832757 getpid() = 4263
1605918097.832810 gettid() = 4263
1605918097.832861 clock_gettime( CLOCK_MONOTONIC,
{8280, 455287104}) = 0
1605918097.833042 clock_gettime(CLOCK_MONOTONIC,
{8280, 455470088}) = 0
1605918097.833128 getpid() = 4263
1605918097.833230 gettid() = 4263
1605918097.833289 clock_gettime( CLOCK_MONOTONIC,
{8280, 455716680}) = 0

FIGURE 2.1 – Sample of an application trace

of the user in an automatic manner. This tool can be used to generate pseudo random events
such as clicks which represents the number of random events which we want to generate. The
number of clicks via Monkey used in our study ranged from 500 to 1000 clicks in order to
maximize the functionality coverage of an application. We recorded traces of system calls
via the Linux Strace tool (Android). We obtained a total of 400 traces (200 benign and 200
infected), running each app between 1 to 4 times.

Strace intercepts and records the name of each system call that occurs during the execution
of the program, alongside with its arguments and the return value. A negative return value
usually indicates the occurrence of an error while the return value zero generally indicates
that the system call completed successfully. The example in Figure 3.3 shows the trace of the
execution of a popular game app. Each line of this trace contains the system call along with its
parameters and return value, a timestamp and the system call’s execution time.

2.2.3 ABSTRACTION PROCESS

The large volume of information contained in these traces can made detection arduous. To
streamline the process, we adopt the following four step abstraction process.

First, we consider only the system call names in the trace, thus ignoring other information
contained in trace such as the execution time, and parameters and return values of each system
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call. This step is commonly made in the context of system call trace analysis, and every
one of the experiments we replicate in the next sections also performs this abstraction. The
subsequent three steps are original to our study.

Second, after studying the different types and categories of system calls (62), (80), we deduced
that several system calls are inconsequential to a proper characterization of the program’s
behavior. This includes, for instance, system calls used to transfer information between the ap-
plication and the operating system or system calls related to memory management. These calls
are : mmap, mmap2, munmap, mremap, mlock, munlock, mlockall, munlochkall, set_mempolicy,
brk, sbrk, mprotect, modify_ldr, futex, clock_gettime, clock_nanosleep, getcpu, getpagesize,
olduname, gettimeofday, timerfd_settime. These system calls tend to occur multiple times
throughout the execution of both benign and malicious traces. By analogy to natural language,
we can think of these system calls as stopwords or articles, that can encumber a semantic
analysis of the text. The second step of the abstraction process is to elide these calls from the
trace.

Thirdly, many system calls have similar or overlapping features (9), (42), (78), and can be
used interchangeably to implement the same functionalities. For example, the system call fstat
has almost the same functionality as asstat, except that the former takes a file descriptor fd as
input while the latter takes a path asstat. To compare traces from different systems on equal
footing, we thus defined a list of semantic equivalencies between system calls, shown in Table
2.3. Treating such system calls as distinct would artificially heighten the differences between
program that may in practice be quite similar. Thus, an important part of the abstraction
process is to uniformize equivalent system call names.

Finally, unsuccessful system calls have no impact on application’s behavior and can safely be
removed from the trace as part of the abstraction process.

We posit that by eliding extraneous information, this abstraction process allows for a more
precise classification of benign and malicious traces. In the next sections, we demonstrate
this by replicating 4 studies on malware trace classification, and showing that the use of our
abstraction improves the results of the classification process.

The abstraction process also considerably reduces the size of the traces, which in turn has
benefits for classification, and for any other trace manipulation that we endeavor to perform.
The entire corpus (400 traces) consists of 1 778 167 occurrences of 98 system calls. This
is reduced to 954 660 occurrences of 62 different system calls, a reduction of 46,31%. Of
these, 8 system calls were deleted in phase 2 and 28 replaced in phase 3. For some traces, the
reduction in the number of system calls is even more substantial, reaching over 94%.

The reduction in size is generally independent to the length of the trace. The smallest reduction
in size, (3.76%) occurs in the trace of a calendar app, which with the smallest reduction in
size (3.76%) occurring in the shortest trace of the dataset.
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System call Equivalences System call Equivalences
fchmodat fchmod, chmod getpid getppid

lseek llseek, _llseek getdents getdents64
fdatasync fdatasync access faccessat

write writev, pwrite, pwrite64 truncate ftruncate , ftruncate64 ,
truncate

getuid geteuid, geteuid32, ge-
tuid32

accept accept4

send sendto, sendmsg,
sendmmsg

fchown32 fchown , chown, lchown

fstat stat, stat64, statfs64, ass-
tat, lstat, lstat64

add_key request_key , keyctl ,
keyutils , keyrings

open open, openat, create,
dup

adjtimex ntp_adjtime

read readv,pread , pread64 ,
readlink,readlinkat

fcntl fcntl64

recv recvfrom, recvmsg epoll_wait epoll_pwait
rename renameat, renameat2 poll epoll

exec execve

TABLEAU 2.3 – System calls and their equivalences

When considering the size in kb, the reduction is even more pronounced. The total size of the
dataset passes from 143444 kb to 8822kb, a reduction of 93.84%.

2.3 EXPERIMENT 1 : SYSTEM CALLS

In this initial experiment, we consider a vector with the number of occurrences of each system
call in the execution trace of an application.

2.3.1 ANALYSIS OF THE DATA

Bhatia et. al.,(20) constructed a dataset by running the Monkey tool on 50 benign apps and 50
malicious apps, generating 500 clicks for each app. They argue that the system calls present in
the trace constitute an important feature set to analyze the behavior of unknown applications,
as well as to distinguish benign and malicious applications. Table 2.4 contains the top ten
system calls in terms of their occurrence in both benign and malicious traces, in Bhatia et. al.’s
dataset and in ours. Observe that several of the system calls which they found to be amongst
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Benign apps Infected apps
in (20) in our dataset in (20) in our dataset

clock_gettime ioctl read recv
read recv clock_gettime send
ioctl getuid _llseek ioctl

epoll_pwait send ioctl getuid
rt_sigprocmask write pread64 read

getuid32 epoll_wait recvfrom write
recvfrom read epoll_pwait fstat

futex fstat write lseek
gettimeofday prctl getuid32 close

write close close fcntl

TABLEAU 2.4 – Top 10 system calls in terms of their occurrence according to Bhatia et al. (20)
and in our dataset

the most frequent are absent from our data because of the abstraction process described in
section 2.2.3. For instance clock_gettime and gettimeofday system calls which have been
deleted from our dataset.

For the infected version, the system calls which are present in our database but not in Bhatia
et. al.’s analysis are :

— fcntl ; manipulate file descriptor
— fstat ; get the file status
— send ; send a short message on a socket.

In addition, two system calls appear in the top 10 most frequent list compiled by Bhatia et.
al. and not in our dataset, namely pread64 which we replaced by read during the abstraction
process and epoll_pwait which synchronises input/output events.

As can be seen in Table 2.4, the system calls fcntl and lseek are among the most frequent
system calls in infected traces but are absent from benign traces. These system calls are
related to writing and reading data from files stored on the phone and SD memory, a behavior
exhibited by multiple malware families such as FakeInstaller, Opfake and Plankton. This
observation hints at the possibility of effective malware detection through system call analysis.

We also found that a number of system calls are very common in both malware and benign
apps, a fact that poses an obstacle to effective detection. Table 2.5 presents the frequency
of the most common system calls in both benign and infected traces. We also observe that
malware generates the recv, send, read and close system calls more frequently than benign
apps. These system calls serve to connect to a socket and request access to sensitive resources,
a common behavior of malicious apps.
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system call benign traces infected traces
ioctl 19.85% 18.63%
recv 15.88% 27.47%
getuid 14.43% 9.99%
send 13.89% 20.67%
write 12.94% 5.77%
read 6.63% 7.53%
fstat 2.56% 1.92%
close 1% 1.34%

TABLEAU 2.5 – Frequency ratio of some system calls

Based on these observations, we performed an automatic classification of benign and malicious
traces based on the system calls they contain. This is a replication of an experiment performed
by Bhatia et. al. (20) on the dataset described above.

2.3.2 FEATURE EXTRACTION

We begin by extracting a feature vector from each trace. Following Bhatia et. al., we extract
from each trace a feature vector that indicates the number of occurrences of each system
call in that trace. Studying the frequency of system calls can help distinguish which class an
application belongs to. For example, Marko Dimjaševic et. al. in (38) claim that an increase
in the use of I/O system calls may be indicative of malicious behavior. After we performed
the manipulations described in section 2.2.3, the abstracted traces contain 62 different system
calls.

2.3.3 CLASSIFICATION

We used the WEKA tool (133) for data classification, in order to map the input data to one of
the categories benign or infected. We used 80% of our data for training and 20% for testing.
We compare the effectiveness of two algorithms, Random forest and J48 algorithms— the
same two algorithms employed by Bhatia et. al. (20). The results are given in Table 2.6.

We have achieved 95.3% accuracy in correctly classifying the benign applications and 85%
accuracy in correctly classifying the infected applications using the Random Forest and J48
algorithm.

Bhatia et. al., (20) tested the same algorithms to perform the same classification. They achieved
88% accuracy using the Random Forest algorithm and we achieved 92.1%.
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Algorithm TP Rate Precision F-Measure Class
Random Forest 95.3% 93.2% 94.3% benign

85% 89.5% 87.2% infected
92.1% 92% 92%

J48 95.3% 93.2% 94.3% benign
85% 89.5% 87.2% infected

92.1% 92% 92%

TABLEAU 2.6 – The classification rates of traces - System calls

We posit that the abstraction process described in section 2.2.3 is responsible for the improved
accuracy of the detection process. To verify this hypothesis, we repeated the same experiment
on our dataset, but without first going through the abstraction phase. As expected, the results
lower, with a TP rate of 87.1% and 90.3% by applying the J48 and Random Forest algorithms
respectively.

2.4 EXPERIMENT 2 : TF–IDF

2.4.1 FEATURE EXTRACTION

Another common way to analyse system call traces is to compute of the “Term Frequency–Inverse
Document Frequency” (TF–IDF) weight vectors of the system calls (142; 136; 102). TF (text
frequency) refers to the number of times a certain word occurs in a document while IDF
(inverse document frequency) refers to the number of times the word occurs throughout the
corpus (32). The value of TF-IDF is a measure of the relevance of given system call in a trace.
The technique has it’s origin in the analysis of texts in natural language, and is widely used in
trace analysis. Following (95), we compute the TF-IDF as follows :

FT F−IDF = (1+ log ft,d)× log
N
nt

where t is the system call name, d represents the trace, f is the frequency of the system call in
each trace, N is the total number of traces and n is the number of traces where the system call
t occurs.

We applied this formula on our dataset and created a matrix where each row contains the value
of TF-IDF for each system call, based on the frequency of the call found in experiment 1, and
each column corresponds to a distinct system call. We then proceeded with classification by
using each line of this matrix as a feature vector. This strategy was used by Kumar et. al. (35).
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Algorithm TP Rate Precision F-Measure Class
Random Forest 93.8% 91.4% 92.6% benign

79% 84.2% 81.5% infected
89.4% 89.3% 89.3%

SGD 92.7% 92.3% 92.5% benign
81.5% 82.5% 82% infected
89.4% 89.4% 89.4%

SVM 92.7% 89.1% 90.9% benign
72.8% 80.8% 76.6% infected
86.9% 86.6% 86.7%

MLP 92.7% 92.3% 92.5% benign
81.5% 82.5% 82% infected
89.4% 89.4% 89.4%

J48 82.9% 85.6% 84.2% benign
66.7% 62.1% 64.3% infected
78.1% 78.6% 78.3%

TABLEAU 2.7 – The classification rates of traces - TF-IDF

2.4.2 CLASSIFICATION

We tested the Random forest, SGD, SVM, J48, and MLP (MultiLayer Perceptron) algorithms.
For this experiment we used the 10 fold cross validation technique. We applied the same
algorithms and test option tested in (35) as well as the (Random forest) algorithm, which game
us better results. Table 2.7 summarizes the results obtained.

In their own study, Kumar et. al. (35) generated traces of different length for 534 apps using
the Monkey tool, recorded the system calls using Strace and abstracted them using TF-IDF
as described above. The resulting vectors where then used to place each app in a behavior
category (tool, lifestyle, education, etc. ). This type of research has applications in security,
since previous research (107) has found that automatic malware detection techniques can be
improved if behavioral observations are supplemented with knowledge about the purpose and
expected behavior of the application.

With our dataset, the optimal result was 93.8% accuracy in correctly classifying the benign
applications with the Random Forest algorithm. In addition to 81.5% in correctly classifying
the infected applications with the SGD and MLP algorithms.

The variable length of execution traces can introduces bias when using TF-IDF. To palliate this
issue, Chan Woo Kim (67) uses a normalized TF-IDF values using the following Euclidean
norm :
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Algorithm TP Rate Precision F-Measure Class
SVM 92.6% 92.6% 92.6% benign

85.7% 85.7% 85.7% infected
90.2% 90.2% 90.2%

SGD 92.6% 89.3% 90.9% benign
78.6% 84.6% 81.5% infected
87.8% 87.7% 87.7%

J48 92.6% 86.2% 89.3% benign
71.4% 83.3% 76.9% infected
85.4% 85.2% 85.1%

TABLEAU 2.8 – The classification rates of traces - TF-IDF normolized

Fnorm =
FT F−IDF√

F2
1 +F2

2 + ...+F2
n

Where FT F−IDF is the TF-IDF weight of each system call in the trace. We repeated his
experiment on our dataset by applying SVM, SGD and J48 classification algorithm. Optimal
results were obtained when 85% of the data was used for training and 15% for testing, a fact
that may be explained by the limited size of our dataset. The results are presented in Table 2.8.

We obtained optimal results with the SVM algorithm, reaching 90.2% of correctly classifying
application. However Chan Woo Kim achieved a higher accuracy of 96% using the SGD
algorithm, working on a dataset comprising 63.7% malicious apps. It may be that the cognate
nature of our dataset, with malicious app being matching with benign pair that is identical
in all respect except for the inclusion of the malware, makes detection more challenging.
Normalized TF-IDF outperforms unnormalized, because of the variable length of traces

We replicated these experiments without first performing the abstraction described in section
2.2, and find that the use of abstraction improves the accuracy of the classification process in all
but one cases. Indeed, when using the abstraction phase, the accuracy of TF-IDF classification
using Random Forest improves from 88.5% to 89.4%. The same pattern is visible with SVM
(from 86.2% to 86.9%) , SGD ( from 85.9% to 89.4% ) and MLP ( from 86.2% to 89.4%). The
algorithm J48 is the only outlier, and shows a slight diminution of accuracy when operating
on abstracted traces.

The same result is observed in the case of normalized TF-IDF. Pre-processing the traces using
the abstraction process improves the accuracy of classification by an average 5% with every
classification algorithm except J48.
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2.5 EXPERIMENT 3 : N-GRAMS

2.5.1 ANALYSIS OF THE DATA

In this next experiment, we apply the use of unigrams, 2-grams and 3-grams of system calls
to our dataset. N-grams preserve the local ordering of system calls in the input data and are
widely used form of trace abstraction. Notably, N-grams are used in a security context by
Ananya A. et. al. (10). They used unigrams, 2-grams and 3-grams for malware detection in
system call traces of Android apps. Igor Santos et. al. (104) demonstrated that the N-grams
technique allows the detection of unknown variants of malware.

An N-gram is a substring of a given sample of trace of length N. For example, consider a part
of a system calls trace after the abstraction phase :

{epoll_wait, read , getuid , fstat , fstat,
fstat, ioctl}

Figure 2.2 illustrate the corresponding 2-grams and 3-grams.

FIGURE 2.2 – 2-grams and 3-grams example

Table 2.9 shows the top 5 most used 2-grams in both types of traces. We can observe that the
benign traces share its most used 2-grams with the infected traces.

The 2-grams most invoked by infected applications is recv, send. This combination of system
call is used to send SMS to premium services owned by malware author (76). While this
2-gram can be found in benign traces, it is rather infrequent, occurring in only 70% of benign
traces. It occurs in every malicious trace.

The same discrepancy was observed with several 2-grams. Furthermore, multiple 2-grams
are only present only in malicious traces, but not in benign ones. Many of these 2-grams,
such as setsockopt,connect - connect,fcntl - fcntl,getsockname - getsockname,setsockopt -
setsockopt,send - send,select - select,select - select,recv, contain sequences of system calls
that serve to establish a connection to a server and send information on the network.

In our dataset, the most commonly used 3-grams in infected samples are : ioctl,ioctl,ioctl -
getuid,epoll_wait,read - ioctl,ioctl,open - send,recv,send. These calls are used to control the
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Benign traces Infected traces
1 epoll_wait,read - ge-

tuid,epoll_wait - write,ioctl
1 recv,send

2 ioctl,ioctl 2 ioctl,ioctl - epoll_wait,recv
- epoll_wait,read - ge-
tuid,epoll_wait - write,ioctl
- ioctl,send - send,recv -
ioctl,open

3 epoll_wait,recv 3 write,write - send,send -
read,recv - recv,ioctl

4 ioctl,write - read,recv 4 fcntl,close - open,fcntl -
epoll_wait,ioct - recv,write -
close,epoll_ctl

5 epoll_wait,ioctl 5 ioctl,write

TABLEAU 2.9 – Top 5 2-grams system calls in term of their presence in our dataset

device and send SMS. However getuid,epoll_wait,read is the most 3-grams used by the benign
samples. It allows reading the user ID.

2.5.2 FEATURE EXTRACTION

The dataset contains 62 distinct unigrams (system calls) ; 510 2-grams and 2188 3-grams. We
create tow sets of feature vectors for each case : The first is a binary vector that indicates the
presence or absence of the n-gram in each trace as in (58) and the second indicates the number
of occurrences of the n-gram in the trace as in (27).

2.5.3 CLASSIFICATION

We evaluate 3 different algorithms, namely SVM, SGD and LMT.

For each experiment, the vector sample was randomly split into 80% for training and 20% for
testing. The results of the experiments are shown in Table 2.10 and 2.11. Table 2.10 shows the
result of the N-grams binary classification rates.Table 2.11 represent the classification rates of
the N-grams occurrence.

From Tables 2.10 and 2.11 it can be seen that classification using 3-grams vectors of system
calls outperforms that using unigrams and 2-grams vectors. When classifying using binary
vectors, the SVM algorithm yielded optimal performance compared to that achieved by the
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SVM SGD LMT Class
TP rate Precision TP rate Precision TP rate Precision

Unigrams 81.8% 97.3% 75% 97.1% 84.1% 94.9% benign
90% 52.9% 90% 45% 80% 53.3% infected

83.3% 89.1% 77.8% 87.4% 83.3% 87.2%
2-grams 97% 91.4% 90.9% 90.9% 84.8% 96.6% benign

87.5% 95.5% 87.5% 87.5% 95.8% 82.1% infected
93% 93.1% 89.5% 89.5% 89.5% 90.5%

3-grams 100% 97.1% 100% 94.3% 100% 91.7% benign
95.8% 100% 91.7% 100% 87.5% 100% infected
98.2% 98.3% 96.5% 96.7% 94.7% 95.2%

TABLEAU 2.10 – The classification rates of the N-grams binary

SVM SGD LMT Class
TP rate Precision TP rate Precision TP rate Precision

Unigrams 91.7% 91.7% 86.1% 96.9% 88.9% 94.1% benign
84.2% 84.2% 94.7% 78.3% 89.5% 81% infected
89.1% 89.1% 89.1% 90.4% 89.1% 89.6%

2-grams 84.8% 100% 90.9% 96.8% 97% 94.1% benign
100% 82.8% 95.8% 88.5% 91.7% 95.7% infected
91.2% 92.7% 93% 93.3% 94.7% 94.8%

3-grams 87.9% 96.7% 87.9% 96.7% 100% 94.3% benign
95.8% 85.2% 95.8% 85.2% 91.7% 100% infected
91.2% 91.8% 91.2% 91.8% 96.5% 96.7%

TABLEAU 2.11 – The classification rates of the N-grams occurrence



74

SGD and LMT algorithms. Indeed, the classifier reached 100% and 95.8% accuracy to classify
benign and infected instances respectively. However, for unigrams the accuracy does not
exceed 90% for either class. In (58) the authors calculated the F-measure. For the 3-gram they
obtained a rate of 97.5%, with our dataset we obtained 98.2%.

The classification rates of the N-grams occurrence get the best TP rate with 96.5%, and LMT
performed with the best TP when n is 3 compared to 89.1% for unigrams and 94.7% for the
2-grams. For the correct classification of infected traces in 2-grams experiment, the SVM
algorithm gives the best rates with 100% True Positive rate. For the 3-grams, the authors in
(27) obtained a result of 97% of accuracy, or our method achieves 91.8%.

FIGURE 2.3 – Histogram of TP rates of N-grams

The Figure 2.3 shows the results of classification using N-grams. We can observe that for every
classifier, results improve as the value of N increases. For example, the number of correctly
classified instances of binary vectors with the SVM algorithm increases by 10% between
unigrams and 2-grams, and by a further 5% between 2-grams and 3-grams. Also, we can
observe the same thing for the correctly classified instances with the vector of occurrence.
The result augmented by 5% between unigrams and 2-grams, and 2.5% between 2-grams and
3-grams. For a better classification of unigrams, the use of the occurrence was the best method,
unlike 2-grams and 3-grams whose classification of its binary vectors gave the best result.
So we can conclude that the use of the sequences occurrences is not enough to discriminate
malicious from benign traces.

2.6 EXPERIMENT 4 : RELATIVE ORDERING

2.6.1 ANALYSIS OF THE DATA

By studying the pairs of benign and infected traces in our dataset, we noticed that the attack
often takes place at the onset of the execution. In this final experiment, we propose a novel
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scheme for malware detection in traces, premised on this observation.

We divided each trace into a given number (k) of segments. We tested k with the values 5,
10, 30, 50, and 100 segments. Then we recorded in which segment is the first occurrence of
each system call in our database. The size of each segment naturally differs from one trace to
another since the sizes of the traces are varies.

To verify the location of malware in the divided traces, we have studied the system calls
present in the segments. During the analysis of these calls, we observed that for a pair of the
traces, the system calls represent the malware are present for the first time at the start of the
infected trace and the end of its benign version.

For example, the system calls recv and send allow to steals information from the device and
sends them to a remote server. We can find these two calls in the pairs traces of the “Battery
charger” application. In the infected trace, these two calls are present for the first time in
segment 1 for k = 5 and k = 10, and between segments 2 and 11 for k = 30, 50 and 100.
However, the call recv is first found in benign traces between segments 2 and 37, and the call
send between segments 5 and 90 for different values of k.

Another example of the pairs of traces, those of the application “Kobe Bryant“. In the infected
version of the trace, we can find the fstat, open and close calls which appear for the first time
in segment 1 for any value of k. As well as the fcntl call which appears for the first time in
segments 1, 3, 5 and 9 for k=5, k=10, k=30 ,k=50 and k=100 respectively. However, these
calls first appeared between segments 5 and 82 in benign traces divided into k segments. These
four system calls are responsible for reading the data stored in the device and SD memory.

2.6.2 CLASSIFICATION

After dividing the traces into segments, we have constructed a vector with the number of
segments where each system calls appears for the first time or a 0 if this system calls is not in
the trace. The size of each vector corresponds to the number of system calls in our database,
namely 62.

We tested the classification of the five types of segments presented above. For this experiment,
we used 66% of the vectors as a base and 34% for the test and compared several classification
algorithms. Optimal results were obtained by the LMT, J48, and 3NN algorithms. Consider the
J48 algorithm, for the classification of our data, we obtained 79.31% of TP with 5 segments,
72.41% for the 10 segments, 96% for the 30 segments, 93% for the 50 segments, and 75.86%
for the 100 segments. Therefore the best classification of benign and infected traces was
obtained by dividing the traces into 30 segments. The results of the classification rates for the
30 segments were presented in Table 2.12.
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Algorithm TP Rate Precision F-Measure Class
LMT 91.3% 100% 95.5% benign

100% 75% 85.7% infected
93.1% 94.8% 93.4%

J48 95.7% 100% 97.8% benign
100% 85.7% 92.3% infected
96.6% 97% 96.6%

3NN 100% 92% 95.8% benign
66.7% 100% 80% infected
93.1% 93.7% 92.6%

TABLEAU 2.12 – The classification rates of traces - Experiment 5

We can observe that algorithms LMT and J48 have successfully classified every infected traces
with a recall of 100%. Then the 3NN algorithm succeeded in classifying benign traces also
with a recall of 100%.

The optimal result was given by the J48 algorithm, with a TP rate of 96.6% with a precision of
97%.

2.7 RELATED WORK

Addressing the security risks associated with Android apps is an urgent problem and a number
of solutions have been suggested. A thorough survey of every proposed solution would be out
of the scope of this paper and the interested reader is referred to the surveys of Razgallah et al.
(98), Naway and Li (84), Alzahrani and Alghazzawi (7), Rubiya and Radhamani (118) Yan
and Zheng (140) or Arshad et al. (16).

It is noteworthy to stress that static approaches, based on permissions, code analysis or other
features obtainable without running the code, outnumber dynamic solutions. The former
have the advantages of early detection and of minimal runtime overhead, while the latter
can circumvent strategies used by malicious adversaries to avoid detection, such as code
obfuscation, dynamic loading or encryption.

System calls are widely used by dynamic analysers, since they reveal the code low-level
behavior, and can be obtained even when the application’s source code is unavailable. However,
due to the large volume of data present in a system call trace, most of these approaches involve
an abstraction phase that relate the raw system call trace to a higher-level behavior.

For instance, Hamou-Lhadj et al. compare and correlate the system call traces of two different
programs offering the same functionalities, beforming the same high-level behavior on two
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different operating systems (54). In order to reveal the commonality of behavior, they first
elide extraneous information such as pid, parameters and return values from the trace. They
further remove sequential repetitions of the same system call. Finally, they replace sequences
of system calls with higher-level abstract behaviors using a pre-established pattern library.
This process allows them to uncover the presence of malicious behavior in one of the two
instance traces.

N-grams (subsequences of fixed length) are widely used for the comprehension and analysis
of system call traces (28). Li et al. instead opt to employ Markov Chain to extract variable
length subsequence from system call traces. These sequences are then fed to a neural network
to distinguish malware from benign traces.

Drawing an analogy to natural language, Xiao et al. (137) proposed a detection method that
employs the Long Short-Term Memory model (LSTM (56)), a type of neural network model
used in the processing of natural languages. They treat a trace of system calls as a sentence,
with each system call being an individual word, and train two classifiers, one for benign traces
and one for malicious ones. An execution is then pegged as being malicious if it is more likely
to occur in the malicious model.

Canfora et al. (26) also relied upon system calls to perform malware detection. Their method
draws upon the fact that malware tends to evolve through an iterative process of borrowing
and modifying code from other malware. The trace is first abstracted into a vector that records
the number of occurrences of subsequences of a given length, and detection is then performed
using a supervised learning algorithm.

Sanya et al. (29) proposed an approach to detect malicious behavior at runtime. They first
executed apps in a controlled environment for a fixed period of time, and recorded the system
call occurring during this time. After discarding the less statistically significant system calls,
each app was associated with a Boolean vector that indicates if each of 18 more relevant
system calls is present or absent during its execution. This data is then fed to a machine
learning algorithm.

2.8 DISCUSSION AND CONCLUSION

In this paper we analyzed system calls traces of Android. We first propose a novel abstraction
process that highlights the features that most readily distinguish benign and malicious features,
and perform experiments that indicate that this abstraction process improves the performance
of classifiers. We further replicate 5 studies that employed system call traces for malware de-
tection, confirming the results of these studies. The Replication of multiple malware detection
techniques on the same dataset allows comparison on equal footing.
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Furthermore, we propose a novel malware detection technique, based on the intuition that
benign and malicious traces differ with respect to the relative ordering of the first occurrence
of each system call in the trace. This technique shows promising results, specially if it is used
in conjunction with one of the other methods replicated in this paper.

Finally, we make our data available to other researchers in the field.

The classification algorithms tested in each experiment provide us with insights about the
effectiveness of each abstraction when applied to the problem of classifying traces as benign
or infected. By testing each experiment using the same database of traces, we observed that
optimal results were obtained when considering the 3-grams binary of system calls and traces
divided by segments. In this later two cases, precision rate varied between 97% and 98.3%
and TP rate between 96.6% and 98.2%.

Figure 2.4 displays the best TP rates and ROC area for each experiment. The ROC (Receiver
Operator Characteristics) area gives the rate of true positives as a function of the rate of false
positives. If the value of the ROC of an algorithm is larger, then the classification is better.

FIGURE 2.4 – The best TP rates and ROC area of our expirements

The experimental results in our experiments show that the proposed abstraction phase allow
to have high classification accuracy. Because of the removal of irrelevant information which
can give false information about the behavior of an application and increase the rate of false
positive classification.
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RÉSUMÉ

Les suivis d’appels système sont une source inestimable d’informations sur le comportement
d’exécution d’un programme et sont particulièrement utiles pour la détection de logiciels
malveillants dans les applications Android. Cependant, la rareté des ensembles de données de
haute qualité accessibles au public entrave le développement du domaine. Dans cet article,
nous présentons TwinDroid, une base de données de plus de 1 000 traces d’appels système,
provenant d’applications Android bénignes et infectées. Une grande partie des applications
utilisées pour créer la base de données provient de paires d’applications bénignes-malveillantes,
identiques à l’exception de l’inclusion de logiciels malveillants dans ces dernières. Cela fait de
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TwinDroid une base idéale pour la recherche en sécurité, et une version antérieure de TwinDroid
a déjà été utilisée à cette fin. En plus d’un ensemble de données de traces, TwinDroid comprend
un pipeline de génération de traces entièrement automatisé, qui permet aux utilisateurs de
générer de nouvelles traces de manière standardisée et transparente. Ce pipeline permettra à
l’ensemble de données de rester à jour et pertinent malgré le rythme rapide des changements
qui caractérisent la sécurité Android.
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Base de données, Applications Android, Sécurité, Suivi des appels système.



CHAPTER 3

TWINDROID : A DATASET OF ANDROID APP SYSTEM CALL TRACES AND
TRACE GENERATION PIPELINE

Asma Razgallah*, Raphaël Khoury*, Jean-Baptiste Poulet*
* Department of Computer Science and Mathematics, Université du Québec à Chicoutimi, Canada

System call traces are an invaluable source of information about a program’s runtime behavior
and be particularly useful for malware detection in Android apps. However, the paucity of
publicly available high-quality datasets hinders the development of the field. In this paper, we
introduce TwinDroid, a dataset of over 1000 system calls traces, from both benign and infected
Android apps. A large part of the apps used to create the dataset is from benign-malicious
app pairs, identical apart from the inclusion of malware in the latter. This makes TwinDroid
an ideal basis for security research, and an earlier version of TwinDroid has already been
used for this purpose. In addition to a dataset of traces, TwinDroid includes a fully automated
traces generation pipeline, which allows users to generate new traces in a standardized manner
seamlessly. This pipeline will enable the dataset to remain up-to-date and relevant despite the
rapid pace of change that characterizes Android security.

Index terms : dataset, Android apps, security, System call traces

3.1 INTRODUCTION

System call traces reveal a wealth of information about the execution of the underlying system
and serve as the basis for a variety of analyses, including malware detection, optimization,
feature enhancement, and performance analysis. System call traces have been shown to be
particularly useful in the case of malware detection in Android apps, and a number of security
solutions that rely upon system calls have been proposed (57), (3), (55), (113), (122).

However, the paucity of publicly available datasets of Android traces— often decried by
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researchers, forces each research team to rely upon its custom-generated dataset, with the
consequence that it is not easy to compare the effectiveness of these methods on equal footing.
The considerable time required to generate an adequate volume of traces is also an obstacle to
developing security solutions. Many studies on the topic are tested on trace sets whose size
seems insufficient to draw general conclusions.

To address these issues, we present TwinDroid, a dataset of Android system call traces. At
present, TwinDroid contains 10,859 traces. A large part (42% ) of the traces present in the
dataset has been generated from pairs of benign and infected (repackaged) versions of the apps.
The presence of apps that are identical but for the inclusion of malware makes this dataset
ideal for research on dynamic malware detection. We intend to continue to expand the size
and variety of the dataset in the near future.

Furthermore, TwinDroid repository also includes a well-controlled and reproducible pipeline,
which automates the process of generating new traces. This allows users to seamlessly generate
new traces that are tailored to their particular needs. For example, a researcher who wishes
to study the evolution of Android apps over a period of time may generate traces from both
earlier and more recent apps.

In addition to traces, TwinDroid also extracts permissions and features from each app. These
datums are highly predictive of malicious behavior and repackaging (93), (150),(41).

While specially designed for security purposes, TwinDroid is sufficiently versatile to serve in
research in several areas of software engineering, mainly because of the ability to generate
additional traces on-demand with minimal effort and allows the dataset to remain up to date.

TwinDroid offers several advantages, namely :
— The dataset consists of traces of apps drawn from multiple sources and contains both

benign apps and infected apps with various malware. An important part of the dataset
consists of traces from pairs of applications, one benign, one malicious, but identical
but for inclusion of the malware in the latter. This makes TwinDroid uniquely suited
for security research.

— The apps traced span a variety of common app categories and have been published
over ten years. For each app, the dataset contains multiple traces of varying lengths.

— In addition to each trace, the database records the random seed and event stream that
created the trace. This provides a large degree of reproducibility and a path for research
on explainability if a trace exhibits interesting or unusual behavior.

— In addition to the dataset of existing trace, TwinDroid presents a fully automated
pipeline to generate new traces from existing apps. Furthermore, any researcher in
need of app traces may use this pipeline to generate traces suitable to their specific
needs. This ease of extension is a crucial design goal as it allows the database to remain
up-to-date with emerging malware.

An earlier version of the TwinDroid dataset was used to perform malware detection on
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abstracted traces (97).

Both the dataset and the trace generation pipeline are public and freely available for research
purposes 1 2.

The remainder of this paper is organized as follows : Section 3.2 describes the dataset, while
Section 3.3 details the associated trace generation pipeline. Section 3.4 discussed some
limitations of the dataset, and Section 3.5 presents some avenues of research that TwinDroid
opens.

3.2 THE TWINDROID DATASET

The TwinDroid dataset includes over 10,859 traces, from 773 benign and 4,715 infected apps.
Each trace is generated by using the Monkey tool 3 to run the app on random inputs for a
pre-determined amount of time (the dataset includes traces of differing lengths) and tracing
the execution using Strace 4. All apps are run in an emulated environment.

TwinDroid’s database schema is given in Figure 3.1.

FIGURE 3.1 – Database Schema

A Unique Package Identifier (UPI), computed by applying the SHA-256 hash to each app,
serves as a primary key (field Unique Package Identifier). The fileCorrespondance table
additionally contains the relative path of the apk on the host system, including its filename
(field sourceFileRelativeToSCript) and the source of the app, in case apps are selected
from multiple datasets of apps.

Table packageInfo contains a variety of information about the apps. Notably, this table indicates
the file name of the apk (field packageName), the version of the SDK (field sdkVersion)

1. https://github.com/RaphaelKhoury/automated-apk-tracing
2. https://zenodo.org/record/6259612#.YioFmxvCpH4
3. https://developer.android.com/studio/test/monkey
4. https://strace.io/

https://github.com/RaphaelKhoury/automated-apk-tracing
https://zenodo.org/record/6259612##.YioFmxvCpH4
https://developer.android.com/studio/test/monkey
https://strace.io/
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and the target SDK version (field TargetSDKVersion). this information is extracted from the
manifest file, as is the name of the app (field ApplicationLabel). The presence or absence
of malware is indicated by the Boolean attribute malware. In many cases, the exact name
of the malware infecting an apk can be obtained from the database from which the apk was
downloaded.

The permissions and features fields respectively contain the permissions and features
declared in the manifest file of the apk. This information was included in the database because
of its relevance to malware detection and other security-relevant applications. These fields
are constructed by comparing the permissions and features declared in the manifest file with
lists contained in two files, "features.txt" and "permissions.txt", which include all standard
permissions and features listed on the official Android developer documentation at the time
of the creation of TwinDroid. This scheme was adopted to avoid cluttering the database with
user-defined permissions, which are not informative. When generating additional traces, the
user may update these files to reflect any changes in the standard permission and feature sets.

Finally, the logsCorrespondance table holds data resulting from the actual tracing. For a
given UPI, multiple entries will exist, one for each trace test performed on the apk. The field
OutFilesName holds the base name of the two files generated for each trace : a .monkdata
file that contains the output of the Monkey script and a .trace file that contains the trace
proper. To improve reproducibility, we also include the seed passed as a parameter to the
Monkey tool (field MonkeySeed), to generate the random input as well as the number of
input that was intended to be sent by Monkey to the app (field MonkeySizeInput). The field
eventActuallySent contains the number of events that the Monkey tool was actually able
to send before the application failed or execution was terminated. Such failures are usually
caused by a crash in the application. This is not surprising considering that the script performs
fuzzing, which much ill-developed software can’t handle. Such failures do not hinder the
execution of the tracing process : the abnormal execution is recorded in the database, and the
tracing proceeds. If monkeySizeInput and eventActuallySent are equal it can be assumed
that the test was successfully completed.

TABLEAU 3.1 – Content of the TwinDroid dataset.

Dataset Benign apps Malicious apps Pairs Benign traces Malicious traces Years
Androzoo 704 1601 1601 1313 3201 2016−2021

Google Play 40 0 22 80 0 2008−2022
APKpure 29 0 0 38 0 2014−2022
Drebin 0 3114 22 0 6227 2010−2012
Total 773 4715 1623 1431 9428

Each trace consists of two files, a trace file, and a .monkeydata file.
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FIGURE 3.2 – Overview of the Trace Generation Pipeline.

[pid 3103] 1641327580.279530 prctl(PR_SET_VMA, PR_SET_VMA_
ANON_NAME, 0x713d39b38000, 16384, "stack_and_tls:3103") = 0
[pid 3103] 1641327580.279611 mmap(NULL, 36864, PROT_READ|
PROT_WRITE,MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x713d39aad000
[pid 3103] 1641327580.279688 mprotect(0x713d39aad000, 4096,
PROT_NONE) = 0
[pid 3103] 1641327580.279750 sigaltstack({ss_sp=0x713d39aae000,
ss_flags=0, ss_size=32768}, NULL) = 0
[pid 3103] 1641327580.279820 prctl(PR_SET_VMA, PR_SET_VMA_ANON_
NAME, 0x713d39aae000, 32768, "thread signal stack") = 0
[pid 3103] 1641327580.280081 rt_sigprocmask(SIG_SETMASK, [QUIT
USR1 PIPE RTMIN], NULL, 8) = 0
[pid 3103] 1641327580.280175 mprotect(0x713a96c04000, 4096,
PROT_NONE) = 0

FIGURE 3.3 – Sample of an application trace

The trace file is the output of Strace, with parameters : -f -ttt. These parameters can be modified
if additional traces are generated.

Each line of the trace file corresponds to a single system call and indicates a timestamp,
followed by the system call itself, including parameters and return values. If more than one
thread or process is traced (because the initial process forked), then the PID of the process that
performs the system call is prefixed to each line. A sample of a trace is shown in Figure 3.3.

The .monkdata file is the output of the Monkey tool on stdout. It contains a wealth of data that
aids in understanding the underlying behavior of the trace, notably a listing of the random
events sent to the app. We refer the reader to the Monkey tool’s documentation for more
information on this data.

Each trace is on average 4kB, for a total of 7GB for the entire dataset.
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Origin of the apps The TwinDroid dataset currently contains over 10,859 traces from 4,715
malicious and 773 benign apps. Of these, 2,327 apps occur in matching pairs of otherwise
identical benign and malicious apps. The make-up of the dataset is detailed in Table 3.1.

We opted to include samples of traces from several different sources, both to increase the
diversity of app types and malware types present in the dataset, as well as to illustrate the ease
with which new traces can be added using the trace generation pipeline. As such, we selected
benign apps from the Google play (51), and APKpure (13) datasets, and malicious apps from
the Drebin, (15) Andozoo (4) and Google play datasets. The Androzoo dataset identifies
15,000 repackaged variants of 3,000 benign apps in the Androzoo dataset. An additional 22
pairs were manually identified by comparing the Google Play and Drebin datasets. We used
the online tool VirusTotal 5 to determine if the applications of Google Play and Pure APK are
benign.

All of these datasets are widely used in academic research. Also, note that while Androzoo
and APKpure contain more recent apps appropriate for security research, those from Google
play and Drebin span a more extended period, allowing longitudinal studies on software
engineering.

3.3 TRACE GENERATION PIPELINE

In addition to the traces already present, TwinDroid includes a trace generation pipeline that
automates the process of tracing Android apps and of generating new trace data. The apps
are run on an emulator, which is run inside a container. This design choice is motivated by
providing identical settings for all trances. Using a container avoids the time-consuming
process of installing and configuring the emulator since the container was created from a
system on which the emulator is already installed. The use of containers provides additional
benefits, including :

— Additional security and isolation of the malware from the underlying system;
— Ease of deployment, avoiding the installation of the emulator, and providing a common

emulator setup for every execution ;
— Possible parallelization.

The pipeline creates a fresh container for each app and then proceeds to install the apk via adb.
Duplicate apks are seamlessly detected (by way of the hash) and discarded.

The pipeline first extracts static information from the apk (features and permissions) before
tracing. Finally, each trace is added to the database upon completion.

If a trace of a given apk and input size already exists in the database, the script skips to the
next input size or apk. This ensures that the script can be stopped at any point during tracing

5. https ://www.virustotal.com/gui/home/upload
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and then restarted, skipping over the work already done.

Implementation Considerations To generate new traces, the user only has to update the
configuration file and run script.sh. More specifically, the user must specify : (1) the number
of traces to generate for each app, and the number of events that the Monkey tool should
generate in each case ; (2) the paths of the folders containing the benign and infected traces ;
(3) and optionally, a list of pairs of apps, identified by their hash values, in case the dataset
includes matching pairs of benign and infected versions of the same app. The apps can be
copied directly in the benign and infected folders. However, if the apps come from multiple
sources and the user wishes to keep track of each app’s origin, a distinct sub-folder for each
app source should be created in these folders. The name of this sub-folder will populate the
source field in the database.

As mentioned above, both the Monkey tool and the emulator are run inside an emulator.
Unfortunately, Monkey launches the app internally and does not offer the possibility of
simultaneously invoking the Strace. To circumvent this problem, it was decided to trace the
Monkey process from the onset alongside all of its sub-processes, encapsulating the application
to test. This solution is perhaps sub-optimal since it implies that one of the processes being
traced is the Monkey tool rather than the app. Still, the only plausible alternative, starting
Strace after launching the app, would omit the beginning of the execution from the trace. Such
a situation would be particularly undesirable since malware often performs malicious actions
at the onset of the execution. In any case, it is straightforward to identify the system calls made
by the Monkey tool, rather than by the underlying application, by their PID 6.

Some security risks are unavoidable when running apps infected with malware, even if this
is done only in a simulated environment. In fact, emulators may themselves contain security
vulnerabilities that could be exploited by the malware present in the underlying app (139).

The added layer of security provided by the container should thwart such attempts. The docker
container runs without administrator privilege on the host machine, and it incorporates multiple
built-in security features, which should ensure that the host system remains unaffected if the
container is compromised. No security measure is perfect, but the attack surface should be
limited to adb and the two exposed ports on the container.

3.4 LIMITATIONS

An important limitation of TwinDroid is the fact that the apps are run in an emulated environ-
ment. Some malware may be able to detect the presence of the emulator and will not perform

6. Note that Strace only records the PID after the first fork occurs. Previous system calls, for which a PID is
not listed, are also performed by the Monkey tool.
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malicious actions. The collected trace is thus not an accurate reflection of the actual behavior
of the underlying malicious app, with a consequence for its suitability in malware detection.

In a small number of cases, the emulator is unable to run the app, with consequences for the
completeness of the dataset if we require traces from every app in a sample. It is important
to stress that this situation is comparatively rare, occurring in less than 5% of the apps we
attempted to trace.

As discussed above, malicious apps are prone to crash in fuzzing, which reduces the utility
of the traces. However, since our database contains, for each trace, the number of events that
the Monkey tool intended to send, as well as the number of events that were sent, it is easy to
exclude such misbehaving traces if they are unwanted.

3.5 PREVIOUS AND FUTURE USE

In our previous survey of malware detection in Android apps (98), we found that system
calls were one of the preferred sources of information to profile malicious behavior in apps.
However, the heterogeneity of the datasets commonly used in research makes comparing
the effectiveness of different methods difficult. The considerable time required to generate
a dataset of suitable size is also in hindrance to the development of the field. The use of
TwinDroid can help address these issues.

In our subsequent research (97), we employed an early version of TwinDroid for malware
detection in system call traces. An analysis of the pairs of benign and malicious traces present
in TwinDroid allowed us to develop a trace abstraction process that highlights the differences
between the two categories of traces. Performing malware detection on the abstracted traces
was shown to improve detection accuracy.

As mentioned above, the fact that a large portion of TwinDroid consists of traces from pairs
of otherwise identical benign and malicious apps gives us the means to study the low-level
behavior of malware with a higher degree of precision than was previously possible. In
particular, this dataset will make it possible to verify that malware detection algorithms really
are detecting malware behaviors and are not simply sorting different apps based on other
features.

Aside from security purposes, system traces are widely used for several other software
engineering tasks, and TwinDroid is a suitable basis in this regard. In this regard, TwinDroid’s
trace generation pipeline will allow the dataset to remain up-to-date and relevant on a forward-
going basis.

Amongst possible usages, we note the creation of pattern libraries that relate sequences of
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system calls to higher-order events (e.g., Opening a file or sending data to the network) (44).
Such methods allow users to extract more information from the traces and open the door to
further avenues of research, thus increasing the value of the dataset.

Karan et al. (35) show that the power consumption of a device can be estimated from the
system calls performed, while Tian et al. rely upon patterns of system calls to detect code
plagiarism (? ). Karn et al. (61) showed that an analysis of the system calls performed by an
IoT device can reveal the presence of crypto mining.

Syed et al. (119) use traces of system calls for remote attestation, the process of ensuring the
trustworthiness of clients running software locally. Ezzati-Jivan (43) shows how system call
traces can reveal the root cause of performance degradation in distributed systems.

Furthermore, the large time span of the apps traced in the dataset allows us to perform
longitudinal studies on the evolution of these aspects of app development over the last several
years.
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The detection of malicious Android applications is a major security challenge. A number of
machine learning-based techniques have been put forth, and some of them have attained great
accuracy. However, the diversity of apps and frequency at which new malware families are
found means that the issue remains unresolved. In this paper, we use both static, dynamic and
hybrid analysis to automatically classify Android apps as benign or infected. We compare all
three approaches on a common dataset — the TwinDroid dataset which contains over over
15,000 system call traces from over 9,000 benign and infected app, which allows comparison
on equal footing. We make further contributions on the topic of feature selection and trace
abstraction.

Index terms : malware detection, android security, security

4.1 INTRODUCTION

Nowadays, the number of smartphone users is constantly increasing worldwide. This increases
the risk of attacks, especially on less secure systems like Android, even though it is the most
widely used system in the world. According to Proofpoint (81) teams, attempted malware
attacks on smartphones have increased by 500%. Phishing via SMS attacks were declining
at the end of 2021, but have been steadily increasing since early 2022, it reaches 2,649
billion SMS sent per week in April 2022 1. Malware is spread via fake apps downloaded from

1. https://earthweb.com/smishing-statistics/

https://earthweb.com/smishing-statistics/
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application stores. The Android Play Store is particularly targeted by cybercriminals because
third-party apps can be downloaded without verification.

Apps are the basis of using the Android system. These apps can be infected via various
methods, the most popular being installation via repackaging, update attacks, and adware. In
the case of repackaging, the attacker downloads a popular app, disassembles it, adds malicious
code to the app, recompiles it and published the malicious version on the app store. In an
update attack, the .apk is disassembled and attached to a component that downloads a malicious
update during execution. Adware is a particular class of malware in which the advertisement
seen by the user of an app are controlled by an adversary in order to do malicious operations.
These operations may be limited to showing Advertisements in a way that is not concordant
with the Advertisement Network policies (e.g., AdMob 2 ) or may include other malicious
operations such as stealing users’ confidential information (e.g., the device IMEI, the user
account list and the device’s ).

Therefore, it is important to develop a method for detecting malicious applications. While
there are several research papers ((101), (116), (141), (110), (48), etc.) on Android malware
detection, attackers keep applying new methods to evade security. The most common ap-
proaches for malware detection can be broadly classified into three main categories : static,
dynamic, and hybrid.

All research relies on apk datasets as initial sources. Researchers use these apks to extract the
desired data and test their methods and processing techniques. However, for some research
(such as dynamic analysis that relies on execution traces), this means spending additional
time if the desired data is not already in a dataset. TwinDroid (? ) fills this gap by providing a
dataset with more than 15,000 of system calls traces, from more than 9,000 of apps, alongside
with static data from these apps. The variety of apps used (benign, infected, pairs, old or new
versions of apps) is an excellent basis for any research in Android smartphone security.

In our research, we used three of the most commonly used features for malware detection
(98), namely : permissions, resource data (hardware and software data), and system calls to
automatically detect malicious behavior in apps. In this article, we use these features to answer
the following research questions :

— RQ.1 : How do benign and malicious apps differ with respect to static data?
— RQ.2 : How do benign and malicious apps differ with respect to the system calls in the

trace (dynamic analysis) ?
— RQ.3 : Can statically and dynamically gathered data be used in tandem to improve the

detection of malware?
The main contributions of this paper are as follow :

— We compare the effectiveness of static, dynamic and hybrid detection methods, when
operating on a common dataset.

2. https://support.google.com/admob/answer/6128543?hl=en

https://support.google.com/admob/answer/6128543?hl=en
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— Drawing upon a manual observation of the dataset, we show that extracting features
from the parameters of system calls (which are normally ignored when performing
dynamic analysis) enhances the classification’s performance.

— We demonstrate the use of TwinDroid as tool for scientific investigation of malware. A
large portion of our dataset is composed of benign\infected application pairs, which
increases its value for research.

The remainder of this paper is organized as follows. In Section 4.2 we presented the TwinDroid
dataset and examine case studies related to the data collected from our dataset. Our static,
dynamic, and hybrid detection methods are developed in Sections 4.3, 4.4, and 4.5, respectively.
The related works are discussed in Section 4.6. Concluding remarks are given in Section 4.7 .

4.2 DATASET DESCRIPTION

The TwinDroid dataset 3 is a publicly available dataset that contains execution traces of both
benign and infected Android apps as well as a static data vector for each app traced. It also
includes an automated pipeline for generating new traces from existing apps 4. Apps were
selected from four sources. Malicious apps were taken from the Androzoo database(4), which
contains the largest number of available pair apps (original / repackaged), and from the Drebin
database (15). We supplemented this selection with more recent benign apps from APK Pure 5

and the Google Store 6. For each app, the dataset contains multiple traces of varying length.
TwinDroid currently contains 15,000 traces.

The apps used to create TwinDroid are divided into two groups : the first consists in app pairs,
i.e. pairs of otherwise identical benign and malicious apps. The dataset currently contains
2,288 such pairs, consisting 2,288 infected versions of 405 benign apps from Androzoo
dataset. These pairs consist of benign and repackaged apps obtained by editing an app’s
original code via reverse engineering, adding malicious code, repackaging, and republishing
the app. These apps were collected from the source repositories between 2016 to 2022. Note
that a benign app may have multiple infected counterparts. The remainder of the dataset
consists in unpaired recent 773 benign apps from Google Store, APK Pure and Androzoo, and
5,560 infected apps, collected between 2012 and 2014 from drebin dataset.

Before using the apps, we performed an additional verification of its status as benign or
malware, instead of relying on the benign\infected label provided by the source dataset from
which the app came. This verification was performed using VirusTotal 7 a tool that includes
several antivirus providers, such as McAfee, Symantec, Avast, etc.

3. https://zenodo.org/record/6563328#.YpEDpajMLIU
4. https://github.com/RaphaelKhoury/automated-apk-tracing
5. https://apkpure.com/fr/
6. https://play.google.com/store/games?hl=fr&tab=w8
7. https://www.virustotal.com/gui/home/upload

https://zenodo.org/record/6563328##.YpEDpajMLIU
https://github.com/RaphaelKhoury/automated-apk-tracing
https://apkpure.com/fr/
https://play.google.com/store/games?hl=fr&tab=w8
https://www.virustotal.com/gui/home/upload
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As shown in Table 4.1, VirusTotal correctly labels the apps from drebin as malicious apps,
and the apps from APK Pure and Google Store as benign. However, out of 8,700 pairs from
Androzoo, only 2,288 pairs are correctly identified, with the original app labeled as benign
and the repackaged version is detected as malware, as we would expect. In 5,450 cases, both
the original and repackaged apps are pinpointed as malware by VirusTotal. An additional 897
pairs appear to consist in two benign variants. Finally, in 65 cases, VirusTotal provides the
counterintuitive result that the original app is malicious while the repackaged version is benign.
An app is considered infected if it is detected as malicious by any one of VirusTotal’s 13
antivirus programs. These results highlight the limitations of relying exclusively on antivirus
solutions, and the need for the type of feature-based solutions explored in this paper.

TABLEAU 4.1 – Result of applying the VirusTotal scan to the apps in the TwinDroid dataset

Dataset Number of pairs class benign infected

A
nd

ro
zo

o

2288
benign X
infected X

5450
benign X
infected X

897
benign X
infected X

65
benign X
infected X

Dataset Number of apps class benign infected
Drebin 5560 infected X
APK Pure 29 benign X
Google store 40 benign X

The most common malware type for the pairs in our dataset is adware. This is a particularly
difficult type of malware to detect because of minimal amount of changes to the app’s code
that occur during the infection process, compared with other classes of malware (64). Apps
infected with adware make up 78% of the infected apps, followed by the Trojan with a 14%
share, as well as spyware with 4% of the samples, and the remaining 4% are types of worm,
riskware, etc. This diversity allows users of the dataset to evaluate the effectiveness of the
malware detection mechanisms they propose in a variety of contexts.

4.3 STATIC ANALYSIS

The static approach is based on features obtained from reverse engineering and studying
the Android app’s package file. This allows the extraction of information such as the intent,
activities, the permissions requested during installation and the list of hardware resources used
by the app. Static approaches are widely used in the literature (? ). In this section, we perform
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malware detection on apps using static data extracted from the apps in the Twindroid dataset.
More specifically, we perform classification based on the permissions and resources requested
by the app. Following our previous research, we first perform a data abstraction phase, which
we found increases the effectiveness of the classification process (97). This classification will
serve as a baseline to evaluate the effectiveness of dynamic and hybrid classification in the
next sections.

4.3.1 ABSTRACTION PROCESS

In the abstraction phase, we eliminate redundant and irrelevant static data by selecting a subset
of the original, eliding datum that do not bear on the determination of an app’s status as benign
or malicious.

In this analysis, we were guided by the examination of the malware in our dataset as well as
by the official Android documentation (36). Permissions are classified into three categories
depending on their security sensitivity : normal, dangerous, and signature. After completing
this phase, we chose to retain 162 of the 811 permissions, namely permissions at risk of
"dangerous" and "signature" categories, which may affect the user’s privacy, the operation of
other applications, or the performance of the device.

We also extracted a list of resources for the apps. The resources are defined by <uses-features>
in the AndroidManifest.xml file of every android app. Some features in the list of permis-
sions and resources have a high correlation with each other. This is often the case because
a certain permission is required to access a given resource. For example, the resource (an-
droid.hardware.camera) and the permission (android.permission.CAMERA) are 99% corre-
lated. We need to consider only one of them to remove the redundancy. We thus start by
identifying such highly correlated resources and permissions and keep only one of them. Note
that these features are removed from the feature set even if they are highly correlated with the
classification class. This is because the presence of a permission that strongly correlates with
the resource is sufficient for the classification process.

All the features including the permissions and resources with their correlation are available in
the author’s repository 8.

We elided from the feature set 22 resources that had over over 50% correlation with a
permission. This left a feature set of 162 permissions and 31 resources. The list of resource
features that have less than 50% correlation with the rest of the resources is shown in Figure
4.1. It depicts that resources are not always correlated with permissions and including them as
features will improve the classification model.

8. https://github.com/AsmaLif/Permissions-and-resources-with-their-correlation

https://github.com/AsmaLif/Permissions-and-resources-with-their-correlation
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FIGURE 4.1 – List of the resource features that does not have above 50% correlation with any
permission

We applied mutual_info_classif() from the scikit-learn library in Python to determine the
correlation of features with the class of samples. Note that the class is the category of malware
or benign samples. Figure 4.2 shows the top 20 features correlated with the class of samples.
These features are the ones playing a key role in creating a model to detect malware versus
benign applications. As it is shown in 4.1, some of these features related to screen usage, which
is mostly available in benign apps, and not in malware samples. That is an original aspect of
our classification approach. In most previous research (72), the features were selected by only
examining malware samples. Contrary to them, we use features that identify benign apps as
well.

4.3.2 CLASSIFICATION

The TwinDroid dataset contains a static data vector for each app that is constructed. Each
position of the vector corresponds to permission or resource. A "1" indicates that the app uses
the corresponding permission or resource while a "0" indicates that the static datum is not
utilized by the app.

To measure the performance of our approach, we used the common 10-fold cross-validation
method (23). We divided the data randomly into 10 subsets of approximately equal size.
Setting aside one for testing, the remaining 9 subsets are combined into a training set (79). The
calculation of the accuracy (ACC) rate or error of the classifier is estimated for the reserved
subset. The overall accuracy is the weighted average of the 10 accuracy estimates. Following
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FIGURE 4.2 – The top 20 features correlated with the class of the samples, malware or benign
class

common usage, the accuracy is the percentage of correctly identified apps (145). We also
calculated the F-score to measure the accuracy of our model on our dataset and the Recall, a
metric that indicates the number of correct positive predictions among all possible positive
predictions.

We tested two algorithms SGD and RandomForest algorithms separately to classify the apps.
We used the WEKA (133) tool to assign input data to one of the categories ‘benign’ or
‘infected’. The results are shown in the table 4.2.

Algorithm ACC F-score Recall Error
yes abs. No abs. yes abs. No abs. yes abs. No abs. yes abs. No abs.

SGD 92.65% 89.01% 92.70% 89% 92.70% 89% 7.35% 10.99%
RandomForest 93.44% 90.75% 93.40% 91% 93.40% 91% 6.56% 9.25%

TABLEAU 4.2 – Classification using statically gathered data of apps with (yes) and without (No)
abstraction phase (abs.)

To validate the abstraction process used for this analysis, we tested app classification with
and without the abstraction phase, in Table 4.2. With the abstraction phase, we achieved an
accuracy of more than 3.37% and more than 2.07% compared to classifications without the
abstraction phase using the SGD and RandomForest algorithms, respectively.These results
are in line with those obtained by other similar studies (98), which provides evidence of the
validity of using the TwinDroid dataset for malware classification research.
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I
RQ 1 : How do benign and malicious apps differ with respect to the static data?

Our findings in the abstraction phase show that not all the resources are highly correlated
with permissions. Therefore we used the resources alongside with permissions as the
feature set for the classification of benign and malware apps. Earlier research studies
select the features by studying malware behaviors, while we used both benign and
malware characteristics for identifying features. Our results compared favorably with
that of previous research earlier studies (e.g., (101), (141), (5), (128), (145)).

4.4 DYNAMIC ANALYSIS

Dynamic analysis relies on the execution behavior of an application in real time in order to
detect the ongoing execution of malware. Data collected during the execution, usually traces
of system calls or API calls, forms an execution trace, that captures behavior of the program at
runtime, and may reveal the presence of malware.

In this section, we present an abstraction method applicable to system call traces. It takes
as input a fairly large raw execution trace, which makes direct analysis impossible, and
returns a trace consisting of a sequence of smaller, more descriptive and expressive high-level
operations. The abstraction phase is based on observations obtained by comparing pairs of
traces. In addition, in this section we perform malware detection in traces and compare the
classification of traces before and after abstraction.

4.4.1 ABSTRACTION PROCESS

In our previous study (97) we introduced a novel trace abstraction procedure that improves
the detection of malicious behavior in traces. The abstraction process consists of eliding from
the trace certain system calls that are not related to the behavior of known malware, and
unifying equivalent system calls under a common name. For example, the system call ‘fstat’,
can be found in various forms such as ‘stat’, ‘stat64’, ‘statfs64’, ‘asstat’, ‘lstat’, ‘lstat64’. We
remove all of these forms and replace them with the canonical name ‘fstat’. In that study,
trace classification was performed only on the basis of system call names, ignoring other
information present in the trace such as parameters and return values. This is the strategy that
is commonly used in dynamic analysis. In this section, we extend the previous study to include
information derived from an analysis of the parameters of system calls.

One of the goals of the abstraction process is to reduce the size of the traces while maintaining
the accuracy of the classification process. The abstraction phase allowing a 70% reduction in
the size of the data (from 3.6 GB to 1.08 GB).
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4.4.2 TRACE ANALYSIS

The parameters of system calls carry a number of highly specific information datum, such as
file names when processing files, e.g. accessing files (open, stat), or memory addresses when
writing to memory. When malicious behavior occurs, it is common for it to leave tell-tale signs
in the system call parameters (69), a fact that has until now been ignored in the context of
dynamic malware detection.

Our own investigation of the TwinDroid dataset provides evidence of possibility of relying
upon system calls parameters to improve the detection of malware.

As an example, consider a pair of applications whose infected version belongs to the fakeIns-
taller malware family, a malware that sends SMS messages to premium rate numbers (100).
According to a study by Malik et al. (77), the following system calls are associated with this
malware family : sendto, recvfrom, write, read, ioctl, stat, open. We examined the parameters
of these system calls traces from the TwinDroid dataset and made the following observations :

— The system call (read) attempts to read from file descriptor into a buffer. It was used
only five times in the benign version of the application, to read the same file each
time, and its parameter denoting the number of bytes to be read is small. However, in
the infected version, the same system call is used 3332 times to read different files
of different sizes. In addition, one can also observe a difference in the names of the
memory buffer that appear in the parameters, with malicious traces sometimes using
long and unreadable buffer names that contain special characters, such as the name
“}%227/211?4§&2222 = dξ 20222261(61E”.

— The system call (recvfrom) allows the application to receive data from a socket. In the
benign version, the buffer names in which the data is stored are generally readable,
but in the infected version, most buffers names contain special characters. Otherwise,
several buffers in the infected version have names that start with “HTTP/1.1", which
indicates that they relate to the outside environment. The same address was used in the
(sendto) system call.

— The (writev) system call writes data into multiple buffers. The data parameters of the
infected version indicate that the requested file was blocked and written to the stream
(”System.err”). This does not occur in traces from benign apps.

— The (stat) system call retrieves information about the file pointed by pathname para-
meter. It appears in the infected version, but not in the benign version. It returns the
status of a file. We further observed that in the trace of the malicious app that (stat) is
requested to obtain information about .apk files different than the current app.

— The (open) system call opens the file specified by pathname parameter. In the benign
version of the application opens a file in the /dev directory. However, in the infected
version, the files that are requested are in the /sdcard directory. Thus, the malware
consults files stored on the device’s SD card.

As a second example, consider a pair of apps, one of which is infected with malware from the
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Feature Description
WWW. sends data to a remote server.

HTTP/1.1 allows the use of external data.
System.err reading the requested file was blocked and data

was written to the stream (”System.err”).
/sdcard consults files stored on the device’s SD card.
com. name of a new application to be installed on the

device.
special characters unreadable buffer names.

TABLEAU 4.3 – List of parameters used for classification as supplementary features.

Plankton malware family. This malware uses (recvfrom) and (sendTo) system calls for sending
SMS to premium services owned by malware author. The comparison of the two versions at
the parameter level revealed the following information :

— When the Plankton malware makes use of the (recvfrom) system call, it stores data in
buffers whose names contain unreadable special characters. This system call is also
twice as common in traces from malicious apps.

— The (sendto) system call sends a message over a socket in connection mode. The
second parameter of this system call specifies the name of the buffer containing the
message to be sent. In the trace of the infected version of the app, the parameter of this
system call contains names that start with WWW, which indicates sending information
from the device to the remote server.

These observations allowed us to conclude that the malware can present itself not only through
the system call, but also through the parameters. Therefore, and based on these observations,
we add features derived from an analysis of these parameters along with the system calls
themselves to classify the application as benign or infected. Table 4.3 lists these new features.

4.4.3 CLASSIFICATION

Based on the data about system calls and parameters, we created a binary vector for each
application. In each vector, the value ‘1’ means that this system call or parameter is present in
the application, otherwise ‘0’.

To classify the apps, we used the same rate estimation method as for the static data presented
above and the same classification algorithms. Otherwise, we used 10-fold cross-validation
with the SGD and RandomForest algorithms.

The results obtained with classification in Table 4.4 compare favorably with those obtained with
static data. When using the RandomForest algorithm, the accuracy does not exceed 97.70%.
This result is consistent with previous studies (e.g., (85)) that found that SGD outperforms the
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Algorithm ACC F-score Recall Error
yes par. No par. yes par. No par. yes par. No par. yes par. No par.

SGD 98.49% 95.12% 98.50% 95.20% 98.50% 95.20% 1.51% 4.8%
RandomForest 97.70% 92.63% 97.70% 92.71% 97.70% 92.71% 2.30% 7.4%

TABLEAU 4.4 – The classification rates for dynamic data of apps with (yes) and without (No)
parameters (par.)

Random Forest if the features are sufficiently tuned. Our experiments also confirm that SGD
provides better accuracy where we select the features based on a study over the correlation
between the features and samples’ class.

In order to determine the impact of the parameter-derived features, we performed the same
experiment, on the the same dataset, using only the occurrence of canonized system calls in the
trace as a feature. The results are reproduced Table 4.4. Without the parameter-derived features,
the accuracy was 3% lower when using the SGD algorithm and 5% with the RandomForest
algorithm.

I
RQ 2 : How do benign and malicious apps differ with respect to the system calls in the
trace?

Dynamic malware detection, using the system calls present in the trace outperforms
detection based on statically obtainable features, such as permissions and resource
usage. We further found that security-relevant information can be derived from an
analysis of the parameters of the system call, which all previous dynamic detection
mechanisms tended to omit from their investigations.

4.5 HYBRID ANALYSIS

In this section, we present a novel hybrid method that combines the features of static and
dynamic analysis from the previous two sections to provide more accurate and effective
detection. In practice, a malware detection method based on this paradigm would first perform
a static analysis of a newly downloaded app at the moment it is installed. The information
it obtains during this phase will then supplement a runtime analysis of the program, thus
providing a more revealing picture of the underlying program. Alternatively, a static detection
method could run an app in a simulated environment and aggregate static data with data
derived from monitoring the simulated execution before making a decision with respect to
whether or not the app should be allowed to be installed on the host system.

In this section, we present the result of performing malware detection on the TwinDroid
dataset, using a feature vector built from a combination of the static features described in
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Section 4.3 and the dynamic features described in section 4.4.

Classification

We once again used the SGD and RandomForest algorithms. Results are given in Table 4.5. The
classification of applications reaches 99.85% with an error of 0.15% with the SGD algorithm,
thus outperforming both static and dynamic analysis. This shows the complementary between
the type of information obtained through the two types of analyses. Hybrid analysis is the least
commonly used type of malware detection in Android (98) and this results strongly hints at
the necessity to pursue this line of enquiry.

Algorithm ACC F-score Recall Error
SGD 99.85% 99.80% 99.80% 0.15%
RandomForest 98.87% 98.87% 98.87% 1.13%

TABLEAU 4.5 – Accuracy and precision of hybrid classification.

I
RQ 3 : Can statically and dynamically gathered data be used in tandem to improve the
detection of malware?

Hybrid analysis outperforms both static and dynamic analysis for malware detection,
which indicates that the two types of analyses gather complementary information.
Further research is needed to determine the optimal way to incorporate static and
dynamic data to achieve a synergistic detection of malware.

4.6 RELATED WORKS

Several studies have drawn upon diverse types of static analysis to detecting malware for
Android applications. These methods differ in part with respect to the features, or statically
computed element, which is relied upon for classification. Şahın et al. (101) used a linear
regression model for Android malware detection based on permissions.Muhammed et al. (116)
extracted Android permissions and applied the Chi-Square test algorithms and Fisher’s exact
test to rank and filter features. They then used machine learning algorithms to detect malicious
apps.An extensible prototype of a feature selection algorithm has been presented in (135). The
functionalities include permissions, Intent, and Opcode.Kang et al. (60) used the 10-gram
opcode features and machine learning to identify and categorize Android malware.

There are several malware detection studies based on dynamic analysis. R. Surendran et al.
(117) proposed a detection mechanism based on the occurrence of malicious system calls
in the system call sequence of an Android app. A detection mechanism by analyzing the



105

frequency of system calls was proposed by Amamra et al. (8). They used a binary machine
learning classifier trained with the frequency of system calls generated by known malware and
software applications. The classifier is designed to predict whether the frequency of system
calls generated by an unknown application corresponds to malware or not. S. Shakya and M.
Dave (112) executed the malicious application in a monitored and controlled environment. The
system calls collected are analyzed and fed to various machine learning models for malware
family detection and classification. A new method with dynamic analysis was proposed by
A. Razgallah and R. Khoury (97). They divided each trace of system calls into k segments
and then determined in which segment the first occurrence of each system call could be found.
The authors found that the system calls consistent with the presence of malware occurred for
the first time at the onset of the infected trace and at the end of the benign version.

A smaller number of studies have suggested hybrid detection methods. Wen et al. (132)
combine static and dynamic analysis, relying on a variety of features including battery usage,
processes, API, intentions, and permissions features. Tong and Yan (124) suggested another
hybrid approach. Android apps generated patterns of system calls related to file and network
accesses. To evaluate the unidentified app, they then compared with both the infected and
benign pattern sets. Wang et al. (130) proposed the hybrid method called FGL_Droid, which
merges the dynamic API call sequence into a function call graph and the extracted permission
request features to perform accurate malware detection.

4.7 CONCLUSION

In this study, we use the TwinDroid dataset as a common basis for the comparison of the
effectiveness of static, dynamic and hybrid analysis for malware detection on Android apps.
We found that dynamic analysis seems to outperform static analysis, and that hybrid analysis
outperform both. We also obtained novel results related to feature selection in static analysis
and the use of system call parameters in dynamic analysis.





CONCLUSION ET RECOMMANDATIONS

CONCLUSION

L’adoption des Smartphones, des appareils qui passent d’appareils de communication simples
à des appareils «intelligents» et multifonctionnels, ne cesse d’augmenter. C’est pourquoi il
devient de plus en plus une cible de diverses attaques, qui causent la fuite de la vie privée de
l’utilisateur, les frais de service supplémentaires et l’épuisement de la puissance de la batterie.

Dans notre projet, nous avons choisi la plateforme Android puisqu’elle connaît une crois-
sance trois fois supérieure à celle d’Apple, qui occupe la deuxième place dans le marché
des Smartphones. De plus, contrairement à Apple qui peut vérifier chaque application dis-
ponible manuellement par des experts en sécurité logicielle, Android manque un processus
complet d’inspection des applications avant que les applications ne soient publiées sur le
marché. Google adopte un mécanisme passif fondé sur les autorisations. Chaque fois que
l’utilisateur installe une nouvelle application, il doit lui-même d’approuver ou rejeter toutes
les autorisations demandées par l’application. Dès qu’une application sera installée, elle aura
accès aux ressources approuvées. Dans ce cas le système n’aura pas le contrôle sur l’usage
des ressources. Aussi si une application est signalée comme étant un logiciel malveillant par
les utilisateurs, elle sera supprimée.

Pour ces raisons, plusieurs recherches ont été faites dans le but de faciliter la détection des
comportements malveillantes pour les applications Android, afin d’éviter les vulnérabilités
face à des menaces telles que les accès aux informations personnelles et les modifications
auprès de systèmes non autorisés.
Dans cette thèse tout d’abord, on a passé en revue les solutions de sécurité actuelles pour
les téléphones intelligents Android en se concentrant sur les mécanismes et les approches
existants. Pour le reste de la thèse les principaux résultats obtenus au cours de ce projet sont :

— La création d’une base de données, «TwinDroid», présente un pipeline entièrement
automatisé pour générer de nouvelles traces à partir d’applications tirées de plusieurs
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sources. Tout chercheur ayant besoin de traces d’application peut utiliser ce pipeline
pour générer des traces adaptées à ses besoins spécifiques. Cette facilité d’extension
permet à la base de données de rester à jour avec les logiciels malveillants émergents.

— Un nouveau processus d’abstraction proposé met en évidence les fonctionnalités
qui distinguent le plus facilement les fonctionnalités bénignes et malveillantes. Ce
processus est responsable de l’amélioration de la précision du processus de détection.
Nous avons testé son efficacité en classifiant nos applications avec et sans ce processus.
Les résultats obtenus après la phase d’abstraction sont toujours plus élevés que la
classification sans l’abstraction.

— La réplication de plusieurs techniques de détection de logiciels malveillants sur le
même ensemble de données permet une comparaison sur un pied d’égalité. En testant
chaque expérience, nous avons observé que des résultats optimaux étaient obtenus en
considérant le 3 grammes des appels système.

— En étudiant les paires de traces bénignes et infectées dans notre base de données, nous
avons trouvé que l’attaque a souvent lieu au début de l’exécution. Nous avons proposé
une méthode de détection de logiciels malveillants dans les traces, fondée sur cette
observation. Nous avons divisé chaque trace en un nombre donné (k) de segments.
Nous avons testé k avec les valeurs 5, 10, 30, 50 et 100 segments. Ensuite, nous avons
enregistré dans quel segment se trouve la première occurrence de chaque appel système
dans notre base de données. Nous avons utilisé plusieurs algorithmes de classification
pour vérifier notre modèle, la meilleure classification des traces bénignes et infectées
a été obtenue en divisant les traces en 30 segments. Les algorithmes LMT et J48 ont
réussi à classer toutes les traces infectées avec un rappel de 100%.

— La détection dynamique des logiciels malveillants, à l’aide des appels système présents
dans la trace, surpasse la détection basée sur des fonctionnalités pouvant être obtenues
de manière statique, telles que les autorisations et l’utilisation des ressources. Lors
de la classification avec des données dynamiques, l’ACC le plus bas était de 97,70%,
contre 92,65% lors de la classification avec des données statiques. Nous avons en
outre découvert que les informations relatives à la sécurité peuvent être dérivées d’une
analyse des paramètres de l’appel système, que tous les mécanismes de détection
dynamique précédents avaient tendance à omettre de leurs investigations.

— L’analyse hybride surpasse à la fois l’analyse statique et dynamique pour la détection
des logiciels malveillants, ce qui indique que les deux types d’analyses recueillent des
informations complémentaires.

Pour finir, dans cette thèse, l’ensemble des objectifs fixés ont été atteints avec succès. Ce projet
a démontré l’importance de l’utilisation des données statique et dynamique combinées pour
avoir plus de performance à la détection de malware dans les applications Android. De plus,
l’analyse des traces d’exécution nous a permet de détecter l’existence des comportements
malveillants ce qui démontre l’utilité de l’utilisation de ses traces dans nos expérimentations.
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RECOMMANDATIONS

Pour donner suite à la réalisation de cette étude, une série de recommandations pour des
travaux futures est établie ci-dessous :

— Implémenter des applications pratiques pour notre travail, telles que l’intégration de
notre approche dans les outils de sécurité des applications.

— Définir quand et où dans le cycle de vie d’une application la technique de détection
doit être appliquée.

— Corréler les comportements observés avec la fonctionnalité prévue de l’application
afin d’obtenir une définition plus précise de ce qui est suspect.

— Résoudre le problème de la détection de l’émulateur lors des tests dans un environne-
ment simulé.

— Expérimenter d’autres fonctionnalités au-delà des appels système et des permissions
pour la détection de malware dans une application Android en utilisant TwinDroid.
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