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Abstract 
 

This thesis addresses the issue of designing integrated deliberative-reactive architectures 

for multi-behaviour robot navigation control. The objective of the study is to devise and 

investigate a methodology for designing robust planning and control systems equipped 

with a high level of intelligence and capable of navigating a mobile platform, at a high 

level of performance, in partly unknown environments, where the mobile robot multi-

task operation is subject to different behaviours. Of particular interest in this thesis are 

deliberative-reactive navigation systems operating in large, complex environments, such 

as those applied in environmental monitoring, that make use of a variety of remote 

sensing data. The spatial data are interpreted intelligently using multi-layer feature 

maps. 

 

In this thesis, we present a formal model for hybrid mobile robot navigation. The model 

integrates two levels of navigation, deliberative and reactive. The novelty in this model 

is that the decision component makes a decision depending on the global and local 

context choosing the suitable behaviour, including conflicting behaviours, and regulates 

the relation between the deliberative and the reactive navigation via computational 

intelligence techniques. The presented methodology offers a suitable solution for 

complex partially known environments, where the mobile robot control produces an 

overall behaviour for executing the proper action in order to reach the target by 

employing multi-task navigation. In terms of the multi-behaviour operation, the 

following behaviours are considered: different tasks for environment data acquisition, 

and different navigation behaviours. In the latter type of behaviours, three situations are 

studied: dynamic local path, unreachable local path, and conflicting behaviours in a 

critical situation.  

 

The experiments presented in the thesis demonstrate the utility of the model in the two 

fundamental types of the navigation: those with the predominance of the deliberative 

action, and those with dominant reactive action. The experiments adopted the following 

methodological approach. First, the deliberative navigation was developed using hybrid 

genetic algorithm to deal with multi-task navigation. We aimed to build a navigation 

system which has a flexible and efficient performance along global and local paths. A 

complete solution for monitoring of water quality in Lake Winnipeg using satellite data 



 

 

 

 

xiv 

was presented. Second, a multi-behaviour deliberative-reactive navigation scheme was 

designed to deal with conflicting behaviours using artificial intelligence methods, such 

as fuzzy systems and genetic algorithms, in a hierarchical configuration. The fuzzy 

control drives the robot to execute the required behaviour, depending on the robot-

specific situation and the characteristics of the environment, in order to reach a given 

target.  
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Résumé 

 
Cette thèse s’adresse au problème de la conception des architectures délibératives et 

réactives pour le contrôle de la navigation du robot à multiples comportements. La 

conception et l’investigation d’une méthode pour une planification robuste ainsi que 

pour un système de contrôle sont les objectifs de cette étude. En effet, ces robots sont 

équipés d’un haut niveau d’intelligence capable d’une navigation mobile, permettant 

ainsi de favorisant le haut niveau de performance dans un environnement partiellement 

inconnu, en y incluant des opérations multitâches possédant des conflits de 

comportement. L’intérêt particulier de cette thèse est les systèmes de navigation 

délibératifs et réactifs opérant dans un milieu complexe, comme le monitorage des 

environnements qui utilisent plusieurs ressources de données de télédétection. Les 

cartes multicouches sont utilisées pour la représentation et le traitement des données 

spatiales. 

  

Cette thèse présente alors un modèle formel pour les navigations des robots mobiles 

hybrides. Le modèle intègre deux niveaux de navigations soit délibératif et réactif. La 

nouveauté de ce modèle est que la composante décisionnelle rend la dépendance de la 

décision dans le contexte global et local. Ceci fait en sorte qu’il est possible de choisir la 

suite comportementale en y incluant des conflits ainsi que des régulations de la relation 

entre la navigation délibérative et réactive via la technique d’intelligence de calcul. La 

présente technologie offre une suite de solution pour les environnements partiellement 

connus et complexes, où le contrôle de robots mobiles produit un comportement général 

pour l’exécution de l’action propre dans le bût de trouver le trajet, utilisant la navigation 

multitâche pour ajuster les comportements au niveau réactif. Dans le dernier type de 

comportement, on distingue trois situations qui ont été étudiées, le trajet dynamique 

local, le trajet inaccessible, et le conflit de comportement dans les situations critiques. 

 

Les expériences présentées dans cette thèse démontrent l’utilité de ce modèle dans deux 

types fondamentaux de la navigation : ceux avec la prédominance de l’action 

délibérative et ceux avec l’action réactive comme dominante. En effet, les expériences 

adoptées suivent les approches méthodologiques. Au début, la navigation délibérative 

est développée en utilisant l’algorithme génétique hybride pour gérer les navigations 



 

 

 

 

xvi 

multitâches. On est aspiré à construire un système qui a une performance flexible et 

efficace tout au long de trajet global et local. La solution complète pour le monitorage 

de la qualité de l’eau du lac Winnipeg qui utilise des données satellites est présentée. 

Dans un second lieu, un schéma délibératif et réactif hybride est conçu pour gérer les 

conflits de comportement en utilisant les méthodes de l’intelligence artificielle, comme 

les systèmes flous et les algorithmes génétiques, dans une configuration hiérarchique. 

Le contrôle flou dirige le robot à exécuter le comportement requis, dépendamment de la 

situation spécifique et des caractéristiques de l’environnement, pour atteindre une cible 

donnée. 
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Chapter 1 
 

Introduction 

1.1. Mobile Robot Navigation 

1.1.1. Definition 

 

Navigation is a field of study that focuses on the process of monitoring and controlling 

the movement of mobile robots (vehicles) from one place to another. An autonomous 

robot can navigate and perform its task without human intervention. 

 

Navigation is an active process, and it comprises positioning and guidance (Hofmann-

Wellenhof et al. 2003). To navigate through the environment, the robot must be able to 

perceive its surroundings through various kinds of sensors. Moreover, it should answer 

the following questions:  

 Where am I? 

 How do I get to other places from here? 

 Where are other places relative to me? 

 

(Baltzakis 2004) answered these questions as follows: a mobile robot must be able to (a) 

understand its environment, (b) localize itself within it, and (c) purposively move to 

desired target points. Robot position is given as a set of coordinates in a well-defined 

coordinate reference frame, needing a convention to determine its origin and 

orientation. While position determination answers the question “where am I?”, the 

planning process is responsible for defining an appropriate trajectory, and it answers the 

question “where to go and how to go?”. 

 

Navigation is defined as the interaction of positioning and guidance. Navigation 

considers a robot’s position with regard to the other relative objects to determine its 

position to answer the question, “Where are other places relative to me”. 

 

Mobile robot navigation is a broad area, which comprises such problems as localization, 

optimal path planning and mapping. In this thesis, we deal with only a part of it, namely 



 

 

 

 

2 

autonomous robot navigation in complex dynamic environments where the robot is 

subject to different requirements in terms of its behaviours.  

 

1.1.2. Importance  

 

The navigation issue is encountered in many different applications, mainly in all types 

of terrain exploration and transportation, with the involvement of different kinds of 

transportation means, such as mobile robots, jet aircrafts, cars and boats. Navigation in 

the transportation domain usually attempts to find an optimal or sub-optimal path 

planning for a predefined mission. The optimal navigation problem has been solved in 

many transportation applications by defining it in terms of the Vehicle Routing Problem 

(VRP) or the Travelling Salesman Problem (TSP) using a variety of algorithmic and 

heuristic optimization methods. TSP deals with a list of given cities where the distances 

between each pair of cities are provided to obtain the shortest possible route that visits 

each city once and returns to the origin city. VRP generalizes TSP and is considered a 

combinatorial optimization problem seeking the optimal set of routes for a fleet of 

vehicles to traverse in order to deliver to a given set of customers.  

 

When executing a navigation task, the risk of any collision has to be eliminated by 

exploring the neighbourhood of the robot and making a decision to avoid any obstacle 

where the robot performs its tasks in a partially unknown environment.   

 

Monitoring of environmental phenomena, which is of particular interest in this thesis, 

requires measuring physical processes, such as nutrient concentration, wind effects, and 

solar radiation across the entire spatial domain in a range of oceanographic, terrestrial, 

and atmospheric applications (Tso and Mather, 2001). Given the cost of acquiring a 

large number of in-situ measurements, traditionally used to gather water pollutant 

information, remote detection techniques provide significant advantages in terms of 

spatial and temporal coverage and cost-efficiency. Navigation using environment 

monitoring has been used to observe and to predict the risk of damage from certain 

(predefined) phenomena. Environment monitoring often employs remote sensing (RS) 

techniques that use aircraft or satellites measurements. Its objective is to study a variety 

of phenomena in different areas, some of which are listed below:  
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 Water Quality 

 Surface Water Hydrology 

 Meteorology and Weather Monitoring 

 

Optimal navigation of mobile robotic platforms in dynamic environments is a complex 

issue subject of both practical and theoretical interest. Navigation requires information 

about the trajectory of the moving objects in order to deal with dynamic environments.  

 

1.1.3. Global/Local Navigation  
 

In terms of terrain exploration, we distinguish between local and global navigation. 

Mobile robot navigation is an advanced technique where static, dynamic, known and 

unknown environments are involved (Yun et al. 2011). In terms of the operational 

paradigm and the level of control, navigation is divided into two categories, deliberative 

and reactive navigation, corresponding grosso modo to global and local navigation. 

Deliberative navigation requires a known environment model (world model) and uses 

the traditional architecture sense-plan-act. Reactive navigation is used for unknown 

environments (Garcia et al. 2009) and employs the sense & act architecture which has 

direct connection between the sensors and the actuators, which is known as the 

behaviour-based architecture (Brooks 1986).  

 

The hybrid deliberative-reactive navigation architecture is suitable for dealing with a 

partially-unknown environment. This control architecture combines two levels where 

the deliberative navigation has a higher level and supervises reactive navigation. These 

hybrid systems are intensively used in complex and dynamic environments.  

 

(Giesbrecht 2004) classifies the local and global path characteristics as in Table 1.  

Table 1: Global Path Planning vs. Local Navigation 

Global Path Planning  Local Navigation 
Uses accumulated and a priori information Uses immediate sensor data only  

Concerned with the global environment including hills, 

rivers, canyons, forests, roads, buildings, etc. 

Concerned with objects and conditions in the 

vicinity of the robot 

Plans for long distances and time periods  Plans for the immediate vicinity for a short time 

ahead 

Slow, deliberative process Fast and reactive 

Allows robot to avoid getting trapped  Allows robot to travel safely  

Plans to reach a goal in the most efficient manner Plans to travel as fast as possible 

Simple model of vehicle (point robot) Complex vehicle model (dynamics and 

kinematics) 
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1.2.   Sample Acquisition Mission in Large-Scale 
Environments 

1.2.1. Sample Acquisition Mission 

 

Investigations presented in this thesis have been to a large extent motivated by research 

challenges posed by the problem of designing an optimal navigation solution for large-

scale multi-behaviour environment monitoring requiring an effective use of remote 

sensing technologies (RS). A large–scale environment is usually unstructured and 

consists of a large number of variables. Depending on the mission complexity, first, the 

robot searches for an optimal global path in the world model by dealing with the large 

environment entities such as forest, river and lakes. Navigation in such conditions 

should change the robot’s behaviour to deal with different object classes in an adaptive 

way. Thus, the robot should be able to plan the mission using many different strategies 

performing different behaviours. Multi-behaviour navigation missions need a wide 

range of behaviour to comply with the environment entities and the objective of the 

missions.    

 

A typical application example is the monitoring of environmental phenomena in large 

areas, both aquatic and terrestrial, which requires measuring a variety of physical 

processes, such as nutrient concentration, wind effects, and solar radiation. Acquisition 

of a large number of in-situ measurements by a mobile sensor platform is a basic task in 

the process of monitoring biological and chemical pollutants. Remote detection (RS) 

techniques provide significant advantages in terms of spatial and temporal coverage and 

cost-efficiency.  

 

Environment maps of large areas are often obtained through processing of multi-

spectral satellite imagery. Remote sensing data often have to be augmented and updated 

by in situ measurements due to the need for precise local measurements, for the 

calibration of satellite imagery in varying water conditions, and for the purpose of 

precise local decision making. 
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A path planning system generates an optimal path with the goal of maximizing the 

number and the value of the collected samples during the acquisition mission. In order 

to obtain the best and richest data set, an appropriate metric should be defined over the 

sampling field. Path planning waypoints identify water sample candidates. Thus, many 

strategies can be applied to water pollutant patches by adopting different search 

behaviours. An example of the mobile platform used for collecting samples of an 

aquatic environment is the Namao ship, belonging to the Winnipeg Lake Research 

Consortium, shown in Fig. 1.1. 

 

Figure 1. 1. Lake Winnipeg Research Vessel, Namao, is the platform used by the Lake Winnipeg 

Research Consortium to acquire water samples in Lake Winnipeg. 

 

1.2.2. Environment Representation from RS Data  

 

The main source of information on large-scale environments is satellite imagery. 

Multispectral satellite images are those who obtain information in several bands, as 

shown in Fig. 1.2. The image in each band consists of a matrix of pixels which contains 

a numeric value obtained from the sensors when they capture the amount of energy 

reflected by the objects on the Earth’s surface (Morón Hernández et al. 2016).  The size 

of the area covered by one pixel corresponds to the resolution of the satellite image, 

e.g., 260 m x 290 m for MERIS pixel and 1 km x 1 km for MODIS pixel - see Appendix 

1.1 and 1.2. 

The combination of bands is achieved under certain rules to obtain new environmental 

features, such as characteristics of some water pollutant classes that are explained in 

detail in Chapter 5. 
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Figure 1. 2. An image obtained from a four-band multispectral sensor 

 

The multi-spectral data can be subsequently processed by using a variety of 

classification and regression techniques to obtain multi-layer maps which present 

different classes of features.  

 

Navigation in large-scale environments poses different difficulties for the navigation. In 

order to guide the search towards the valuable zones, pruning the search zone can be 

employed to reduce the optimization search time and to obtain a high-quality solution. 

The pruning zone can be considered as a Region of Interest (ROI) which can be 

represented in one or more-layer maps.  

 

The data of Lake Winnipeg for navigation is obtained in the form of a multi-layer map 

that is based on different data sources, apart from satellite images also on ancillary 

environment information. In order to improve forecasts and make the path planning 

process more adaptable to changing environment conditions, additional meteorological 

data are required. As an example of ancillary data are the meteorological measurements 

which are provided each hour by the national data buoy center. Lake Winnipeg holds 

three buoys: the 45144 buoy is located in the northern basin, the 45145-buoy located in 

the corridor zone, and the 45140 buoy is situated in the southern basin. The buoy data 

include wind speed and direction, the wave height and period, air and water 

temperature, and other variables. Fig. 1.3 shows the wind speed and direction during 

August 2012 as measured by the C45144 buoy.    



 

 

 

 

7 

  

 

Figure 1. 3. Wind speed and direction data 

 

1.3. Navigation Challenges in Large-Scale Environments 

 

In this thesis, the basic task of a mobile robot is environmental navigation. In general, a 

mobile robot works in a dynamic and unstructured environment and must also deal with 

the uncertain and incomplete knowledge of its environment and the effects of its own 

actions.  

 

1.3.1. Uncertainty in the Information 

 

Navigation in a large-scale environment using remote sensing data faces many 

uncertainties in the processing of the obtained information. Certain sources of 

incertitude are as follows: 

 Errors in the estimation of water pollutant concentration; 

 Top of Atmosphere (TOA) reflectance measurements; 

 Motion of moving obstacles; 

 Atmospheric scattering and atmospheric absorption; 

 Haze and cloud cover. 

1.3.2. No Precise Location of Pollutant Patches 

 

Generally, water pollutant types are mixed together, which poses a significant problem 

for RS spectral reflectance detection.  
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The application of satellite remote sensing to lake water is constrained by the need for 

high spatial resolution image data and thus remains limited by spectral resolution 

capabilities of the satellite imaging sensor (Tyler et al. 2006). Due to the spatial 

heterogeneity in the water body, the in-situ measurements may not be truly 

representative of the satellite pixel area. Because of the RS low resolution which reflects 

a poor representation of the observed area, the water characteristics within each satellite 

pixel are not truly homogeneous, and thus the in-situ observations are not comparable 

with the values derived from the satellite image pixels (Moses 2009). 

 

1.3.3. Dynamic Environment 

 

Due to the satellite temporal time coverage, the frequency of environmental changes 

may be much faster than the frequency of the satellite revisit time. Also, our study zone 

consists of many significant water pollutant patches which to a large degree are subject 

to the wind impact. (For more details see section 5.4.6). As a result, the satellite multi-

spectral observation represents a partially known environment due to the existence of 

dynamic changes and objects in the observed zone.  

 

1.3.4. Soft & Hard Obstacles 

 

The problem of obstacles avoidance has to be resolved by considering hard obstacles in 

the form of islands, coastal areas, ships, and other floating objects, and soft obstacles in 

the form of haze or cloud patches. Obstacles such as the cloud zones in the satellite 

image also affect the ship navigation by providing inaccurate prior environmental 

representation for path planning. Many soft obstacles such as haze and fog can affect 

both local navigation and global navigation. These obstacles reduce the travel speed and 

can affect the detection of the target position.  

1.4.  Multi-Behaviour Operation 

 

In order to navigate in a multiple-class environment, navigation goals should be 

specified for each class (e.g., the type of pollutant) such that they may be guided by 
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different patterns of behaviour for different purposes. First, some remarks are made 

regarding the behaviours:  

 Mission execution strategy: any mission can be executed by different strategies 

depending on the robot capabilities. A controller is needed to switch between the 

strategies regarding the robot situation and the surrounding area conditions.  

 Behaviours at the planning phase which considers long-term behaviours 

executed during the whole local path which deals with the global environment, 

such as hills, rivers, canyons, forests, roads and buildings. At this level, 

Behaviour determines the mode of the local paths execution (e.g., if the local 

path is a steep hill the robot should lower its speed). 

 Behaviours at the reactive level are concerned with objects and conditions in the 

vicinity of the robot that are detectable primarily by on-board sensors. Reactive 

behaviours are changed and then executed when the new robot onboard sensors’ 

data reading is provided. 

 

In order for a robot to accomplish its goal, the robot control system must employ and 

perform different behaviours. The priorities of the behaviour may need to be changed 

with time according to the mission objective. Therefore, a controller (behaviour 

arbitrator), must select and actualize the suitable behaviour to fit the overall goal of 

different control objectives (Mai & Janschek 2012). Multi-behaviour robots may have to 

perform conflicting behaviours to accomplish their tasks, such as making a force closure 

on the object in order to make the robots able to move the object on the desired 

trajectory meanwhile avoiding any obstacle to prevent structural damage or damage the 

obstacle itself (e.g. if the object is a pedestrian). A behaviour selector equipped with 

high intelligence level may have to be employed to solve such conflicting behaviours.     

 

1.4.1. Behaviours in the Sample Acquisition Problem 

 

Designing a multi-behaviour search system for a mobile sample acquisition platform 

requires answering the following questions. Which is the suitable navigation mode for a 

specific water pollutant? How to compute the cost of the solution? How can the solution 
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of the path planning problem deal with multiple patches of high concentration of the 

pollutant? (Châari et al. 2014).  

 

Critical to the sample acquisition problem is an efficient path planning method, easily 

adaptable to different control strategies that ensure the collection of data of the greatest 

value. Acquisition of diverse types of samples may require appropriate behaviours that 

implement different collection strategies.  

 

Based on the acquisition strategy, water pollutant samples are divided into many classes 

which are represented as water pollutant patches. The path passes sequentially through a 

set of patches complying with the mission objective. Some water pollutant patches have 

a special collections procedure; certain constraints should be considered regarding the 

sampling in such patches.   

 

Depending on the time and the distance constraints, some pollutant patches can be 

neglected. Moreover, a decision on the other patches can be done using the following 

strategies: 

 Uniform coverage of high-concentration areas; 

 A certain number of samples have to be collected in a specific patch before 

heading to another patch; 

 The sampling behaviour can be different in each patch to comply with the 

general and local mission goals. 

 

The basic idea of the multi-behaviour sampling navigation is that the acquisition 

platform explores water pollutant patches using different behavioural 

characteristics depending on the sampling requirements in each patch. 
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1.5. Optimization in Path Planning 

 

The path planning procedure designs a trajectory that visits a given set of points such 

that the optimization process minimizes the total travel distance. The trajectory is 

represented by a global path which consists of many local paths.   

 

1.5.1. Path Planning Difficulties  

 

Due to the large-scale and complex environment, this task is defined in terms of a 

combinatorial optimization problem with a globally optimal solution that satisfies all 

hard and soft constraints. The optimal solution or a set of globally optimal solutions 

minimizes or maximizes the travel cost (objective function). 

 

First, some definitions are made regarding the navigation components: 

 Trajectory:  a segment connecting subsequent positions (waypoint) of a vehicle 

determined by a navigation system.  

 Waypoint: a distinct point on the trajectory that usually corresponds to a change 

of direction.  

 Local path: a route between two consecutive waypoints. 

 

The pathfinding problem is typically defined in terms of the Travelling Salesman 

Problem (TSP) (Ergezer & Leblebicio 2014) or more generally, the Vehicle Routing 

Problem (VRP)(Cheng et al. 2012). Determining the optimal solution is an NP-hard 

problem, so the size of problems that can be solved optimally is limited (Châari et al. 

2012). In the situation of environment monitoring systems, the problem is even more 

complex because exact positions of the sampling points are not known a priori. 

 

NP-hard problems require time that is super polynomial in the input size. To solve these 

problems, many techniques can be applied:  

 Approximation: a search process looks for a sub-optimal solution instead of the 

optimal solution.  
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 Parameterization: the algorithm gets faster when some input parameters are 

fixed. 

 Heuristic: an algorithm that works "reasonably well" in many cases, but for 

which there is no proof that it is both always fast and always produces good 

results.  

In practice, solutions to optimal path planning problems frequently incorporate heuristic 

methods. 

 

1.5.2. Multi-Objective Optimization 

 

The TSP is a special case of the VRP which have proved to be a NP-hard problem. TSP 

and VRP have different constraints imposed by the user that constitute  different TSP/ 

VRP problems (Min & Dazhi 2014). The problem is to find a path planning that 

involves solving the sequential ordering problem with precedence constraints. (Yu & 

Cai 2009) consider a mobile robot exploration mission planning problem is a NP-hard 

problem where Small-scale mission planning may be solved by the traditional 

mathematical methods such as exhaustive method and linear programming. (Deng & Hu 

2011) determine Route optimization model of multi-modal travel as a NP-hard problem 

which is difficult to get an optimal solution from by exact algorithms in an acceptable 

time. Most of the NP-hard problems needing efficient solutions call for the 

combinatorial optimization approach. Combinatorial optimization consists of finding an 

optimal object from a finite set of objects. Due to the problem of soft and hard 

constraints, it becomes Solving Combinatorial Optimization where the solution which 

calls for a globally optimal solution satisfies all constraints. The optimal solution or the 

set of globally optimal solutions minimize or maximize the objective function (Rajappa 

2012). In general, each optimization problem to be solved requires a unique objective 

function that represents a performance criterion used in the evaluation of the 

performance of all individuals in a population. Many functions, such as travelling 

distance, time window and the sample values (weight) should be optimized 

simultaneously. This may involve a combination of maximization and minimization 

criteria (Coello Coello 2006). Individual objective functions are usually combined into a 

single composite function by weighting the objectives with a weight vector. The result 

of the optimization should reach a reasonable solution that satisfies the multiple 
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objectives. For mission planning of an unmanned aerial vehicle (UAV), (Vachtsevanos 

et al. 2005) used the distance, the hazard, and the maneuvering of the route as 

components of their cost function. Each component had a weight factor which was 

assigned according to the objectives of the mission. The hazard is related to the 

existence of obstacles near the path, and the maneuvering refers to the maneuvers 

required to perform target tracking. To effectively determine and search the best flight 

(UAV) routes an objective function was created by (Sun et al. 2011) which involves the 

timeliness and the smoothness of the path. The work of (García et al. 2011) used an 

objective function that included several components: the cost of the motion from the 

start node to the current node, the heuristically estimated value of getting from the 

current node to the goal, the terrain traversability component, the direction change cost, 

and the cost of navigating in shadow areas. Each component has a corresponding 

coefficient factor used to weight it according to its importance in the mission.  

 

Generally, the search and optimization problem involve many constraints which the 

optimal solution must respect and satisfy. Optimization is usually a nonlinear problem 

(Deb 2000). The approach that has proved effective in solving combinatorial 

optimization problems is the use of genetic algorithm or hybrid metaheuristic methods. 

(Braünl 2006) proposed a GA system for solving tasks that are difficult to solve such as 

NP-hard problems in a large solution search space.  

 

1.5.3. Metaheuristics  

 

Metaheuristics are high-level strategies designed to find, generate, or select a heuristic 

search algorithm that may provide a sufficiently good solution to an optimization 

problem. Efficient metaheuristics employ intensification and diversification in the 

search for good solutions. The term diversification generally refers to the exploration of 

the search space, whereas the term intensification refers to the exploitation of the 

accumulated search experience.  Exploitation improves the local search by examining 

neighbours of elite solutions, while exploration uses the global search to examine 

unvisited regions and generates solutions that avoid getting stuck in a local optimum. 

Thus, efficient metaheuristics should employ a dynamic balance between diversification 
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and intensification to control efficiently global and local searches. The goal is to quickly 

identify regions in the search space with high-quality solutions, but also not to waste too 

much time in regions of the search space which are either already explored or which do 

not provide high-quality solutions (Blum & Roli 2003) 

 

Metaheuristics have been applied to a wide set of different problems using many 

techniques to conduct the search. Metaheuristics can be represented as a general 

algorithmic framework with few modifications and can be applied to different 

optimization problems.  

 

Summarizing, we outline fundamental properties which characterize metaheuristics:  

 Metaheuristics can adapt strategies which guide the search process. 

 Metaheuristics can efficiently explore the search space in order to find nearly 

optimal solutions. 

 Techniques which constitute metaheuristic algorithms range from simple local 

search procedures to complex learning processes.  

 Metaheuristic algorithms are approximate and usually non-deterministic. 

 Metaheuristics incorporate many mechanisms to avoid getting trapped in 

confined areas of the search space.  

 The basic concepts of metaheuristics permit an abstract level of description. 

 Metaheuristics are not problem-specific. 

 Metaheuristics may make use of domain-specific knowledge in the form of 

heuristics that are controlled by an upper-level strategy. 

 Metaheuristics employ the search experience to guide the search embodied in 

some form of memory  

 

1.5.4. Classifications of Metaheuristics 

 

There are a wide variety of metaheuristics, and there are a number of properties with 

which to classify them. Figure 1.4 illustrates the metaheuristic categories.  

 

Metaheuristic methods are divided into two categories in terms of the search strategy: 
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1. Global search metaheuristic which includes  

 Genetic algorithms; 

 Ant colony optimization;  

 Evolutionary computation;  

 Particle swarm optimization. 

 

2. Local search metaheuristic; 

 Simulated annealing;  

 Tabu search;  

 Iterated local search;  

 Variable neighbourhood search. 

 

 
 

Figure 1. 4. Metaheuristics classification 
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Other metaheuristic classification concerns the evaluation of the solution. From this 

perspective, metaheuristic methods are divided into two categories as follows: 

 Population-based methods 

 Trajectory-based methods  

 

Population-based approaches are based on multiple candidate solutions which are 

maintained and improved. Thus, the population characteristics guide the search; 

population-based approaches perform search processes which describe the evolution of 

a set of points in the search space. The following population-based metaheuristics are 

examples of this category: 

 Evolutionary computation;  

 Genetic algorithms; 

 Particle swarm optimization;  

 Swarm intelligence; 

 Ant colony optimization; 

 Particle swarm optimization;  

 Social cognitive optimization;  

 Artificial bee colony. 

 

Trajectory-based approach describes a trajectory in the search space during the search 

process which is modified and improved. Trajectory metaheuristics include  

 Tabu search; 

 Simulated annealing;  

 Iterated local search;  

 Variable neighbourhood search;  

 Guided local search. 

Population-based methods are better in identifying promising areas in the search space. 

Meanwhile, trajectory-based methods are better in exploring promising areas in the 

search space. 
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1.6. Hybrid Intelligent Techniques for Navigation 

 

Generally speaking, individual intelligent techniques have their limitations, which 

justify the development and use of intelligent hybrid systems. (Abraham 2003) 

introduces different generic architectures for integrating intelligent systems. Fig. 1.5 

illustrates hybrid systems divided into four categories as below:  

 

 Neuro-fuzzy system (ANN-FIS) 

 Evolution –fuzzy system (EC-FIS) 

 Evolution –neuro system (EC-ANN) 

 Evolution -neuro-fuzzy system (EC-ANN-FIS) 

 

 
 

Figure 1. 5. General framework for hybrid soft computing architectures (Abraham 2003) 

 

 

Geno-fuzzy system has been widely used to overcome the limitation in both systems 

given the rich knowledge base of fuzzy systems and the innovating power of genetic 

systems. The integration system requires a sophisticated design to optimally exploit the 

power of these techniques (Dongbing Gu et al. 2003) (Gu et al. 2003) (Karray & De 

Silva 2004) (Senthilkumar & Bharadwaj 2009) (Nolfi & Floreano 2000). 
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1.6.1. Genetic Algorithms for Deliberative Navigation 

  

The concept of genetic algorithms was introduced by John Holland in the early 1970's 

(Holland, 1975). Genetic algorithms (GA) are based on a solid theoretical foundation of 

the Schema Theorem (Goldberg, 1989). 

 

Genetic algorithms are adaptive methods that can be used to solve search and 

optimization problems involving large search spaces.  As is the case in nature, solutions 

are processed by many operators, such as crossover and mutation. In each generation, 

the best solution survives and has more probability to reproduce new population in the 

next generation. Selection and Termination operator maintain and manipulate 

generations. A fitness function is used to simulate the evolution process. 

Genetic algorithms (GA) have frequently been used in NP-hard problems, due to their 

flexibility and high quality of the search results (Samadi & Othman 2013). They can 

solve the problem without any advance knowledge about the environment, and are 

largely unconstrained by the limitations of the classical search methods (Rothlauf 2006). 

By mimicking natural evolution processes, they have the ability to adaptively search 

large spaces in near-optimal ways. In practical terms, GA methods are easy to interface 

with exciting simulation models. An important feature that should be considered in 

implementing GA techniques is that they are problem specific.  

 

Genetic algorithm starts with an initial set of the population which can be generated 

either randomly or heuristically. This set presents an initial set of solutions for a given 

problem. A fitness function can then evaluate the generation in terms of solution 

quality. To obtain a new generation, many operators are applied, such as selection, 

crossover, and mutation. This procedure leads to solutions of increasing quality over the 

course of many generations. A termination criterion is applied to check the solutions’ 

convergence. The search process is terminated, and the final solution is shown as 

output. 

 

The power of the genetic algorithm can be summarized as follows: 

 The chromosomes most successful in each generation will produce more 

offspring than the chromosomes that perform poorly.  
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 Two good parents will sometimes produce offspring that are better than either 

parent. 

 Each successive generation will become more suited to their environment.  

 

 

Some of the advantages of a GAs  

 GAs can be used without a deep mathematical background; 

 GAs can solve hard problems: a GA is one of the best ways to solve a problem 

about which little is known. 

 GAs are easy to extend. 

 GAs are easy to interface with exciting simulations and models. 

 They simultaneously search from a wide sampling of the cost surface, 

 GAs are able to deal with a large number of variables (Haupt & Haupt 2004). 

 

GA disadvantages 

Even though GAs can rapidly locate good solutions, they have some disadvantages for 

difficult search spaces (Binitha & Sathya 2012):  

 GAs may tend to converge towards local optima rather than the global optimum 

of the problem if the fitness function is not defined properly.  

 Operating on a dynamic data set is difficult.  

 GAs are not directly suitable for solving constraint optimization problems. 

 

Table 2 summarizes advantages and shortcoming of GAs 

 

Table 2: Advantage and Shortcoming of GAs 

 Advantage shortcoming 

More general purpose than traditional optimization 

algorithms 

Fitness function and search techniques often not 

obvious 

Ability to solve “difficult” problems Premature convergence 

Solution availability Computationally intensive 

Robustness Difficult parameter optimization 

Inherent parallelism  
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1.6.2. Ant Colony Optimization for Deliberative Search 

 

Ant Colony Optimization is considered as a metaheuristic algorithm and is popularly 

used for the solution of complex optimization problems (Liu & You 2009) (Min & 

Dazhi 2014). 

 

Generally speaking, in the standard ACO problem ants traverse arcs that connect nodes 

in a graph that comply with the objective of the path planning, such as  

 Visiting all nodes (or most of them) 

 Minimizing the total cost of the trip in terms of distance or time. 

This system can be used to find a path for a mobile platform that visits several nodes in 

many patches to collect samples. During the mission, the ants have one of two roles, 

either as a collector or as an explorer.  

 

While in the explorer role, an ant must select the next node in its route each time. It will 

check if the corresponding arc already exists and will use its pheromone and heuristic 

information for the calculations or if not, it will create a new node. 

 If an ant is in the collector role, it will use the pheromone and heuristic information 

stored in the grids to decide on its next move. 

 

The collector ant will take small steps (limited by Δcoll) in order to visit near points and 

collect samples; the collecting process will continue until the product of the collected 

samples (or visited nodes) and a “load” parameter is over a certain random number. 

When this goes over the threshold, the ant will change its role from the collector to the 

explorer and Δexpl will be used as the maximum step size. Table 3 shows ACO 

advantages and shortcomings.   

 
Table 3: ACO Advantages and Shortcomings 

Advantages Disadvantages 

Inherent parallelism Theoretical analysis is difficult 

Strong local search capabilities Can sink in local optimum 

Efficient for dynamic applications Random behaviour 

Convergence to solution is guaranteed Time to convergence is uncertain 

 

The main idea is that a set of robots, called ants, search in parallel for good solutions to  

TSPs/ VRPs. Each ant builds one solution in every loop depending on the information 
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from the previous experience and on a greedy heuristic. All robots cooperate through 

pheromone-mediated indirect and global communication. 

 

1.6.3. Geno-Fuzzy System for Mobile Robot Navigation 

 

Genetic algorithms are applied for their learning abilities and for generation and 

optimization of fuzzy rules base which improve and modify the fuzzy system behaviour. 

Table 4 shows the advantages and the disadvantages for fuzzy systems and genetic 

algorithms (Karray & De Silva 2004). 

 
Table 4: Advantages and Drawbacks of Fuzzy Logic and GAs 

Properties Fuzzy systems Genetic algorithm 

Store knowledge Explicit None 

Learns No Ability to learn 

Optimizes None Powerful 

Handle nonlinearity Yes Yes 

 

The geno-fuzzy system improves the performance of the fuzzy control system by 

controlling the fuzzy rules base structure (Halal & Dumitrache 2007). Geno-fuzzy 

system architecture consists of a mobile robot, a fuzzy control system, an evolution 

strategy unit that adapts the fuzzy membership function and the rules base, and a 

simulation or real environment to evaluate the quality of robot behaviours which are 

represented by the encoded chromosome. Fig. 1.6 shows geno-fuzzy system in a mobile 

robot. The evolution strategy is responsible for generating the fuzzy parameters that are 

needed to optimize the fuzzy control, which depends on a strategy defined by a human.  
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Figure 1. 6. General Geno-fuzzy system architecture for mobile robot 

 

Fuzzy system membership functions and rules base are interdependent (Karray & De 

Silva 2004), and so by optimizing one of them, we may achieve a sub-optimal solution. 

The optimization of a fuzzy system is divided into two steps: 

 Generating an optimal membership function set. 

 Teaching fuzzy rules base that improves the robot’s performance (Senthilkumar 

& Bharadwaj 2009) 

 

1.7. Objectives  

 

The principal objective of this thesis is the development of an integrated, heuristics-

based intelligent methodology for designing hybrid deliberative-reactive navigation 

systems for complex and dynamic environments, where the mobile robot executes 

multi-task navigation subject to different behaviours. 

  

We are dealing with large-scale and multiple entity environments. Both levels of 

navigation (the planning and the control system) should have the ability to successfully 

control the multi-behaviour strategies for a large range of tasks, including conflicting 

tasks. This system can navigate the robot in unstructured and dynamic environments by 

exhibiting high levels of intelligence in robot performance. 
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The aim is efficient path planning which applies different search strategies in complex 

conditions and a reactive control system that can comply with a global path sequential 

ordering of tasks in complex and critical conditions by applying multi-behaviour 

navigation. 

 

One of the goals is to provide a formal architectural framework comprising principal 

components of the hybrid navigation system and the transitions between those 

components. 

   

To reach our objectives, the following sub-objectives should be accomplished:  

 Development of a comprehensive model of environmental representation which 

consists of multiple dimensional data and multiple scales using a variety of 

methods to properly interpret the global environment with respect to the mission 

objective. 

 

 Employment of multi-layer maps to generate spatial and functional properties of 

the environment. These maps enable the planning system to perceive and 

interpret the global environment according to different environment features. 

 

 Investigation of computational intelligence techniques to classify the multi-

variable in order to extract proper entities (Regions of interest, obstacles, etc.) in 

the global context.    

 

 Development of the deliberative level to produce efficient and flexible path 

planning dealing with the different objects in an adaptive way using different 

strategies.  In order to deal with a dynamic and unstructured environment, the 

system should be able to change the search method as well as the search cost 

function complying with multi-behaviour navigation in the multi-dimension 

world model. 
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 Development of an integrated hybrid navigation control architecture, which 

seamlessly combines the deliberative path planning level with local reactive 

control to create an optimal global path and to also generate a trajectory 

dependent on context, selected global strategies and local multi-behaviours. 

 

 Development of a hybrid metaheuristic method in order to deal with a dynamic 

environment as well as applying multi-behaviour navigation to get the optimal 

solutions that provides good performance. 

 

 Development of an intelligent integrated system to deal with multi-reactive 

behaviour navigation in a dynamic and complex environment by performing 

different behaviours including conflicting behaviours in critical situations. 

 

1.8. Structure of the thesis  

 

This Ph.D. thesis is organized as follows: 

 

 Chapter 2. Multi Behaviour Navigation.  

 

In this chapter, the Global path section shows the definition, architecture and 

characteristic of the global path. Multi-objective optimization is discussed. Local path 

section studies 3 cases of local path: static local path, dynamic local path and 

unreachable local path. Navigation architectures are presented that show top down, 

bottom up and hybrid navigation architecture. Behaviour arbitrators are discussed. 

Behaviour and conflicting behaviour are explained showing the behaviour selection 

algorithm. In the last section, Multi-behaviour navigation state of the art is described 

including the progress done in this area. Many hybrid system architectures are explained 

illustrating general frameworks of multi-behaviour navigation. 

 

 Chapter 3. Thesis objectives & contribution   

 

Chapter 3 explains the thesis objectives focusing on multi-behaviour navigation. It also 

discusses thesis contributions, such as environmental representation, multi-behaviour 
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deliberative search, multi-behaviour reactive navigation and a novel integrated 

navigation architecture.  

 

 Chapter 4. Integrated deliberative-reactive multi-behaviour navigation 

 

In this chapter, a novel architecture is proposed to integrate the hybrid multi-behaviour 

navigation. Environmental representation can be obtained from the global data which 

provides multi-layer maps depending on the mission strategies. A world model uses 

deferent sources of data to interpret the study area. A context module is responsible for 

providing all the navigation requirements to interpret the local and global context such 

as the region of interest from different maps regarding the multi-behaviour navigation 

goal. Navigation behaviour control module is responsible for regulating the two levels 

of navigation and enhancing the quality of the navigation in a complex and unstructured 

environment. Many models are developed using hybrids of metaheuristic methodology 

to improve the multi-behaviour navigation at the deliberative level. Three different local 

path cases: static, dynamic and unreachable local path and activating conflicting 

behaviour are discussed employing the integrated architecture.  

 

 Chapter 5. Deliberative multi behaviour navigation 

 

This chapter presents the development and testing of hybrid multi-behaviour navigation 

at the deliberative level. The study zone is obtained through the interpretation of multi-

dimensional representations of the environment by different classification methods. A 

multi-behaviour system is presented that uses hybrid genetic algorithms to supervise the 

global search for an optimal global path. Multi-behaviour navigation is applied with 

regard to regions of interest (ROI) where each ROI is associated with a different local 

search behaviour related to a different sample collection strategy.  A sample acquisition 

mission is optimized through the generation of a sequence of waypoints covering the 

required ROIs. Different cost functions are investigated to comply with different local 

and temporal constraints. This chapter presents four experiments showing the efficiency 

of our method.   

 

 Chapter 6. Hybrid deliberative-reactive navigation 
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Deliberative reactive navigation is presented using a Khepera mobile robot in Kiks 

simulator environment. A design of a hybrid deliberative reactive navigation system is 

discussed that is able to perform rapid decision making in a complex and dynamic 

environment. Hierarchical fuzzy-based systems are employed to implement the multi-

behaviour navigation using two strategies: avoidance behaviour and aggressive 

behaviour. Three tests are performed studying the dynamic and unreachable local path 

and as well as the effect of the aggressive behaviour in a specific situation.  

 

 Chapter 7. Conclusions 

 

In this chapter, we summarize the main contributions of the thesis, and present our 

accomplishments in the following problems: deliberative multi-behaviour navigation, 

hybrid multi-behaviour deliberative-reactive navigation and integrated deliberative-

reactive multi-behaviour navigation architecture. 
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Chapter 2 
 

Multi-Behaviour Navigation  

2.1 Navigation Levels 

 

The two main navigation approaches are the deliberative and reactive navigation. Each 

deals with different aspect of the environment to achieve the mission target. 

Deliberative and reactive navigation correspond, in general terms, to global and local 

navigation respectively. The deliberative navigation generally operates at a higher level 

and supervises the reactive level (Chen et al. 2008)(Chen & Cheng 2008)(Chunlin Chen 

et al. 2008). Deliberative navigation is responsible for planning routes and actions 

toward a given goal. The deliberative layer is designed as a discrete process providing 

regular input to the reactive layer  (Powers & Balch 2009). 

 

In the first step, the robot searches for a global path in the world model. Usually, global 

path plans a mission for long distances and time periods. The path planning complies 

with the mission objective to get to the target point. The path planning plans the mission 

into a sequence of local paths. In the second step, as soon as the robot determines the 

global path, the robot starts executing the local paths using its onboard sensors. The 

local path is concerned with objects and conditions in the vicinity of the robot 

preventing the robot from any structural damage (collision) and allowing the robot to 

travel safely. 

 

2.1.1 Global Navigation 

 

Path planning uses the world model and the ancillary information for establishing an 

action plan. At this level, the robot plans the necessary actions to meet its objective. 

This action plan is based on the robot’s perception of the external world.  

 

Path planning aims at determining a global path from a start to a goal position 

depending on a specific strategy. Many strategy types involve the computation of a 

collision-free path, and many other strategy types concern the mission time, the 
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travelling distance allowing the robot to approach, move, and handle the nearby 

obstacles resulting in a reduction in the cost of the path. These two strategy types are 

called conflicting navigation strategies (Antonelo et al. 2008).   

 

Path planning has two different classes of algorithms: Non-adaptive algorithms and 

Adaptive algorithms. 

 

Non-adaptive algorithms plan the global paths depending on the world model, which 

consists of the predicated information about the global environment before any local 

observations are made;  

 

Adaptive algorithms update and replan the sub-global paths whenever new information 

is provided refining the path planning process making it adaptable to changing 

environment conditions (Halal & Zaremba 2010) (Singh et al. 2009). 

 

Velocity planning requires the consideration of the robot platform dynamics and 

actuator constraints (Jenne 2010). The new path might be longer and have new 

strategies to avoid the hazard locations.  

 

2.1.2 Path Planning Components 

 

The common path planning components and characteristics are as follows:  

 Search Space: the robot environment where the robot has to perform its task 

which means the world model and the possible waypoints to visit (transit state). 

The robot is represented as (x,y) coordinates in the Euclidean space; many 

conditions can be added such as the fuel level. 

 Actions (behaviour): A planner must generate the suitable behaviour which 

controls the robot when moving from state to state.  

 Initial and Goal States: The planner should design the way for the robot in order 

to get from the initial to the goal state. 

 Path planning (path): a path from the start configuration to the goal 

configuration. 
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 Time: the time needed for a robot to perform the path usually should be the least 

amount of time possible. The time can be expressed in this way: the robot should 

be at the point (x, y), at the time (t). Time may also be represented simply as a 

sequence of actions: “after Action A is completed the robot will do Action B”. 

 Criteria: many criteria can be introduced to optimize the path such as time, 

distance, or safety which should be optimized simultaneously. This may involve 

a combination of maximization and minimization criteria (Coello Coello 2006). 

 Constraints: optimal path planning should satisfy  a number of constraints (Deb 

2000), such as the maximum travel distance, the maximum mission time and 

maintaining the robot safety, on the other hand, the path planning should respect 

the physical limitations of the robot.  

 Algorithm: This is the method by which the best plan is obtained given the 

criteria and constraints for planning. Section 4.10 will discuss the heuristic 

algorithms in depth.   

 

2.1.3 Local Path  

 

Local navigation strategy employs the reactive behaviours of the mobile robot, so that 

the latter can avoid unforeseen obstacles which appear on the global path specified by 

the planner, so that the mobile robot can safely move between its current position and 

the next intermediary position on the global path.  

 

Local path navigation is divided into three categories which are as follows:  

 Static Free local path  

 Dynamic local path 

 Unreachable local path 

      

 Static Free obstacle Local path execution: the global path planning represents 

any local path as a straight line between two nodes (waypoints) which is the 

shortest local path (Sedighi et al. 2004). As a result, all of the locations on that 

path are free, and the robot navigates along this path applying destination 

seeking behaviour. Therefore, the trajectory of the local path will be very close 
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to the local path as in the global path but not identical due to the robot kinematic 

and dynamic constraints.  

 

 Dynamic local path: in a dynamic environment, any two nodes (waypoints) of a 

local path are reachable if there is a trajectory from the start waypoint to the 

target waypoint such that all of the locations on this trajectory are free. The 

dynamic local path changes its behaviour when an obstacle is detected. Obstacle 

Avoidance behaviour is applied to prevent the robot from any collision 

producing a new local path trajectory. This trajectory doesn’t match with the 

predefined local path which has too many curves for the robot to reach its target 

safely (Belkhouche 2009). 

 

 Unreachable local path: the local path target cannot be reached due to the 

unforeseen obstacles such as dead-end zone or u shape obstacle which prevents 

the robot from executing its local path. In this case, many scenarios can be 

applied depending on real-time information provided by reactive sensors and the 

robot multi-behaviour ability to perform. In the first scenario, the robot replans 

the sub-global path.  The deliberative navigation should intervene to replan the 

sub-global path. A new sub-optimal path is generated giving a new task to the 

robot complying with the environment changes and the mission objective. 

During the replanning of the sub-global path, the robot continues its attempts to 

reach a previously recorded local-goal that is now unreachable. In the second 

scenario, the robot activates the conflicting behaviour to approach and move the 

nearby obstacle (see section 6.4.4.). 

 

2.2 Navigation Architectures 

 

Navigation control can be implemented by systems of different architecture. In broad 

terms, navigation architectures can be classified into two categories: top-down and 

bottom-up, corresponding in general to deliberative and reactive navigation. Figure 2.1 

illustrates a typical top-down architecture approach using abstraction to decompose the 

perception, reasoning, and execution cycles (Xiao-Wen Terry Liu 2005). 
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This architecture has multiple levels of abstraction in the perception, reasoning, and 

execution stage; it has an explicit world model which focuses on generating one control 

strategy and carrying it through to the end.  

 

 
 

Figure 2. 1. Generic top-down architecture. 

 

 

These systems are good at planning and higher-level reasoning, but are not reactive 

enough for dynamic environments. 

 

The bottom-up architecture includes simple behaviours that map perceptions directly to 

actuator commands (Xiao-Wen Terry Liu 2005) as is shown in Fig. 2.2, where reflex is 

considered as a behaviour.  

 
 

Figure 2. 2. Generic bottom-up architecture 
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This architecture has good reacting capabilities because of the direct links between the 

sensors and actuators. This architecture contains three modules: perception, reasoning 

and execution stage. 

 

2.2.1. Hybrid Architectures 

 

Hybrid architectures are intensively used because they are a mix between top-down and 

bottom-up architectures combining their advantages. These systems inherit the 

advantages and the weaknesses of both types of the systems. The hybrid architectures 

also have three stages: perception, reasoning and execution (Xiao-Wen Terry Liu 2005). 

In the perception module, there are many sensors which are directly connected to the 

actuators. So, there is no complete world model, and others sensors are processed more 

extensively as is shown in Fig. 2.3. Thus, the environment can be mapped to certain 

states in the system, and the reasoning module moves the system to the desired state. 

This hybrid architecture may be used in complex behaviour systems. 

 

 

Figure 2. 3. Hybrid architectures 
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2.2.2. Hybrid Architecture Characteristic  

 

Hybrid navigation can solve the planning problem in dynamic environments (Baltzakis 

2004). The deliberative planning systems and purely reactive control systems have their 

limitations. For instance, deliberative control architecture is not useful in avoidance of 

unexpected and dynamic obstacles (due to its slowness). Furthermore, in reactive 

control architectures, the robot has the risk of falling into a dead-end zone or locking 

into a local minimum. As well as the time to perform the task can be very long (Hank & 

Haddad 2014). Hybrid deliberative-reactive navigation architecture, which combines 

reactive and deliberate navigation, has the advantages of both worlds (Rekik et al. 2009) 

(Lee-Johnson & Carnegie 2010). A pure reactive control system is responsive, flexible 

and robust while the deliberative planning system has slow responsiveness and abstract 

representational knowledge. Then hybrid deliberative-reactive robotic architecture can 

combine the above characteristics. Control system architectures are analyzed by 

(Nakhaeinia et al. 2011). Table 5 compares their characteristics.  

 

Table 5: Analysis of the control system architectures. 

Architecture Specification Deliberative Reactive Hybrid 

Goal oriented Very good Not good Good  

Flexibility Very bad Very good Very good 

Ease of application Very bad Very good Good  

Reactivity Very bad Very good Good 

Optimal operation Very good Very bad Good 

Task learning Very good Moderate Moderate 

Robustness Not good Good Very good 

Planning Very good Not good Good 

Efficiency Not good Very good Very good 

 

Figure 2.4 illustrates hybrid mobile robot architecture, combining the planning unit of a 

deliberative control and the behaviour strategies unit of a reactive control. The 

deliberative control has the highest level consisting of the planning block that creates 

the global path from the start point to the target point. The global path is divided into 

many local paths to send them to reactive control as sequential tasks. The deliberative 

level receives a feed-back signal from the reactive level to update the path when the 

robot couldn’t perform one of its local tasks, when the robot faces an obstacle in the 

dynamic environment and when the robot receives information about the surrounding 

changes. In these situations, the deliberative robot generates a sub-global path from the 

robot’s position where it is stuck to the target (unreachable local path). 
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Figure 2. 4. Hybrid robot architecture 

 

The reactive layer is at the lowest level executing the local paths. The robot performs 

these tasks depending on many behaviour strategies. This control has direct connections 

between the sensors and the actuators which provide the information about the 

surrounding environment. This information helps the robot to execute its tasks and to 

observe the changes in the surrounding area. 

 

(Giesbrecht 2004) describes the relation between the two navigation processes as a 

complementary relation, meanwhile (Ruiz et al. 2016) proposes a fuzzy system serving 

as an arbitrator to resolve the conflicts between deliberative planning and reactive 

control. The fuzzy system selects which navigation should apply depending on two 

input variables, the validity of the plan and security of the robot; the first variable is 

provided by the deliberative layer and the second variable is obtained from the reactive 

layer.  

 

Fuzzy rules which control the navigation layers are as follows: 

 If Plan is Valid and Safety is High, Then Navigation is Deliberative.  

 If Plan is Valid and Safety is Low, Then Navigation is Reactive.  

 If Plan is Invalid, Then Navigation is Reactive.  

Depending on these rules the fuzzy system generates a resulting command which will 

indicate the level of deliberativeness or reactivity (Ruiz et al. 2016). 
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2.3 Behaviour and Conflicting Behaviour  

 

Stimulus-response is the most intuitive method of expressing behaviours, and any 

behaviour can be represented as a generated response to a given stimulus (Brooks 1986)  

(Mali 2002). 

 

Generally, behaviour definition is based on IF-THEN rules. Each rule determines the 

conditions that relate to a specific behaviour. The behaviour is expressed in the form of 

IF condition THEN action. At the reactive level, the behaviour is executed once the 

stimulus is true, where preconditions are set up. In order to change the action regarding 

the mission strategy, an operator will activate the behaviour respecting the goal that the 

planner is trying to achieve. 

  

The objective of mission navigation can be decomposed into simple objectives like 

obstacle avoidance, and goal seeking. These simple objectives are going to be the basic 

behaviours for the mobile robot (Amin et al. 2005). A behaviour-based system allows 

the robot to have wide application-specific behaviours where each behaviour is 

concerned with a sole objective. They have to be combined in intelligent ways to meet 

the mission objective (Abdellatif 2008).  

 

2.3.1 Competitive and Cooperative Behaviour Control 

 

Robot control usually handles diverse and variant behaviours to be able to perform 

complex tasks, in many intelligent techniques; more than one behaviour can be 

activated at a time. To solve such abnormal situations, a control system should be 

employed to determine the output of the overall system. Coordinator function which can 

be called behaviour arbitrator is used to solve these conflicts. There are mainly two 

types of coordination function: Competitive Methods and Cooperative Methods 

(Altuntaş 2003). 

 

In competitive control methods, only one behaviour affects the actuator output of the 

robot in a particular moment. In cooperative control methods, different behaviours may 
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contribute to a single actuator action although with different strength. Figure 2.5 

illustrates behaviour coordinator (Floreano & Mattiussi 2008).  

 

 

Figure 2. 5. Competitive and cooperative methods 

 

2.3.2 Conflicting Behaviour 

  

Robot should make a force closure on the object to make the robots able to move the 

object on a desired trajectory. Meanwhile the robot should avoid any obstacle to prevent 

its structure from any collision or damage.  

 

(Antonelo et al. 2008) defined two conflicting behaviours which are: the first behaviour 

performs exploration of the environment ignoring the existent targets, whereas the 

second behaviour seeks and captures targets in the environment, avoiding collision with 

obstacles. 

 

a) Conflicting behaviour considering their effects   

(Mali 2002) detects conflicting behaviours from their effects on the world. The 

consequences of behaviours after they are performed allow identifying which 

behaviours can occur after the initial behaviour. Thus, behaviours which have the same 

effect are conflicting behaviours. For instance, if the consequence of behaviour B1 

contains P and consequence of Behaviour B4 contains P, these behaviours conflict 

(Mali 2002). 

 

b) Conflicting behaviour considering stimulus conditions 
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Conflicting behaviours have the same surrounding area condition (stimulus condition), 

but the consequences of these behaviours are different. To solve this situation, many 

strategies at the high-level control involve making a decision about the suitable 

behaviour to fulfill the mission goal.   

 

For instance,  

Behaviour 1 

“if there is an object very close, then move away” 

If stimulus condition represents an obstacle or an object, the consequence is to move 

away.  

Behaviour 2 

“if there is an object very close, then move forward towards the object” 

 

Conflicting behaviours have the same stimulus conditions:  

If the stimulus condition represents an obstacle or an object, the consequence is to move 

forward towards the detected obstacle. 

 

2.3.3 Behaviour Selection  

 

Autonomous robots usually tend to model human and/or animal behaviours which are 

quite complicated. Generally speaking, complex behaviour of an autonomous robot 

needs action selection to answer the question “what to do next?”. Action selection 

should be able to deal with a variety of levels of abstraction.  

 

Depending on the problem complexity, the behaviours can be divided into many 

categories to express multi-task and conflicting behaviours. A set of possible behaviours 

is usually predefined and fixed. The behaviour components can be decomposed into 

simple components on many layers, with the behaviour control coordinating the overall 

behaviour. 

 

Action-selection algorithm is employed for its ability to solve the conflicts that arise 

from different behaviours (Brom & Bryson 2006). This algorithm is a mechanism 
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designed to solve conflicts between rules when more than one of their conditions is held 

at a given instant. 

 

Behaviour selection characteristics: 

 The behaviour selection has to deal with dynamic and unpredictable 

environments and select the suitable behaviour;  

 The behaviour selection should make decisions in a timely fashion respecting 

real-time task performance;  

 The robot performs several different tasks. These tasks may conflict for resource 

allocation. Behaviour selection should coordinate the conflicting behaviours 

depending on the mission priority.  

 

Action selection approaches rely mostly on condition–action rules. A condition-action 

rule is a rule in the form: IF Condition THEN Action. If the condition complies which a 

specific rule, then perform the action according to the respective rule.  

 

The rules are organized in flat structures, as in the case of simplified subsumption 

architecture or in hierarchical structures. Flat structures can be applied to simple 

behaviours while the hierarchical structure can be employed to solve a very intricate set 

of conditions. 

 

2.3.4 Behaviours Selection Algorithm for Multi-Behaviour 

Navigation at Reactive Level 

 

Figure 2.6 shows a flowchart of a behaviour selection system which activates separate 

behaviour modules to fulfil the overall mission goal. The first priority is that a mobile 

robot moves to handle any object located in its local path; the second situation is that it 

applies aggressive behaviour to recover the robot from a hazard zone. When the robot 

faces an obstacle, avoidance obstacle behaviour is fired. Wall following and Seek the 

goal behaviours are employed allowing the robot to reach its destination.      

 



 

 

 

 

39 

 

 

Figure 2. 6. Behaviour selection system at the reactive level. 

 

2.4 Multi-behaviour Navigation: State of the Art 

2.4.1  Multi-behaviour Navigation architectures  

2.4.1.1. Traditional Sense-Plan-Act Architecture 

 

A control system for an autonomous robot contains many subsystems responsible for 

perception, world modelling, planning, task execution and motor control (Murphy 

2000). Figure 2.7 illustrates an approach building a control algorithm for a mobile robot, 

which is the “sense-plan-act” architecture. The robot problem was decomposed into 

sequential functions, which has the following functionalities:  

 Monitor the surrounding environment  

 Make an internal plan of the area  

 Adapt the robot plan  

 Execute the plan 

 Create a new plan when environmental changes occur 
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Figure 2. 7. Traditional decomposition of a mobile robot control system into functional modules 

 

The advantages of this navigation architecture are task learning and planning abilities 

and its goal orientation.  

 

2.4.1.2. Behaviour-Based Architectures 

 

Behaviour-based architectures guide the designer in decomposing the control system 

into behaviour-related subsystems. 

 Brooks Architectures  

In 1986 Rodney Brooks came with a new approach, which decomposed the problem 

into behaviours instead of function components (Brooks 1986), and this is illustrated 

into a set of behaviours layers, as shown in Fig. 2.8.  Behaviours could be obstacle 

avoidance, wall-following, exploration or target seeking. A certain number of 

behaviours run as parallel processes, while each behaviour can access all sensors, only 

one behaviour can have control over the robot actuators. 

 

 

Figure 2. 8. A decomposition of a mobile robot control system based on task achieving behaviours 
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 Subsumption Behaviour Architecture 

 

Usually, mobile robot control architecture is organized in layers which is called 

subsumption architecture as shown in Fig. 2.9. This architecture puts the whole system 

in a number of behaviours operating asynchronously and in parallel (Watanabe 2009). 

Each layer handles different behaviours defining purpose and responsibility. This allows 

the system to operate robustly and the robot architecture can be extended by simply 

adding new layers on top of the existing layers. The sensors and the actuators are 

connected directly by behaviours. There is a close relationship between each layer; the 

upper layer also can control the outputs of the lower layer. 

 

Disadvantage  

 The design of the higher layers is so complicated because it should have the 

ability to do everything that the lower layers can do (Yongjie et al. 2006);  

 

 Each layer works without any information about what the other layers do 

(Brooks 1986) (Yongjie et al. 2006); 

 

 This system uses the current sensory input without prior knowledge of the 

environment (Halal & Dumitrache 2007) which is not capable of performing 

complex tasks considering the planning ability (Yongjie et al. 2006). 

 

Figure 2. 9. Subsumption Architecture (Yongjie et al. 2006) 
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 Modified Subsumption Architecture 

 

(Yongjie et al. 2006) brought out hybrid architecture based on subsumption architecture; 

this system is based on the following strategies: 

 

 Each layer has a group of independent processes which is responsible for a 

function of a layer or a simple task. 

 

 The behaviour-managing layer controls the behaviours changing the state of the 

processes (activated or not) depending on the sensors’ reading. This layer also 

adjusts the behaviour parameters of the robot according to the current task. 

 

 The scheduler decides which process will control the robot and the final output 

parameters to the actuator according to the output of every process.  

 

The whole structure is illustrated in Fig. 2.10. 

 

 

Figure 2. 10. Modified hybrid architecture  (Yongjie et al. 2006) 

 

A six layers control architecture was used by (Yongjie et al. 2006) with the following 

processes associated with the layers: 

Process 0: wandering  

Process 1: obstacles avoidance 

Process 2: moving to the goal  

Process 3: recovering from the deadlock  

Process 4: planning routes in a known environment  
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Process 5: behaviour management scheduler: deciding the control layer and the final 

output. 

 

Behaviour selection strategies are the key of all control architecture based on 

behaviours. thus, behaviour management is needed.  

 

In this paper, an attention mechanism with different priorities is used to coordinate 

behaviours of all layers. The level of attention is different, and it is adjusted by the 

behaviour managing layer depending on environment, activity and task limiting 

conditions. This system implements multi-behaviour navigation that performs well 

with coordinating behaviour at the reactive level.  

 

2.4.2 Intelligent Techniques for Multi-Behaviour Navigation 

 

The classical approaches for solving the path planning problem, such as the cell 

decomposition approach, the artificial potential field approach, and graph search 

methods using grid-based map, suffer from many disadvantages, such as time 

consumption and getting trapped in a local optimum, especially when dealing with large 

environments with numerous solutions. Metaheuristic approaches were introduced to 

solve the path planning problem in a large-scale environment. A powerful method that 

can perform the path planning optimization is the ant colony approach.  

 

2.4.2.1. Ant Colony for Vehicle Routing Solution 

 

The family of Ant Colony Optimization (ACO) algorithms is used in several 

combinatorial optimization problems in both static and dynamic environments. The 

ACO optimizes the path planning to fit the goal of the multi-objective function. 

 

An ant path starts from the start point which represents the nest or the first node and 

passes through nodes 2, ..., n − 1 for checking the neighbourhood of the node to 

improve the gain in the node vicinity. When an ant goes from node j − 1 to node j, a 
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specific number of neighbourhoods are first investigated randomly from the j node 

surrounding area, regardless of the pheromone levels which are compared later. The 

neighbour that has the highest-level pheromone is selected to be the new node. A new 

local path is generated from node j-1 to the new node j. The ACO improves the local 

search and updates the local paths to get the highest neighbourhood values. Figure 2.11 

shows an ACO vehicle routing solution which is used  to optimize the traffic  problem 

(Kponyo et al. 2014). 

 

 

Figure 2. 11. ACO vehicle routing solution (Kponyo et al. 2014) 

 

2.4.2.2. Multi-Behaviour Based Multi-Colony Ant Algorithm for 

TSP 

 

(Liu & You 2009) proposed an ant colony system which consists of several sub-

colonies; each sub-colony of ants navigates the environment and performs its task using 

its own search behaviour. The ant population evolves independently and in parallel. The 

system is divided into four different behaviour options (subsystems).  

 

The behaviour characteristics are described as follows: 

Behaviour 1: an ant selects the next city in a stochastic selection manner. 

Behaviour 2: an ant selects the next city using a greedy selection technique. 
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Behaviour 3: an ant selects the next city applying a hybrid behaviour. 

Behaviour 4: an ant selects the next city in a "follow the crowd" manner every time that 

ant’s behaviour can be guided by the perceived behaviour of other individuals. 

 

Each sub-colony of ants has different behavioural characteristics and evolves 

independently. An example of the parallel evolution of four sub-colonies is shown in 

Fig. 2.12. 

 

This system can perform different deliberative searches using multi-behaviour to 

navigate the global path. But this system shows low performance at the reactive level 

because it doesn’t handle local reactive behaviours.   

 

 

Figure 2. 12. A framework of multi-colony parallel evolution (Liu & You 2009) 

 

This system offers a good method to handle multi-behaviour navigation at the 

deliberative level, but still shows disadvantages in terms of handling multiple 

behaviours because it doesn’t consider multi-class environments. We employ this 

system idea in our multi-behaviour navigation scheme for large-scale missions.    
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2.4.2.3. Fuzzy Behaviour-Based Systems 

 

Behaviour-based systems allow for robot application-specific behaviours where each 

behaviour is concerned with a sole objective. They have to be combined in an intelligent 

way to meet the mission objective (Abdellatif 2008).  

 

Fuzzy systems (FS) have been widely used in reactive navigation. Fuzzy control 

systems have been developed in mobile robotics for exploration, localization and map 

building tasks (Pradhan et al. 2009) (Gu et al. 2003) (Yang et al. 2005).  FS design 

consists of three stages that are as follows: definition of membership functions, 

determining the number of useful rules and rules consequent parameters.  

 

Fuzzy systems mimic the human reasoning decisions which are based on IF-THEN 

rules. Each rule determines the conditions as they relate to a specific behaviour. More 

behaviours can be added to the system as needed. The fuzzy rules are defined based on 

the robot tasks. The robot task is determined by the user depending on the objective of 

the robot mission (Zein-Sabatto et al. 2003). The fuzzy system integrates and 

coordinates the tasks to form complex robotics system such as the fuzzy hierarchy 

system (Lee et al. 2003). 

 

The inputs and outputs of the system are transformed into fuzzy variables which are 

called linguistic variables that are characterized by words rather than by numbers which 

are defined by different membership functions which vary from 0 to 1.  In the rules 

base, the decisions are made according to the linguistic rules in the fuzzy systems using 

IF-THEN rules base (Narvydas et al. 2007).   

 

Fuzzification is defined as the mapping from a real-valued point to a fuzzy set. In most 

fuzzy decision systems, non-fuzzy input data is mapped to fuzzy sets by treating them 

as Gaussian membership functions, triangular membership functions and trapezoidal 

membership functions. 

 

The fuzzy inference engine is used to combine the fuzzy IF-THEN rules and to convert 

input information into output membership functions. An inference mechanism emulates 
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the expert's decision making in interpreting and applying knowledge about how to 

perform a good control. 

 

Examples of fuzzy systems that have been applied in behaviour-based control are 

reported in (Brooks 1986) (Kuo & Ou 2009) (Raguraman et al. 2009). Fuzzy behaviour-

based system fuses different types of behaviour using fuzzy reasoning. Inference fuzzy 

system fires all types of behaviours depending on the rules base and the system inputs. 

The fuzzy rules base system can handle the behaviour-based system, where each rule or 

a group of rules can represent one behaviour. 

 

 Multi-Behaviour Fuzzy System  

 

A method for navigating in an unknown environment has proposed by (Bao et al. 2009) 

this system has four behaviours handled by fuzzy systems: goal seeking, obstacle 

avoidance, tracking, and deadlock disarming. A behaviour controller is designed to 

integrate these basic behaviours and to determine which behaviour has the control of the 

robot actuators. This system is illustrated in Fig. 2.15. 

 

 

Figure 2. 13. Multi-behaviour fuzzy controller 

  

The behaviour arbitrator resolves any conflicts arising from multiple behaviours 

attempting to control the same actuator simultaneously. High-Priority-Take-All strategy 

is adapted by most of the existing Behaviour Arbitrators determining control action of 

the entire system.  
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A behaviour controller concerning the obstacle distance DL, DF and DR is designed by 

(Bao et al. 2009). The obstacle distance is used to form many rules that decide which 

behaviour has high priority. The mobile robot is controlled by the highest priority 

behaviour as long as the mobile robot moves towards the goal. Fig. 2.16 illustrates this 

control. 

 

 

 

Figure 2. 14. Flowchart of multi-behaviour navigation (Bao et al. 2009) 

 

This multi-behaviour system deals with the reactive level where the behaviour 

controller can disarm the deadlock behaviour when the robot gets stuck. This system 

handles different behaviour models and applies a coordinator to arm and disarm 

these behaviours according to the robot situation and the mission objective.  
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2.4.2.4. Genetic Algorithms in Behaviour-Based Systems  

 

The controller task is to generate a good solution to resolve the robot problem. The 

fitness function evaluates the effectiveness of the chromosome by returning a numeric 

value that corresponds to the measured chromosome.   

The genetic algorithm controller is based on an analogy with the genetic structure and 

behaviour of chromosomes within a population of individuals. The basic operation of a 

genetic algorithm can be summarized as follows, and can be seen in Fig. 2.13 (Halal & 

Dumitrache 2006) 

Step 1: Generate an initial population of N solutions generated randomly or 

heuristically  

Step 2: While the terminating criteria have not been satisfied    

 Evaluate each solution of the population using a fitness function/objective 

function. 

o Construct the phenotype (e.g. simulated robot) corresponding to the 

encoded genotype (chromosome) 

o Evaluate the phenotype (e.g. measure the obstacle avoidance abilities), in 

order to determine its fitness 

 

Step 3: Select solutions as parents for the new generation based on either elite solution 

selections or random solution selections;  

Step 4: Use the parent solutions from Step 3 to produce the (offspring) population by 

applying the crossover operator;  

Step 5: the mutation operator is randomly or heuristically applied to solutions using a 

mutation probability to generate the mutation population;                                                                      

Step 6: generate the new generation from the big search family using certain selection 

schemas and genetic operators. 

Step 7: Repeat Steps 2 through 6 until a stopping criterion is met. 
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Figure 2. 15. Genetic algorithms in mobile robots control (Halal & Dumitrache 2006) 

 

Genetic algorithm has been applied to handle the behaviour-based system (Halal & 

Dumitrache 2006). We are dealing with phenotypes, which are possible solutions to a 

given problem, for example, a simulated robot with a particular control structure as is 

shown in Fig. 2.14, and genotypes, which are encoded representations of phenotypes. 

The chromosome handles the behaviour-based system; the coding string has the most 

important role driving this system according to mission conditions. Robot behaviours 

are represented by a whole chromosome. Each behaviour should correspond to a gene or 

a group of genes in the coded chromosome, as shown in Fig. 2.14. Genetic operators 

work only on genotypes; phenotypes can represent a simulator or an environment where 

the control determines the values of the gene by applying a suitable fitness function to 

fit the mission goal. 
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Figure 2. 16. Genetic algorithm handles behaviour based system 

 

 

2.4.2.5. Multi-Behaviour Neural Network   

 

In (Nojima 2009), Yusuke Nojima divided complicated tasks into a combination of 

behaviours based on apparent functional modularity. Each local fuzzy system handled a 

decomposed behaviour. A gating network is used for combining the outputs of local 

fuzzy systems. Behaviour coordination can be performed by the combination of outputs 

from fuzzy controllers.  

 

The multi-objective behaviour coordination strategy work as follows: 

When the robot faces an obstacle, the weight of the collision avoidance behaviour is 

updated. Otherwise, the weight of the target tracing behaviour is updated. After the 

update, behaviours weights are normalized in the range of [0 1]. This method can be 

considered as a mixture of fuzzy systems because the behaviour coordination 

mechanism is considered as a gating network. Fig. 2.17 shows the multi-objective 

behaviour coordination control. 

This system can control the fuzzy behaviours by tuning the fuzzy membership 

function in order to select one behaviour over the others.  
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Figure 2. 17. Multi behaviour coordination 

 

 

2.4.3  Hierarchical Multi-Behaviour Navigation  

2.4.3.1 Hierarchical Multi-Behaviour Model 

 

(Tunstel 1996) proposed a behaviour hierarchy model for indoor navigation organized 

as in Fig. 2.18. The system’s main task is goal directed navigation which is decomposed 

as a behavioural function of goal seeking and route following which are considered as 

composite behaviours. These behaviours can be further decomposed into the primitive 

behaviours which can be combined synergistically to produce suitable behaviours for 

accomplishing goal-directed operations. Primitive behaviours usually associated with 

activation threshold which are at the root of the intelligent coordination of primitive 

behaviours. Fig. 2.18 shows a conceptual model of a hierarchical intelligent 

behaviour system and its behavioural relationships. 
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Figure 2. 18. Hierarchical scheme of intelligent behaviour system (Tunstel 1996) 

 

The multi-task robot must be able to perform different behaviours including the 

conflicting behaviours. In order to accomplish its task, the priorities of the behaviour 

must change with time according to the mission objective. Therefore, a controller 

(behaviour arbitrator) must select and actualize the suitable behaviour that can be 

integrated to fit the overall goal of different control objectives (Mai & Janschek 2012). 

 

A hierarchy based behaviour system is employed in (Mai & Janschek 2012) using a 

fuzzy system to control path planning and motion control modules. The behaviours 

were decomposed into bottom-up behaviours. A complex behaviour may have serval 

layers in which each activity at a given level is dependent upon behaviours at the levels 

below. Two behaviours were introduced into composite and primitive behaviours. The 

composite behaviour or the behaviour arbitrator has a high level and control the lowest 

layer which includes the primitive behaviours. A collection of primitive behaviours 

resides at the lowest level which is also called the primitive level. The primitive 

behaviours are simple and perform a single purpose. Fig. 2.19 shows the hierarchy of 

path planning behaviours.  
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Figure 2. 19. Hierarchy of PAPFIS behaviours 

 

Based on the information about obstacles, the motion control fuzzy system (MOFIS) 

computes primitive and composite behaviours to determine a collision-free behaviour. 

Figure 2.20 illustrates the behaviour based architecture for the motion control. 

 

 

Figure 2. 20. Hierarchy of MOFIS behaviours 

 

This system handles the multi-behaviour navigation at both levels, which 

represents the traditional hybrid multi-behaviour navigation. Since the system 

depends on sequential ordering tasks, it performs poorly when executing its 

mission in a complex and unstructured environment.    

 

2.4.3.2 Cooperative Behaviour Hierarchy Model  

 

(Vadakkepat et al. 2004) used behaviour-based architecture to decompose a complex 

multi-robotic system into three hierarchy layers which are robot roles, robot behaviours 

and robot actions. The robot strategy is divided into many robot roles such as attacker, 

midfielder, defender and goalie. The robots are able to execute the role by activating the 
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suitable behaviour depending on the surrounding area conditions.  Behaviours locate at 

the next lower layer. Also, the behaviours activate the suitable actions to accomplish the 

task. The action layer is the lowest layer. Depending on the task, the action layer could 

have many sub-layers. An extensive fuzzy behaviour-based architecture is proposed for 

the control of mobile robots where the fuzzy system is used to coordinate the various 

behaviours, to select roles for each robot and, for robot perception, decision-making, 

and speed control. The system was designed to show cooperative behaviour so that the 

robots team exhibiting good collective behaviour. Fig. 2.21 illustrates the proposed 

architecture which decomposes behaviours into a hierarchy based on complexity. The 

complex behaviours are decomposed into simpler and more manageable sub-behaviours 

from the top to bottom of the hierarchy. 

 

The path planning in this context consists of sequential tasks such as chase, kick and 

avoid the wall. This system implements a complex multi-behaviour strategy that is 

handled by many layers. This system is implemented in the reactive level showing 

the limitations of the planning ability.    

 

 

 

 

Figure 2. 21. Behaviour architecture for a team of soccer robots (Vadakkepat et al. 2004). 
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2.4.4 Hybrid Intelligent Control for Multi-Behaviour Navigation 

 

2.4.4.1 Hybrid Geno-Fuzzy Multi-Behaviour System  

 

(Yan Yongjie & Zhang Yan 2009) designed a Geno-fuzzy multi-behaviour system to 

drive the robot in an unknown and static environment. They proposed a three 

behaviours control structure based on the fuzzy system which are: avoid obstacle, avoid 

robot, and move to the goal. The behaviour synthesis is always the key for designing 

behaviour-based control. The behaviour integration unit works depending on two 

factors: the priority and the weight value. The avoid obstacle and the avoid robot 

behaviours have the high priority whereas the priority of move to the goal is defined as 

the lowest one. The unit inhibits the output of the move to the goal behaviour while the 

robot is avoiding a robot or an obstacle. In this case, the control output which are the 

robot speed and the robot heading angle are determined by two factors: depending on 

the other robots’ speed and heading angles and the controlled robot’s speed and heading 

angle when avoiding an obstacle. Equations (1.1) and (1.2) explain these two factors: 

 

obstacledrobotd vvv )1(                         (1.1) 

obstacledrobotd   )1(               (1.2) 

     

where: 

 d is the weight value of the most dangerous robot;  d is decided by robot’s angle φ 

and distance d. 

The outputs of avoid robot behaviour are vrobot, and   robot. 

The outputs of avoid static obstacle behaviour are vobstacle, and  obstacle.  

Fig. 2.22 illustrates the geno-fuzzy multi-behaviour system. 
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Figure 2. 22. Geno-fuzzy multi-behaviours system 

 

 

This system controls multi-behaviour navigation using an integrated system. The 

Geno- fuzzy system changes the propriety of its behaviours depending on certain 

factors. This system deals with the reactive level only, which means it has no 

planning ability. 

2.4.4.2 Hybrid Multi-Behaviour Navigation Architecture  

 

(Zaremba et al. 2015) proposed a functional diagram depicting the deliberative-reactive 

control of the cruise ship as shown in Fig. 2.23. This model was the first hybrid multi 

behaviour navigation architecture for large-scale environments.  

The reactive system has many sub-reactive systems where each system which handles a 

behaviour or a group of behaviours work on the same task. The proposed system 

performs complex tasks as well as conflicting behaviours. Behaviour selector is 

responsible for making a decision on the suitable behaviour depending on the robot 

status and the surrounding area conditions. In this model, the behaviour selector 

represents a decision maker at the reactive level where decisions are made regarding the 

local context conditions.  



 

 

 

 

58 

 
Figure 2. 23. Hybrid multi-behaviour navigation 

 

The disadvantage of this model is that the behaviour selector makes his decision 

depending on the local condition only. Thus, the deliberative navigation does not 

support multi-behaviour operation in dynamic and unstructured environments.  

 

2.5 Conclusions  

 

The hybrid navigation provides a suitable degree of reactivity and deliberation. It offers 

a high level of artificial intelligence and has fast reactiveness, which allows the robot to 

perform well in a dynamic environment. Global navigation produces an optimal global 

plan for a given task, and then reactive navigation executes this global path into many 

local paths. An optimal sub-global plan is provided when the environmental changes 

prevent the robot from performing its tasks. Reactive control deals with onboard 

sensory data to make a decision preventing the robot from any collision. Reactive 

control discovers the surrounding area and observes the environment changes and 

updates the world model to reach real-time information. 
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The current models of navigation control architectures partially solve the multi-

behaviour navigation dealing with one navigation aspect, but they don’t fully consider 

complex and unstructured environments. They either consider a simple environment 

model at one navigation level or adopt the sequential ordering of the tasks. Thus, both 

navigation types are not integrated, which is the source of limitations in executing more 

complex tasks. 

 

Large-scale complex and unstructured environments need a robust architecture which is 

able to deal with the environmental changes. The system should show flexibility and 

adaptability when performing its mission by employing both navigation levels.      
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Chapter 3 

Thesis Objectives & Contributions  
 

3.1. Objectives  

 

The principal objective of this thesis is the development of an integrated, heuristics-

based methodology for designing hybrid deliberative-reactive navigation systems for 

complex and dynamic environments, where the mobile robot executes multi-task 

navigation subject to different behaviours. Hybrid deliberative reactive navigation 

architecture will be investigated, which is to assure a seamless relationship between the 

deliberative and the reactive navigation and improve the overall quality of the 

navigation. 

 

The aim is to obtain a control system that provides a suitable degree of reactivity and 

deliberation. This planning and control system has to have the ability to control 

successfully multi-behaviour strategies for a large range of tasks, including conflicting 

tasks. The system should exhibit a high level of intelligence in order to make the robot 

perform in unstructured and dynamic environments.  

 

In this thesis, we are dealing primarily with large-scale navigation environments. Due to 

the complexity of the navigation context and the heterogeneity of data sources, one of 

the initial objectives is an appropriate environment representation. Multi-layer maps 

will be explored as the underlying mechanism to represent the environment data and to 

build the world model. A variety of methods will be employed to better interpret the 

global environment with respect to the mission objective. Computational intelligence 

techniques will be investigated to classify the environment in order to extract proper 

entities, such as regions of interest, obstacles, etc. in the global context.     

      

One of the main goals is to provide a formal architectural framework comprising 

principal components of the hybrid navigation system and the transitions between those 

components.  
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3.2. Proposed Investigation Approaches 

 

In order to achieve the thesis objectives, we propose and investigate the following 

approaches: 

 

3.2.1 Hybrid Deliberative-Reactive Approach  

 

Deliberative navigation control supervises reactive control, whereas the reactive 

navigation makes a local decision and provides feedback to the deliberative navigation 

about the surrounding area in the form of real-time sensory information. The reactive 

navigation is fast and prevents the robot from any structural damage, but his 

performance still shows lack of intelligence regarding the global goal. Usually, the 

reactive control dominates when onboard data doesn’t comply with the global data 

(world model). The deliberative navigation system will be developed to get an optimal 

trajectory in multiple fields using hybrid metaheuristic search methods. In such 

conditions, the need to closely couple the two types of navigation is necessary for 

dealing with environmental changes in a cooperative way. Both navigations should 

work together in a parallel way while intelligent systems coordinate the role of each 

navigation type as well as their collaboration.   

 

3.2.2 Metaheuristic Approach for Navigation Optimization 

 

Metaheuristic approach which assures multi-behaviour navigation is employed to 

improve and to enhance the search process in path planning. It enhances the deliberative 

level by producing the optimal global path and sub-global paths. Due to the 

environment complexity conditions, it is considered a NP-hard problem which involves 

solving the sequential ordering problem with the precedence of constraints to determine 

the route optimization model of multi-modal travel. It is difficult to get an optimal 

global solution via exact algorithms within an acceptable time. Most of the NP-hard 

problem needing efficient solutions call for the combinatorial optimization approach. 

The approach that has proved effective in solving combinatorial optimization problems 



 

 

 

 

62 

is the use of hybrid metaheuristic. Hybrid GA system (AGA) using waypoint navigation 

is developed to perform multi-behaviour navigation. Deliberative level is used to 

generate a global path planning which deals with multiple areas (e.g., different water 

pollutant patches) in a partially unknown and unstructured environment. Hybrid 

Metaheuristic is employed to improve the deliberative navigation allowing an efficient 

and flexible multi-behaviour path planning. 

 

3.2.3 Multi-Behaviour Operation  

 

Dealing with different classes of the entities creates the need to use a wide range of 

behaviours to comply with different types of environmental conditions. Metaheuristic 

methods can perform different behaviours during the search process where each method 

can apply its search strategy,  such as the sub-colonies in ant colony optimization (Liu 

& You 2009). Genetic algorithm parallel search or hybrid Meta heuristic method can 

perform different search behaviours in a respective zone.  

    

Traditional behaviour coordinator approach will be investigated and developed in order 

to deal with multi-behaviour navigation including the conflicting behaviour. Robot 

control should handle multiple behaviours to be able to perform complex tasks. Thus, 

Multi-behaviour navigation will be studied as a more robust and flexible solution for the 

complex and dynamic environment, in situations such as recovering the robot from 

dead-end zones and cycling modes. Many behaviour strategies will be adopted and 

designed providing a big range of tasks which help the robot perform different 

behaviours. Behaviour selector will be developed using hierarchy intelligent techniques 

to select the appropriate behaviour regarding the robot situation and respecting the 

global and local conditions. An integrated system combining both levels of navigation 

will be developed to control behaviours in both levels to assure that no interaction 

between the behaviours will occur. 
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3.3. Contributions  

 

This thesis contributes to the development of intelligent navigation systems in the 

following areas: 

 

 Solution of the problem of integrated, multi-behaviour navigation in large-scale, 

complex and dynamic environments.  

 Employment of the multi-layer environment representation model for the 

integration of multi-source data (remote sensing, meteorological and ancillary 

data) and the navigation context identification.  

 Optimization of multi-strategy path planning using hybrid metaheuristic 

approaches. Combination of the waypoint navigation with an optimization 

process to create an optimal path that fits the overall mission goal, respecting at 

the same time the temporal and spatial constraints.  

 Development of an ACOGA algorithm (Genetic Algorithms and Ant Colony 

Optimization) integrated with the waypoint navigation approach to deal with the 

partially unknown environment.  

 At the reactive level, development of a special architecture able to deal with 

dynamic environment conditions by controlling multi-behaviour reactive 

navigation by a hierarchical intelligent system.  

 Development of a hierarchical geno-fuzzy system used to optimize reactive 

navigation within conflicting behaviours. 

 One of the main contributions of the thesis will be a novel formal model of an 

integrated deliberative reactive navigation.   
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Chapter 4 

Integrated deliberative-reactive Multi-
Behaviour Navigation architecture   

4.1. Introduction 

Robot control architectures are designed to provide a framework for solving mobile 

robot problems. A survey of different architectures for navigation control was presented 

in Chapter 2. Reactive system architectures solve the navigation problem using different 

controls depending on the tasks’ complexity. Typical architectures are the classical 

Brooks architecture, modifies subsumption architecture, and different architectures with 

behaviour coordinators to activate the suitable behaviour for the current robot situation. 

Deliberative navigation architectures are designed to solve many problems which vary 

in their complexity. The Sense-plan-act scheme is the fundamental architecture to solve 

the mission in an a priori known environment (world model). Deliberative architectures 

may solve the navigation problem using many sub systems to deal with different 

strategies selected to carry out the mission.  

 

Hybrid control architectures are employed to work in prior-known and partially-known 

environments which combine both deliberative and reactive architecture.  

 

Hybrid deliberative–reactive architectures are usually loosely-coupled and feature 

sequential ordering of tasks, which is not efficient in complex conditions, thus affecting 

the performance of the robot behaviour. Since there are practically no formal 

representations of these architectures, a rationale is, thus, provided for proposing an 

integrated architecture that can be represented by a formal transitional model. This 

model should be reliable, rigid and efficient hybrid navigation architecture that provides 

wide navigation capabilities to ensure the performance of the robot over identified areas 

of interest. In this thesis, we adopt and extend the robot architecture model proposed in 

(Lincoln et al. 2013) for autonomous asteroid exploration. 

 

Main features of the new proposed architecture: transitional, general, close integration 

of the deliberative and reactive navigation.  
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A navigation system is defined as a tuple 

 },,,,,,,{  PBCENS                                                        (4.1) 

This system consists of four states, E, C, B and P and four functions, α, β, γ and τ, 

where:  

E - environment model including the processing of all sensory data; 

α- context generation,  

C - global and local context,  

β - navigation behaviour control, 

B - set of behaviours, 

ɣ - path planning,  

P - set of executable plans, 

 - trajectory generation, 

 

Figure 4.1 illustrates the architecture of the integrated hybrid navigation system for a 

mobile robot. The availability of the information to every module is provided in this 

model. 

 

 

Figure 4. 1. Integrated deliberative-reactive navigation model 
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4.2. World model (E)  

 

The robot environment (world model) is represented by a multi-layer map. Each layer 

represents an environment feature. Robot posture and additional robot states can be 

shown in separate layers. The world model is built up from the raw data - global and 

local data - and any ancillary information. Intelligent system techniques employing 

many approaches can be used to extract the necessary information needed for the 

mission. The world model in the deliberative control is enhanced by many information 

sources. Apart from remote sensing data, meteorological data and Global Information 

Systems (GIS) can be used to detect the environmental changes and produce multi-layer 

maps. 

 

4.2.1. Data Resources  

 

The robot must navigate from a known position to a desired new location and must 

orientate to execute its multi-tasks to gets to its target. For these tasks, the robot is 

equipped with the necessary sensors which acquire high-resolution data describing the 

robot's physical surroundings in a timely, yet practical fashion. The sensors are chosen 

depending on the robot tasks and the environment. These sensors provide the necessary 

data to the robot in order to interact with the physical objects and entities in the 

environment. 

 

Environment sensing can be grouped into two categories, global and local:  

 Global sensors are mounted outside the robot in its environment and transmit 

sensor data back to the robot. For instance, overhead satellite cameras and a GPS 

system provide the robot with its coordinates. This data is generally called long-

term data. 

 Local or onboard sensors: sensors mounted on the robot. Sonar or infrared 

sensors provide surrounding area information which is generally classified as 

short-term data.   
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Global information from satellite cameras (RS) has many advantages in environmental 

monitoring. These kinds of sensors have multi-spectral bands which have different 

applications, for instance MODIS (Moderate Resolution Imaging Spectroradiometer) has 

36 spectral bands where each band or a group of bands has its application to detect and 

determine certain variables at the earth level (see Appendix 1.1). 

 

Spectral bands and other information from different sensors in the robot environment are 

processed to form the multi-layer maps which have been employed to generate spatial 

and functional properties of the environment. These maps enable a robot to perceive and 

to interpret its environment in which each map represents one or many environment 

features. That is, the robot would first build a model of the world as closely as possible 

and then plan its actions from that model. 

 

4.2.2. Multi-Layer Maps 

 

The deliberative navigation control architecture is equipped with an environment model. 

A map generation grid-based model represents the environment by dividing it into 

square cell representations, which result in an N by M matrix. To simplify the world 

model each environment feature can be represented in one layer creating a multi-layer 

map.      

 

Hybrid maps consist of topological maps and grid-based maps. Topological maps are 

used to interpret the global environment for path planning and decision making while 

grid-based or feature maps are used to describe the local environment to validate the 

information in topological maps (Chen & Cheng 2008). A set of multi-layer map is used 

to interpret the surrounding environment and to provide the capacity for dealing with 

multiple classes of environment objects. A multi-layer map used to interpret aquatic 

environments is shown in Fig. 4.2. The map consists of a bathymetric data layer, of the 

measured pollutants layers and meteorological data layers, and contains data related to 

wind speed and wave height.  
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Hybrid multi-layer map

Bathymetric data

Chlorophyll-A

Dissolvent Organic Carbon (DOC)

Total Suspended Solids (TSS)

Wind speed

Wave height

 

 

Figure 4. 2. Multi-layer map (Halal et al. 2014) 

 

4.3. Context generation: (α function) 

 

A method used for building the world model and the context (Schubert et al. 2014). 

 

The development of an effective and efficient method is needed to extract unknown and 

unexpected information from datasets of unprecedentedly large size (e.g., millions of 

observations), high dimensionality (e.g., hundreds of variables), and complexity (e.g., 

heterogeneous data sources, space–time dynamics, multivariate connections, explicit 

and implicit spatial relations and interactions).  

 

Context generation implies extraction of entities involved in the navigation process. In 

the environment monitoring context, those can be the type of pollutants and their 

concentration maps. In order to obtain this information from RS data, classification 

procedures have to be applied. 

 

Remote sensing is commonly employing classification methods to classify image pixels 

into labeled categories. Classification will sort the data or information (world model) 

into many classes according to their properties. As an example, the water detection data 

may need to be classified into different pollutant types. Classification methods include, 

for instance, artificial neural networks (ANN), decision trees, support vector machines 

(SVM), and linear discriminant function (LDF),  

 

The modelling on the input data produced in the form of multi-layer maps using 

different methods are listed below:  
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 Regression: Spatial regression or prediction models form a special group of 

regression analysis that considers the independent and/or dependent variable of 

nearby neighbours in predicting the dependent variable at a specific location, use 

of neural networks as model builders. 

 

 Bands ratio: two-band, three-band, four-band or more bands ratio algorithms are 

constructed to retrieve the environment characteristics. This method is employed 

further in the thesis o extract the MCI and TSS patches 

 

 Wavelength signature (shape): Remote sensing reflectances vary widely in their 

spectral shape and magnitude. Classes in the world model are determined by 

their wavelength reflectance features. (Li et al. 2011) (Vincent et al. 2004). 

These models are used to generate prior spatial distributions of environment 

characteristics which in turn are used by the context.  

 

4.4. Context (C) 

 

The context module consists of many components which are listed below: 

 Set of available strategies to execute the mission 

 Obstacle/ ROI    

 Robot model (Point, kinematic and dynamic model) 

 State of the navigation (Deliberative-reactive) 

 

Most of the context components are extracted form the world model which comes in the 

multi-layer map form.  

 

4.4.1. Set of Available Strategies 

 

To deal with large-scale or complex environments, a set of mission strategies is defined 

by the user to comply with the mission objective, allowing the robot to perform its tasks 
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in many different modes. Context generation and model interpretation should comply 

with the mission objective.    

4.4.2. Region of Interest (ROI) 

 

Region of interest (ROI) maps can be extracted from the multi-layer maps as additional 

layers which can be used to enhance the efficiency of the multi-task navigation. The 

ROI approach facilitates the planning system in directing the search towards desirable 

zones by paying additional attention to desired regions and assuring at the same time the 

generation of feasible solutions. Obstacles can be classified depending on their 

characteristics and then stored as in the multi-layer map.  

 

4.4.3. Robot Types 

 

In general, mobile robots are classified into two groups, holonomic and non-holonomic 

robots. A holonomic mobile robot can move freely in any direction. A non-holonomic 

robot is a mobile robot system with movement constraints. 

 

The most important types of wheeled mobile robot depending on its wheels 

configuration (Siegwart & Nourbakhsh 2004) are as follows: 

 Omnidirectional robot 

 Differential robot 

 Omni-steer robot  

 Tricycle robot 

 Two –steer robot 

 

4.4.4.   Robot model 

 

Usually the robot has motion restrictions and has strict conditions for movement. In a 

two dimensional (2D global map), the robot configuration (x,y,θ) has a unique value in 

each node in the search space. (x,y) represents the robot coordinates and θ expresses the 
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robot’s heading angle. In the holonomic robot case, where the robot’s heading angle is 

not a concern, the robot configuration can be represented in two dimensions (x,y). In a 

three dimensional global map (3D global map) the robot configuration uses up to 6 

dimensions in the configuration space which are (x,y,z) positions as well as roll, pitch 

and yaw. 

 

The robot model links the robot’s variables through a set of equations. For example, the 

differential robot kinematics model is defined as: 
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                      (4.2) 

where Vr(t) is the right wheel linear speed, Vl (t) is the left wheel linear speed, ( )w t  is 

the angular velocity and l is the distance between the two wheels. Thus, the robot 

position can be controlled by adjusting the average robot speed and the angular velocity. 

 

4.5. Behaviour Module (B)   

 

A set of mission strategies is defined allowing the robot to deal with different context 

conditions; thus, a multi-behaviours robot is needed to accomplish its task. Depending 

on the mission strategies, the robot must be able to perform different behaviours 

including conflicting behaviours. In the behaviour module, the issue is finding a suitable 

behaviour architecture at the behaviour-based level and a suitable behaviour algorithm 

at the search level to interact with the entire system. In order for a multi-behaviour robot 

to accomplish its goals, the priorities of the behaviours must change with time according 

to the robot’s situation and surrounding area conditions. The behaviour design will then 

allow the behaviour selector to select and to actualize suitable behaviours that can be 

integrated to fit the overall goal of different control objectives (Mai & Janschek 2012).    

 

The behaviour module consists of a set of deliberative and a set of reactive behaviours.  

The reactive control approach can be represented by a behaviour-based system which 
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quickly responds to inputs sensor reading but does not plan for the future. Another 

approach such as “deliberative control” considers the problem more globally. This 

approach uses many heuristic search techniques.  

 Deliberative behaviours deal with global entities and solve the global searches 

depending on a cost functions. Metaheuristic methods are employed to 

implement global multi-behaviour search (see chapter 5 for more detail). 

 

 Reactive behaviours are represented by a behaviour-based system to deal with 

onboard sensors data and to perform the local paths. In our research, the 

behaviour-based system allows the robot wide application-specific behaviours 

where each behaviour is concerned with a sole objective.  

 

4.6. Navigation Behaviour Control (β function)  

 

To navigate in multiple classes’ environment, navigation goals should be specified for 

each class that may be guided by different patterns of behaviour for different purposes. 

In a large-scale world model and multi-water pollutant patches, multi-behaviour 

navigation is needed to comply with different collection strategies regarding the mission 

objective. A path planning should pass sequentially through a set of patches complying 

with the mission objective. Some water pollutant patches have a special collection 

procedure. Thus, a behaviour selector is needed to change the screech behaviour 

regarding the water pollutant patches.   

 

Navigation Behaviour control has 3 basic duties:  

 Regulate and supervise the deliberative-reactive navigation 

 At the deliberative level, it takes responsibility for choosing and for changing 

the optimization method as well as the search method.   

 At the reactive level, it is involved in the dynamic and unreachable local path.   

 

This control should have 3 levels which are: 

 behaviour navigation indicator 
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 Intelligent technique for deliberative level 

 Intelligent technique for reactive level 

 

Behaviour navigation indicator represents an arbitrator between the two navigation 

levels which can be represented by different hierarchy intelligent levels depending on 

the mission complexity. This navigation controller should be equipped with a high 

intelligence level to solve multi-behaviours which includes conflicting behaviours 

Intelligent technique for deliberative level involves controlling and activating, for 

example, a search method that would employ the power of global and local search to 

realize efficient path planning in a complex environment. 

 

Intelligent technique for the reactive level can be represented by Geno fuzzy and fuzzy 

hierarchy systems which are efficient systems in deciding on the appropriate behaviour 

or on a suitable search strategy depending on the context extracted from the world 

model and the surrounding area’s conditions which are detected by the onboard mobile 

robot sensors. 

 

Figure 4.3 illustrates a navigation behaviour control that controls the global navigation 

by applying GA for global path planning while employing ACO for local path and sub-

global path re-planning. 

 

 

Figure 4. 3. Navigation Behaviour control for deliberative and reactive navigation 
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At the reactive level, an adaptive expert system or a geno-fuzzy system can be 

employed to generate new rules (new behaviours) allowing the robot to pass a critical 

situation.    

This function is responsible for activating and deactivating the path planning and 

reactive behaviour in the critical situations such as a dead-end zone or cycling mode.  

 

4.7. Path Planning (ɣ Function)  

 

Deliberative control employs a multi-layer map to generate a path planning using many 

heuristic algorithms. Multi-strategy is needed to adaptively guide the trajectory of a 

mobile platform to deal sophisticatedly with its environment and perform multi-task 

missions. For path planning, see Chapter 5 for more details.  

 

4.8. Plan (P) 

 

The plan is an ordered set of waypoints.  Each waypoint corresponds to an environment 

feature or landmark and connections represent paths or motion instructions between 

them. The route (path) goes through the nodes. Thus, the issue is that of finding an 

optimal route from one node to another (Busquets-Font 2003).  

 

4.9. Trajectory Generation ( ) 

 

Depending on the executed behaviour and the kinematic model of the mobile robot, a 

trajectory is produced which may comply with the local path or generate a different 

local path trajectory depending on the status of the local path. 
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4.9.1. Local and Global Frame  

 

First some definitions are provided: 

1) Global reference frame {W} of the plan represents the world model and it is defined 

by two axes (Yg, Xg) with an origin, O .  

 

2) Any existing object in the global reference frame such as a robot or moving obstacle 

can be attached as a local reference frame. The local reference frame of the robot is 

defined by two axes (XR, YR), where P is a point on the robot chassis as its position 

reference point and the origin of the local frame. The robot position in the global frame 

is three dimensional and is specified by the coordinates X, Y and θ (the robot heading 

angle). The initial position of the robot is given by R(t0) = (X R0, Y R0). 

 

3) The robot’s final goal is a point G with coordinates (xtar, ytar) in {W}. The 

coordinates of this point are known to the robot as ∀t. 

 

Figure 4.4 shows the robot’s coordinates. That is the global reference frame to specify 

the position of the robot by choosing a point P on the robot chassis as its reference 

position. Thus, the robot’s local frame P has target coordinates (xtar, ytar). 

The angle α is the robot’s target direction obtained from the following relation: 

α = β -                   

Where: α is the heading direction, representing the correction angle to orient the robot 

toward the target   

β – robot’s target direction 

 - robot’s heading angle.  
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Figure 4. 4. Differential robot in its environment (Halal & Dumitrache 2006) 

 

4.10. Multi-behaviour Deliberative Navigation  

 

The model (Eq.4.3) for deliberative navigation takes the following form: 

},,,,,,{ PBCEDC                             (4.3) 

 

The deliberative navigation is employed to generate path planning which complies with 

the mission objective. Figure 4.5 illustrates the deliberative navigation.  

 

Figure 4. 5. Deliberative navigation 
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4.10.1. Hybrid Metaheuristic Global Search  

 

A variety of heuristic methods have been investigated that can be considered for the 

implementation of the gamma function. Evolutionary algorithms have been employed in 

many variants, such as (Kponyo et al. 2014) who presented an ant colony optimization 

system to solve the problem of designing an optimal trajectory to improve the traffic 

situation in an urban environment. (Luo et al. 2013) proposed hybrid genetic algorithm 

with D* algorithm for real-time map building and navigation for multiple goals 

purpose.(Yoshikawa & Terai 2009) proposed car navigation system using hybrid 

genetic algorithms and D algorithm. This system enables the finding of a route which 

has several passing points before arriving at the final destination. (Li et al. 2014) solve 

the path planning problem for a submarine navigation application using the artificial bee 

colony algorithm. (Yu & Cai 2009) deal with a cultural hybrid algorithm to solve the 

mission planning meanwhile (Gao & Tian 2007) employed an improved simulated 

annealing artificial network to plan the path planning for a mobile robot. (Ciornei & 

Kyriakides 2012), developed a hybrid metaheuristic method called GAAPI which is a 

hybridization between ant colony optimization for continuous domains entitled API and 

a genetic algorithm (GA). This method has been used in solving different classes of 

complex global continuous optimization problems. 

 

A Robot accomplishes a deliberative navigation in two steps: trajectory planning and 

tracking phases. The planning process should comply with the mission objective which 

can be evaluated by performance criteria such as distance, travel-time, energy 

consumption, sensing time etc. and should respect a certain number of constraints 

(geometric, kinematic and/or dynamic) (Haddad, 2007). This approach provides a safe 

path planning which divides the mission into a set of sequential tasks. Path planning 

deals with the waypoints optimization using global and local search to apply multi-

behaviour navigation. 
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4.10.2. Hybrid GA Procedure for Path Planning  

 

In hybrid procedures employing a combination of GA and other metaheuristic local 

search methods, usually GA conducts the global search by supervising the other search 

methods. GA was employed to perform path planning optimisation in (Halal & Zaremba 

2015b). Ant colony optimization was used to conduct the global search. (Colmenares et 

al. 2014). The results of these two experiments gave reason to propose a novel hybrid 

search system which displays a better performance than the classical search approach. 

 

A novel system is proposed employing GA and many other metaheuristic local search 

methods where GA conduct the global search having a supervisory role on the different 

search methods.  

 

A search technique for hybrid GA is developed to navigate in a large-scale environment. 

This technique consists of generating an initial population of adaptive solutions which 

can be done either randomly or heuristically. In each generation, the fitness function 

evaluates the generation in terms of solution quality and provides a numeric value 

according to its performance. Mutation and crossover generations are generated in a 

parallel way into two generations which are generated by the elite individuals for the 

first population and random individuals have been selected to generate the other 

population. 

 

Hybrid GA has multiple, independent populations which are generated in a parallel way. 

The new populations are created by different metaheuristic methods which are 

integrated with the GA system. Each population evolves using different search 

strategies. Figure 4.6 illustrates the general framework of the proposed hybrid search 

architecture.  
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Figure 4. 6. General framework of the proposed hybrid search architecture 

 

The next generation is formed by a random selection process using a higher probability 

for chromosomes with higher fitness values. This process prevents low-fitness 

individuals from the current generation to move on to the next generation.  

 

Next generations can be produced either synchronously, so that the old generation is 

completely replaced, or asynchronously, where the generations overlap (Abu-Dakka et 

al. 2012).  

 

4.10.3. Ant Colony Local Path Navigation  

 

The ant colony system has been proven to be an efficient method for the local search. 

Ant colony local search procedures have used best neighbour and random neighbour to 

improve the vicinity. The objective of this search is to find the best replacement for each 

neighbour in the path planning node. The replacement node can be chosen randomly or 

heuristically. After selecting a new neighbour, one of following procedures is applied:   

- best_neighbour uses (4.4) to select the best option among the neighbours. 
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- random_neighbour computes the probability values of each neighbour according to 

(4.5), and the selection is made with a Roulette Wheel procedure.  
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      (4.5) 

where τij is the current pheromone trace in the arc ij; ηij is the heuristic value of the arc 

ij. To avoid the repetition of a location in the route, each ant stores the location of the 

visited nodes in a temporal memory Mk. The pheromone update process is done in two 

phases; first, each ant updates its own path and later a global process updates the arcs of 

the best route according to (4.6) and (4.7), respectively. 

 

0)()1()1(   tt ijij             (4.6) 

)()()1()1( ttt ijijij       (4.7) 

 

4.10.4. Hybrid GAACO for Deliberative Navigation  

 

The main idea is to build a hybrid system of two meta-heuristics that are genetic 

algorithm and ant colony optimization to profit from the advantages of both systems and 

to overcome their shortcomings.  

The novel GAACO proposed system has the ability to deal with a dynamic environment 

by applying efficient local and global search procedures. Ant Colony Optimization 

(ACO), local search algorithm and many other metaheuristic systems improve the local 

search by examining the neighbours of elite solutions. The GA system examines 

unvisited regions and generates solutions that avoid being stuck in a local optimum. The 

big family pool which consists of all old-generation solutions and current-generation 

offspring obtained after mutations and crossover operations combined with ACO 

solutions give the system the ability to save the elite searching experience from one 

population to the next. Figure 4.7 shows the GAACO system proposed for global 

search. 
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Figure 4. 7. GAACO proposed system for global search (Halal & Zaremba 2015a) 

 

Figure 4.8 shows a hybrid GAACO architecture-based mission planning system. The 

mission objective is defined and accompanied with a strategy definition to achieve the 

mission goal. A multi-layer maps is generated to interpret the global environment and to 

weigh the importance of different environmental features to the acquisition strategies.  

Depending on the mission objective, the context components are modelled. A set of 

ROIs is generated to guide the search toward specific patches associated with their 

acquisition strategies. Metaheuristic methods perform the search for optimal solutions in 

parallel, or each method performs a specific search behaviour in a receptive patch.   
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Figure 4. 8. Hybrid genetic algorithm for multi behaviour deliberative navigation 
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4.11.1. Static Local Path 

When the robot detects no obstacle, the task will be executed exactly as the deliberative 

plan. Figure 4.9 shows traditional hybrid deliberative navigation where reactive 

navigation executes the plan of deliberative navigation. The navigation procedure is as 

follows: 

 Sense the environment  

 Interpret the surrounding area  

 Plan the mission  

 Execute the local paths  

 Get to the destination  

Figure 4.9 illustrates the flow chart of the navigation process. 

 

 

Figure 4. 9. Traditional deliberative reactive navigation 
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sequential hybrid navigation, the robot shows bad performance regarding the 

deliberative task. Applying different strategy behaviours at the reactive level allows it to 

reach its target. Reactive navigation solves the issues depending on the robot’s vicinity 

information which is captured by the robot’s onboard sensors. 

 

In the novel architecture, Navigation behaviour control will be involved in the 

appropriate reactive behaviour decisions as quick solutions to prevent the robot from 

facing any collisions. The decision will be made depending on the local and wider range 

information from the global data.     

 

When the changes don’t require a quick decision and local path replanning is a suitable 

solution for this situation, the navigation behaviour control exchanges the responsibility 

between the reactive and deliberative in an “integrated” synergetic way to execute the 

sub-mission safely and intelligently. Both navigation levels cooperate to execute the 

local mission. The reactive controller changes its behaviour while the path planning 

generation searches for the optimal local path. 

 

The navigation procedure in this situation is as follows: 

 Sense the environment  

 Interpret the surrounding area  

 Plan the mission  

 Execute the local paths  

o If the local information doesn’t match the information in the global data 

 The reactive level changes its behaviour depending on the local 

and global information  

 While the reactive level executes the local path by changing its 

behaviours, the deliberative level searches for an optimal local 

path if the replanning is suitable for the respective situation  

 Get to the destination  

 

A flowchart of the process is illustrated in Fig. 4.10 
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Figure 4. 10. Dynamic local path navigation 
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The navigation procedure in this situation is as follows: 

 Sense the environment  

 Interpret the surrounding area  

 Plan the mission  

 Execute local paths  

o If the local path is unreachable  

 While the reactive level tries to get to the local destination, the 

path generator searches for the optimal sub-global path  

 The behaviour selector activates the conflicting reactive 

behaviour due to a robot critical situation, and so replanning is 

not feasible  

 Get to the destination  

 

A flowchart of the process is illustrated in Fig. 4.11 

 

 

Figure 4. 11. Unreachable local path navigation 
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4.12. Conclusions  

 

A general architecture was presented, flexible and complete enough to guide the design 

of a multi-behaviour deliberative-reactive navigation system in a complex and 

unstructured environment. The main feature of the proposed architecture is a close 

integration of the deliberative and reactive navigation, and the transitional type of 

relationships between its components. A comprehensive model of environmental 

representation is provided, which consists of multi-dimensional data and multiple 

scales.  Contexts are extracted using a variety of methods to properly interpret the 

global environment with respect to the mission objective. The navigation behaviour 

controller involves deciding which navigation level should be applied level. Path 

planning generation based on the hybridization of the different metaheuristic methods 

has the ability to optimize a path planning for large scale and partly unknown 

environments. This system applies different patterns of behaviour for different purposes 

regarding the mission objective as predefined by the user. A range of designs involving 

computational intelligence techniques can perform extracting the context, generating the 

path planning, and selecting the behaviour.  

 

The flexibility of the architecture was demonstrated through the examples of hybrid 

path planning, and multi-behaviour operation in the situation of dynamic and 

unreachable local paths. The integrated deliberative-reactive navigation control 

improves the quality of both navigation levels for complex and dynamic environments, 

where the mobile robot performs multi-task navigation subject to different behaviours. 

This integrated system provides an efficient framework for designing solutions for 

navigation in dynamic environments with the ability of solving critical situations of 

unreachable local paths.       
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Chapter 5 
 

Deliberative Multi-Behaviours Navigation for 
Environment Monitoring 

   

5.1. Problem Statement 

 

The algal blooming in inland lakes and coastal waters has become a critically important 

issue for its impacts not only on local natural and social environments but also on the 

global human community. Authorities responsible for water quality environmental 

protection, economic development and public health must develop and implement plans 

and strategies for prediction and mitigation of the effects of algal blooms (Harmful 

Algal Blooms - HAB). This requires means to detect and monitor the occurrence of the 

blooms. Modelling of the underlying phenomena that lead to HAB is complex and is a 

subject of ongoing research (Duan et al. 2009). Detection of the concentration of algae 

in waters basins is based on the assessment of the concentration of chlorophyll-a (chl-a). 

Aside from the detection of high levels of chl-a concentration, water quality monitoring 

includes the detection of other water pollutants, such as Total Suspended Sediment 

(TSS) and Dissolvent Organic Carbon (DOC). Remote detection techniques provide 

significant advantages in the detection of water pollutants over ground-based 

monitoring in terms of spatial and temporal coverage and cost-efficiency. In (Vincent et 

al. 2004) a set of algorithms was developed to derive phycocyanin, Chlorophyll-a, and 

sediment for the detecting of blue-green algal blooms in Lake Erie based on Landsat 

ETM images; A model to quantify chlorophyll-a in Lake Balaton using Landsat ETM 

imagery was discussed in (Tyler et al. 2006). The existing algorithms depend on water 

quality and RS sensors. The core approach to the detection has been automatic analysis 

of multi-spectral image sequences, mostly from MODIS and MERIS sensors. 

 

Acquisition of the reference data is usually a costly and time-consuming process. In the 

application area addressed by this project, it implies the carrying out of data collection 

by a specially equipped mobile platform, such as a cruise ship, a glider or a floating 
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robot. Our study uses information obtained from in situ measurements performed for 

Lake Winnipeg in Canada by a ship equipped with scientific instrumentation. 

 

Critical to this research are reliable, efficient, and adaptive control strategies that ensure 

mobile sensor platforms collect data of the greatest value. In addition, the large size of 

the lake, the tenth largest lake in the world, and the use of a large ship for data 

acquisition missions make the development of optimal navigation control important. 

 

The problem addressed in this thesis consists in the trajectory planning for precise 

acquisition of water pollutants by a mobile platform, when the planning process is 

guided by prior rudimentary information about the distribution of pollutants obtained 

from remote sensing data, and should incorporate different acquisition strategies.  

  

The sample acquisition mission is performed within a more general procedure 

consisting of the following phases:   

1) Determination of the type of water regions and types, sample location zones, and 

water pollutants to be sampled;  

2) Identification of the pollutant detection indices (e.g., maximum chlorophyll 

index (MCI), Fluorescent Line Height (FLH)), coverage methods (e.g., uniform 

coverage, maximum concentration gradient) and the number of samples;   

3) Selection of the sources of remote sensing data and their calibration methods;  

4) Selection of the ancillary data from in situ sensors needed to determine the 

factors affecting the pollutant distribution dynamics (e.g. wind, temperature);  

5) Determination of the acquisition mission parameters (e.g., total mission time, 

sampling methodology).  

 

Most of the above factors and conditions affect the strategies that have to be 

incorporated in the planning procedure. Mission strategies can be classified into two 

categories: 

 

(1) Water pollutant concentration strategies  

In these classes of strategies, the aquatic acquisition platform collects the most valuable 

samples from different pollutant classes and their combinations, such as  
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• Chl-a 

• Chl-a & TSS,  

• Chl-a & DOC  

• Chl-a & TSS & DOC. 

In this class of strategies, specific samples should be collected while neglecting the 

other samples within a certain time window.  

 

(2)  Local coverage strategies:  

In this mode, the ship executes a specific navigation and collection behaviour depending 

on the shape of the sample spatial distribution. We distinguish here such sampling 

strategies as the uniform coverage of high-concentration areas, sampling at local 

concentration maxima, and sampling along maximum gradient lines which is of interest 

in many environmental monitoring applications (Zhang & Leonard 2005). The sampling 

process can be different in each patch to comply with the general and local mission 

goal.   

 

Both types of strategies are executed under some specific constraints, such as time and 

distance constraints. Time window constraints can be imposed on certain pollutant 

patches which can minimize the travel distance constraint on other patches. Also, a 

certain number of samples have to be collected in a specific patch before heading to 

another one. 

 

5.2. World Model 

 

Satellite images have successfully been used to navigate and observe natural phenomena, 

such as lakes and oceans. The satellite systems used for inland water monitoring are 

mostly medium resolution imaging instruments, such as the NASA MODIS (Moderate 

Resolution Imaging Spectroradiometer) sensor (see Appendix 1.1) or the MERIS 

(Medium Resolution Imaging Spectrometer) sensor carried aboard the ESA's Envisat 

satellite. (See Appendix 1.2). The multi-spectral data can subsequently be used to obtain 

models of water pollutants, such as the concentration of chlorophyll or suspended 

sediments (Koponen et al. 2005), by applying such measures as the maximum 

chlorophyll index (MCI) (Gower et al. 2008) or the ocean chlorophyll 4 algorithm 
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(OC4v4), (O’Reilly et al. 1998) . The remote sensing data often have to be augmented 

and updated by in situ measurements due to the need for precise local measurements, 

for the calibration of satellite imagery in varying water conditions, and for the purpose 

of precise local decision making.  

 

5.2.1 Parametric Model   
 

The modality issue has been successfully resolved in this thesis by introducing an 

additional stage of processing of remote sensing data, which is the classification of 

water characteristics using the methods of band combinations and the regression 

analysis. 

 

Estimation of the chlorophyll concentration is typically obtained by using indices that 

exploit chlorophyll absorption/reflectance wavelengths (Topliss & Piatt 1986).  

 

MODIS and MERIS sensors have spectral bands in the range of 665-750 nm. These 

bands have been used to determine the radiance baseline for comparison with 

florescence measurements near 680 nm, the interpolated radiance near 680 nm is 

subtracted from the observed radiance at this wavelength to give a measure of 

florescence line height (FLH). The FLH algorithm was developed for the MODIS 

satellite. This algorithm returns normalized fluorescence line height in, calculated as the 

difference between the observed radiance at (676 nm) and a linearly baseline defined by 

radiance at (665 nm) and (746 nm), as illustrated in Fig. 5.1. 
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Figure 5. 1. FLH index for MODIS 

 

  

The subsequent calculation of chlorophyll concentration can be performed using the 

FLH index or a similar Maximum Chlorophyll Index (MCI) index developed for 

MERIS. These indices are based on the following equation: 

 

331

31

32
MCI )( =L LLL 
















          (5.1) 

where λ1, λ2 and λ3 denote three subsequent wavelengths, and L1, L2 and L3 are the 

corresponding radiance values. The pertinent wavelengths are given in Table 6. 

  

Table 6: MODIS and MIRES (MCI and FLH) 

 MERIS MODIS 

 MCI FLH FLH 

λ1 685 665 667 

λ2 709 685 678 

λ3 753 709 748 

 

5.2.2 Pollution Indices 

 

 Detection of Total Suspended Solids (TSS) 

There is currently no uniform remote sensing model to estimate TSS, since in practice 

clear and turbid waters are often combined, and TSS size variations affect the choice of 
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the most appropriate wavelength. Many models have been proposed based on the 

combination of MERIS red and near-infrared bands. For each water class, a separate 

model was obtained and used for the assessment of the water pollutant. Equation (5.2) 

has been used to measure TSS (Koponen et al. 2005): 

17.053.7
665560

709 








 LL

L
=TSS                    (5.2) 

 

where L709, L560 and L665 denote the wavelength of 709 nm, 560 nm and 665 nm 

respectively.  

 

 Detection of maximum chlorophyll index (MCI) 

The MCI index offers good performance especially for concentrations between 10 and 

50 μg/l. Equation (5.3) represents a MCI calculation based on (Gower et al. 2008). 

MCI = L709 − L681 − 0.389 (L753 − L681)                          (5.3) 

The factor 0.389 is calculated as the wavelength ratio (709–681) / (753–681). An 

example of the distribution of chlorophyll-a and TSS in Lake Winnipeg as shown in 

Fig. 5.2. 

 

           
 

A)                                                                     B) 

Figure 5. 2. A) MCI map and B) TSS map for Lake Winnipeg 
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5.2.3 Multi-Layer Maps  

 

The maps consist of the measured pollutants layers (Chlorophyll-a, Total Suspended 

Sediment (TSS), a bathymetric data layer, and meteorological data layers. The issue of 

different spatial scales arises in reference to the resolution of measurement sensors and 

sampling fields as well as to the sampling strategy. In terms of sampling strategies, 

feature-tracking strategies, such as gradient climbing strategies, are particularly useful 

for sampling at relatively small spatial scales. Strategies that provide synoptic coverage 

are best suited for larger spatial scales.  

 

5.3. Context  

 

With respect to the types of pollutants, the RS data have to be pre-classified. The path 

planning maximizes the value of the collected samples along its trajectory where it 

traverses regions of different distributions of the pollutant concentration. As a result, the 

planning algorithm works on many maps created to represent different concentration 

levels for different water pollutant classes. The optimal strategy directs the ship to the 

best Region of Interest (ROI) zone. The samples values (weights) vary depending on the 

mission objective.  

 

5.3.1. ROI Approach 

 

The ROI approach was used to identify the study zones and their boundaries (Park & 

Cho 2013). ROI maps guide the multi-strategies sampling to orient the acquisition 

platform toward the valuable samples in the ROI and selects the suitable samples using 

the penalty/award mechanism. Figures 5.3 a) b) and c) show regions of interest for MCI, 

TSS and the maximum gradient of the chlorophyll concentration. The regions are 

defined as the concentration of TSS bigger than 0.3 from the normalized TSS model, 

and the concentration of chlorophyll-a bigger than 0.5 from the MCI normalized model. 

Fig. 5.3 d) represents the overall ROI formed from the MCI and TSS zones. Fig. 5.3 e) 
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illustrates three ROI zones, which are MCI, TSS and maximum gradient chlorophyll 

concentration, used in the experiments.  

 

        

a)                                          b)                                 c) 

                                  
                                d)                                            e) 

 
Figure 5. 3. a) Chl-a ROI (MCI > 0.5); b) TSS ROI (TSS > 0.3); c) Chl-a Max Gradient ROI; d)  

Combined Chl-a & TSS regions of interest, and e) Combined Chl-a & TSS & MG regions of 

interest, 

 

5.3.2. Multi-Behaviour Operation 

 

The basic idea of the multi-strategy GA-based path planning is that the acquisition 

platform explores water pollutant patches using different behavioural characteristics 

depending on the sampling requirements in each patch. The behaviours affect the local 

search optimization where the bes-evaluated neighbour is selected according to the 

adopted behaviour. The following behaviours represent different sampling strategies. 

 

Behaviour 1- Short local path and high sample values.  

The sampling process selects the best sample values defined as in (5.4) 

jchlo

ji
V

pathlocal
SV *

path Maxlocal
1 








      (5.4) 

where i is the departing waypoint, j is the destination waypoint, and 𝑉𝑐ℎ𝑙𝑜 𝑗= Chlx,y is the 

chlorophyll concentrations in the cell ( x,y) of the MCI layer  
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Behaviour 2 - Maximum gradient (MG) sampling.  

Valuable samples (bigger than a given threshold number) are selected along a short 

local path according to the following equation: 

MG

ji
V

pathlocal
SV *

path Maxlocal
1 








        (5.5) 

The sampling behaviour for other samples maximizes the local path according to 

equation (5.6): 

     
MG
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V

pathlocal
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path Maxlocal








         (5.6) 

 

Behaviour 3 – Multiple pollutant patches. 

The sampling procedure selects the best sample value respecting equation (5.7), Where 

the value sample has the maximum local path range distance and the highest sample 

weight; 

jTSSjchlo
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VV

pathlocal
SV **

path Maxlocal








        (5.7) 

Where 𝑉𝑐ℎ𝑙𝑜 𝑗 and 𝑉𝑇𝑆𝑆 𝑗= Chlx,y and TSS x,y are the chlorophyll and TSS concentrations 

in cell x,y, taken from the MCI and TSS maps.  

 

Behaviour 4:  

The sampling procedure selects the best sample value respecting equation (5.8), where 

the sample value has the maximum local path range distance and the highest sample 

weight; 

jTSS

ji
V

pathlocal
SV *

path Maxlocal








                   (5.8) 

 𝑉𝑇𝑆𝑆 𝑗= TSS x,y TSS concentrations in respective cells were taken from the TSS map.  

 

An example of water pollutant patches obtained for different behaviours from a 3-layer 

map (MCI, TSS and MG) map is shown in Fig. 5.4.  
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Figure 5. 4. Multi-behaviour navigation in water pollutant patches 

 

5.4. Path Planning Generation   

5.4.1 Genetic Algorithm Architecture  

 

The basic operation of the proposed GA-based path planning procedure can be 

summarized as follows:  The sampling points correspond to the waypoints of the global 

path of the mobile platform. Thus, the global path consists of several local paths, which 

are the arcs between two waypoints with a directed connection between them. The 

random waypoint approach is applied using many search navigation strategies to 

generate a set of global paths. The initial population of waypoints is pruned to generate 

collision-free path and subsequently stored in the initial chromosome pool population. 

Unfeasible solutions are deleted. Fig. 5.5 illustrates the developed genetic algorithm 

based path planning procedure.   
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Figure 5. 5. Genetic Algorithm based path planning. 

 

 

The adaptive search (AS) system improves the elite path (the best ten solutions) and 

returns efficient paths adapted to the local navigation behaviour. The big family pool 

consists of all old-generation solutions and current-generation offsprings obtained after 

the mutation and crossover operations combined with AS solutions. It gives the system 

the ability to save the elite searching experience from one population to the next one 

(Hsu & Liu 2014). The big family search results are sorted and pruned to form the next 

generation. Fig. 5.6 shows the diagram of the big family search. A more detailed 

description of individual steps of the algorithm follows below. 
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Figure 5. 6. Big family search (Hsu & Liu 2014) 

  

Path planning algorithm is illustrated as follows:  

Path-Planning Algorithm: 

1. Call multi-layered maps(Environment) 

2. Call the initial population  

3. Determine the GA operators and their operation rate, 

4. Set the Best Objective Value= 0 

5. While loop for GA Generation (Termination Condition) 

6. Evaluate the initial population using the fitness function (Objective function)  

7. Call simple point crossover; the parents are chosen randomly 

8. Call multi-point crossover; the parents are the elite paths 

9. Call multi-point mutation; the parents are chosen randomly 

10. Generate the Crossover and Mutation population randomly and heuristically  

11. Generate new population from the old population and the crossover and mutation population 

12. Sort the new population and send a copy of the best 20 paths to adaptive search algorithm  

13. Call adaptive search algorithm, delete the waypoint outside the ROI and generate new waypoint 

in the ROI randomly and heuristic 

14. Generate the adaptive search population,  

15. Generate the big family search population  

16. Compute Objective Values for each path in the population 

17. Sort Objective Values 

18. Set the best Objective Values= Objective Values (1) 

19. Set new population size 

20. If Objective Values (1) greater than Best Objective Value, Then 

Old 

population 

Offspring    

Best  

Worst 

Adaptive 

search 

population   

Adaptive 

search 

optimization  

Best  

New 

population  

GA 

Operators  

Crossover & 

Mutation  

Adaptive 

search 

population           

& 

Initial 

population  

& 

Offspring 

  



 

 

 

 

100 

21. Set Best Objective Values (1) to Best Objective Value 

22. If the Objective Values (1) equal to Best Objective Value for 40 consequent times stop the 

evaluation 

23. Next generation  

 

Figure 5.7 a) represents the flowchart of the proposed systems for multi-behaviour 

global search and 5.7 b) shows the flowchart of a modified search system combined 

with ant colony optimization to enhance the local search. 

 

 

a)                                                           b) 
 

Figure 5. 7. Multi-behaviour navigation for global search 

 

5.4.2 Waypoints  

 

The waypoint technique was used in the GA-based path planning process as a technique 

appropriate for the large monitoring environment (Veera Ragavan et al. 2011) . 

Waypoints are usually abstract points (Ibrahim et al. 2009)  used to help to define local 

paths through which a mobile platform can navigate, reach its region-of-interest 

destination, and collect the water pollutant samples (Park & Cho 2013). In the 

application discussed, waypoints correspond to sampling points. In order to deal with 

multiple sampling areas, multi-point crossover (MPC) was implemented. The MPC 
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operator works to build the final solution which consists of valuable segments of local 

paths from many search strategies. The mutation operator improves the local search and 

helps the population to avoid local minima. The evolution process optimizes the path 

planning by designing new chromosomes which consist of best value samples from 

many global paths. 

 

5.4.3 Path Planning and Initial Waypoint Population 

 

  

In the GA-based path planning procedure, the population is represented, as in the 

Vehicle Routing Problem, by ordered sets of waypoints. Each feasible set is considered 

to be an individual in the population. Each waypoint, which is a sample candidate, 

represents a location in the environment and is characterized by an identifier in the form 

of (x,y) coordinates. The initial genotype can be represented by a cell array, where each 

pair of cells represents the local path length and the heading angle towards sequential 

waypoints.  

 

The path planning generator works as follows:  

1) Determine the first waypoint in the path, i.e., the starting point, with the initial angle 

equal to zero. 

2) While the path planning doesn’t reach the desired target, generate a random number 

of L, the path length, between Lmin and Lmax, and a random heading angle β between βmin 

and βmax obtaining the next waypoints (Xiao-Ting et al. 2013). A maximum number of 

waypoints is given for each search strategy. 

3) Different strategies are applied to water pollutant patches by adjusting L and β. Each 

path planning strategy handles a different number of samples depending on the search 

path. 

4) Continue with another patch or return to the starting point, depending on constraints, 

such as the maximum travel distance or the maximum number of water samples.  

Fig. 5.8 illustrates the path planning generator.    
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Figure 5. 8. Waypoint generation scheme 

 

The chromosomes are encoded as an integer string. Each gene consists of two variables, 

the local path length and the heading angle as seen in Fig. 5.9 a). Depending on the start 

point and the chromosome, the waypoint generation is done as seen in Fig. 5.9 b).  The 

path planning waypoints are represented in the form of a long array as shown in Fig. 5.9 

c). The GA search consists in determining the waypoints between the starting point of 

the mission and the destination point.   
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Figure 5. 9. Chromosome and waypoint array. a) GA chromosome; b) Waypoint representation; c) 

Waypoint array. 

 

An obstacle-free path planning algorithm (Zeng et al. 2011) was adopted to deal with 

the experiment surrounding conditions. It produces a feasible path that satisfies the 

following conditions:   

 Waypoints should be located outside the obstacles. 

 Waypoints should be located in the sampling space. 

 The local path should not intersect with the obstacles. 
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5.4.4 Waypoint Modification  

 

In order to comply with the feasibility constraints and to enhance the efficiency of the 

path, a certain number of the waypoints in the elite solutions can be modified for each 

generation by applying three possible operations: waypoint deletion, insertion, or 

replacement (Châari et al. 2014). Waypoint deletion eliminates all waypoints in the 

clear water body. The waypoint insertion operation explores the neighbourhood and 

inserts a new waypoint, according to a predefined behaviour for each water pollutant 

type, which fits the goal of the sampling strategy. After deleting and inserting the 

waypoints, the algorithm evaluates the path and, depending on the numeric value which 

should be under a certain threshold, conducts a neighbourhood search to replace the 

lowest waypoint value with a new one and builds another feasible path Pn. The path 

planning should satisfy constraints such as the maximum travel distance and the 

maximum mission time.  

 

5.4.5 Multi-Point Crossover 

 

Various crossover techniques such as one-point crossover, two-point crossover, multi-

point crossover have different advantages. One or more crossover can be applied to 

generate the offspring generation employing the advantage from each operator. Once 

the crossover operations are performed, one or more mutation operation are also done to 

prevent the genetic algorithm from being trapped in local optima. The mutation rate 

probability should be kept low to avoid delay in convergence with global optima.  

 

Multi-point crossover operates in the global path planning phase and is used to enhance 

the process of selecting valuable samples located in different zones. The crossover 

procedure is explained in Fig. 5. 10. Parent chromosomes, P1 and P2, are cut at multiple 

random locations, and the portions of the chromosomes between the cuts are swapped. 

The result is a pair of offsprings I1 and I2. The crossover is applied on the best-fitness 

chromosomes chosen from the pool. Due to the difference in the chromosome length, 

the crossover points should be applied to the shorter chromosome.  
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a)                                                                                 b) 

Figure 5. 10. Multi-point crossover. a) A two-chromosome and two-point crossover. b) Two 

offsprings. 

 

 

Figure 5.11 represents the overall architecture of the developed adaptive GA-based 

mission planning system. The mission objective is defined and accompanied by a 

strategy definition to achieve the mission goal. A multi-layer map is generated to 

interpret the global environment and to evaluate the importance (weight) of different 

water pollutants in the sampling strategy. A set of ROIs is generated to guide the search 

toward specific patches associated with their acquisition strategies.  
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Figure 5. 11. Adaptive GA-based navigation system 

 

5.4.6 Adaptive Global Path Planning  

 

In order to improve the path planning process and make it more adaptable to changing 

environment conditions, adaptive global path planning is employed to update and to re-

plan the sub-global paths whenever new information is provided. 
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The adaptive path planning follows the concentration of the chlorophyll-a biomass as 

shown in Fig. 5.12 which is, to a large degree, subject to the wind impact. Table 7 

summarizes the wind speed and direction at the time of the simulation. The data is taken 

from the C45144 buoy which is located in Lake Winnipeg’s northern basin. This data is 

used to simulate the water pollutant patch. The path planning avoids the unforeseen 

obstacle in (local path 4) to prevent the robot from any collisions. In this local path, the 

robot doesn’t follow the concentration of the chlorophyll-a biomass. 

 

Table 7: Wind Data 

Date and Time Wind 

Speed 

Wind 

Direction (°N) 

17/07/12 08:08 2.3 130 

17/07/12 09:08 1.8 144 

17/07/12 10:08 1.1 141 

17/07/12 11:08 1.4 176 

17/07/12 12:08 1.3 195 

17/07/12 13:08 1.3 240 

17/07/12 14:08 2.5 228 

17/07/12 15:08 2.3 220 

17/07/12 16:08 2.5 229 

  

 
 

Figure 5. 12. Adaptive global path planning 

 

Chlorophyll 

Movement 

High concentration 

chlorophyll  

Class Target  

Start point     

Island  

Local Path 8 

Local Path 1 

Global path  
Local Path 2 

Local Path 3 

Local Path 4 

Local Path 5 

Local Path 6 

Local Path 7 

Target movement 

Obstacles 



 

 

 

 

107 

5.5. Experiment  

 

5.5.1 Experimental Framework 

 

The experiments were carried out using satellite data from the northern basin of Lake 

Winnipeg for a path starting at the point located at longitude (99˚ 02' 08") W and 

latitude (55˚ 35' 18") N and the destination point at longitude (96˚ 50' 24") W and 

latitude (51˚ 55' 51") N. The direct distance between the start point and the target is 

around 236 km. The maps used in the experiments were in the form of a raster grid, 

where the dimensions of cells corresponded to the resolution of the MERIS satellite 

sensor, i.e., 260 m x 300 m.  Each cell has an associated value Vx,y  obtained from the 

multi-layer map.  

 

Genetic Algorithm Optimization Toolbox (GAOT) for Matlab was modified and used to 

program the proposed hybrid system. Table 8 shows the Genetic Algorithm parameters 

chosen for the optimization process. 

 

Table 8: Parameters of the Genetic Algorithm 

Genetic Parameters Magnitude 

Number of generations  150 

Population size  120 

Crossover rate 60% randomly and the elite   

Mutation rate  5% randomly and the elite   

Type of crossover  Single-point and multi-point crossover  

Type of mutation 4 points random & 4 maximum points   

Selection type  Roulette Wheel 

 

 

a) Fitness function 

The fitness function is a particular type of the objective function that quantifies the 

optimality of a solution and evaluates the suitability of a solution with respect to the 

overall goal. In our navigation problem, it maximizes the collected information, directs 

the robot towards the ROI, and incorporates distance and time penalties.  

 

Many factors are involved in determining the weight of the sample in certain patches. 

For example, some types of samples can be kept in the dark on ice only for a limited 

time without any degradation. The time ranges from hours to days depending on the 
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sample’s sensitivity. Holding time is an important consideration because time-sensitive 

samples may need to be filtered in the field and placed on dry ice. Then time windows 

can be imposed for some types of water pollutant samplings considering the 

deterioration of the quality of samples of a specific pollutant. As an example, time 

requirements for chlorophyll concentration sampling are discussed in (Hambrook 

Berkman & Canova 2007).  

 

In this thesis, a general objective function proposed to deal with the experiment 

conditions comprises the components: the samples value, the ROI award, the distance 

and the sampling time.  

 

The proposed fitness function F consists of 4 components, calculated with each 

candidate sample (Halal & Zaremba 2017). 

F = SV + ROI + DIS + ST                (5.9) 

     where: 

SV - data set value, which determines the value of acquired samples according to Eq. 

5.10;  
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where sample values are calculated as the sum of all pollutant water values according to 

(5.11)  
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where V is the value of the sample, Nj is the number of the samples for each pollutant, 

and M is the number of water pollutant classes.  

 

ROI - the region of interest award was introduced in order to optimize the convergence 

of the search for quality samples. ROI numeric value is obtained by applying Eq.5.12;  
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DIS - distance factor;  

ST - sampling time factor;  

 

Two objective functions with different forms of DIS and ST factors were tested to 

assess their impact on the effectiveness of the sample acquisition mission:  

 Objective function 1 linearly maximizes the sample value and the ROI award 

and exponentially minimizes the sampling time and the mission travel distance. 

The distance and the time become, as the sample acquisition mission progresses, 

quadratically more expensive. 

Objective function 2 maximizes the sample value as well as the sampling time and the 

ROI award, and linearly minimizes the mission travel distance. As shown in Table 9 

 

Table 9: Objective Function 2 and 1 
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5.5.2 The Results 

 

Four experiments were conducted with two objective functions tested. Objective 

function 2 (linear optimization) was incorporated in the fitness function used in 

experiments 1 and 2, and objective function 1 (exponential optimization) in experiments 



 

 

 

 

110 

3 and 4. Hard distance and time constraints were implemented in the first two 

experiments. The mission time was bounded by the value of 12 hours, and the travel 

distance was limited to 400 km. In experiments 3 and 4, the mission time had to be less 

than 9 hours, and the travel distance was limited to 330 km. 

 

5.5.2.1 Path Planning Experiments 

 

In the first experiment, the sample value (SV) was the sum of the TSS and Chl-a sample 

values. The results show that the path includes 10 samples from the clear water zone 

(outside the ROI zone), as shown in Fig. 5. 13a. The obtained results provide the 

rationale for hybridizing the GA-based search for optimal samples.  

 

   
 

a)                                                    b) 

Figure 5. 13. Sample acquisition paths: a) Experiment 1, b) Experiment 2. 

 

A simple adaptive search, consisting of limiting the search to ROIs, as explained in 

waypoint modification section (5.5.3), was introduced in the second experiment. 

However, no specific behaviour guides the waypoint generation. Fig. 5. 13b) presents 

the path generated by the modified system. The sampling area is located entirely in the 

ROI. Table 10 compares the performance of the two experiments.    

 

Table 10: Results of Experiments 1 and 2. 

 Experiment 1 (GA) Experiment 2  

(ROI-optimized GA) 

Sampling time  0.475  @  38 samples 0.475 @ 38 samples 

Real path length (m) 3.9989e+005 3.4364e+005 

Samples value 0.7004 0.8304 
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ROI award 0.3675 0.5550 

 

The path in the second experiment was approximately 56 km shorter, and the value of 

the samples increased by about 13 percent while keeping the number of samples at the 

same level. 

  

The result obtained provides the reason to introduce the local search optimization 

behaviour to improve the path planning performance. 

 

5.5.2.2 Multi-Behaviour Navigation 

 

In order to assess the multi-behaviour performance of the system and to further improve 

the path quality - in the context of the GA methodology – different behaviours were 

introduced to the local adaptive search in the next two experiments. The third 

experiment explores the local behaviour optimization which performs two collection 

strategies depending on the types of samples. Therefore, the ROI set consists of two 

zones, Chl-a and TSS. The search minimizes the local path in the MCI patch according 

to Eq. 5.4, and maximizes the local path in the TSS patch according to Eq. 5.8. The 

neighbourhood of a solution is explored, and the best-evaluated neighbour is selected 

according to the adopted behaviour in each patch. Objective function 1 has been used to 

optimize this experiment. The multi-behaviour navigation shows good sampling 

performance in the two different patches, as shown in Fig. 5. 14. 
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Figure 5. 14. Sample acquisition path from experiment 3. 

 

The mission collects 22 pure chlorophyll-a samples and 6 TSS samples along a 282 km 

long path. The samples value is 0.645, and ROI award equals to 0.6125. The distances 

between the chlorophyll samples are shorter than between the TSS samples, which are a 

consequence of applying the behaviour equation (Eq. 5.4) and high award for the Chl-a 

ROI. The longer local path between the six TSS samples results from the behaviour 

equation (Eq. 5.8). The total mission time is 8 hours and 54 minutes. The travel time is 

7 hours and 14 minutes.  

 

In the fourth experiment, the zone of the maximum gradient of chlorophyll 

concentration was introduced, which produced three separate patches with three 

different local search behaviours. Due to the behaviour conflict between the maximum 

gradient and the maximum value of the chlorophyll concentration a new ROI zone was 

created. Thus, the three separate ROIs were generated as follows: the Chl-a zone, the 

maximum gradient of chlorophyll concentration, and the chlorophyll and TSS 

concentration zone. Fig. 5.15 depicts the ROI map which was used in this experiment. A 

modified fitness function was employed to comply with the goal of the experiment. The 

Chl-a samples were treated as the highest value samples with the shortest local path in 

the search algorithm that follows Eq. 5.4. In the maximum gradient zone, the search 

made the acquisition platform navigate in an adaptive way to follow the maximum 

gradient curve, using Eq. 5.5 and Eq. 5.6, and to maintain a proper distance between the 

samples. The chlorophyll and TSS zone adopted the behaviour model as in Eq. 5.7. All 

behaviour optimization algorithms explored the neighbourhood and selected new 

waypoints in order to enhance the quality of the solution. Fig. 5.16 shows an example of 

the planned path.   

 

 
Figure 5. 15. Multi-behaviour sampling for different patches. 

 

Behaviour 2  

Behaviour 1  

Behaviour 3  
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Figure 5. 16. Sample acquisition path from experiment 4 

 

The path planning algorithm produced 28 samples as follows:  9 samples from the TSS 

& Chl-a zone; 5 samples from the MG zone; 14 samples from Chl-a zone including the 

start waypoint samples. The samples were collected along the path 285 km long. The 

normalized sample value was 0.5040 with the ROI award equal to 0.5650. 

 

The experiments show that the adaptive GA-based path planning method offers robust 

search capabilities, and supports different sample acquisition strategies, ensuring the 

collection of meaningful data over pre-identified areas of interest.  

 

5.5.2.3 Convergence Analysis 

 

To improve the convergence of the GA-based search, two crossover and two mutation 

operations were employed. The solutions to these operations were divided into two 

categories as follows: the first one consists of the elite solutions, and randomly selected 

solutions represent the second category.   

 

The simulation results show that:  

(1) The new procedure effectively enhanced the global search ability and improved the 

local searching ability; 

(2) High convergence rate was obtained. 
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The results without the enhancement are shown in Fig. 5,17a. Both the quality of the 

solution and the speed of the optimization are enhanced by an order of magnitude by 

applying the improved operations (Fig. 5. 17b). 

 

 

Figure 5. 17. Convergence in experiment 1 & 2 

 

The repeatability of the results is depicted, for experiments 3 and 4, in Figures 5.18a and 

5.18b respectively. The convergence of both the best solution and the average solution 

is high.  
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Figure 5. 18. Convergence in experiment 3 & 4 

 

 

5.6. Conclusions  

 

 

In this chapter, hybrid genetic algorithms were proposed for navigation in a partly 

unknown environment, where the objective of the planning task is to find the optimal 

path for a mobile sample acquisition platform. The total quantity and quality of water 

samples were maximized according to the navigation goals specified for each 

acquisition zone. Sampling in each patch may be guided by different patterns of 

behaviour for different purposes. Thus, the path planning has to be able to execute 

different behaviours along the global path. A hybrid genetic search was developed to 

deal with these requirements. The adaptive search algorithm (local search optimization) 

models behaviours in different surrounding area conditions and executes them in each 

generation at the level of local path navigation. The locality of the navigation was 

defined in terms of regions of interest (ROI). In the process of generating the waypoints, 

the adaptive search deletes and inserts new waypoints in each solution depending on the 

ROI behaviour. This enhances the flexibility and the efficiency of path planning. The 

ROI component was introduced also in the fitness function, greatly speeding up the 

convergence of the planning process. Tests were conducted using medium-resolution 
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satellite imagery which represents the simulated environment. Multi-layer maps 

provided a rich context to the adaptive search system to perform flexible local search 

behaviours. The proposed hybrid genetic algorithms have demonstrated their usefulness 

in solving multi-objective path planning problems, where multi-objective functions are 

used to find the suitable solution which fits the overall mission goal. 
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Chapter 6 
 

Multi-Behaviour Deliberative-Reactive 
Navigation  

 

6.1 Problem Statement  

 

In this chapter, we address the issue of hybrid deliberative-reactive navigation focusing 

on the local path execution in a dynamic environment. A multi-task robot is designed to 

comply with a complex surroundings’ context. The flexibility of this design allows the 

robot to run both navigation levels in parallel while solving a critical or complex 

situation. The navigation controller makes the decision on which navigation level 

should be applied and keeps the other level working on solving the problem at its level.       

 

This chapter deals with hybrid navigation and focuses mainly on the dynamic local path 

and unreachable local path subject to replanning (see 6.4.2 and 6.4.3) and conflicting 

behaviours (see 6.4.4). We present a hybrid geno-fuzzy control system for a small 

mobile robot which is capable of handling multi-behaviour operation. A hierarchical 

intelligent system using a geno-fuzzy algorithm has the ability to change, modify and 

teach a rules base to comply with the mission strategy. Depending on the mission 

objective and the robot’s ability, our formal architecture is adopted and modified to deal 

with behaviours and control the navigation in both levels.  

 

6.2 Control Architecture  

 

Chapter 2 reviewed many behaviour controller approaches. These controllers make a 

decision depending on a predefined strategy and the surrounding area’s conditions. The 

more criteria are considered, the more complex control is needed. 
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Based on the on integrated deliberative reactive architecture introduced in Section 4.1, a 

hybrid deliberative-reactive system is proposed to perform multi-behaviour navigation 

as shown in Fig. 6.1. Intelligent behaviour selector decides on the appropriate behaviour 

complying with the mission objective. It makes a suitable decision depending on the 

information received from onboard sensors (local context) and the mission strategies to 

execute its task.  

 

Intelligent behaviour selector is responsible for either activating the replanning in a 

specific case such as when the robot can’t execute its local tasks or deciding on the 

appropriate behaviour in the same situation by executing the conflicting behaviour.  

Both deliberative and reactive navigation can be involved to solve the robot situation by 

employing different strategies such as avoidance strategy and aggressive strategy.  

Intelligent behaviour selector coordinates the behaviours at both levels. The behaviours 

can be divided into two basic groups as follows:  

 

 Avoidance behaviours 

Avoidance behaviours are employed at the reactive level when the robot deals with 

a dynamic local path. In the case of an unreachable local path, an obstacle avoidance 

at behaviour is employed by activating the local or sub-global path replanning as 

determined by the robot situation.  

 

 Aggressive behaviours 

Depending on the mission objective and the efficiency of the robot tasks, aggressive 

behaviours are used to solve a critical robot situation such as the recovery for a 

dead-end zone. The robot is allowed to approach the obstacle and to manage to 

move it. The robot creates a new local path or cleans the local path reducing the cost 

of the mission by saving time and energy.       

 

The reactive module, which is shown in Fig. 6.1 in more detail, consists of fuzzy 

behaviour-based systems which handle individual behaviour strategies. Most fuzzy 

behaviour-based systems include the following behaviours which a mobile robot 

generally needs to apply in order to perform its task. 

 Target reaching  
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If there is no obstacle, then go to the target 

 

 Avoiding obstacles 

If the robot detects an obstacle, then avoid it  

 

 Aggressive behaviour 

If the robot detects an obstacle, then seek the obstacle and move it  

 

Geno fuzzy system is a satisfactory solution in multi-behaviours navigation where the 

robot needs to improve its performance by learning or optimizing these systems in the 

presence of uncertainty. 

 

In the presented solution, fuzzy controllers (behaviour-based system) are employed to 

handle the reactive navigation system controls. The behaviour based system is used to 

handle a different group of behaviours which can be varied depending on the robot’s 

abilities and the mission objective. Operating in a dynamic environment, the intelligent 

behaviour selector (decision maker) makes a decision to switch between behaviour-

based fuzzy systems. At the reactive level, genetic algorithms are proven to be an 

efficient tool for designing an optimal fuzzy control system. The hybrid system 

optimizes the rules base of the fuzzy controller. The optimization improves the robot’s 

performance and the robot’s behaviours (see Section 6.3.2). Since the systems handle 

many rules bases, multi-objective optimization can be applied to optimize the 

behaviour-based systems obtaining high performance for each system. 
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Figure 6. 1: Hybrid navigation control for multi-behaviour robot architecture 

 

6.3 Experiment Framework  

6.3.1 Multi-Behaviour Fuzzy System Controller  

 

In this experiment, we used a fuzzy control to drive a Khepera robot in a simulation 

environment named Kiks. Khepera is a miniature mobile robot with a diameter of 55 mm 

and a weight of 70 g.  The robot is supported by two lateral wheels that can rotate in both 

directions and two rigid points in the front and the back. By spinning the wheels in 

opposite directions at the same speed, the robot can rotate without lateral 

displacement. The robot has eight sensors distributed around the body, six on the 

front side and two on the back side.  The control input variables are the six sensor 

inputs (S0 …S5), the robot coordinates and the heading direction. We ignored the two 

back sensor inputs (S6 and S7) that do no effect on the fuzzy control. The output 
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variables are the left motor speed and right motor speed (LMS and RMS). Fig. 6.2 

illustrates the Khepera robot with its fuzzy variables.    

 
 

Figure 6. 2. Simulation model of the Khepera robot 

 

The number of fuzzy control rules is determined by the number of the fuzzy 

membership functions of the controller inputs and the number of its inputs. The desired 

behaviour for our Khepera simulated robot is to move from the start point to the target 

point, avoid obstacles, follow walls and stop within the target zone. 

 

The robot sensor readings are grouped into many groups to represent fuzzy input 

variables which divide up the rules base in smaller ones. Thus, Sensor simplification 

was used as follows to reduce the number of the sensor inputs:  

Sleft = ((S0 +S1)/2) 

Sfront = ((S2+ S3)/2) 

Sright = ((S4+S5)/2) 

This simplifies the fuzzy rules base structure, without affecting the robot performance. 

 

In most fuzzy decision systems, non-fuzzy input data are mapped to fuzzy sets by 

treating them with Gaussian, triangular or other membership functions. Piecewise linear 

functions are evaluated faster and more efficiently by computers in embedded 

applications, hence the membership functions used in a fuzzy-logic navigation system 

of a mobile robot take triangular and trapezoidal forms (Yang et al. 2005). The input 

variables are Sleft, Sfront, and Sright as shown in Fig. 6.3. Each input has three trapezoidal 

linguistic membership functions, called near, med, and far (Figure 6.3 A and 6.3 B), 

denoting the distance from obstacles. All inputs have their membership functions of the 
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same shape. The orientation input has five trapezoidal membership functions, called 

hneg, neg, forward, pos, and hpos representing the robot target direction (heading 

direction), as shown in Fig. 6.3 C. The output variables are LMS and RMS, which are 

the left motor speed and right motor speed. Each output has five triangular linguistic 

membership functions, called hneg, neg, slow, norm and fast (Fig. 6.3 D). 

 

    
                                                             A                                      B 

    
                                                             C                                      D 

Figure 6. 3. A. Sleft input membership function, B. Sfront input membership function, C. 

Orientation input membership function, D. RMS output membership function. 

 

The robot heading direction (the orientation input variable) is always taken as the 0
◦ 

direction, with the negative direction, counter-clockwise direction, to its left and the 

positive direction, clockwise direction, to its right. The range of this variable, discrete 

universe of discourse, is [-π π] as shown in fig. 6.4.C 

 

The output control variables are LMS and RMS, which are left motor speed and right 

motor speed. Each variable has five memberships function (HREV, REV, SLOW, 

NORM, FAST) denoting the absolute speed of the robot’s left and right wheel. The 

distance between the robot and the target and the target direction are provided to the 

fuzzy controller as two additional inputs.  

 

Each rule can be considered as a robot behaviour and the rules making the same 

behaviour are grouped together under one category.  

 

Examples of the individual rules for avoidance obstacle behaviour: 
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Steering and tracking behaviour   

Description 

Target steering rules are used for orienting the robot towards his goal point. These rules 

are always active when the robot doesn’t detect any obstacle. Dynamic tracking can be 

achieved by setting the destination to a moving goal.  

 

Rules 

The rules for steering towards the goal are as follows:   

 

Steering right back behaviour - this behaviour occurs when the robot’s target is into the 

right-left zone, and the following rules present this behaviour: 

If (Sleft is FAR) and (Sfront is FAR) and (Sright is FAR) and (Sback is FAR) and (orientation 

is HNEG) then (LMS is FAST) (RMS is REV)      

 

Steering right   

If (Sleft is FAR) and (Sfront is FAR) and (Sright is FAR) and (Sback is FAR) and (orientation 

is NEG) then (LMS is FAST) (RMS is SLOW)     

 

Steer straight  

If (Sleft is FAR) and (Sfront is FAR) and (Sright is FAR) and (Sback is FAR) and (orientation 

is FORWARD) then (LMS is FAST) (RMS is FAST)   

 

Steer left  

If (Sleft is FAR) and (Sfront is FAR) and (Sright is FAR) and (Sback is FAR) and (orientation 

is POS) then (LMS is SLOW) (RMS is FAST)     

 

Obstacle avoiding with steering behaviour 

Description 

 

The robot has the ability to avoid obstacles with respect to the target direction. When 

the robot encounters an obstacle in front, and the target direction is at the right side then 

he avoids the obstacle by moving to the right. The rules for obstacle avoiding and 

steering are as follows: 

 

Rules 

 

The obstacle at the front of the robot and the goal point at the right side: 

If (Sleft is FAR) and (Sfront is NEAR) and (Sright is FAR) and (Sback is FAR) and 

(orientation is NEG) then (LMS is FAST) (RMS is SLOW) (1)     
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Obstacle at the left side of the robot at a medium distance and the goal point at the right 

side:  

If (Sleft is MED) and (Sfront is FAR) and (Sright is FAR) and (Sback is FAR) and (orientation 

is NEG) then (LMS is FAST) (RMS is SLOW) (1)     

 

There are two obstacles at the left and front side of the robot at a medium distance and 

the goal point at the right-back side: 

If (Sleft is MED) and (Sfront is MED) and (Sright is FAR) and (Sback is FAR) and 

(orientation is HNEG) then (LMS is FAST) (RMS is REV) (1)     

 

The obstacle is at the right side of the robot at a medium distance and the goal point at 

the left right side: 

If (Sleft is FAR) and (Sfront is FAR) and (Sright is MED) and (Sback is FAR) and (orientation 

is POS) then (LMS is SLOW) (RMS is FAST) (1)     

 

There are two obstacles at the right and front side of the robot, at a medium distance and 

the goal point at the right-back side:  

If (Sleft is FAR) and (Sfront is MED) and (Sright is MED) and (Sback is FAR) and 

(orientation is HNEG) then (LMS is REV) (RMS is FAST) (1)    

  

Obstacle avoidance obstacle behaviour  

 

Description 

 

The obstacle avoidance behaviour prevents the robot from any collision by making 

many maneuvers such as avoid the left or right corner. The rules for obstacle avoidance 

are as follows: 

 

Rules 

 

Avoiding left obstacle: 

If (Sleft is NEAR) then (LMS is FAST) (RMS is REV) (1)                                                                                         

 

Avoiding right obstacle:   

If (Sright is NEAR) then (LMS is REV) (RMS is FAST) (1)                                                                                        

 

Avoiding back obstacle:   

If (Sleft is FAR) and (Sfront is FAR) and (Sright is FAR) and (Sback is NEAR) then (LMS is 

FAST) (RMS is FAST) (1)                              

 

Avoiding front obstacle:   

If (Sleft is FAR) and (Sfront is MED) and (Sright is FAR) and (orientation is NEG) then 

(LMS is FAST) (RMS is SLOW) (1)                        

 

If (Sleft is FAR) and (Sfront is MED) and (Sright is FAR) and (orientation is HNEG) then 

(LMS is FAST) (RMS is REV) (1)                        
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If (Sleft is FAR) and (Sfront is MED) and (Sright is FAR) and (orientation is POS) then 

(LMS is SLOW) (RMS is FAST) (1)                        

 

If (Sleft is FAR) and (Sfront is MED) and (Sright is FAR) and (orientation is HPOS) then 

(LMS is REV) (RMS is FAST) (1)                        

 

If (Sleft is MED) and (Sfront is FAR) and (Sright is FAR) and (orientation is HPOS) then 

(LMS is NORM) (RMS is NORM) (1)                       

 

If (Sleft is FAR) and (Sfront is FAR) and (Sright is MED) and (orientation is HPOS) then 

(LMS is NORM) (RMS is NORM) (1)                       

If (Sleft is FAR) and (Sfront is NEAR) and (Sright is FAR) and (Sback is FAR) and 

(orientation is HNEG) then (LMS is FAST) (RMS is REV) (1)    

 

If (Sleft is FAR) and (Sfront is NEAR) and (Sright is FAR) and (Sback is FAR) and 

(orientation is POS) then (LMS is REV) (RMS is FAST) (1)     

 

If (Sleft is FAR) and (Sfront is NEAR) and (Sright is FAR) and (Sback is FAR) and 

(orientation is HPOS) then (LMS is REV) (RMS is FAST) (1)    

 

If (Sleft is FAR) and (Sfront is NEAR) and (Sright is FAR) and (Sback is FAR) and 

(orientation is FORWARD) then (LMS is REV) (RMS is FAST) (1) 

 

If (Sleft is FAR) and (Sfront is MED) and (Sright is FAR) and (Sback is FAR) and 

(Orientation is FORWARD) then (LMS is REV) (RMS is FAST) (1) 

 

Wall following behaviour 

 

Description 

 

The wall following behaviour is a tracking control mechanism which is able to walk 

along any continuous surface keeping a fixed distance, wall following behaviour is 

useful when exploring an unknown environment. The rules for following walls are as 

follows: 

 

Rules 

If (Sleft is MED) and (Sfront is FAR) and (Sright is MED) then (LMS is SLOW) (RMS is 

SLOW) (1)                                                 

 

If (Sleft is NEAR) and (Sfront is FAR) and (Sright is NEAR) then (LMS is SLOW) (RMS is 

SLOW) (1)                                               
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6.3.2 Optimization and Adaptation of the Fuzzy System  

 

6.3.2.1. Fuzzy System Optimization 

 

Recently numerous researchers explored the integration of genetic algorithm with fuzzy 

logic systems. Researchers are concerned with the optimization of fuzzy systems either 

by automatically designing the membership function or by learning the fuzzy if-then 

rules. The role of the genetic algorithm in the geno-fuzzy system is to optimize the 

fuzzy system. Thus, a genetic algorithm generates the fuzzy parameters, and it evaluates 

these parameters by using a fitness function. The optimization can be done in many 

ways by generating fuzzy membership functions, rules base, output rules base or by 

changing the fuzzy operators and defuzzification strategies. These tasks can be done 

together or each of them alone. A chromosome encoding algorithm used to optimize the 

membership functions, and the output rules base was presented in (Halal & Dumitrache 

2007).  

 

An optimal fuzzy control system is obtained which drove the Khepera mobile robot to 

achieve its target with good performance and optimal behaviours. Thirty-four 

parameters from the input and output membership function were encoded to form a 

chromosome segment in order to optimize the shape of these functions. Figure 6.4 

shows the eight genes that were encoded from Sleft input function; these genes are called 

respectively   A1, A2, A3, A4, A5, A6, A7 and A8. From the Sfront and Sright input, we 

encoded the two other chromosomes, segment B and segment C, where each of them 

contains eight genes. They are named respectively B1, B2, B3, B4, B5, B6, B7, B8, C1, C2, 

C3, C4, C5, C6, C7 C8, and Fig. 6.4 shows the membership functions chromosome 

segment. The genes D1, D2, D3, D4, D5, E1, E2, E3, E4, and E5.  These input variables are 

encoded for tuning the LMS and RMS output membership functions. 
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A1 …. A6 A7 A8 B1 B2 .. B8 C1 C2 … C8 D1 ... D5 E1 … E5 

 

 

Figure 6. 4. Chromosome’s segment for encoding membership functions 

 
 

In this fuzzy system, 18 antecedence rules were proposed, and the genetic algorithm 

optimizes the output of the rules base. We don’t need to generate the whole rules base 

because the robot operates in a simulation environment and thus, the inputs values are 

predictable.  The chromosome output rules segment contained 36 genes that present the 

supposed LMS linguistic term and RMS linguistic term, as shown in Fig. 6.5.  

    
 

F1 F2 F3 F4 … … F33 F34 F35 F36 

Output rule 1 Output rule 2   Output rule 17 Output rule 18 

 

Figure 6. 5. Chromosome Segment F 

 

 

Figure 6.6 shows the whole chromosome and his genes.   

 

A1 -- A8 B1 -- B8 C1 -- C8 D1 -- D5 E1 -- E5 F1 F2 -- F35 F36 

 

Figure 6. 6.The whole chromosome 

 
 

 Multipoint crossover 

The multi-point crossover is the suitable genetic operator method that can be used in 

this problem in order to increase the number of string segments exchanged. The parent 

chromosomes, P1 and P2, are cut virtually at multiple random locations, and the portions 

of the chromosome between the cuts were exchanged. The result is two offspring I1 and 

I2, as is shown in Fig. 6.7. We used the multi-point crossover because the genes have 
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integer values, the genes values of the output rules base are between 1 and 5, whereas 

the genes values of membership function chromosome segment are between 100 and 

800, depending on the membership function itself. On the other hand, the genes had 

bounded to keep the overlaps between the membership functions. 

 

 
Figure 6. 7. Multi-point crossover 

 

6.3.2.2. Encoding of the Rule-Based System 

 

In order to optimize or adapt the behaviour-based systems, rules bases are encoded into 

corresponding chromosomes for a genetic algorithm. We encoded the membership 

functions in each sensor input (Far, Med and Near), coded as 1, 2 and 3. The input 

orientation membership functions called hneg, neg, forward, pos, and hpos were 

encoded as 1 2 3 4 5.  For each output membership function (Hneg, Neg, Slow, Norm, 

and Fast), they were coded as 1, 2, 3, 4 and 5. Figure 6.9 illustrates the encoded input 

membership function and the encoded output membership function. So, the rule If Sleft 

=far and Sfront = far and Sright = far and orientation forward   Then LMS = fast and RMS 

= fast, can be encoded as a string vector 1 1 1 3 5 5, and the chromosome can be 

represented as a string vector (Fig. 6.8). 

 

 
Figure 6. 8. The encoded rules base chromosome encoded 
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….] Rule base = [... Rule Rule Rule 

If Sleft = far and Sfront = far and Sright = far 

and orientation = forward Then LMS = fast 
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129 

6.3.3 Multi-Behaviour Navigation Controller  

 

This experiment employs multi-behaviour-based fuzzy systems using chromosomes to 

handle the rules bases as seen in 6.3.2.2. A modified deliberative-reactive multi- 

behaviour navigation architecture is proposed to attain the objective of the experiment. 

As shown in Fig. 6.9. The control architecture consists of two fuzzy systems which 

handle conflicting behaviours.  

 

Intelligent behaviour selector is employed to control the multi-behaviour strategies 

depending on the local context conditions. This control unit prioritizes one system over 

the other, so the two fuzzy systems do not work simultaneously.  

 

 
 
 

Figure 6. 9. Hybrid deliberative-reactive multi-behaviour navigation architecture 
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6.4 Experiment Results   

 

All the obstacles in the global path are unforeseen obstacles. Thus, the robot executed 

its task in a partially unknown environment. The global navigation generated the 

optimal global path depending on the provided information, represented by the word 

model as in Fig. 6.10. 

 

In this experiment, we used hierarchy and hybrid fuzzy control to drive a Khepera robot 

on a given simulation environment named Kiks. Kiks is a Khepera Simulator which 

uses MatLab software to drive the simulation. The simulator models a single Khepera 

that operates in many enclosures area with reconfigurable walls and obstacles as seen in 

Fig. 6.10. The robot is provided with a 2D-map, consisting of line features representing 

walls and other obstacles, as well as with its own location on this map. 12 given nodes 

with edges between them represent the area in which the robot navigates as shown in 

Fig. 6.10. The paths directions are always towards the target, but when the robot faces a 

blocked path or an unreachable local path, the motion on edge can move in both 

directions allowing the robot to recover from the dead-end zone.  

 

A heuristic search was applied considering one direction for local paths which 

approached towards the target. A chromosome pool consisted of 100 individuals who 

were evaluated by a fitness function to choose the optimal global path from the start 

point to the target point taking the shortest global path. The pool and the fitness function 

were also applied in the sub-global path. 

 

If two nodes n1 and n2 are connected, then qualitative actions Actionn exist to move the 

robot from n1 to n2. Reactive navigation is employed to perform the local paths, where 

fuzzy reactive strategies handle the task to perform the local paths. 
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Figure 6. 10. Robot environment map and dead-end zone problem 

 

6.4.1 Avoidance Behaviour Strategy 

 

A simple strategy is investigated, where rules that cause the same effect in the robot 

movement and low probability rules to occur are not considered. This strategy is called 

avoidance behaviour. A fuzzy system is used to handle eight behaviours which were 

divided into two groups: the first group helps the robot to get its target. It consists of 

four behaviours which are: walk straight to target, walk along the corridor, left wall 

following, and right wall following; The second group prevents the robot from any 

collision by handling four behaviours which are: avoiding right obstacle, avoiding left 

obstacle, avoiding front obstacle, and avoiding blocked zone. Table 11 presents this 

fuzzy rule base structure. 

 
Table 11: Avoidance Strategy Fuzzy Rules Base 
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S
 

R
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S
 

Robot’s behaviours 

1 1 1 1 5 1 

straight movement 

1 1 1 2 5 2 

1 1 1 3 5 5 

1 1 1 4 1 5 

1 1 1 5 2 5 

2 1 2 0 4 4 

walk along the corridor 
3 1 3 0 3 3 

2 1 3 0 3 4 

3 1 2 0 4 3 

2 1 1 0 4 2 
left wall following 

3 1 1 0 5 1 

1 1 2 0 2 4 
right wall following 

1 1 3 0 1 5 

2 2 1 0 4 2 
avoiding left front obstacles 

3 3 1 0 5 1 
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3 2 1 0 5 2 

1 2 2 0 2 4 

avoiding right front obstacles 1 3 3 0 1 5 

1 2 3 0 2 5 

1 2 1 0 1 5 avoiding front obstacle 

2 2 2 0 2 2 
avoiding blocked zone 

3 3 3 0 2 2 

 

 Fuzzy inference diagram 

 

Figure 6.11 depicts the fuzzy inference diagram for the basic strategy fuzzy inference 

system, which consists of 23 rules. The diagram shows all parts of the fuzzy inference 

process from inputs to outputs. Each row in Fig. 6.11 corresponds to one rule and each 

column in Fig. 6.11 corresponds to either an input variable (yellow, on the left) or an 

output variable (blue, on the right).  

 

 

 
 

Figure 6. 11. General fuzzy inference system for basic strategy 

 

 

The heuristic search applied in the fuzzy avoidance behaviour strategy finds the 

optimal path which is divided into many local paths. The local paths are the connections 

between two nodes as illustrated in Fig. 6.10. The fuzzy system doesn’t handle a 

conflicting behaviour and doesn’t activate the deliberative navigation to replan the sub-

global path. Thus, the robot falls in the dead-end zone, and it cannot finish its tasks (Fig. 

6.12). The robot performs infinitely two behaviours, which are seeking target and 
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avoiding obstacle. In this situation, the robot keeps moving to the right and to left 

sequentially and endlessly.  

The control system is too weak to solve this situation. Thus, the replanning process of 

local paths or/and (sub-global path) is needed at the global navigation level to solve 

such as critical situation.  

 

 
 

Figure 6. 12. Robot fell in dead-end zone using avoidance behaviour strategy 

 

6.4.2 Dynamic Local Path  

 

In a dynamic environment, dynamic local paths are called Incompletion replanning. In 

this situation, local paths have different original points between the replanning path and 

the original planning path as illustrated in Fig. 6.13. Completion replanning has the 

same original point between the replanning path and the original planning path. 

Completion of the replanning path can be obtained in a static and completely known 

environment which is represented as a blue dashed local path in Fig. 6.13. The reactive 

navigation combines the planning information and the real-time information to perform 

the new trajectory using avoidance behaviour strategy, (refer to section 4.11.2). Fig. 

6.13 represents a dynamic local path. 
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Figure 6. 13. Dynamic local path 

 

6.4.3 Sub-Global Path & Unreachable Local Path 

 

A Sub-global path is needed in many situations such as an unreachable and blocked 

path. Fig. 6.14 illustrates a global path and a sub-global path. The robot starts executing 

its local paths until he is confronted with a blocked path. The robot updates the world 

model. In this situation, the deliberative navigation replans a sub-global path from the 

robot location to the target. Fig. 6.14 shows how the robot recovers from a dead-end 

zone and seeks its target executing a new sub-global path. (Refer to section 4.11.3). 

     

 

 
 

Figure 6. 14. Global and sub-global path 
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6.4.4 Aggressive Strategy (Aggressive Behaviour) 
 

This system is equipped with aggressive behaviours which are: handle, seek, and push 

the obstacles. When considering the many local paths, a robot can take, they have to be 

clear to allow the robot to reach its target. If, however, the robot faces a blocked local 

path which he considers to be clear, then the genetic algorithm system stops the 

avoidance strategy and extends the priority to the aggressive strategy, which clears the 

respective path. This system handles several rules that help the robot to push the 

obstacles which are situated on the local path axis. Table 12 presents the fuzzy rules 

base structure. 

 

Table 12: Seeking and Pushing Object (Aggressive Strategy) 

 

S
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ft
 

S
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R
M

S
 

Robot behaviours 

2 2 1 0 2 4 

Seek left front obstacles 3 3 1 0 1 5 

3 2 1 0 2 5 

1 2 2 0 4 2 

Seek right front obstacles 1 3 3 0 5 1 

1 2 3 0 5 2 

1 2 1 0 3 3 Seek front obstacle 

2 2 2 0 4 4 
push the obstacle 

3 3 3 0 5 5 

 

 

 

Arming aggressive behaviour (switching behaviour) 

 

In this stage, a multi-task robot is applied handling conflicting behaviours. Many fuzzy-

based behaviour systems are used to perform the different strategies, where the 

navigation control (hierarchy system) switches between two behaviours rules bases 

depending on the mission objective and the local context conditions, the intelligent 

behaviour selector applies aggressive behaviour which it considers as one of the 

solutions to solve an unreachable path. Fig. 6.15 shows how the robot seeks a ball and 

pushes it away allowing the robot to get to its target. (Refer to Section 4.11.3 

unreachable local path in integrated navigation architecture). 
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Figure 6. 15. Aggressive behaviour 

 

6.5 Conclusions  

 

The hybrid navigation approach designed and investigated in this Chapter used the 

deliberative navigation to supervise and control reactive navigation. The design of the 

robot controller was done to control the behaviour strategies by using Computational 

Intelligence techniques which have mostly a hierarchical design. This system proved its 

ability to control multi-behaviours navigation and conflicting behaviours that employ 

different sets of behaviour-based subsystems.  

The hierarchical intelligent system using genetic algorithms was proven to be an 

efficient tool for controlling fuzzy control systems. The geno-fuzzy system controlled 

successfully the behaviour strategies providing a range of decisions which helped the 

robot to perform many conflicted behaviours. The geno-fuzzy system introduced multi-

tasks to the robot controller.  

The hybrid multi-behaviour navigation has been shown to be a robust and flexible 

solution for complex and dynamic environments, recovering the robot from dead-end 

zones and cycling modes. The designed system provides a suitable degree of reactivity 

and deliberation in a mobile robot giving the optimal global path and optimal sub-global 

path. 

 

 

  



 

 

 

 

137 

Chapter 7 

Conclusions 
 

This thesis presents research and development work related to hybrid multi-behaviour 

navigation primarily in a large-scale environment. Three main goals have been 

accomplished: The first goal was to improve and optimize deliberative multi-behaviour 

navigation in a large-scale, dynamic environment, the second one was to devise hybrid 

multi-behaviour deliberative-reactive navigation at the local level, and the third one was 

to design an integrated deliberative-reactive multi-behaviour navigation architecture. 

 

1-Deliberative multi-behaviour navigation 

 

In terms of the development of the deliberative navigation, a hybrid GA-based method 

was proposed and developed to optimize path planning and navigation for large-area 

monitoring using pollutant maps generated from RS imagery. The power of the global 

GA-based search was combined with the speed of a local optimizer. Both optimizers 

work cooperatively to find the optimal solution, where GA determines the optimal 

region according to the monitoring strategy, and then the local optimizer takes over to 

find the best position for acquiring water samples. 

 

Multi-layer maps were employed to generate spatial and functional properties of the 

environment. Those maps enable the planning system to perceive and interpret 

environments according to different environment features that characterize, in our case, 

the pollutants and the acquisition strategy (e.g., the maximum gradient of a pollutant 

concentration). Layers originating from remote sensing imagery were complemented by 

meteorological and ancillary data to form a perceptive system in the form of hybrid 

maps. The multi-layer model is subsequently used by a cost optimizing path planner. 

The presented approach is general, and can be applied in a variety of environments that 

require multi-dimensional representations. 

 

Appropriate environment representation models were developed to interpret the global 

environment. Parametric and nonparametric classification approaches were used to 
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identify the context for optimal interpretation of the measurement data. In the realm of 

context analysis, the concept of the Area-Of-Interest was given special attention as 

especially useful in the further investigation of the multi-behaviour navigation process.  

 

Metaheuristic search methods were employed in the planning part, showing their 

flexibility and good performance. Several hybrid algorithms were designed to solve the 

navigation problem, where the trajectory consists of different behaviours complying 

with different environment entities. Hybrid deliberative navigation approach improved 

the multi-behaviour deliberative navigation employing the different behaviour models. 

The developed hybrid genetic algorithm dealt with the complex world model on the 

deliberative level, showing enhanced search behaviours optimized for different 

contexts. The optimization process created optimal paths that fit the overall mission 

goals, respecting at the same time the temporal and spatial constraints. It was 

demonstrated that metaheuristic approach is useful in solving multi-objective path 

planning problems, where the mobile robot navigates and performs its tasks in a 

partially unknown and unstructured environment.  

 

2- Hybrid multi-behaviour deliberative-reactive navigation 

 

At the reactive level, due to a partially unknown environment and the complexity of the 

global context, a dedicated multi-behaviour reactive navigation architecture is needed to 

deal with these conditions. While a behaviour-based system allows the robot 

application-specific behaviours where each behaviour is concerned with a sole 

objective, the presented multi-behaviour navigation, including conflicting behaviours, 

employed a set of behaviour-based subsystems. The reactive system was divided into 

many sub-systems where each system handles a group of behaviours. Behaviours which 

do the same tasks are handled together by one behaviour-base system. Computational 

intelligence techniques were used to handle multi-task navigation. The design of the 

robot controller was done around a hierarchical fuzzy system. The hierarchical 

intelligent system proved its ability to control multi-behaviours navigation. A geno-

fuzzy system was designed such as to optimize and control the rules structure of a fuzzy 

controller. A new set of behaviours is obtained by the generation of a fuzzy rules base 
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by a genetic algorithm. The algorithm generates and optimizes the fuzzy behaviour-

based system depending on the objective function and the surrounding area conditions. 

 

3- Novel integrated deliberative-reactive multi-behaviour navigation architecture  

A novel integrated deliberative reactive navigation architecture was developed for 

multi-behaviour navigation in complex and unstructured environments. A formal state 

transformation type model was presented and examined based on the examples of 

deliberative and deliberative-reactive navigation. The model provides a general scheme 

for designing and controlling the relationship between both navigation levels. It 

incorporates the capacity for multi-behaviour navigation by including the concept of the 

navigation context. The replanning process can be solved at both levels with the 

employment of a specific strategy. The integrated system has the ability to activate the 

suitable global search method as well as the search cost function providing optimal 

global path and sub-global trajectories.  

 

The concepts and the methods investigated in this thesis were analyzed and validated in 

two sets of experiments. The results of the first set of experiments showed that the 

developed intelligent system can perform multi-task navigation including the conflicting 

behaviour in an environment monitoring mission in different terrain coverage scenarios.  

The objective function can be modified depending on the mission objective. Constraint 

functions and ROI were used to guide an acquisition platform to areas of higher interest 

and to help make a decision on the suitable behaviour. In the second set of experiments, 

a hybrid navigation approach used deliberative navigation to supervise and to control 

reactive navigation at a local level. The hybrid navigation was shown to provide a more 

robust and flexible solution for dynamic environments, allowing the robot to recover 

from dead-end zones and cycling modes. This system provided a suitable degree of 

reactivity and deliberation in a mobile robot. Hybrid geno-fuzzy navigation control 

drove the robot in a dynamic environment applying multi-behaviour navigation. 

 

Future work 

 Adaptation and optimization of the developed architectures and methods for 

Unmanned Aerial Systems (low-cost aerial platforms). 
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 Extension of the work to other fields of environmental sciences, such as 

assessment of vegetation dynamics and forests biodiversity, wildlife research 

and management, changes in freshwater marshes and river habitats, and 

conservation and monitoring programs.  

 Investigation of other hybrid metaheuristic methods system for global search, 

such as the proposed GAACO. 
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Appendices 

 

Appendix 1 

Satellite sensor data 

1.1. MODIS 

MODIS spectral domain is divided into the four following spectral regions which are as 

follows:  

 Visible (VIS) (0.412 to 0.551 m),  

 Near infrared (NIR) (0.650 to 0.940 m),  

 Short wavelength/medium wavelength infrared (SWIR/MWIR) (1.240 to 4.565 

m),  

 Long wavelength infrared (LWIR) (6.715 to 14.235m).  

 

MODIS has 36 spectral bands with center wavelengths ranging from 0.412m to 

14.235m;  

MODIS spectral bands are divided into 5 categories depending on its application as 

follows  

1. Land and cloud boundaries/property bands, 

2. Ocean colour bands, 

3. Atmosphere/cloud bands, 

4. Thermal bands, 

5. Thermal bands for cloud height & fraction.   

 

Where band 1 and band 2 are imaged at a nominal resolution of 250m at nadir, band 3 

to band 7 are imaged at a nominal resolution of 500m. The remaining bands are imaged 

at a nominal resolution of 1000m. Bands 13 and 14 each have two gain settings, 13 low, 

13 high, 14 low, and 14 high, telemetered from the instrument. All bands are 

telemetered at 12 bits. 

 

Each spectral region has a lens assembly for imaging scene energy onto the 

corresponding focal plane.  

 

Each focal plane consists of rows of detectors aligned in along of the track direction so 

as to image 10km in along of track direction of the scan. Then  

 There are 10 detectors along the track in the 1000m bands,  

 20 detectors along the track in the 500m bands,  

 40 detectors along the track in the 250m bands. 

 

 

The ground track direction is defined as the sensor movement and is designated as the 

x+ direction. The scan direction is orthogonal to the track direction. MODIS swath is 

2200 km long and 10 km wide at nadir. MODIS needs 1.471second to scan the swath. A 

swath contains 1354 frames per scan. A frame size is 1km in the scan direction and 

10km in the track direction at nadir. 
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MODIS SPECTRAL BANDS SPECIFICATION 

 

LAND AND CLOUD BOUNDARIES/PROPERTIES BANDS 

BAND  IFOV Bandwidth PURPOSE 

1 645 nn 250 m 50 nn Veg. 

2 858 nn 250 m 35 nn Cloud 

3 469 nn 500 m 20 nn Soil, 

4 555 nn 500 m 20 nn Green 

5 1240 nn 500 m 20 nn Leaf/Canopy 

6 1640 nn 500 m 24.6 nn Snow/Cloud 

7 2130 nn 500 m 50 nn Land 

 

OCEAN COLOUR BANDS 

BAND  IFOV Bandwidth PURPOSE 

8 412 nn 1000 m 15 nn Chlorophyll 

9 443 nn 1000 m 10 nn Chlorophyll 

10 488 nn 1000 m 10 nn Chlorophyll 

11 531 nn 1000 m 10 nn Chlorophyll 

12 551 nn 1000 m 10 nn Sediments 

13 667 nn 1000 m 10 nn Sediments, 

14 678 nn 1000 m 10 nn Chlorophyll 

15 748 nn 1000 m 10 nn Aerosol 

16 869 nn 1000 m 15 nn Aerosol/Atmospheric 

 

 

ATMOSPHERE/CLOUD BANDS 

BAND  IFOV Bandwidth PURPOSE 

17 905 nn 1000 m 30 nn Cloud/Atmospheric 

18 936 nn 1000 m 10 nn Cloud/Atmospheric 

19 940 nn 1000 m 50 nn Cloud/Atmospheric 

 

THERMAL BANDS 

BAND  IFOV Bandwidth PURPOSE 

20 3.75 μm 1000 m 0.18 μm Sea 

21 3.96 μm 1000 m 0.059 μm Forest 

22 3.96 μm 1000 m 0.059 μm Cloud/Surface 

23 4.05 μm 1000 m 0.061 μm Cloud/Surface 

24 4.47 μm 1000 m 0.065 μm Tropospheric 

25 4.52 μm 1000 m 0.067 μm Tropospheric 

26 1375 μm 1000 m 30 μm Cinfraredrus 

27 6.72 μm 1000 m 0.36 μm Mid-Tropospheric 

28 7.33 μm 1000 m 0.30 μm Upper-Tropospheric 

29 8.55 μm 1000 m 0.30 μm Surface 

30 9.73 μm 1000 m 0.30 μm Total ozone 

31  11.03 μm 1000 m 0.50 μm Cloud/Surface Temperature 

 

 

 

 

THERMAL BANDS 

BAND  IFOV Bandwidth PURPOSE 

32 12.02 μm 1000 m 0.50 μm Cloud Height & Surface Temperature 

33 13.34 μm 1000 m 0.30 μm Cloud Height & Fraction 

34 13.64 μm 1000 m 0.30 μm Cloud Height & Fraction 
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35 13.94 μm 1000 m 0.30 μm Cloud Height & Fraction 

36 14.24 μm 1000 m 0.30 μm Cloud Height & Fraction 

 

1.2. MERIS 

MERIS is a programmable, medium-spectral resolution, imaging spectrometer operating 

in the solar reflective spectral range. 

The satellite's motion provides scanning in the along-track direction using linear CCD 

arrays to provide spatial sampling across the track.  

The instrument's 68.5° field of view around nadir covers a swath width of 1150 km. 

This wide field of view is shared between five identical optical modules arranged in a 

fan shape configuration. MERIS is carried aboard the ESA's Envisat satellite.  

 

Technical Characteristics (ESA) 

 Accuracy: Ocean colour bands typical S:N = 1700 

 Spatial Resolution: Ocean: 1040m x 1200 m, Land & coast: 260m x 300m. 

 Swath Width: 1150 km, global coverage every 3 days 

 Waveband: VIS-NIR: 15 bands selectable across range: 390 nm to 1040 nm 

(bandwidth programmable between 2.5 and 30 nm) 

 

This system has 15 spectral bands with center wavelengths ranging from the 390 - 1040 

nm which represent the visible and near infrared part of the electromagnetic spectral. 

The following table lists represent MERIS lists spectral bands and their potential 

applications. 

 
Band 

 

Band centre 

(nm) 

Potential Applications 

1 412.5 Yellow substance, turbidity 

2 442.5 Chlorophyll absorption maximum 

3 490 Chlorophyll, other pigments 

4 510 Turbidity, suspended sediment, red 
tides 

5 560 Chlorophyll reference, suspended 

sediment 

6 620 Suspended sediment 

7 665 Chlorophyll absorption 

8 681.25 Chlorophyll fluorescence 

9 705 Atmospheric correction, red edge 

10 753.75 Oxygen absorption reference 

11 760 Oxygen absorption R-branch 

12 775 Aerosols, vegetation 

13 865 Aerosols corrections over ocean 

14 890 Water vapour absorption reference 

15 900 Water vapour absorption, vegetation 
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Appendix 2 

Selected MATLAB Code 

  

3.1. Modified Genetic Algorithm Tool Box  

 
function [x,endPop,bPop,traceInfo] = 

ga(evalFN,startPop,termFN,termOps,selectFN,selectops,xOverFNs,xOverOps

,mutFNs, mutOps) 
% GA run a genetic algorithm 
% function 

[x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts, 
%                                       

termFN,termOps,selectFN,selectOps, 
%                                       

xOverFNs,xOverOps,mutFNs,mutOps) 
%                                 
% Output Arguments: 
%   x            - the best solution found during the course of the 

run 
%   endPop       - the final population  
%   bPop         - a trace of the best population 
%   traceInfo    - a matrix of best and means of the ga for each 

generation 
% 
% Input Arguments: 
%   bounds       - a matrix of upper and lower bounds on the variables 
%   evalFN       - the name of the evaluation .m function 
%   evalOps      - options to pass to the evaluation function ([NULL]) 
%   startPop     - a matrix of solutions that can be initialized 
%                  from initialize.m 
%   opts         - [epsilon prob_ops display] change required to 

consider two  
%                  solutions different, prob_ops 0 if you want to 

apply the 
%                  genetic operators probabilisticly to each solution, 

1 if 
%                  you are supplying a deterministic number of 

operator 
%                  applications and display is 1 to output progress 0 

for 
%                  quiet. ([1e-6 1 0]) 
%   termFN       - name of the .m termination function 

(['maxGenTerm']) 
%   termOps      - options string to be passed to the termination 

function 
%                  ([100]). 
%   selectFN     - name of the .m selection function 

(['normGeomSelect']) 
%   selectOpts   - options string to be passed to select after 
%                  select(pop,#,opts) ([0.08]) 
%   xOverFNS     - a string containing blank seperated names of 

Xover.m 
%                  files (['arithXover heuristicXover simpleXover'])  
%   xOverOps     - A matrix of options to pass to Xover.m files with 

the 
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%                  first column being the number of that xOver to 

perform 
%                  similiarly for mutation ([2 0;2 3;2 0]) 
%   mutFNs       - a string containing blank seperated names of 

mutation.m  
%                  files (['boundaryMutation multiNonUnifMutation ... 
%                           nonUnifMutation unifMutation']) 
%   mutOps       - A matrix of options to pass to Xover.m files with 

the 
%                  first column being the number of that xOver to 

perform 
%                  similiarly for mutation ([4 0 0;6 100 3;4 100 3;4 0 

0]) 

  
% Binary and Real-Valued Simulation Evolution for Matlab  
% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay  
% 
% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function 
% optimization: A Matlab implementation. ACM Transactions on 

Mathmatical 
% Software, Submitted 1996. 
% 
% This program is free software; you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation; either version 1, or (at your option) 
% any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. A copy of the GNU  
% General Public License can be obtained from the  
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, 

USA. 

  

  
nn=1 
 opts = [1e-6 1 0]; 

  
n=nargin; 

  
%if n<3 %Default evalation opts. 
 % evalOps=[]; 
%end 

  
%evalFN = 'COST_FUNCTION_M_G'; 
evalFN = 'COST_FUNCTION_N_C_1'; 
if any(evalFN<48) %Not using a .m file 
  if opts(2)==1 %Float ga 
    e1str=['x=c1; c1(xZomeLength)=', evalFN ';'];   
    e2str=['x=c2; c2(xZomeLength)=', evalFN ';'];   
  else %Binary ga 
    e1str=['x=b2f(endPop(j,:),bounds,bits); 

endPop(j,xZomeLength)=',... 
    evalFN ';']; 
  end 
else %Are using a .m file 
  if opts(2)==1 %Float ga 
    e1str=['[c1 c1(xZomeLength)]=' evalFN '(c1,[gen evalOps]);'];   



 

 

 

 

156 

    e2str=['[c2 c2(xZomeLength)]=' evalFN '(c2,[gen evalOps]);'];   
  else %Binary ga 
    e1str=['x=b2f(endPop(j,:),bounds,bits);[x v]=' evalFN ... 
    '(x,[gen evalOps]); endPop(j,:)=[f2b(x,bounds,bits) v];'];   
  end 
end 

  

  
if n<4 %Default termination information 
  termOps=[50]; 
  termFN='maxGenTerm'; 
end 
if n<9 %Default muatation information 
  if opts(2)==1 %Float GA 
  mutFNs=[ 'multi_point_Mutate_4_4_N']; 
    mutOps=[4 0 0]; 
   end 
end 

  
if n<7 %Default crossover information 
  if opts(2)==1 %Float GA 
    xOverFNs=['arithXover heuristicXover multi_point_Xover_1_S']; 
    xOverOps=[2 0;2 3;2 0]; 
  end 
end 
if n<6 %Default select opts only i.e. roullete wheel. 
  selectOps=[]; 
end 
%Default select info 
  selectFN=['normGeomSelect']; 
  selectOps=[0.08]; 

  
if n<4 %Default termination information 
  termOps=[500]; 
  termFN='maxGenTerm'; 
end 
if n<2 %No starting population passed given 
  startPop=[]; 
end 

  

  
xOverFNs=parse(xOverFNs); 
mutFNs=parse(mutFNs); 

  
xZomeLength  = size(startPop,2);    %Length of the 

xzome=numVars+fittness 
numVar       = xZomeLength-1;       %Number of variables 
popSize      = size(startPop,1);    %Number of individuals in the pop 
endPop       = zeros(popSize,xZomeLength); %A secondary population 

matrix 
c1           = zeros(1,xZomeLength);    %An individual 
c2           = zeros(1,xZomeLength);    %An individual 
numXOvers    = size(xOverFNs,1);    %Number of Crossover operators     

????????????????????????? 
numMuts      = size(mutFNs,1) ;     %Number of Mutation operators      

?????????????????????????????? 
epsilon      = opts(1);                 %Threshold for two fittness to 

differ 
oval         = max(startPop(:,xZomeLength)); %Best value in start pop 
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bFoundIn     = 1;           %Number of times best has changed 
done         = 0;                       %Done with simulated evolution 
gen          = 1;           %Current Generation Number 
collectTrace = (nargout>3);         %Should we collect info every gen 
floatGA      = opts(2)==1;              %Probabilistic application of 

ops 
display      = opts(3);                 %Display progress  

  

  
%modify 
%%%%%%%%%%%%%% 

  
sort_endPop = zeros(popSize,xZomeLength) ;         %NEW SORTED 

POPULATION 
%xover_Pop   = zeros((2*numXOvers),xZomeLength)    %new crossover 

solution    %%%%%%%%%%%%%%%%%%%%%% 
mut_Pop     = zeros((2*numMuts),xZomeLength);      %new new mutation 

solution 
xOver_nm    = floor(0.4 * (popSize/2)) *2;    %crossover function 

(option )  
mut_nm      = floor(0.05 * popSize)*2 ;           %mutation function 

(option ) 
xover_Pop   = zeros(xOver_nm,xZomeLength); 
mut_Pop     = zeros(mut_nm,xZomeLength); 
TOTAL_SOL   = popSize + xOver_nm + mut_nm ; 
sort_pop    = zeros(TOTAL_SOL,xZomeLength ); 
adap_Pop     = zeros(20,xZomeLength); 

  
for i = 1:popSize 
startPop(i,xZomeLength)= COST_FUNCTION_N_C_1(startPop(i,:)); 
end 
%%%%%%%%%%%%%%%% 

  
sameFitnessValue = 0; 
bValAnt = -1; 

  
while(~done && sameFitnessValue < 100) 
    gen 
  %Elitist Model 
  [bval,bindx] = max(startPop(:,xZomeLength)); %Best of current pop 
  best =  startPop(bindx,:); 

  
  if collectTrace 
    traceInfo(gen,1)=gen;                            %current 

generation 
    traceInfo(gen,2)=startPop(bindx,xZomeLength);    %Best fittness 
    traceInfo(gen,3)=mean(startPop(:,xZomeLength));  %Avg fittness 
    traceInfo(gen,4)=std(startPop(:,xZomeLength));  
  end 

   
  if ( (abs(bval - oval)>epsilon) | (gen==1)) %If we have a new best 

sol 
    if display 
      fprintf(1,'\n%d %f\n',gen,bval);          %Update the display 
    end 
    if floatGA 
      bPop(bFoundIn,:)=[gen startPop(bindx,:)]; %Update bPop Matrix 
    else 
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      bPop(bFoundIn,:)=[gen 

b2f(startPop(bindx,1:numVar),bounds,bits)... 
      startPop(bindx,xZomeLength)]; 
    end 
    bFoundIn=bFoundIn+1;                      %Update number of 

changes 
    oval=bval;                                %Update the best val 
  else 
    if display 
      fprintf(1,'%d ',gen);               %Otherwise just update num 

gen 
    end 
  end 

   
  endPop = feval(selectFN,startPop,[gen selectOps]); %Select 

   

   

   
%%%%%%%%%%%%%%%%%% modify  
  for i = 1:popSize 
      [X,Y]= max (endPop(:,xZomeLength)); 
      sort_endPop(i,:) = endPop(Y,:); 
      endPop(Y,xZomeLength)= 0; 
 end  
 % sort_endPop = sortrows(endPop, - xZomeLength); 
 endPop= sort_endPop; 

   
 %%%%%%%%%%%%%%% 

     
     %The parents for crossover are from the Elite solution  
     for i= 1:xOver_nm 

      
           a = randi([1 (popSize* 0.2)],1,1) ;        %Pick a  good 

parent 
           b = randi([1 (popSize* 0.2)],1,1) ;        %Pick another 

good parent 
          % multi_point_Mutate4_4_PN 
           %(endPop(a,:)); 
           %(endPop(b,:)); 
                      %Get the name of crossover function 
           [c1 c2] = simpleXover (endPop(a,:),endPop(b,:)); 
            xover_Pop((2*i-1),:) = c1; 
            xover_Pop((2*i),:)   = c2; 

         
     end  

           

         
      %The parents for crossover are randomly selected from the 

solution   

         
        for j= 1:xOver_nm 

               
           a = randi([1 popSize],1,1) ;           %Pick a random 

parent 
           b = randi([1 popSize],1,1);            %Pick another random 

parent 
          [c1 c2] = multi_point_Xover_1_S(endPop(a,:),endPop(b,:)); 
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           xover_Pop((2*(j) -1),:) = c1; 
           xover_Pop((2*(j)),:)    = c2; 
        end 

     

         
        %evalute crossover solution (fitness function)    
          xover_pop= size (xover_Pop,1); 
          for i= 1:xover_pop 

               
              xover_Pop(i,xZomeLength)= COST_FUNCTION_N_C_1 

(xover_Pop(i,:)); 
          end 

           

           

         
     % The parent for mutation is from the Elite solution  
    for i=1:mut_nm, 
         a = randi([1 (popSize* 0.2)],1,1) ; 

        
         c1 =  multi_point_Mutate_4_4_PN (endPop(a,:)); 

          
         %c1 = feval(deblank(mutFNs(i,:)),endPop(a,:),[gen 

mutOps(i,:)]); 
        mut_Pop(i,:)= c1; 
    end  

     
    %The parent for mutation is randomly selected from the solution  
    for i=1:mut_nm, 
        a = randi([1 popSize],1,1) ; 
        c1 =  multi_point_Mutate_4_4_PN (endPop(a,:)); 
        %c1 = feval(deblank(mutFNs(i,:)),endPop(a,:),[gen 

mutOps(i,:)]); 
        mut_Pop(i+numMuts,:)= c1; 
    end 

     
    %evalute mutation solution (fitness function)  
    M_pop= size (mut_Pop,1); 
    for i = 1 :M_pop 

         
        mut_Pop(i,xZomeLength)= COST_FUNCTION_N_C_1  (mut_Pop(i,:)); 
    end 

     

    

     
%%%%%%%%   create_new population 

   

  

  
big_generation = vertcat(endPop,xover_Pop,mut_Pop); 
endPop; 
xover_Pop; 
mut_Pop; 

  
 big_g = sortrows(big_generation, - xZomeLength); 
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 % TOTAL_SOL= size (big_generation,1); 
  %for i= 1:TOTAL_SOL 
     % [X,Y]= max (big_generation(:,xZomeLength)); 
      %sort_pop(i,:) = big_generation(Y,:); 
      %big_generation(Y,xZomeLength)= 0; 
  %end 

   

   
   % create new  POPULATION  (GLOBAL PATH) new adaptive search  
  for i = 1:30 
     % adap_pop(i,:)= adaptive_search_3_behaviour_R (big_g(i,:)); 
    adap_pop(i,:)= adaptive_search (big_g(i,:)); 
    adap_pop(i,xZomeLength)  = COST_FUNCTION_N_C_1(adap_pop(i,:)); 

   
 end 

     

            

   

   
 all_generation = vertcat(adap_pop,big_g); 
 big_gene = sortrows(all_generation, - xZomeLength); 
 endPop= big_gene(1:popSize,:); 

   

  
% endPop= big_g(1:popSize,:); 

  
  %ant colony optimisation  
     % AC_POP_NEW  = ACO_optimize_1( AC_POP) 

   

  
  %%%% new optimised population  
 % opt_pop =vertcat (sort_pop,AC_POP_NEW)  

   

   
  %%%%%%% sort and slect the new optimised population  

  
  %total_pop= size (opt_pop,1) 
  %for i= 1:total_pop 
     % [X,Y]= max (opt_pop(:,xZomeLength)); 
     % new_pop(i,:) = opt_pop(Y,:) 
     % opt_pop(Y,xZomeLength)= 0; 
 % end 

   
  % endPop= sort_pop(1:popSize,:); 

   

   
  gen=gen+1; 
  done=feval(termFN,[gen termOps],bPop,endPop); %See if the ga is done 
  startPop=endPop;          %Swap the populations 

   
   %%%%end while%   

  
[bval,bindx] = max(startPop(:,xZomeLength)); 
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if(bval == bValAnt) 
    sameFitnessValue = sameFitnessValue +1; 
else 
    sameFitnessValue = 0; 
end 
bValAnt = bval; 

  
if display  
  fprintf(1,'\n%d %f\n',gen,bval);     
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
%%%reactive control 

  
%for i= 1:2 
     % reactive_eval(i,:)= startPop(i,:) 
     % reactive_eval(i,xZomeLength)  = reactive( reactive_eval(i,:)); 
%end 

  

  
    % [X,Y]= max (reactive_eval(:,xZomeLength)); 
    % reactive_best(nn,:)= reactive_eval(Y,:); 
    % nn= nn+1; 

       
    end   %%end while%  

       

  

  

  
x=startPop(bindx,:); 
if opts(2)==0 %binary 
  x=b2f(x,bounds,bits); 
  bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)... 
      startPop(bindx,xZomeLength)]; 
else 
  bPop(bFoundIn,:)=[gen startPop(bindx,:)]; 
end 

  

  

  
gen 
A=startPop(bindx,xZomeLength); 
B=(startPop(:,xZomeLength)); 
if collectTrace 
  traceInfo(gen,1)=gen  ;       %current generation 
  traceInfo(gen,2)=startPop(bindx,xZomeLength)  ;  %Best fittness 
  traceInfo(gen,3)=mean(startPop(:,xZomeLength));  %Avg fittness 
end 
% [X,Y]= max (reactive_best); 
%reactive_best_solution=(reactive_best(Y,:) 

  
plot (traceInfo(:,1),traceInfo(:,2)) 
hold on 
plot (traceInfo(:,1),traceInfo(:,3)) 
%reactive_best 
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3.2. Cost Function  
function [F] = objectivefunction (genom, params) 
%COST_FUNCTION AND NO CONSTRAIN  
%path generator 
%SAMPLES VALUES 
%TSS& MCI MISSION 
load ('MCI_N_G.mat'); 
load ('TSS_N_G.mat'); 
%load ('TSS_ROI_VI_ZONE.mat'); 
%load ('TSS_N_ROI_3.mat'); 
%load ('TSS_N_ROI_4.mat'); 
load ('G_ROI.mat') 

  

  

  

  

  
maximum_samples_number=40;  %  the longest chrommosome  
muximum_trip_distance=350000;% metre  
MEAN_VELOCITY = 40000;             % m/ hour 
real_pexel_dis=300; 
%TSS= zeros(26,1); 
TS_V  = 0; 
TSS_V = 0; 
SAMPLE_COLLECTION = 3;          %  3 minute 
maximum_SAMPLING_TIME = 120;  % 2 hours 
TSS_MCI_V=0; 
DIS =0; 
PDS =0; 
m=0; 
G_ROI_AWARD= 0; 
%genom; 
geno=genom; 

  

  
% SAMPLING TIME FACTOR  
 nrgene = length(geno) / 2; 
 n=1; 
    for  j= 1:nrgene 
        x = geno(2*j-1);  
        y = geno(2*j);  

          

         
        if  ( x  ~= 0 && y  ~= 0 ); 

           
          new_G(2*n-1)= geno(2*j-1); 
          new_G(2*n)=geno(2*j); 
          n=n+1; 
     end 
    end 
    n=n-1; 
    sampling_time = (n*(SAMPLE_COLLECTION))/ 60; 
    ST= ((n*(SAMPLE_COLLECTION))/(  maximum_SAMPLING_TIME)); 
    %ST= 1 -((n*(SAMPLE_COLLECTION))/(  maximum_SAMPLING_TIME))^2; 

%for time 
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    %constraint exp. 

     

     
    %  ONother formula for sampling time 
    %  ST = 1- (( n*SAMPLE_COLLECTION)/ maximum_SAMPLING_TIME) 

     

     
geno = new_G; 

  

  
% SAMPLE VALUE (THE TRIP GAIN) 
nrgene = length(geno) / 2;    % length's chromozome  
%nrgene= genom(201); 
    for  j= 1:nrgene; 
        x = geno(2*j-1);  
        y = geno(2*j); 
         TS_V = TSS_N_G(x,y)+ MCI_N_G(x,y); 
         %TSS_MCI(j)=TS_V; 
       TSS_MCI_V= TSS_MCI_V+ TS_V; 
       %TSS_MCI_F = TSS_MCI_V; 
       TSS_MCI_F = (TSS_MCI_V/maximum_samples_number); 

          

          
    end 

  
% ROT AWARD   

  
 for  j= 1:nrgene; 
         x = geno(2*j-1);  
         y = geno(2*j); 

          

          
      if  G_ROI(x,y)== 1 && TSS_N_G(x,y)> 0.3 && MCI_N_G(x,y)> 0.5 ; 
          MCI_TSS_ROI_AWARD = 1; 
      elseif  G_ROI(x,y)== 1 && TSS_N_G(x,y)< 0.3 && MCI_N_G(x,y)> 

0.5; 
           MCI_TSS_ROI_AWARD = 0.9; 
      elseif  G_ROI(x,y)== 1 && TSS_N_G(x,y)> 0.3 && MCI_N_G(x,y)< 

0.5; 
           MCI_TSS_ROI_AWARD = 0.9; 
      else  
         MCI_TSS_ROI_AWARD = 0; 
      end  

      
      G_ROI_AWARD = G_ROI_AWARD +MCI_TSS_ROI_AWARD; 

     
    end 

     
    ROI_AWARD_FT= (G_ROI_AWARD/maximum_samples_number); 

  

  

  
%THE SHORTEST DISTANCE HAS HIGHER VALUE  

  

  
  local_path_factor= 0; 
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    for j= 1:nrgene-1; 
        DIS = sqrt ((genom(2*j+1)-genom(2*j-1)).^2 + (genom(2*j+2)-

genom(2*j)).^2); 
        PDS=PDS+DIS; 
       % if DIS < 20 
          %   local_path_factor = local_path_factor+1; 

        
       % end 
    end 
        total_local_path_factor 

=(local_path_factor/(2*maximum_samples_number)); 
    Path_length= PDS ;   % the path lenght 
    real_path_length= Path_length * real_pexel_dis; 
    path_length_value =( real_path_length /( muximum_trip_distance)); 
     %path_length_value =(1-(( real_path_length /( 1.6 * 

muximum_trip_distance)))^2); 
  % path_length_value = -(real_path_length/  muximum_trip_distance)^2; 
    % TRAVEL TIME  
   TRAVEL_TIME =  real_path_length / MEAN_VELOCITY; 
   MISSION_time = sampling_time + TRAVEL_TIME; 

   
if ( real_path_length > 350000 || MISSION_time > 12) 
   F = 0; 
else 

  
F = TSS_MCI_F + path_length_value + ST+ ROI_AWARD_FT ;    
en 

 

 

 

3.3. Adaptive Search 3 Zones  

 

 
%prune and reproduce algorithm  
function [F] = objectivefunction (genom, params) 
load ('MCI_N_G.mat'); 
load ('TSS_N_G.mat'); 
load ('NEW_G_ROI.mat'); 
load ('MG_P.mat'); 
load ('MCI_ROI.mat'); 
load ('M_G_ROI.mat'); 
load ('TSS_ROI_3.mat'); 
load ('M_G_2.mat'); 

  
 max_local_path_MCI= 15; 
 x_newValue= zeros (25 ,1); 
 y_newValue=zeros  (25 ,1); 
 chv=zeros (25 ,1); 
 MG=zeros  (25 ,1); 
 CHTSS=zeros (25 ,1); 

  

  

 
geno=genom; 
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G_ROI = NEW_G_ROI; 

  

  
nrgene = length(geno) / 2; 
 n=1; 
    for  j= 1:nrgene; 
        x = geno(2*j-1);  
        y = geno(2*j);  

          

         
        if  ( x  ~= 0 && y  ~= 0 ); 

           
          new_G(2*n-1)= geno(2*j-1); 
          new_G(2*n)=geno(2*j); 
          n=n+1; 
     end 
    end 
    n=n-1; 

     

     

     

    

     
geno= new_G;  

  
% prun the way point which fall autside the ROI ('G_ROI.)EXCLUDING the 
% start and the target point 

  
k=1; 
prun_s(2*k-1)= geno(1); 
prun_s(2*k)=geno(2); 

  
k=2; 

  
for  j= 2:n-1; 
        x = geno(2*j-1);  
        y = geno(2*j);  

          

         
        if G_ROI(x,y)>0 ; 

           
          prun_s(2*k-1)= geno(2*j-1); 
          prun_s(2*k)=geno(2*j); 
          k=k+1; 
     end 
end 

  
prun_s(2*k-1)= geno(2*n-1); 
prun_s(2*k)=geno(2*n); 

  
%Introducing new waypoint randomly in the ROI 

  
 pro_s= prun_s; 

  
 m = n-k ; 
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 m = floor (m); 

  
  l= k-1; 

  
 for p= 1: m; 
       p=p+1; 
       j = randi([2 l],1,1); 

     

    

  
for s= j+1: k; 
          pro_s(2*(s+1)-1) = prun_s(2*s-1); 
          pro_s(2*(s+1))   =prun_s(2*s); 

  
end 

  

         
    x = pro_s(2*j-1); 
    y = pro_s(2*j); 

         
if MCI_ROI(x,y)>0 
  M= 1 ;        
for M=1:200 ; 
      M=M+1; 
      times = 1; 
s=1; 
while s<2 

     
      x_newValue(M) = randi([x-8 x+8],1, 1);        % Now mutate that 

point 
      y_newValue(M) = randi([y-10 y+10],1, 1);        

             

  
if MCI_ROI(x_newValue(M),y_newValue(M))>0; 
    s=s+1; 
     dis=sqrt ((x_newValue(M)-x).^2 + (y_newValue(M)-y).^2); 
    chv(M)= (1- (0.5*(dis/ max_local_path_MCI)))*MCI_N_G(x,y);  

        
end 

    
  times= times + 1; 

    
   if times > 120; 
   break; 
   end 
end 
end 
   k=k+1; 

    
  [X,b]= max (chv); 

     
   pro_s(2*(j+1)-1)  = x_newValue(b);             % Make the child 
   pro_s(2*(j+1))    = y_newValue(b);                 % Make the child 
   prun_s= pro_s; 
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   elseif M_G_ROI(x,y)>0 
  M1= 1;         
for M1=1:200 ; 
      M1=M1+1; 
      times = 1; 
      s=1; 
while s<2 

       
      x_newValue(M1) = randi([x-3 x+3],1, 1);        % Now mutate that 

point 
      y_newValue(M1) = randi([y-5 y+5],1, 1);        

             
if M_G_ROI(x_newValue(M1),y_newValue(M1))>0; 
    s=s+1; 
    MG(M1)= M_G_2(x_newValue(M1),y_newValue(M1)); 

         
end 

    
  times= times + 1; 

    
  if times > 120 
  break; 
  end 

           
end 
end 
   k=k+1; 
   [X b ]= max (MG); 
   pro_s(2*(j+1)-1)  = x_newValue(b);             % Make the child 
   pro_s(2*(j+1))    = y_newValue(b);                 % Make the child 
   prun_s= pro_s; 

  

    

    
   else TSS_ROI_3(x,y)>0 
  M2= 1;         
for M2=1:200;  
      M2=M2+1; 
      times = 1; 
      s=1; 
while s<2 

       
      x_newValue(M2) = randi([x-8 x+8],1, 1);        % Now mutate that 

point 
      y_newValue(M2) = randi([y-10 y+10],1, 1);        

             

  
if TSS_ROI_3(x_newValue(M2),y_newValue(M2))>0; 
    s=s+1; 
  dis=sqrt ((x_newValue(M2)-x).^2 + (y_newValue(M2)-y).^2); 
  CHTSS(M2)= ((dis / max_local_path_MCI)*(MCI_N_G(x,y)+ 

TSS_N_G(x,y))); 

         
end  
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times= times + 1; 

    
   if times > 120 
   break;        
   end 
end 
end 

  
   k=k+1; 
   [X b ]= max (CHTSS); 
   pro_s(2*(j+1)-1)  = x_newValue(b);             % Make the child 
   pro_s(2*(j+1))    = y_newValue(b);                 % Make the child 
   prun_s= pro_s; 

   

    

  
end 

    
end 

   

    
   % Introducing new waypoints in the neighbour of the maximum samples 

in the ROI  

    

  

  
for f= 1:k-1 
     genom(f)=pro_s(f); 
end 

    

    
 %genom  = pro_s; 
 F= genom; 
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Appendix 3 

3.1. Articles  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Satellite Guided Navigation Control
for Environment Monitoring

Marek Zaremba, Fadi Halal, Thomas Hirose
and Pablo Pedrocca

Abstract This paper addresses issues inherent to the design of navigation control
systems required for adaptive acquisition of in situ reference data for environment
monitoring systems using satellite imagery. The development is motivated by the
application to adaptive inland water sampling by mobile platforms for an autono-
mous algal blooms observing and prediction system. The sampled field, used to
derive optimal paths for the mobile platforms equipped with measurement sensors,
is defined as a multi-objective spatial function. Conflicting demands, introduced by
resource demands and management of uncertainties, are discussed. A hybrid control
approach is presented, where the navigation planning module supervised the
reactive navigation. Due to the tasks complexity, the control architecture features
fuzzy system modules which handle different control strategies. A fuzzy selector is
used to select the appropriate system response depending on the surrounding
environment, in order to deal with conflicting control scenarios. The versatility of
the proposed system makes its application possible for the control of mobile
platforms of a different degree of autonomy.

Keywords Satellite imagery � Navigation control � Remote sensing � Path plan-
ning � Environment monitoring � Sampleacquisition

1 Introduction

The algal blooming in inland lakes and in coastal waters has become a critically
important issue for its impacts not only on local natural and social environments,
but also on global human community. Authorities responsible for water quality,
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environmental protection, economic development and public health must develop
and implement plans and strategies for prediction and mitigation the effects of algal
blooms. This requires means to detect and monitor the occurrence of the blooms.
Modeling of the underlying phenomena that lead to algal blooms is complex and is
a subject of ongoing research (Duan et al. 2009). Remote detection techniques
provide significant advantages over ground-based monitoring in terms of spatial
and temporal coverage and cost-efficiency. In Vincent et al. (2004) a set of algo-
rithms was developed to derive phycocyanin, Chlorophyll-a, and sediment for
detecting of blue-green algal blooms in lake Erie based on Landsat ETM images; A
model to quantify chlorophyll-a in Lake Balaton using Landsat ETM imagery was
discussed in Tyler et al. (2006). The existing algorithms depend on water quality
and remote sensing sensors. There are currently no available algorithms which are
suitable for most of inland waters and remote sensing sensors with minimal
modification. The core approach to the Harmful Algal Blooms (HAB) detection in
this project was automatic analysis of multi-temporal multi-spectral image
sequences, mostly from MODIS and MERIS multi-spectral sensors. An overall
objective was to develop adaptive models, the development of which calls for the
application of machine learning techniques. Calibration of the parametric models as
well as the training of statistical models using machine learning requires the
availability of reference data obtained by in situ data collection. A major technical
and theoretical problem that has to be resolved to develop statistically viable
models is the scarcity of the reference data. Acquisition of the reference data is
usually a costly and time-consuming process. In the application area addressed by
this project, it implies a data collection by a specially equipped mobile platform,
such as a cruise ship, a glider or a floating robot. Our study uses information
obtained from in situ measurements performed for Lake Winnipeg in Canada.
Critical to this research are reliable, efficient, and adaptive control strategies that
ensure mobile sensor platforms collect data of greatest value. In addition, a large
size of the lake, the tenth largest lake in the world, and the use of a large ship for
data acquisition missions make the development of optimal navigation control
important.

In this context, we propose a hybrid control, proposed earlier for vision guided
mobile robot navigation (Halal 2007), which combines deliberative path planning
level with local reactive control along trajectories dependent on selected local
strategies. The navigation is determined by the surrounding environment and by the
data acquisition task using multi-source data. Fuzzy reactive navigation strategies
execute the global path by dividing this path into many local paths. At the same
time, only one fuzzy selector system can drive the mobile platform, making a
decision on the appropriate behavior for a specific local path.

The structure of the paper is as follows. Section 2 presents the detection of the
concentration of chlorophyll from medium-resolution satellite imagery. After the
discussion of local acquisition conditions in Sect. 3, the hybrid navigation control
approach in introduced in Sect. 4. A more detailed description of the control scheme
is presented in Sect. 5.
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2 Chlorophyll Concentration from Satellite Imagery

A major technical challenge is the fact that the detection of the chlorophyll-a
concentration—the main indicator of algal blooms—is a multimodal process, i.e.,
the clusters of high concentration are located in different areas of the feature space
defined by spectral distributions of the reflected light. Consequently, no single
model will capture the intrinsic relationship between the chlorophyll-a concentra-
tion and the combinations of satellite image features with sufficient accuracy. This
modality issue has been successfully resolved in this project by introducing an
additional stage of processing remote sensing data, which is the classification of
water characteristics, and the development of adaptive non-parametric models for
both the classification and regression tasks. Based on the results of the classifica-
tion, an appropriate model is automatically selected for the assessment of the
chlorophyll concentration. The same type of data processing architecture can be
applied to the assessment of other environmentally important lake characteristics,
such as the Total Solid Sediment (TSS) concentration or the Dissolved Organic
Carbon (DOC) concentration. The influence of chlorophyll content on spectral
shape is depicted on Fig. 1.

Estimation of the chlorophyll-a concentration is typically obtained by using
indices that exploit chlorophyll absorption/reflectance wavelengths (Topliss and
Platt 1986). The Fluorescent Line Height (FLH) Index developed for MODIS
wavelengths is illustrated in Fig. 2.

In our study, we augmented the FLH model by using a set of models, with
additional indices, dedicated for specific water conditions. In the case of MODIS
data, these indices are given below:

Chl con- 
centration 

Fig. 1 Spectral signature of chlorophyll content
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C1 ¼ Rrsðk7Þ
Rrsðk8Þ ¼

Rrsðk555Þ
Rrsðk645Þ

C2 ¼ Rrsðk6Þ
Rrsðk4Þ ¼

Rrsðk551Þ
Rrsðk488Þ

C3 ¼ Rrsðk8Þ
Rrsðk9Þ ¼

Rrsðk645Þ
Rrsðk667Þ

C4 ¼ Rrsðk7Þ
Rrsðk9Þ ¼

Rrsðk555Þ
Rrsðk667Þ

C5 ¼ Rrsðk7ÞRrsðk11Þ
Rrsðk8ÞRrsðk10Þ ¼

Rrsðk555ÞRrsðk748Þ
Rrsðk645ÞRrsðk678Þ

ð1Þ

In the set of Eq. (1), Cn represents the index used in the classification process, Rrs

is the reflectance value, and λxyz represents the waveband centered at the frequency
of xyz nanometers. This frequency corresponds to the MODIS band λX (for
example, λ7 = λ555).

The classification was performed using multi-class Support Vector Machine
(SVM) algorithms with polynomial kernel of degree d = 4 and parameters α = 0.2
and β = 5.

Kðx; x0Þ ¼ ðaxTxþ bÞd ð2Þ

The learning precision was 97.17 %, and the testing one was 92.10 %. Figure 3
depicts the flow diagram for the selection of the optimal model and the procedure
for calculating chlorophyll concentration. Model parameters are obtained in a
training process, and subsequently applied at the operational stage. Figure 4
compares the results obtained using FLH index (Fig. 4a) and those using FLH and
band ratios developed for the type of water with higher concentration of solid
sediments (Fig. 4b). The error of the chlorophyll assessment decreases by an order
of magnitude.
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 Fig. 2 Definition of the FLH
index
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An example of the distribution of chlorophyll concentration in Lake Winnipeg
obtained using the Maximum Chlorophyll Index method is shown in Fig. 5.

3 Local Data Acquisition

The in situ data included air pressure, wind speed, wind direction, temperature,
water transparency, water temperature, PH, salinity, dissolved oxygen (DO),
Chemical Oxygen Demand (COD), active phosphates, nitrites, ammonium salt,
phytoplankton types and concentration, zooplankton types and concentration, and
Chlorophyll-a.

Our goal is to design a mobile sampling network to take measurements of scalar
and vector fields and collect the best data set (Chen and Cheng 2008). A cost
function, or sampling metric, must be defined in order to give meaning to the term
optimal data set. For example, the performance metric that we consider in this paper
defines an optimal data set as one in which the total error of the estimate of
the chlorophyll concentration field is minimized. Complementary metrics can be
utilized, emphasizing the sampling of regions of highest dynamic variability or
focus on areas of high sensibility to the degradation of water quality.

An example of a trajectory of ship equipped with the data acquisition equipment
and a laboratory setup for measuring water quality parameters is shown in Fig. 6.

Fig. 3 Flow diagram for multi-model assessment of chlorophyll concentration
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Fig. 4 Chlorophyll concentration assessment: a FLH index, b enhanced FLH index
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Fig. 5 Chlorophyll concentration in Lake Winnipeg (Noetix Research)

12:56

14:25

16:25

13:32

15:24

Fig. 6 Trajectory of the
mobile sample acquisition
platform

Satellite Guided Navigation Control for Environment Monitoring 135



The specifications of the ship for dynamics simulation (Benedict 2003) are the
following: gross tonnage: 328 tons, cruising speed: 12 knots, length: 33.62 m,
breadth: 8.53 m, and draft: 2.13 m.

4 Control Scheme

4.1 Requirements

The navigation control scheme has to address a number of challenges and con-
straints in order to assure the central objective of the optimized in situ data col-
lection. Conflicting demands, introduced by resource demands and management of
uncertainties, require tradeoffs. The design methodology should also allow for
autonomous operation of the water observation and prediction system and its easy
extension to different architectures of the data acquisition platform. Major issues
include the following.

1. Multiple sampling fields

As discussed in the preceding section, there is more than one field to be sampled
simultaneously. Consequently, a choice needs to be made as to how to weight the
importance of different fields in the sampling strategy. Apart from the distribution
of the chlorophyll, DOC, and TSS fields, the sampling process is also guided by
environment features, such as water turbidity, which are taken into account in the
acquisition trajectory planning process. The sampling field issue also involves the
selection of the metric that should be defined to obtain the best and richest data set.
Gradient climbing strategies (Marthaler and Bertozzi 2003; Zhang and Leonard
2005) are an effective way to enable a mobile sensor to track and sample boundaries
of phytoplankton patches in a chlorophyll concentration field.

2. Multiple scales

The issue of different spatial scales arises in reference to the resolution of
measurement sensors and sampling fields as well as to the sampling strategy. As
defined by the resolution of the satellite, the spatial scale can range from under one
meter per pixel for high-resolution satellites (QuickBird, Ikonos) down to over 1 km
per pixel (SeaWIFS). In the context of our study, the spatial scale corresponds to the
resolution of medium-resolution satellites (MODIS, MERIS). In terms of sampling
strategies, such feature-tracking strategies as gradient climbing strategies are par-
ticularly useful for sampling at relatively small spatial scales. Strategies that provide
synoptic coverage are best suited for larger spatial scales. In this case, the goal is
typically to minimized error in the estimate of the field of interest over the region in
space and time, without taking redundant measurements.
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3. Obstacle configuration

The classical obstacle avoidance problem has to be resolved by considering both
hard obstacles in the form of islands, coastal areas, ships and other floating objects,
and soft obstacles in the form of haze or cloud patches. Obstacles that result in a
reduced visibility affect the navigation strategy at a different level of importance,
and are a major requirement for the application of fuzzy logic components in the
control architecture.

4. Multiple sources of incertitude

The major sources of incertitude are:

• Errors of chlorophyll concentration estimation;
• Top of Atmosphere (TOA) reflectance measurements;
• The Sun and observing geometry;
• Motion of moving obstacles;
• Atmospheric scattering and atmospheric absorption;
• Haze and cloud cover.

Certain sources of the incertitude, for example the atmospheric effects, can be
mitigated by precise correction algorithms. The impact of some sources, especially
the moving obstacles, has to be dealt with at the level of the control algorithm. The
uncertainty introduced by haze can only partly be corrected by dedicated algo-
rithms, and to a large extent affects the navigation strategy.

4.2 General Architecture

A pure reactive control system is responsive, flexible and robust while the delib-
erative planning system has slow responsiveness and abstract representational
knowledge. The deliberative planning systems and purely reactive control systems
have their limitations. Then hybrid deliberative-reactive robotic architecture can
combine the above characteristics. Table 1 compares the two robot control
approaches (Orgen 2003). The global path is long term plan and consists of many
segments of local path which maybe vary in the shape or the behaviors. The
reactive navigation (Belkhouche 2009) is responsible to execute the local paths

Table 1 Comparison of the
planning and the reactive
control

Planning Reactive

World model dependent World model free

Slower response Real-time response

High level AI Low level AI

Variable latency Fast and simple computations

Satellite Guided Navigation Control for Environment Monitoring 137



using many behaviors strategies depending on the system. A fuzzy behaviors
selector is used to select the appropriate behavior depending on the surrounding
environment conditions.

Figure 7 illustrates the hybrid deliberative-reactive robotic architecture.
The deliberative control level supervises the reactive control and plans the global

path from the start point to the target point. The reactive control module executes
the global path into many local paths which do not necessarily match the global
path, due to real time conditions or unpredicted changes in the surrounding envi-
ronment (Halal and Zaremba 2010).

5 Deliberative/Reactive Control

5.1 Control Model

A functional diagram depicting the deliberative/reactive control of the cruise ship is
shown in Fig. 8.

The planning module generates a global path using multi-band satellite images.
Many sources of data are used to interpret the surrounding environment. The
bathymetric map allows the ship to navigate safely preventing the ship from any
accident with the lake floor. The MODIS chlorophyll-a map provides a good water
classification which helps the planning module to generate a global trajectory to
optimize the ship gathering samples.

The genetic algorithm controls the fuzzy parameters. We used genetic algorithm
to control the fuzzy rules base structures. The genetic algorithm has a supervised
role on the fuzzy systems which have the same input and output variable and the
same membership function set. By changing the fuzzy rule base the robot can
perform different kind of tasks. A combination of genetic search with the fuzzy
system permits to handle different behaviors, including conflicting behaviors.

Deliberative control

Reactive control

Motor commands Sensor data

Mobile acquisition platform 

Planning

Behavior
Strategies 

Fig. 7 Hybrid architecture
for navigation control
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Examples of specific types of behavior:

• Basic Behavior

– Avoid shallow areas
If (Bathymetric is Shallow) and (Heading is Hnegative) and (Obstacle is Far)
and (target is Hnegative) then (Power is Lbackward) (Steering is Hnegative)

– Avoid obstacles
If (Bathymetric is Deep) and (Heading is Lnegative) and (Obstacle is close)
then (Power is Slow) (Steering is Hpositive)

Feature 
Generation 

Behaviour 
selector

Target 

reaching

& 

Obstacles 

avoidance

Global map

Multi-bands 
map 

Basic
Behaviours

Real time

Actuators 

Planning 
module

Long time horizon

Deliberative model

Sub Tasks 
Conflicting 
Behaviours

Boundary 

following for a 

specific Chl-a 

class

Local
Conditions 

Coverage of a 

specific Chl-a 

class 

Environment

Reactive 
model

Follow the Chl-a 

class boundary / 

Walk at the peak of 

a Chl-a class  

Time horizon 

Fig. 8 Navigation control system
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• Conflicting Behavior (navigate inside a specific chlorophyll class)

– If (Bathymetric is Average) and (Heading is Heading) and (Class is Close)
then (Power is Fast) (Steering is Forward)

The basic behavior allowed to robot to gather samples from the maximum gra-
dient concentration simultaneously satisfying such constraints as the water depth.
This strategy can be compared to the wall following, where the wall is equivalent to a
specific class boundary. When the robot gather samples from areas such as zones
covered by haze or to enter inside a specific chlorophyll class, a conflicting behavior
strategy has to be followed. Additional expertise on the interpretation of the level of
precision of the remote sensing data and the local geographical and meteorological
conditions have to be incorporated in the decision process.

5.2 Path Planning

The path planning system generates an optimal path with the goal of maximizing
the number and the value of the collected samples during the acquisition mission. In
order to obtain the best and richest data set, an appropriate metric should be defined
over the sampling field. Based on the acquisition strategies and the sample types,
such as the types of chemical component, pollution types, phytoplankton and
zooplankton types and concentration, the samples were divided into M classes. The
number N and location of the samples are determined by maximizing the following
function.

C ¼
XM

j¼1

XN

i¼1

V j
i þ aðdÞDj

i;iþ1 � T j
i;iþ1

� �
� Tj;jþ1

 !
ð3Þ

where V signifies the sample value, D is the distance between the consecutive
sample acquisition locations, α is a scaling factor, and T represents the cost of the
ship travel between the different class regions.

An example of the acquisition path is shown in Fig. 9. The Lake Winnipeg
samples were divided into four classes. The first two classes represent the maximum
concentration and maximum gradient metrics applied to the chlorophyll samples.
The other two classes are defined for Total Suspended Sediment (TSS) and Dis-
solvent Organic Carbon (DOC) samples. Initially, the path direction aims at DOC
type area (The TSS type zone is too distant, and the sampling cost is prohibitive).
The reactive control level takes over the control of trajectory generation in the
vicinity of the moving obstacle. After the acquisition of the DOC type samples, the
ship proceeds to the acquisition of chlorophyll samples applying the strategy of
maximum gradient following.
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5.3 Implementation Issues

This paper discusses mainly the situation where the input images are obtained in the
form of general-purpose satellite imagery, not readily available in real time. Those
images are subsequently used by the path planner and the reactive controller. In the
situation when the vision data come from dynamically moving platforms such as

Maximum gradient of 

chl-a concentration 

Start point    

High chl-a 

concentration

zone

Global path 

TSS 

End point

DOC

Peak value of 

chl-a concentration

Moving 
obstacle

Island 

Fig. 9 Optimized global path
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drones, the saliency of the incoming data becomes an important issue. The control
system has to quickly obtain the relevant information, at the right spatial scale, and
at the right location.

The Attentive Vision Technology (AVT) offers automated object detection
based on adaptive, multi-scale descriptor extraction and application-specific fusion
of multimodal and multi-temporal imagery (Palenychka and Zaremba 2012). The
scientific underpinning of AVT is formed by a combination of computational
derivatives of the Theory of Visual Attention (Nieburand and Koch 1997) with
Machine Learning procedures. An iterative learning process that aims at defining
optimal spatial filters for salient object detection is depicted in Fig. 10. Introduction
of multi-scale and multi-component attention operators, such as MIMF or SIFT
allows the user to extract attention (feature) points from image sequences serving as
feature points for object recognition in reliable and computationally efficiently
manner. The primitive features are obtained through a statistical learning process
using ground truth data.

Figure 11 illustrates a saliency map generated by the filtering procedures. The
consecutive maxima of the resulting spatial form can be used to quickly localize
the position of the target points (maximum values or maximum gradient values of
the water pollutants) in Fig. 9.

The core AVT technology is designed to a great extent generic, and can be
adapted to a variety of applications, mainly those involving fast and adaptive
detection of events of interest (e.g., abnormality, fault, novelty, alarm, etc.).

Fig. 10 Adaptive saliency filter bank
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6 Conclusions

The problem of environment monitoring using satellite imagery was investigated
in this paper in a comprehensive way by addressing the detection of pertinent
environment features, in this case the chlorophyll concentration in inland waters,
and the acquisition of reference data required for non-parametric learning and
calibration of the environment feature models. This paper proposes a hybrid nav-
igation approach using deliberative navigation to supervise and control reactive
navigation at a local level. Hybrid navigation has been shown to be a more robust
and flexible solution for complex and dynamic environment, recovering the cruise
ship trajectory from dead zones and cycling modes. This system provided a suitable
degree of reactivity and deliberation in a mobile platform providing the optimal
global path and optimal sub-global trajectories. Geno-fuzzy system is able to
control successfully the behaviour strategies in the presence of conflicted tasks in a
dynamic and complex environment. It can also be adapted to mobile sensor net-
works, comprised of a fleet of sensor-equipped autonomous vehicles, to monitor
large areas with time-varying, spatially distributed fields.
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Abstract:
Monitoring of biological and chemical pollutants in large 
bodies of water requires the acquisition of a large num-
ber of in-situ measurements by a mobile sensor platform. 
Critical to this problem is an efficient path planning meth-
od, easily adaptable to different control strategies that 
ensure the collection of data of the greatest value. This 
paper proposes a deliberative path planning algorithm, 
which features the use of waypoints for a ship navigation 
trajectory that are generated by Genetic Algorithm (GA) 
based procedures. The global search abilities of Genetic 
Algorithms are combined with the heuristic local search 
in order to implement a navigation behaviour suitable 
to the required data collection strategy. The adaptive 
search system operates on multi-layer maps generated 
from remote sensing data, and provides the capacity 
for dealing with multiple classes of water pollutants. A 
suitable objective function was proposed to handle dif-
ferent sampling strategies for the collection of samples 
from multiple water pollutant classes. A region-of-inter-
est (ROI) component was introduced to deal effectively 
with the large scale of search environments by pushing 
the search towards ROI zones. This resulted in the reduc-
tion of the search time and the computing cost, as well as 
good convergence to an optimal solution. The global path 
planning performance was further improved by multi-
point crossover operators running in each GA generation. 
The system was developed and tested for inland water 
monitoring and trajectory planning of a mobile sample 
acquisition platform using commercially available satel-
lite data.

Keywords: genetic algorithms, path planning, monitor-
ing system, remote sensing, navigation control, heuristic 
search

1. Introduction
Acquisition of a large number of in-situ measure-

ments by a mobile platform is a basic task in the pro-
cess of monitoring biological and chemical pollutants 
in large bodies of water. Monitoring of environmental 
phenomena in inland waters requires measuring a va-
riety of physical processes, such as nutrient concen-
tration, wind effects, and solar radiation [26]. Remote 
sensing (RS) techniques provide significant advan-
tages in terms of spatial and temporal coverage and 
cost-efficiency. The maps of large environment areas 
are often obtained through the processing of satellite 

imagery. The multi-spectral data can subsequently be 
used to obtain models of water pollutants, such as the 
concentration of chlorophyll (Chl-a) or total suspend-
ed sediments (TSS) [17], by applying such measures 
as the maximum chlorophyll index (MCI) [10] or the 
ocean chlorophyll 4 algorithm (OC4v4) [21]. In many 
situations the remote sensing data have to be aug-
mented and updated by in situ measurements. This is 
due to the need for precise local measurements, for 
the calibration of satellite imagery in varying water 
conditions, and for the purpose of precise local deci-
sion making.

Critical to this sample acquisition problem is an 
efficient path planning method, easily adaptable to 
different control strategies that ensure the collection 
of data of the greatest value. Acquisition of different 
types of samples may require appropriate behaviours 
that implement different collection strategies. De-
signing a multi behaviour search system for a mobile 
sample acquisition platform requires answering the 
following questions. Which is the suitable navigation 
mode for a specific water pollutant? How to compute 
the cost of the solution? How can the solution of the 
path planning problem deal with multiple patches of 
high concentration of the pollutant?

In general, the path planning procedure designs 
a trajectory that visits a given set of points such that 
the optimisation process minimises the total travel 
distance. This task can be defined in terms of a combi-
natorial optimization problem with a globally optimal 
solution that satisfies all hard and soft constraints. 
The optimal solution or a set of globally optimal so-
lutions minimises or maximises the objective func-
tion. The path finding problem is typically defined in 
terms of the Travelling Salesman Problem (TSP) [7] 
or a more general Vehicle Routing Problem (VRP) 
[4]. Determining the optimal solution is an NP-hard 
problem, so the size of problems that can be solved 
optimally is limited [3]. In the situation of environ-
ment monitoring systems, the problem is even more 
complex because exact positions of the sampling 
points are not known a priori. In practice, therefore, 
solutions to optimal path planning problems have to 
incorporate heuristic methods.

A variety of heuristic methods have been investi-
gated. Evolutionary algorithms have been employed 
in many variants. In [6] an ant colony optimization 
system was presented to solve the problem of design-
ing an optimal trajectory for a mobile data acquisition 
platform. Luo et al. [20]an intelligent mobile vehicle is 
required to reach multiple goals with a shortest path 
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that, in this paper, is capable of being implemented 
in TSP (Traveling Salesman Problem proposed a hy-
brid GA and D* algorithm for real-time map building 
and navigation for multiple goals purpose. Yoshikawa 
and Terai [32] proposed a car navigation system us-
ing hybrid genetic algorithms and D algorithm. Their 
system finds a route which has several passing points 
before arriving at the final destination. In [18] the 
path planning problem for a submarine navigation 
application was solved using the artificial bee colony 
algorithm. The use of a cultural hybrid algorithm to 
solve the mission planning was reported in [33]. An 
improved simulated annealing artificial network to 
plan the path for a mobile robot was employed in [8]. 

Genetic algorithms have been frequently used in 
NP-hard problems due to their flexibility and high 
quality of the search results [25]. They can provide 
a solution without any advance knowledge about the 
environment, and are largely unconstrained by the 
limitations of the classical search methods [24]. By 
mimicking natural evolution processes, they have the 
ability to adaptively search large spaces in near-opti-
mal ways. In practical terms, GA methods are easy to 
interface with simulation models. An important fea-
ture that should be considered in implementing GA 
techniques is that they are problem specific. Due to 
the constraints of a particular problem and the opera-
tion of crossover and mutation mechanisms, feasible 
offsprings often cannot be obtained by applying exclu-
sively genetic algorithms. In order to ensure the fea-
sibility, additional algorithms should be incorporated. 
For example, [34] developed an improved genetic al-
gorithm, where an obstacle avoidance algorithm and 
the distinguish algorithm are combined with a GA 
algorithm to select only the feasible paths and to im-
prove the path planning efficiency. The distinguish 
algorithm is designed for distinguishing whether the 
path is feasible or not.

In this paper we present a hybrid GA-based meth-
od developed to optimize path planning and naviga-
tion using pollutant maps generated from RS imagery. 
The power of the global GA search is combined with 
the speed of the local optimizer. Both optimizers work 
cooperatively to find the optimal solution, where 
GA determines the optimal region, and then the lo-
cal optimizer takes over to find the best position for 
acquiring water samples [13]. In order to deal effec-
tively with the large-scale environment, the following 
modifications to the state-of-the-art approaches were 
introduced. In the first place, this paper implements 
an improved combination of a GA with an obstacle 
avoidance algorithm and the distinguish algorithm 
proposed initially in [34]. This algorithm puts a feasi-
ble path in the feasible group and deletes an infeasible 
path or keeps it in the infeasible group, which mark-
edly improves the efficiency of the path planning. The 
big family pool was adopted in our system, which 
consists of all old-generation solutions and current-
generation offsprings obtained after mutation and 
crossover operations combined with different meta-
heuristic solutions. Based on the Cooperative Genetic 
Optimization Algorithm [14], it offers a greater search 
selection diversity and gives the system the ability to 

save the elite searching experience from one popula-
tion to the next one. 

Multi-layered maps were employed to generate 
spatial and functional properties of the environment. 
Those maps enable the planning system to perceive 
and interpret environments according to different en-
vironment features. ROI maps can be extracted from 
the multi-layer map as additional layers. The ROI ap-
proach facilitates the planning system in directing the 
search toward desirable patches by paying additional 
attention to desired regions, and assuring at the same 
time the generation of feasible solutions [11]easily 
adaptable to different control strategies that ensure 
the collection of data of the greatest value. This paper 
proposes a hybrid Genetic Algorithm (GA. 

In general, each optimization problem to be solved 
by a GA method requires a unique fitness function 
that represents a performance criterion used in the 
evaluation of the performance of all chromosomes in 
the population. Many functions, such as travelling dis-
tance, time window and the sample values (weights) 
should be optimized simultaneously. This may involve 
a combination of maximization and minimization cri-
teria [5]. Individual objective functions are usually 
combined into a single composite function by weight-
ing the objectives with a weight vector. The result of 
the optimization should reach a reasonable solution 
that compromises multiple objectives [23]. For mis-
sion planning of an unmanned aerial vehicle (UAV), 
[29] used the distance, the hazard, and the maneuver-
ing of the route as components of their cost function. 
Each component has a weight factor assigned accord-
ing to the objectives of the mission. The hazard is re-
lated to the existence of obstacles near the path, and 
the maneuvering refers to the maneuvers required to 
perform target tracking. For efficient determination 
and search of the best flight (UAV) routes, an objec-
tive function was created in [27] which involves the 
timeliness and the smoothness of the path. The objec-
tive function discussed in [9] included several com-
ponents: the cost of the motion from the start node to 
the current node, the heuristically estimated value of 
getting from the current node to the goal, the terrain 
traversability component, the direction change cost, 
and the cost of navigating in shadow areas. Each com-
ponent has a corresponding coefficient factor used to 
weight the objective function components according 
to its importance to the mission. An optimized path 
planning for skid-steered mobile robots [16] uses 
a cost function which consists of the terrine proper-
ties, longitudinal motion and turning of the robot. In 
this work, an objective function proposed to deal with 
the experiment conditions comprises the following 
components: the samples value, the ROI award, the 
distance, and the sampling time. 

The waypoint technique was used in the path 
planning process as an approach appropriate for 
large monitoring environments [30]. Waypoints are 
defined as abstract points [15] used to determine lo-
cal positions [28] through which a mobile platform 
can navigate, reach its region-of-interest destination, 
and collect the water pollutant samples [22]. In the 
application discussed in this paper, waypoints corre-
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spond to sampling points. In order to deal with mul-
tiple sampling areas, multi-point crossover (MPC) 
was implemented. The MPC operator works to build 
the final solution which consists of valuable segments 
of local paths from many search strategies. The muta-
tion operator improves the local search and helps the 
population to avoid local minima. The evolution pro-
cess optimizes the path planning by designing new 
chromosomes which consist of best value samples 
from many global paths.

Experiments were conducted on data from Lake 
Winnipeg located in Manitoba, Canada. The adap-
tive search techniques presented in the paper were 
applied to optimize the location of the sampling 
points for different pollution indices and behaviours: 
the concentration of individual pollutants and their 
combinations, and the maximum gradient of pollut-
ant concentration.

The structure of the paper is as follows. Section 2 
addresses the sample acquisition problem using re-
mote sensing data. A discussion of the proposed hy-
brid GA-based architecture for path planning and the 
optimisation of the multi-behaviour sample acquisi-
tion is presented in Section 3. Experimental results 
are discussed in Section 4.

2. Multi-Strategy Sample Acquisition Mission
2.1. Problem Statement 

The problem addressed in this paper consists in 
planning a trajectory for precise acquisition of water 
pollutants by a mobile platform, when the planning 
process is guided by prior rudimentary information 
about the distribution of pollutants obtained from 
remote sensing data. The acquisition mission should 
incorporate different acquisition strategies. 

The sample acquisition mission is performed 
within a more general procedure consisting of the fol-
lowing phases: 
1) Determination of water regions and their types, 

sample location zones, and water pollutants to be 
sampled; 

2) Identification of the pollutant detection indices, 
coverage methods (e.g., uniform coverage, maxi-
mum concentration gradient) and the number of 
samples; 

3) Selection of the sources of remote sensing data 
and their calibration methods; 

4) Selection of the ancillary data from in situ sensors 
(e.g. wind, temperature); 

5) Determination of the acquisition mission param-
eters (e.g., total mission time). 
Most of the above factors and conditions affect the 

strategies that have to be incorporated in the plan-
ning procedure. Mission strategies can be classified in 
two categories:

(1) Water pollutant concentration strategies 
In this type of strategies the aquatic acquisition 

platform collects the most valuable samples from dif-
ferent pollutant classes and their combinations, such as 
•	 Chl-a,
•	 Chl-a & (TSS), 
•	 Chl-a & Dissolved Organic Carbon (DOC), 
•	 Chl-a & TSS & DOC.

In this class of strategies, specific samples should 
be collected while neglecting other samples within 
a certain time window. Time windows can be im-
posed because of the deterioration of the quality of 
samples over a period of time. Time requirements for 
Chl-a concentration sampling are discussed in [12]. 

With respect to the types of pollutants, the RS data 
have to be pre-classified. The final path maximizes the 
value of the collected samples along a trajectory that 
traverses regions of different distributions of the pol-
lutant concentration. As a result, the planning algo-
rithm works on many maps created to represent differ-
ent concentration levels for different water pollutant 
classes. The optimal strategy directs the path to the 
best Region of Interest (ROI) zone. The samples values 
(weights) vary depending on the mission objective. 

(2) Local coverage strategies: 
In this mode the platform executes a specific navi-

gation and collection behaviour depending on the 
shape of the sample spatial distribution. We distin-
guish here such sampling strategies as the uniform 
coverage of high-concentration areas, sampling at lo-
cal concentration maxima, and sampling along maxi-
mum gradient lines, which is of interest in many envi-
ronment monitoring applications [36]. The sampling 
process can be different in each patch to comply with 
the general and local mission goals. 

Both types of strategies execute under some spe-
cific constraints. Time window constraints can be 
imposed on certain pollutant patches, and travel dis-
tance constraints on other patches. Also, a certain 
number of samples have to be collected in a specific 
patch before heading to another one.

2.2. GA-Based Planning System
Due to the complexity of the mission trajectory 

optimization problem, a hybrid GA/Adaptive Search 
system is proposed and investigated in this paper. The 
general architecture of the planning system is based 
on the deliberative architecture model [19]. As illus-
trated in Fig. 1, the deliberative level comprises the 

Feature  
Generation

Behaviour 
selector   

Global 

Multi-
layered map  

Acquisition 
platform 

Planning 
module 

Deliberative model 

Environment

Data 
sources 

Reactive model  

Fig. 1. General architecture of the GA- based planning 
system
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environment modelling level, which operates on the 
remote sensing data and the ancillary information, 
and the adaptive GA-based trajectory generation level.  

Water wave reflection can be exploited to deter-
mine the concentration of water pollutants. Examples 
of spectral signatures for different samples of chloro-
phyll pigment and TSS are shown in Fig. 2.

The maps provide, for each spatial point (pixel), the 
numerical values NLi of the measured pollutants. The 
spatial resolution of the maps corresponds to the reso-
lution of satellite images. Figure 3 shows the following 
layers: bathymetric map (L1), Chlorophyll-a (L2), TSS 
(L3), and the maximum gradient of chlorophyll-a (L4). 

The overall goal of the acquisition mission is to 
maximize the quantity and the quality of the collected 
water pollutant samples V during the mission:

  (3) 

where V is the value of the sample, Nj is the number of 
the samples for each pollutant, and M is the number 
of water pollutant classes. 

3. GA Method for Path Planning 
3.1. Genetic Algorithm Architecture 

The basic operation of the proposed GA-based 
path planning procedure can be summarized as fol-
lows (Fig. 4). The sampling points correspond to the 

Fig. 2. Spectral signatures:  a) Chl-a, b) TSS
  

Fig. 3. Multi-layer map

The following two models were applied to mea-
sure the concentration of TSS [17] and Chl-a [10], [1] 
using different spectral bands of satellite images:

  (1) 

where Lxxx is the radiance value of the band at wave-
length xxx, and

	 MCI	=	L709	−	L681	−	0.389	(L753	−	L681)	 (2)
 

The factor 0.389 is calculated as the wavelength 
ratio (709–681) / (753–681).

The input data structure used to generate the in-
formation required for multi-strategy path planning is 
implemented in the form of a multi-layer map (Fig. 3), 
which consists of a set of overlaying grid-based maps. 
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Fig. 4. Genetic Algorithm based path planning

waypoints of the global path of the mobile platform. 
Thus, the global path consists of several local paths, 
which are the arcs between two waypoints with a di-
rected connection between them. The initial popula-
tion of waypoints is pruned to generate collision free 
paths, subsequently stored in the initial chromosome 
pool population. Unfeasible solutions are deleted. 

The adaptive search (AS) system improves the elite 
paths (the best 10 solutions) and returns efficient 
paths adapted to the local navigation behaviour. The 
big family pool consists of all old-generation solutions 
and current-generation offsprings obtained after the 
mutation and crossover operations combined with 
AS solutions. It gives the system the ability to save the 
elite search experience from one population to the 
next one [14]. The big family search results are sort-
ed and pruned to form the next generation (Fig. 5). 
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A more detailed description of individual steps of the 
algorithm follows below.

3.2. Path Planning and Initial Waypoint 
Population 

In the GA-based path planning procedure the pop-
ulation is represented, as in the Vehicle Routing Prob-
lem, by ordered sets of waypoints. Each feasible set is 
considered to be an individual in the population. Each 
waypoint, which is a sample candidate, represents 
a location in the environment (x,y). The initial geno-
type can be represented by a cell array, where each 
pair of cells represents the local path length and the 
heading angle towards the subsequent waypoint. 

The path planning generator works as follows: 
1) Determine the first waypoint in the path, i.e., the 

starting point, with the initial angle equals to zero.
2) While the path planning doesn’t reach the desired 

target, generate a random number of L, the path 
length, between Lmin and Lmax, and a random head-
ing angle β between βmin and βmax obtaining the 
next waypoints[31]. A maximum number of way-
points is given for each search strategy.

3) Different strategies are applied to water pollutant 
patches by adjusting L and β. Each path planning 
strategy handles different number of samples de-
pending on the search path.

Fig. 5. Big family search [14] 
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Fig. 6. Waypoint generation scheme

4) Continue with another patch or return to the start-
ing point, depending on constraints, such as the 
maximum travel distance or the maximum num-
ber of water samples. 
Figure 6 illustrates the path planning generator. 
The chromosomes are encoded as an integer 

string. Each gene consists of two variables, the lo-
cal path length and the heading angle as shown in 
Fig. 7a. Depending on the start point and the chromo-
some, the waypoint generation produces records as in 
Fig. 7b. The path planning waypoints are represented 
in the form of a long array as depicted in Fig. 7c. The 
GA search finds the waypoints between the starting 
point of the mission and the destination point.  
a)
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Fig. 7. Chromosome and waypoint array. a) GA chromo-
some; b) Waypoint representation; c) Waypoint array

An obstacle free path planning algorithm [35] was 
adopted to deal with spatial constraints. It produces 
a feasible path that satisfies the conditions that the 
waypoints should be located outside the obstacles, in 
the sampling space, and the local path should not in-
tersect with the obstacles.

In order to comply with the feasibility constraints 
and to enhance the efficiency of the path, a certain 
number of the waypoints in the elite solutions can be 
modified for each generation by applying three pos-
sible operations: waypoint deletion, insertion, or re-
placement [2] a tabu search system model is designed 
and a tabu search planner algorithm for solving the 
path planning problem is proposed. A comprehensi-
ve simulation study is conducted using the proposed 
model and algorithm, in terms of solution quality and 
execution time. A comparison between our results 
with those of A* and genetic algorithms (GA. Waypoint 
deletion eliminates all waypoints in the clear water 
body. The waypoint insertion operation explores the 
neighbourhood and inserts a new waypoint, accord-
ing to a predefined behaviour for each water pollutant 
type. After deleting and inserting the waypoints the 
algorithm evaluates the path, conducts a neighbour-
hood search to replace the lowest waypoint value 
with a new one, and builds another feasible path Pn 
that satisfies the mission constraints. 

3.3. Fitness Function
The fitness function is a particular type of the ob-

jective function that quantifies the optimality of a so-
lution and evaluates the suitability of a solution with 
respect to the overall goal. In our navigation problem, 
it maximizes the collected information, directs the ro-
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bot towards the ROI, and incorporates distance and 
time penalties. 

The proposed fitness function F consists of 4 com-
ponents, calculated for each candidate sample

 F = SV + ROI + DIS + ST (4)
where:
SV – data set value, which determines the value of  
acquired samples according to Eq. 5; 

 	 (5)	

where sample values are calculated as the values of 
V in Eq. 3. 

ROI – the region of interest award, introduced in 
order to optimize the convergence of the search for 
quality samples (Eq. 6):

 
  	 (6)

where: DIS – distance factor; ST – sampling time fac-
tor.

Two objective functions with different forms of 
DIS and ST factors were tested to assess their impact 
on the effectiveness of the sample acquisition mis-
sion: 

Objective function 1 linearly maximizes the 
sample value and the ROI award and exponentially 
minimizes the sampling time and the mission travel 
distance. The distance and the time become, as the 
sample acquisition mission progresses, quadratically 
more expensive.

Objective function 2 linearly maximizes the sample 
value as well as the sampling time and the ROI award, 
and linearly minimises the mission travel distance. 

Objective function 1 

Objective function 2

Fig. 8. Linear and nonlinear DIS and ST components of 
the fitness function

3.4. Multi-Behaviour Operation 
The basic idea of the multi-strategy GA-based path 

planning is that the acquisition platform explores 
water pollutant patches using different behavioural 
characteristics depending on the sampling require-
ments in each patch. The behaviours affect the local 
search optimization where the best evaluated neigh-
bour is selected according to the adopted behaviour. 
The following behaviours represent different sam-
pling strategies.

Behaviour 1– Short local path and high sample values. 
The sampling process selects the best sample accord-
ing to equation

   (7)

where i is the departure waypoint, j is the destination 
waypoint, and is the chlorophyll concentrations in cell 
( x,y) of the MCI layer. 

Behaviour 2 – Maximum gradient (MG) sampling. 
Valuable samples (bigger than a given threshold num-
ber) are selected along a short local path according to 
the following equation:

  	 (8)

The sampling behaviour for other samples maxi-
mizes the local path according to equation

  (9)

Behaviour 3 – Multiple pollutant patches.
The AS procedure selects the best sample value 
(Eq. 10), with the maximum local path range distance 
and the highest sample weight.

   (10)

where and are Chl-a and TSS concentrations in cell 
(x,y) taken from the MCI and TSS maps. 

Behaviour 4: Long local path and TSS sampling
The AS procedure selects the best sample value as de-
fined by equation (11), where the value sample cor-
responds to the maximum local path range distance 
and the highest sample weight;

   (11)

An example of water pollutant patches obtained 
for different behaviours from a 3-layer map (MCI, TSS 
and MG) is shown in Fig. 8. 

3.5. Multi-point Crossover
Multi-point crossover is used to enhance the 

process of selecting valuable samples located in dis-
tant zones. The crossover procedure is explained in 
Fig. 10. Parent chromosomes, P1 and P2, are cut at 
multiple random locations, and the portions of the 
chromosomes between the cuts are swapped. The 
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result is a pair of offsprings I1 and I2. The crossover 
is applied on the best-fitness chromosomes chosen 
from the pool. Due to the difference in the chromo-
some length, the crossover point should be applied to 
the shorter chromosome. 

3.6. Planning Process
Figure 11 represents the overall architecture of 

the developed adaptive GA-based mission planning 
system. The mission objective is defined and accom-
panied with a strategy definition to achieve the mis-
sion goal. A multi-layer map is generated to interpret 
the global environment and to weight the importance 
of different water pollutants in the sampling strategy. 
A set of ROIs is generated to guide the search toward 
specific patches associated with their acquisition 
strategies. 

An adaptive search algorithm improves the multi-
strategy path planning in different patches employing 
local search optimising procedures. A suitable fitness 
function evaluates the chromosome in the search for 
maximizing the mission goal. 

4. Experimental Results 
4.1. Experimental Framework

The experiments were carried out using satel-
lite data from the northern basin of Lake Winnipeg 
for a path starting at the point located at longitude 
(99˚02’08”) W and latitude (55˚35’18”) N and the des-
tination point at longitude (96˚ 50’ 24”) W and lati-
tude (51˚55’51”) N. The direct distance between the 
start point and the target is around 236 km. The maps 
used in the experiments were in the form of a raster 
grid, where the dimensions of cells corresponded 
to the resolution of the MERIS satellite sensor, i.e., 
260 m × 300 m. Each cell had an associated value Vx,y 
obtained from the multi-layer map as discussed in 
Section 2. 

ROI maps guide the multi-strategy sampling to 
orient the acquisition platform toward the valuable 
samples in the ROI zones using the penalty/award 
mechanism. Figures 12 a) b) and c) show regions of 
interest for MCI, TSS and the maximum gradient of 
the chlorophyll concentration. The regions are de-
fined as the concentration of TSS bigger than 0.3 from 
the normalised TSS model, and the concentration 
of chlorophyll-a bigger than 0.5 from the MCI nor-
malised model. Figure 12d represents the overall ROI 
formed from the MCI and TSS zones. Figure 12e illus-
trates three ROI zones, which are MCI, TSS and maxi-
mum gradient chlorophyll concentration, used in the 
experiments. 

Matlab Genetic Algorithm Optimization Toolbox 
(GAOT) was used to program the proposed hybrid 
system. Table 1 shows the Genetic Algorithm param-
eters chosen for the optimization process.

Four experiments were conducted with two ob-
jective functions (Fig. 8) tested. Objective function 2 
(linear optimization) was incorporated in the fitness 
function used in experiments 1 and 2, and objective 
function 1 (exponential optimization) in experiments 
3 and 4. Hard distance and time constraints were im-
plemented in the first two experiments. The mission 

Fig. 9. Water pollutant zones for multi-behaviour navi-
gation
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time was bounded by the value of 12 hours, and the 
travel distance was limited to 400 km. In experiments 
3 and 4, the mission time had to be less than 9 hours, 
and the travel distance was limited to 330 km.

4.2. Path Planning Experiments
In the first experiment, the sample value (SV) was 

the sum of the TSS and Chl-a sample values. The re-
sults show that the path includes 10 samples from the 
clear water zone (outside the ROI zone), as shown in 
Fig. 13. The obtained results provide the rationale for 
hybridising the GA-based search for optimal samples. 

Fig. 13. Sample acquisition paths: Experiment 1 Fig. 11. Adaptive GA-Based Navigation System

Fig. 12. a) Chl-a ROI (MCI > 0.5); b) TSS ROI (TSS > 0.3); 
c) Chl-a Max Gradient ROI; d) Combined Chl-a & TSS re-
gions of interest, and e) Combined Chl-a & TSS & MG 
regions of interest

 
a) b)

 
c)

 
d) e)

Table 1. Parameters of the Genetic Algorithm 

Genetic Parameters Magnitude

Number of generations 150

Population size 120

Crossover rate 60% randomly and the elite 

Mutation rate 5% randomly and the elite 

Type of crossover Single-point and multi-point 
crossover 

Type of mutation 4 point random & 4 maximum 
points 

Selection type Roulette Wheel

Strategy

Path waypoints

Search
algorithm
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Experiment 2.
A simple adaptive search, consisting in limiting 

the search to ROIs, was introduced in the second ex-
periment. However, no specific behaviour guided the 
waypoint generation. Figure 14 presents the path 
generated by the modified system. The sampling area 
is located entirely in the ROI. Table 2 compares the 
performance of the two experiments. 

Table 2. Results of experiments 1 and 2

Experiment 1
(GA)

Experiment 2 
(ROI-optimized GA)

Sampling time 0.475 @ 38 samples 0.475 @ 38 samples

path length (m) 3.9989e+005 3.4364e+005

Samples value 0.7004 0.8304

ROI award 0.3675 0.5550

Fig. 14. Sample acquisition paths: Experiment 2

The path in the second experiment was approxi-
mately 56 km shorter and the value of the samples in-
creased by about 13 percent, while keeping the num-
ber of samples at the same level. 

4.3. Multi-Behaviour Navigation
In order to assess the multi-behaviour perfor-

mance of the system and to further improve the path 
quality – in the context of the GA methodology – dif-
ferent behaviours were introduced to the local adap-
tive search the next two experiments. The third ex-
periment explores the local behaviour optimization 
which performs two collection strategies depending 
on the types of the samples. Therefore, the ROI set 
consists of two zones, Chl-a and TSS. The search mi-
nimises the local path in the MCI patch according to 
Eq. 7, and maximises the local path in the TSS patch 
according to Eq. 11. The neighbourhood of a solution 
is explored, and the best neighbor is selected accord-
ing to the adopted behaviour in each patch. Objective 
function 1 was used to optimise this experiment. The 
multi behaviour navigation shows good sampling 

performance in the two different patches, as shown 
in Fig. 15.

Fig. 15. Sample acquisition path from experiment 3

The mission collects 22 pure chl-a samples and 6 
TSS samples along a 282 km long path. The samples 
value is 0.645, and ROI award equals to 0.6125. The 
distances between the chlorophyll samples are short-
er than between the TSS samples, which is a conse-
quence of applying the behaviour equation (Eq. 7) 
and high award for the Chl-a ROI. The longer local 
path between the six TSS samples results from the be-
haviour equation (Eq. 11). The total mission time is 8 
hours and 54 minutes. The travel time is 7 hours and 
14 minutes. 

In the fourth experiment, the zone of the maxi-
mum gradient of chlorophyll concentration was intro-
duced, which produced three separate patches with 
three different local search behaviours. Due to the be-
haviour conflict between the maximum gradient and 
the maximum value of the chlorophyll concentration, 
a new ROI zone was created. Thus, the three separate 
ROIs were generated as follows: the Chl-a zone, the 
maximum gradient of chlorophyll concentration, and 
the chlorophyll and TSS concentration zone. Figure 
16 depicts the ROI map which was used in this experi-
ment. The Chl-a samples were treated as the high-
est value samples with the shortest local path in the 
search algorithm (Eq. 7). In the maximum gradient 
zone, the search made the acquisition platform navi-

Fig. 16. Multi behaviour sampling for different patches
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gate in adaptive way to follow the maximum gradient 
curve, using Eq. 8 and Eq. 9, and to maintain a proper 
distance between the samples. In the chlorophyll and 

The results without the enhancement are shown 
in Fig. 18a. Both the quality of the solution and the 
speed of the optimization are enhanced by an order 
of magnitude by applying the improved operations 
(Fig. 18b).

The repeatability of the results is depicted, for 
experiments 3 and 4, in Figures 19a and 19b respec-
tively. The convergence of both the best solution and 
the average solution is high. 

 

 
Fig. 17. Sample acquisition path from experiment 4

Fig. 18. Convergence in experiment 1 & 2 

TSS zone, the behaviour model as in Eq. 10 was adopt-
ed. All behaviour optimization algorithms explored 
the neighbourhood and selected new waypoints in 
order to enhance the quality of the solution. Figure 17 
shows an example of the planned path.

 The path planning algorithm produced 28 sam-
ples as follows: 9 samples from the TSS & Chl-a zone; 
5 samples from the MG zone; 14 samples from Chl-a 
zone including the start waypoint. The samples were 
collected along a path 285 km long. The normalized 
sample value was 0.5040 with the ROI award equal 
to 0.5650.

4.4. Convergence Analysis
To improve the convergence of the GA-based 

search, two crossover and two mutation operations 
were employed. The solutions to these operators 
were divided into two categories as follows: the first 
one consists of the elite solutions, and randomly se-
lected solutions represent the second category. 

The simulation results show that: 
(1) The new procedure effectively enhanced the 

global search ability and improved the local search-
ing ability;

(2) High convergence rate was obtained.

Fig. 19. Convergence in experiment 3 & 4

5. Conclusions 
In this paper, hybrid genetic algorithms were 

proposed for navigation in a partly known environ-
ment, where the objective of the planning task is to 
find the optimal path for a mobile sample acquisi-
tion platform. The total quantity and quality of water 
samples is to be maximized according to navigation 
goals specified for each acquisition zone. Sampling in 
each patch may be guided by different patterns of be-
haviour for different purposes. Thus, the acquisition 
system is able to execute different behaviours along 
the global path. A hybrid genetic search was devel-
oped to deal with such a complex environment. The 
adaptive search algorithm models behaviours in dif-
ferent surrounding areas and executes them in each 
generation at the level of local path navigation. The 
locality of the navigation was defined in terms of re-
gions of interest (ROI). In the process of generating 
the waypoints, the adaptive search deletes and inserts 
new waypoints in each solution depending on the 
ROI behaviour. This enhances the flexibility and the 
efficiency of path planning. The ROI component was 
introduces also in the fitness function, greatly speed-
ing up the convergence of the planning process. Tests 
were conducted using medium-resolution satellite 
imagery. Multi-layered maps provided a rich context 
to the adaptive search system to perform flexible local 
search behaviours. 

The experiments performed on large area envi-
ronment show that the adaptive GA-based path plan-
ning method offers robust search capabilities and 
supports different sample acquisition strategies, en-
suring the collection of meaningful data over multiple 
areas of interest. 
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EVOLUTIONARY LEARNING OF A FUZZY CONTROLLER FOR A 
MOBILE ROBOT  

FADI HALAL1, I. DUMITRACHE2 

Tehnicile inteligente bazate pe logica fuzzy, reţelele neurale şi algoritmi 
genetici sunt folosite cu mult succes în conducerea roboţilor autonomi. Sistemele 
hibride bazate pe combinaţii ale acestor tehnici pot maximiza eficienţa acestor 
tehnici. În această lucrare, se prezintă un sistem hibrid geno-fuzzy care foloseşte un 
algoritm genetic pentru optimizarea unui sistem de conducere cu logică fuzzy pentru 
un robot Khepera care trebuie să atingă un anumit punct în spaţiul de lucru pe 
traseul cel mai scurt. Algoritmul genetic optimizează funcţiile de apartenenţă şi 
generează reguli optimale. Rezultatele prezentate în această lucrare demonstrează 
validitatea abordării hibride bazată pe combinaţii ale tehnicilor inteligente de 
conducere. 

 
Fuzzy control systems, neural networks and genetic algorithms can be 

cooperatively used for designing robot control systems. This paper presents a hybrid 
geno-fuzzy system based on a genetic algorithm that optimizes the membership 
functions and the rule structure of a fuzzy controller. The robot is a Khepera mobile 
robot that has to follow a track and find a target. The presented results demonstrate 
the validity of such a hybrid approach. 

 

Keywords: geno-fuzzy system, fuzzy logic, genetic algorithm, mobile robot. 

1. Introduction 

Intelligent robots sharing city roads with humans and other vehicles is not 
a simple dream. Autonomous driving will enable a robot vehicle to drive 
independently along the road. [1] In this paper we used fuzzy control to drive a 
Khepera robot on a given in a simulation environment named Kiks. The first 
results have given us the reason to apply a hybrid geno-fuzzy control system, 
which has successfully driven the robot along the track. The geno-fuzzy system 
improves the design process and the performance of the fuzzy control system. [2] 
The first section presents the robot control architecture. The second section shows 
the fuzzy control system while the third section explains how to apply geno-fuzzy 
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system. We developed the experiment and compared the results in the fourth 
section. 

2. Robot control architecture  

The control of a robot under parameter variations and load disturbances is 
an important problem [3]. Fig. 1 is illustrating an approach to build a control 
algorithm for a mobile robot, which is the “sense- plan-act” architecture. The 
robot problem was decomposed into a vertical series slice, which has the 
following functionalities:  

• Observe the surrounding environment  
• Make an internal plan of the area  
• Adapt the robot plan  
• Execute the plan 
• Create a new plan when some thing was changed 

 

 
 

Fig.1. Traditional decomposition of a mobile robot control system into function modules. 
 
In 1986 Rodney Brooks came with a new approach, which decompensate 

the problem into behaviors instead of function components [4], and this is 
illustrated into horizontal series slice, as shown in Fig. 2.  Behaviors could be 
obstacle avoidance, wall-following, exploration or target seeking. A certain 
number of behaviors run as parallel processes, while each behavior can access all 
sensors, only one behavior can have control over the robot actuators. 

In competitive control methods only one behavior affects the motor output 
of the robot in a particular moment. In cooperative control methods different 
behaviors may contribute to a single motor action although with different  
strength [5].   

We decided to use a fuzzy control system to handle behavior selection, for 
controlling a Khepera mobile robot. This control structure has 3 sensor inputs 
which are Sleft, Sfront and Sright, corresponding to the sensors on the left, front and 
right hand side of the robot. This control will generate two outputs that are left 
motor speed and right motor speeds, respectively named LMS and RMS; these 
variables select the currently active behavior and cause a robot action. The control 
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system it self developed with genetic algorithm designed to optimize a fitness 
function describing the task criteria.    

 

 
Fig.2. A decomposition of a mobile robot control system based on task achieving behaviors. 

 

3. Fuzzy control system  

3.1. Fuzzy controller design 

The control input variables are the six sensors input (S0 …S5), and robot’s 
coordinate. We ignored the two back sensors input (S6 and S7) that have no effect 
on the fuzzy control. The output variables are the left motor speed and right motor 
speed (LMS and RMS).  

 
Sensors simplification was used as follows to reduce the number of the 

sensor inputs:  
Sleft = ((S0 +S1)/2) 
Sfront = ((S2+ S3)/2) 
Sright = ((S4+S5)/2) 
as shown in Fig. 3 [5]. Each input has three trapezoidal linguistics 

membership functions, which are called near, med, and far, as shown in Fig. 4.A, 
denoting the distance from an obstacle. These inputs have the same membership 
function shape and design for each sensor input.  

Search other robots 

Recognize objects  
Construct map 

Explore 

Avoiding obstacles  
Following wall 

Orientation and steering  
Handle objects to goal point 

Motors command  Sensors’s data 
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Fig.3. Simulation model of the Khepera robot 

 
The output variables are LMS and RMS, respectively. Each output has 

five triangular membership functions, that are named as (hneg, neg, slow, norm, 
fast) representing the motor speed, as shown in Fig. 4.B. The fuzzy control system 
has 18 rules representing the robot behaviors, like left wall following, right wall 
following, walk through the corridor, obstacle avoidance, steering and tracking 
behavior. 
 

             
                          (A)                                                                (B) 

 
Fig.4. A: Sleft input membership function, B: RMS output membership function 

 

3.2. Genetic representations of the fuzzy controller 

We have encoded the rule base into a chromosome for a genetic algorithm 
in order to optimize these rules. We encoded the membership functions in each 
sensor input (Far, Med and Near), respectively coded as 1, 2 and 3, and for each 
output membership function (Hneg, Neg, Slow, Norm, and Fast), respectively 
coded as 1, 2, 3, 4 and 5. Fig. 5 illustrates the encoded input membership function, 
and the encoded output membership function. 

Sleft  S0 

S1 
S2 S3 

S4 
S5 

S6 S7 

Sfront  

Sright 
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Fig.5.  The input and the output membership function encoded  
 
For example, the rule If Sleft = near and Sfront = far and Sright = med Then LMS = 
fast and RMS = norm, can be encoded as a string vector 3 1 2 5 4 and the 
chromosome is illustrated as a string vector, as shown in Fig. 6. 

 
 

Fig.6. The rules base chromosome encoded  
 

3.3. Rule base 

The rule set had to be simplified. This simplification was accomplished by 
eliminating rules with low or even no probability to occur, and rules that cause the 
same effect in the robot movement. The final rules base is presented in table 2 
which has been divided into eight basic groups: straight movement, when the 
robot has either no obstacle in the target direction or the obstacle is far; walk 
through the corridor, where the robot walks along the corridor; left wall following, 
where the robot followed the left wall; right wall following, where the robot 

Variable Term 

4 1 2 3 4 5

LMS =  (Hneg,  Neg, Slow,  Norm,   Fast) 

5 1 2 3 4 5

RMS = (Hneg,  Neg,  Slow, Norm,  Fast) 

Variable Term 

1 

2 

1 

1 

2 

2 

3

3

Sleft = (    Far,    Med,   Near)      

3 1 2 3

Sfront = (   far,    med,   near)      

Sright = (   far,    med,   near)      

….] Rule base = [... Rule Rule Rule 

If Sleft = near and Sfront = far and Sright = 
med Then LMS = fast and RMS = norm 

 

Rule = [   3      1      2       5     4    ] 

Variable     1      2      3      4      5    
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followed the right wall, while avoiding obstacles behaviors were divided into four 
groups: Avoiding left front obstacles, Avoiding right front obstacles, Avoiding 
front obstacle, Avoiding blocked zone.   

 
Table 1 

Fuzzy rule base encoded 
S l

ef
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S f
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nt
 

S r
ig

ht
 

LM
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M
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Robot’s behaviors 

1 1 1 5 5 straight movement 
2 1 2 4 4 

walk along the corridor 3 1 3 3 3 
2 1 3 3 4 
3 1 2 4 3 
2 1 1 4 2 left wall following 3 1 1 5 1 
1 1 2 2 4 right wall following 1 1 3 1 5 
2 2 1 4 2 

avoiding left front obstacles 3 3 1 5 1 
3 2 1 5 2 
1 2 2 2 4 

avoiding right front obstacles1 3 3 1 5 
1 2 3 2 5 
1 2 1 1 5 avoiding front obstacle 
2 2 2 2 2 avoiding blocked zone 3 3 3 2 2 

 
 

4. Experiments 

In this paper we used a genetic algorithm to optimize the performance of 
the fuzzy system. Table 2 shows the advantages and the disadvantages for fuzzy 
systems and genetic algorithms.  The genetic algorithm was used for its ability to 
learn [2]. Fig. 8 shows the structure of the hybrid geno-fuzzy control system that 
was used to control the robot. 

Table 2 
Advantages and drawbacks of fuzzy logic and GAS  

Properties Fuzzy systems Genetic algorithm 
Store knowledge Explicit None 

learns No Ability  to learn 
Optimizes None Powerful

Fast Yes Yes
Handle nonlinearity Yes Yes 
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The general system architecture is composed of the mobile robot, the 
fuzzy control system, the evolution strategy that adapts the fuzzy membership 
functions and the rules base, a simulation environment (KIKS simulator for 
Khepera robots), a fitness function to evaluate the quality of robot behaviors, as is 
shown in Fig. 7. The environment is shown in Fig. 8, where the control task is to 
drive the robot along the grey track in order to reach the target point as fast as 
possible. 

 
Fig.7. Architecture of the geno-fuzzy system to control a mobile robot.  

 

 
Fig.8. Simulation environment 

 

4.1. Chromosome  

In this paper is presented a novel chromosome encoding algorithm used to 
optimize the membership functions and the output rule base. So an optimal fuzzy 
control system is obtained which drove the Khepera mobile robot to achieve its 
target with good performance and optimal behaviors. We have encoded 34 
parameters from the input and output membership function to form a chromosome 
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segment in order to optimize these functions shape. Fig. 9 shows the eight genes 
that were encoded from Sleft input function; these genes are called respectively   
A1, A2, A3, A4, A5, A6, A7 and A8. From the Sfront and Sright input we encoded the 
two other chromosomes segment B and segment C, where each of them contain 
eight genes. They are named respectively B1, B2, B3, B4, B5, B6, B7, B8, C1, C2, C3, 
C4, C5, C6, C7 C8, and Fig. 10 shows the membership functions chromosome 
segment. The genes D1, D2, D3, D4, D5, E1, E2, E3, E4, and E5 are encoded for 
tuning respectively the LMS and RMS output membership functions.  

 
 

   
 

 
A1 …. A6 A7 A8 B1 B2 .. B8 C1 C2 … C8 D1 ... D5 E1 … E5 

 
Fig.9. Chromosome’s segment for encoding membership functions  

 
 

In our fuzzy system we suppose 18 antecedence rules and the genetic 
algorithm optimizes the output of the rules base. The inputs values are predictable 
because the robot moved in its simulation environment.  The chromosome output 
rules segment contained 36 genes that present the supposed LMS linguistic term   
and RMS linguistic term, as shown in Fig. 10.  

    
 

F1 F2 F3 F4 … … F33 F34 F35 F36 

Output rule 1 Output rule 2   Output rule 17 Output rule 18 

 
Fig.10. Chromosome Segment F  

 
Fig.11 shows the whole chromosome and his genes.   

 

A1 

A7 
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A6 A3 

A4 
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A1 -- A8 B1 -- B8 C1 -- C8 D1 -- D5 E1 -- E5 F1 F2 -- F35 F36 

 
Fig.11.The whole chromosome 

 

4.2. Multipoint crossover 

The multi-point crossover is the best genetic operator method that can be 
used in this problem in order to increase the number of string segments 
exchanged. The parent chromosomes, P1 and P2, are cut virtually at multiple 
random locations, and the portions of the chromosome between the cuts were 
exchanged. The result is two offspring I1 and I2, as is shown in Fig. 12. We used 
multi-point crossover because the genes have integer values, the genes values of 
the output rules base are between 1 and 5, whereas the genes values of 
membership function chromosome segment are between 100 and 800, depending 
on the membership function itself. On the other hand, the genes had bounds in 
case to keep overlaps between the membership functions and the search for output 
rule base will be heuristic. 

 
Fig.12. Multi-point crossover 

 

4.3. Fitness function 

This fitness function is a performance criterion that evaluates the 
performance of each chromosome. Higher fitness values are better when we want 
to maximize the function [5]. In this paper the fitness function trains the fuzzy 
control to optimize the robot path, thus the robot moved along its track with 
performance behaviors, and with the suitable speed without any collision. 
Practical the evolution process optimized the membership functions shape and the 
output rule base of the fuzzy controller. 

The fitness function is:  
 

F=  S + Bon + A + TR + TI  

P2 

I1 

I2 

P1 

RB segmentMF segment
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And is calculated and summed over 1300 robot steps. Of its five 
components, S improves the speed; A improves collision avoidance, Bon gives the 
robot a bonus when it walks along the desired track. These three components are 
calculated and summed each robot step. TR and TI teach the robot to get to its 
target in a the shortest time possible. The time is either the number of steps that 
the robot needs to get to its target or is 1300 steps. The values of the TI and TR 
will be 0 when the robot doesn’t get its target.  

 

1
/

2

t
L R

i MAX

M M
S t

M=

+
= ∑  

 

Where: 
- Mmax: maximum robot’s speed (equal to 
10); 
- (ML, MR): left motor and right motor speed 
- Smax: maximum sensor’s reading (equal to 
1023). 
- St: proximity-sensor (Sleft, Sfront, Sright) highest 
activity at step t. 
-t: the number of total steps 

0
Bon= 

1300

t

i

pp
=
∑  

pp= 1 if the robot is on it track 
pp=0 1 if the robot isn’t on it track 

 

0
A = 1- /
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t
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TR =1:  If the robot gets the target 

TR=0: If the robot doesn’t get the target 
 
 

1300
1300

tTI −⎡ ⎤= ⎢ ⎥⎣ ⎦
    If the robot gets the target 

TI = 0: If the robot doesn’t get the target 
 
 

5. Experiments development and comparison of results 

5.1 Experiments development  

The genetic algorithm generates fuzzy parameters set for each population 
in any generation. The fuzzy controller drives the robot to make its task within a 
fixed time. The robot gets sensor data and then decides the suitable behavior. 
Avoiding obstacle will apply if there is an obstacle near the robot and if there is a 
wall then the robot will follow it. If the area is clear the robot seeks its target. The 
first priority is to keep the robot away from any obstacle, and then following wall 
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in navigation mode and seeking target behavior. A flow chart for geno-fuzzy 
control system design is given in Fig. 13. 

 
Fig.13. Flow chart for geno-fuzzy control system 

   
We used the GAOT toolbox for Matlab. GAOT is a Genetic Algorithm 

Optimization Toolbox (GAOT) used for optimizing the fuzzy system. [20] In the 
evolution process we used the following parameters: Population size 50 
individuals; crossover rate 80%; mutation rate 5%; number of generations 500. 
Fig 14.A and 15.B show respectively the best chromosome fitness in each 
generation and the average of all the chromosomes in each generation. 
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(A)                                                                                (B) 
 

Fig.14. A: Evolution of best chromosome, B: Evolution of average fitness chromosome 
 
Figs. 15 (A, B, C, D, and E) show the optimal membership functions 

resulted after the evolutionary process. The figures are respectively for Sleft, Sfront 
and Sright sensor inputs, and for the LMS and RMS output membership functions. 
The optimal chromosome for the rule base output is as follows: 
 

4 5 4 4 4 4 3 5 5 4 5 4 3 5 3 2 5 2 
R1 R2 R3 R4 R5 R6 R7 R8 R9 
2 5 2 4 1 4 5 1 1 4 1 4 1 4 4 5 5 5 
R10 R11 R12 R13 R14 R15 R16 R17 R18 

 
Where: 5, 4, 3, 2 and 1 represent respectively (HNEG, NEG, SLOW, NORM and 

FAST) that are the linguistic terms of the output fuzzy system.   
 
 

     
 

(A)                                                                  (B) 
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(C)                                                                  (D) 
 

 
 

(E)   
 

Fig.15. A: The optimal Sleft input membership function, B: The optimal Sfront input membership 
function, C: The optimal Sright input membership function, D: The optimal RMS output 

membership function, E: The optimal LMS output membership function 
 

5.2 Comparison of results  

We designed a fuzzy system to control the robot along a given track. The 
result was a poor performance of the robot, as are shown in Fig. 16(A and B), as 
the robot needs 105 seconds to get to the target, as shown in Fig. 16(C) and 
exceeded the track limits. The fuzzy system was modified and was tested in the 
Kiks simulation environment. Fig. 16(D) shows the robot’s trajectory which 
improved as the robot needs now 55 seconds to get to the target. The results of the 
geno-fuzzy control systems are the best as presented in Fig. 16(E). The robot 
moved smoothly along its track and it needs 39 second to get to the target. Thus 
the geno-fuzzy system improves the path following behavior with a very short 
time to reach the target. 
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Fig.16. A and B: poor performance of the robot C: Robot with fuzzy system needs 105 seconds. D: 
Robot with modified fuzzy system needs 55 seconds, F: Optimal solution needs 39 seconds 
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6. Conclusions 

In this paper we presented a hybrid geno-fuzzy control system for a mobile 
robot.  Genetic algorithms are proven to be an efficient tool for designing an 
optimal fuzzy control system. The hybrid system optimized the membership 
function set and the output rule base on the fuzzy controller. The optimization 
improves the robot time performance and the robot behavior. The optimal solution 
has driven the robot on its track with a suitable speed. After the evolution process 
the robot walked fast along the corridor, its wall following ability improved 
significantly, while it managed to keep a suitable distance from the obstacles. 
Thus the optimal fuzzy system generated an optimal path towards the target.  
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1. INTRODUCTION 

Monitoring of environmental phenomena in inland waters 

requires measuring physical processes across the entire 

spatial domain (Singh et al, 2009). Remote detection 

techniques provide significant advantages in terms of spatial 

and temporal coverage and cost-efficiency. The remote 

sensing data have to be augmented and updated by the in situ 

measurements, due to the need for precise local 

measurements for the calibration of satellite imagery in 

varying water conditions The environment maps of large 

areas are often obtained through processing of multi-spectral 

satellite imagery, which can subsequently be used to obtain 

water pollutant models by applying such measures as Total 

Suspended Sediments (TSS) (Koponen et al., 2005) and 

maximum chlorophyll index (MCI) (Gower et al., 2008).  

In this paper we present a GA method developed to optimize 

path planning and navigation based on waypoints. Due to a 

large size of Lake Winnipeg – the site that relates to our 

experiments – combined with the requirement to acquire 

different samples following different acquisition strategies - 

conventional path planning does not give satisfactory results 

(Ragavan et al., 2011). The problem can be reduced to a 

simpler form by applying path planning waypoints. 

Waypoints are usually abstract points (Taha et al., 2009) used 

to help to define local paths through which a mobile platform 

can navigate, reach its region-of-interest destination, and 

collect the water pollutant samples (Park et al. 2013).  

The path finding problem has typically been defined in terms 

of a Travelling Salesman Problem (TSP) and the Vehicle 

Routing Problem (VRP), and solved using evolutionary 

algorithms employed in with variants, such as ant colony 

(Colmenares et al., 2014), heuristic search D* algorithm (Luo 

et al., 2013) and genetic algorithms (Yoshikawa et al., 2009).  

Genetic Algorithms have been frequently used for their 

flexibility and high quality of the search results (Samadi et 

al., 2013) in NP-hard problems. They can solve the problem 

without any advance knowledge about the environment, and 

are largely unconstrained by the limitations of the classical 

search methods (Rothlauf, 2006). By mimicking natural 

evolution processes they have the ability to adaptively search 

large spaces in near-optimal ways. In practical terms, GA 

methods are easy to interface with exciting simulation 

models.  

Still, GAs come with some shortcoming First, the initial 

random search generates many infeasible and useless paths. 

Second, genetic operators, relying on heuristic knowledge, 

are not sufficient. Third, new offsprings may contain 

infeasible paths, (Yun et al. 2011). In order to overcome these 

disadvantages, a hybrid genetic algorithm was proposed to 

improve the genetic algorithm performance, (Yun et al. 

2010). The initial populations, used to create the optimal 

solution, are generated based on multiple constraints. Since a 

high number of constraints are involved in the optimization 

process, many search strategies are applied to form the initial 

population and maintain population diversity of the genetic 

algorithm (Xiao-ting et al., 2013). Weak initial population 

leads to bad and unfeasible solutions.  

The objective of this work is to find the optimal path 

planning for the sample acquisition platform in order to 

maximize the total quantity and quality of water samples. In 

general, each problem to be solved requires a unique fitness 

function that represents a performance criterion used in the 

evaluation of the performance of all chromosomes in a 

population. Many factors, such as travelling distance, time 

window and the sample values (weight) are involved in the 

optimization process. Thus multi-objective functions are used 

to find the suitable solution which fits the overall goal.  
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1. INTRODUCTION 

Monitoring of environmental phenomena in inland waters 

requires measuring physical processes across the entire 

spatial domain (Singh et al, 2009). Remote detection 

techniques provide significant advantages in terms of spatial 

and temporal coverage and cost-efficiency. The remote 

sensing data have to be augmented and updated by the in situ 

measurements, due to the need for precise local 

measurements for the calibration of satellite imagery in 

varying water conditions The environment maps of large 

areas are often obtained through processing of multi-spectral 

satellite imagery, which can subsequently be used to obtain 

water pollutant models by applying such measures as Total 

Suspended Sediments (TSS) (Koponen et al., 2005) and 

maximum chlorophyll index (MCI) (Gower et al., 2008).  

In this paper we present a GA method developed to optimize 

path planning and navigation based on waypoints. Due to a 

large size of Lake Winnipeg – the site that relates to our 

experiments – combined with the requirement to acquire 

different samples following different acquisition strategies - 

conventional path planning does not give satisfactory results 

(Ragavan et al., 2011). The problem can be reduced to a 

simpler form by applying path planning waypoints. 

Waypoints are usually abstract points (Taha et al., 2009) used 

to help to define local paths through which a mobile platform 

can navigate, reach its region-of-interest destination, and 

collect the water pollutant samples (Park et al. 2013).  

The path finding problem has typically been defined in terms 

of a Travelling Salesman Problem (TSP) and the Vehicle 

Routing Problem (VRP), and solved using evolutionary 

algorithms employed in with variants, such as ant colony 

(Colmenares et al., 2014), heuristic search D* algorithm (Luo 

et al., 2013) and genetic algorithms (Yoshikawa et al., 2009).  

Genetic Algorithms have been frequently used for their 

flexibility and high quality of the search results (Samadi et 

al., 2013) in NP-hard problems. They can solve the problem 

without any advance knowledge about the environment, and 

are largely unconstrained by the limitations of the classical 

search methods (Rothlauf, 2006). By mimicking natural 

evolution processes they have the ability to adaptively search 

large spaces in near-optimal ways. In practical terms, GA 

methods are easy to interface with exciting simulation 

models.  

Still, GAs come with some shortcoming First, the initial 

random search generates many infeasible and useless paths. 

Second, genetic operators, relying on heuristic knowledge, 

are not sufficient. Third, new offsprings may contain 

infeasible paths, (Yun et al. 2011). In order to overcome these 

disadvantages, a hybrid genetic algorithm was proposed to 

improve the genetic algorithm performance, (Yun et al. 

2010). The initial populations, used to create the optimal 

solution, are generated based on multiple constraints. Since a 

high number of constraints are involved in the optimization 

process, many search strategies are applied to form the initial 

population and maintain population diversity of the genetic 

algorithm (Xiao-ting et al., 2013). Weak initial population 

leads to bad and unfeasible solutions.  

The objective of this work is to find the optimal path 

planning for the sample acquisition platform in order to 

maximize the total quantity and quality of water samples. In 

general, each problem to be solved requires a unique fitness 

function that represents a performance criterion used in the 

evaluation of the performance of all chromosomes in a 

population. Many factors, such as travelling distance, time 

window and the sample values (weight) are involved in the 

optimization process. Thus multi-objective functions are used 

to find the suitable solution which fits the overall goal.  
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high number of constraints are involved in the optimization 

process, many search strategies are applied to form the initial 
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measurements for the calibration of satellite imagery in 

varying water conditions The environment maps of large 

areas are often obtained through processing of multi-spectral 

satellite imagery, which can subsequently be used to obtain 

water pollutant models by applying such measures as Total 

Suspended Sediments (TSS) (Koponen et al., 2005) and 

maximum chlorophyll index (MCI) (Gower et al., 2008).  

In this paper we present a GA method developed to optimize 

path planning and navigation based on waypoints. Due to a 
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experiments – combined with the requirement to acquire 

different samples following different acquisition strategies - 

conventional path planning does not give satisfactory results 

(Ragavan et al., 2011). The problem can be reduced to a 

simpler form by applying path planning waypoints. 

Waypoints are usually abstract points (Taha et al., 2009) used 

to help to define local paths through which a mobile platform 

can navigate, reach its region-of-interest destination, and 

collect the water pollutant samples (Park et al. 2013).  

The path finding problem has typically been defined in terms 

of a Travelling Salesman Problem (TSP) and the Vehicle 

Routing Problem (VRP), and solved using evolutionary 

algorithms employed in with variants, such as ant colony 

(Colmenares et al., 2014), heuristic search D* algorithm (Luo 

et al., 2013) and genetic algorithms (Yoshikawa et al., 2009).  

Genetic Algorithms have been frequently used for their 

flexibility and high quality of the search results (Samadi et 

al., 2013) in NP-hard problems. They can solve the problem 

without any advance knowledge about the environment, and 

are largely unconstrained by the limitations of the classical 

search methods (Rothlauf, 2006). By mimicking natural 

evolution processes they have the ability to adaptively search 

large spaces in near-optimal ways. In practical terms, GA 

methods are easy to interface with exciting simulation 

models.  

Still, GAs come with some shortcoming First, the initial 

random search generates many infeasible and useless paths. 

Second, genetic operators, relying on heuristic knowledge, 

are not sufficient. Third, new offsprings may contain 

infeasible paths, (Yun et al. 2011). In order to overcome these 

disadvantages, a hybrid genetic algorithm was proposed to 

improve the genetic algorithm performance, (Yun et al. 

2010). The initial populations, used to create the optimal 

solution, are generated based on multiple constraints. Since a 

high number of constraints are involved in the optimization 

process, many search strategies are applied to form the initial 

population and maintain population diversity of the genetic 

algorithm (Xiao-ting et al., 2013). Weak initial population 

leads to bad and unfeasible solutions.  

The objective of this work is to find the optimal path 

planning for the sample acquisition platform in order to 

maximize the total quantity and quality of water samples. In 

general, each problem to be solved requires a unique fitness 

function that represents a performance criterion used in the 

evaluation of the performance of all chromosomes in a 

population. Many factors, such as travelling distance, time 

window and the sample values (weight) are involved in the 

optimization process. Thus multi-objective functions are used 

to find the suitable solution which fits the overall goal.  
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evolution processes they have the ability to adaptively search 

large spaces in near-optimal ways. In practical terms, GA 

methods are easy to interface with exciting simulation 

models.  

Still, GAs come with some shortcoming First, the initial 
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Second, genetic operators, relying on heuristic knowledge, 

are not sufficient. Third, new offsprings may contain 

infeasible paths, (Yun et al. 2011). In order to overcome these 

disadvantages, a hybrid genetic algorithm was proposed to 

improve the genetic algorithm performance, (Yun et al. 

2010). The initial populations, used to create the optimal 

solution, are generated based on multiple constraints. Since a 
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process, many search strategies are applied to form the initial 
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The Multi Point Crossover (MPC) was the method applied in 

this paper in order to deal with multiple sampling areas. 

Depending on the multi objective function and the initial 

population, the MPC operator works to build the final 

solution which consists of valuable segments, local paths, and 

many search strategies. The mutation operator helps the 

population to avoid local minima. The evolution process 

optimizes the path planning by designing new chromosomes 

which consist of best value samples from many global paths. 

The structure of the paper is as follows. The second section 

reviews multi-spectral satellite sensors applied to water 

pollutant classification, and presents data acquisition mission 

strategies.  A discussion of the proposed GA architecture is 

presented in Section 3. The initial population and path 

planning generators are presented in the fourth section. The 

optimization process is discussed in Section 5. The 

experiment setup and the obtained results are given in the 

Section 6.  

 

2. ACQUISITION MISSION PROCESS 

2.1 Pollutant sample acquisition 

Medium resolution satellite imaging instruments, such as 

NASA’s MODIS (Moderate Resolution Imaging 

Spectroradiometer) or MERIS (Medium Resolution Imaging 

Spectrometer), are typically used to monitor inland waters. 

MODIS has 36 spectral bands with center wavelengths 

ranging from 0.412m to 14.235m. MERIS has 15 spectral 

bands, optimized for chlorophyll detection.  

Water wave reflection can be exploited to determine the 

concentration of the chlorophyll pigment and TSS. The 

classification of the water spectral characteristics is 

performed through the analysis of the shape of specific 

regions of the spectral curve. 

In our tests, MERIS reflection shape features for Lake Winnipeg 

were divided into two dominated water classes. The first one 

relates to the level of chlorophyll-a concentration which has a 

peak at band 9 (705 nm), as shown in the bottom-left portion of 

Fig 1, and the second one represents the TSS concentration 

which has a flat portion of the curve from bands 5 to 9 (560nm - 

705 nm), as shown in the bottom-right graph in Fig 1. It is 

representative of the water with high suspended matter 

concentration and high chlorophyll-a concentration.  

 

Fig. 1 Pattern recognition neural network classifies the 

pollutant water.   

Each class has a specific spectral signature that reflects it 

spectral characteristics. A pattern recognition neural network 

was employed to classify the water into two types A and B, 

i.e., TSS and chl-a.  

For each water class, a separate model was obtained and used 

for the assessment of the water pollutant. Equation (1) has 

been used to measure TSS: 

  17.0/53.7 665560709  LLL=TSS                       (1) 

where L709, L560 and L665 denote the wavelength of 709 nm, 

560 nm and 665 nm respectively. Equation (2) represents a 

MCI calculation based on (Gower et al., 2008). 

MCI = L709 − L681 − 0.389 (L753 − L681)                    (2) 

where Lxxx is the radiance value of the band at wavelength 

xxx. The factor 0.389 is calculated as the wavelength ratio 

(709–681) / (753–681). Fig 2a represent Lake Winnipeg MCI 

map and Fig 2b shows the TSS map. The maps were taken 

and processed using VISAT-beam. 

 

  

a)                                           b) 

Fig. 2. Lake Winnipeg maps: a) MCI, b) TSS.  

 

2.2 Data acquisition mission  

The acquisition mission can vary depending on the water 

pollutant samples distribution, their collection cost and the 

objective function which evaluates the samples value 

(weight) and the environment conditions. The goal is 

maximizing the quantity and the quality of the collected 

water pollutant samples during the mission. The strategies 

can be classified in two conflicting categories (Halal et al., 

2010):  

(1) Sampling the maxima of the water pollutant concentration 

distribution.  

(2) Sampling which imposes time constraints on the 

acquisition mission. 

In the first group, the sampling strategies include uniform 

coverage of high-concentration areas, sampling at local 

concentration maxima, and sampling along maximum 

gradient lines. Time windows can be imposed for the 
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chlorophyll concentration sampling. Samples can be kept in 

the dark on ice only for a limited time without any 

degradation. The time ranges from hours to days depending 

on the sample sensitivity. Holding time is an important 

consideration because time-sensitive samples may need to be 

filtered in the field and placed on dry ice (Berkman et al., 

2007). In the second group, one strategy considers the fact 

that specific samples should be collected while neglecting the 

others samples within a certain time window. Those samples 

can be treated as more valuable than the others. The path 

planning maximizes the value of the collected samples along 

its trajectory during the task. Depending on the time and the 

distance constraints, many pollutant patches could be 

neglected. The third strategy represents a hybrid between the 

two conflicting strategies, where time constraints are imposed 

on certain patches such as the chlorophyll concentration, and 

no constraints on other patches. A certain number of samples 

has to be collected in a specific patch before heading to 

another patch. This strategy has the advantages of both of 

previous ones. The path planning widely navigates collecting 

the valuable samples from local maxima in a way that fits the 

acquisition constraints. 

 

3. HYBRID GENETIC ALGORITHM 

In this paper hybrid genetic algorithms of optimum path 

planning for water sample collection are proposed. Two 

methods are introduced to improve the genetic algorithm 

performance: the obstacle avoidance algorithm and the 

pruning algorithm collaborate to produce feasible initial 

population. Infeasible paths are deleted during the evolution 

of the genetic algorithm, which improves the path planning 

efficiency.  

3.1 Genetic Algorithm architecture  

The basic operation of the proposed genetic algorithm can be 

summarized as follows (Fig. 3): 

Step 1: Random waypoints  

The random waypoints approach is applied in the deliberative 

navigation using the three strategies to generate many global 

paths. The global path consists of several local paths, which 

are the arcs between two waypoints (samples) that have a 

direct connection between them. One direction is considered 

for local paths pointing toward the target.  

Step 2: Remove Redundant Point Algorithm: An algorithm 

screens unnecessary waypoints to generate a free collision 

path.  

Step 3: Pruning algorithm  

No-sample waypoints are removed. Each waypoint can be a 

sample collation station, this algorithm screens out, with the 

waypoints which don’t contain valuable samples in their 

neighbour.  

Step 4: Initial feasible population: The collision free path is 

stored by adding the chromosome to the initial pool 

population. The unfeasible solution will be deleted; Step 5: 

Definition of the objective function; Step 6: Multi-point 

crossover operation; Step 7: Mutation operation; Step 8: 

Termination: If the solution meets the termination criteria, the 

evolution will be stopped. Otherwise, the evolution will 

continue until the maximum generation number is reached. 

 

Fig. 3. Genetic Algorithm path planning flow chart. 

 

4. PATH PLANNING AND INITIAL POPULATION  

4.1 Waypoint initialisation 

The population is represented by many ordered set of the 

waypoints. Each feasible set is considered to be an individual 

in the population. Each waypoint represents a location in the 

environment, and is characterized by an identifier - (x,y) 

coordinates. The initial genotype can be represented by a cell 

array, given the fact that each pair of cells represents the 

length and the heading angle between two sequential 

waypoints. In this work, a heuristic approach is proposed to 

find the optimal path. The search for the optimal path starts 

by randomly planning local path segments, which vary in 

length and heading angle. Path planning generator works as 

follows: 1) The first waypoint in the path is the starting point 

with the initial angle as zero. 2) While the path planning 

doesn’t get the desired target, generate a random number of l, 

path length, between [lmin, lmax], and a random β, heading 

angle between [βmin, βmax] obtaining the next waypoints 

(Xiao-ting et al, 2013). A maximum number of waypoints is 

defined for each search strategy. 3) The waypoint represents 

a water sample candidate. Thus, many strategies can be 

applied to water pollutant patches by adjusting L and β. Each 

path planning strategy handles different number of samples 
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chlorophyll concentration sampling. Samples can be kept in 

the dark on ice only for a limited time without any 
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another patch. This strategy has the advantages of both of 

previous ones. The path planning widely navigates collecting 
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3. HYBRID GENETIC ALGORITHM 

In this paper hybrid genetic algorithms of optimum path 

planning for water sample collection are proposed. Two 
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navigation using the three strategies to generate many global 

paths. The global path consists of several local paths, which 

are the arcs between two waypoints (samples) that have a 

direct connection between them. One direction is considered 

for local paths pointing toward the target.  
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continue until the maximum generation number is reached. 

 

Fig. 3. Genetic Algorithm path planning flow chart. 
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angle between [βmin, βmax] obtaining the next waypoints 

(Xiao-ting et al, 2013). A maximum number of waypoints is 

defined for each search strategy. 3) The waypoint represents 

a water sample candidate. Thus, many strategies can be 

applied to water pollutant patches by adjusting L and β. Each 

path planning strategy handles different number of samples 
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(waypoint) depending on the search path. Figure 4 illustrates 

a path planning generator.    

 

Fig. 4. Path planning generator.   

  

Genotype  

The chromosomes are encoded in an integer string. Each 

gene consists of two variables, the local path length and the 

heading angle. The path planning waypoints in the 

environment are represented in a long chromosome. The 

encoding technique uses the previous chromosome with the 

start point to identify the waypoints with (x,y) coordinates as 

shown in Fig. 5. 
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Fig. 5. a) Local paths polar coordinate Chromosome, b) 

Waypoint chromosome.   

 

4.2  Redundant waypoints removal 

The redundant waypoints removal algorithm is designed for 

distinguishing whether the path is feasible or not. Fig. 6 

illustrates this algorithm.  

 

Fig. 6. Obstacle avoidance algorithm. 

 

While the feasible path will be saved in the GA initial 

population, the infeasible path will be deleted. The basic idea 

of this algorithm is to verify and delete any local path hitting 

an obstacle area. As shown in Fig. 6, a new path BG is free 

obstacle; a deletion operation is applied to C, D, E and F 

waypoint. The algorithm deletes, for example, any waypoint 

that fall in the land area.  

 

5. OPTIMIZATION  

5.1 Fitness function 

Each optimisation process needs an objective function with 

multiple constraint factors. The fitness function is a particular 

type of the objective function that quantifies the optimality of 

a solution and evaluates the suitability of a solution with 

respect to the overall goal. The main issue here is to define an 

appropriate fitness function that serves as an adequate 

representative of the optimization process.  

The region of interest approach was used to identify the study 

zones and their boundaries, (Park et al., 2013). This approach 

prunes the search area by selecting many subsets of samples 

within the dataset representing the analysed area. 

The proposed fitness function F consists of 3 components: 

F = SV + ROIA + DIS          (3) 

SV - data set value, which determines the sample value; 

ROIA - the region of interest award, controls the sample 

quality and helps the platform reach its destination;  

DIS - distance factor, which has an important role in 

improving the path length and in teaching the platform how 

to reach the target point at the short path.  

These components are calculated and summed with each 

collected sample. Figure 7 summarizes the fitness function 

components. 
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5.2  Multi-point crossover 

Multi-point crossover was used to increase the number of 

swapped string segments and to reduce the size of each 

exchanged segment. Multi-point crossover operates in the 

global path planning phase. Selection of the waypoints 

consists of the following three steps: 

Step 1: Select the best fitness chromosome (Parent 1) and 

another (Parent 2) from the feasible pool as shown in Fig 8. 

Step 2: Use a bounded range to select the nodes as multi 

crossover points. Due to the difference in the chromosome 

length, the crossover point should be applied to the short 

chromosome. Step 3: Swap the contents between two 

sequential crossover points of two parent individuals. The 

waypoints between node1 and node2 have to be swapped. The 

next segments to be exchanged are between node3 and node4, 

and so on. Figure 9 explains the crossover procedure. 

 

Fig. 8. Two chromosomes (Parents). 

  

Fig. 9. Two offsprings from (Parents). 

 

6. EXPERIMENTAL RESULTS 

6.1 Experimental setup 

Three classes of water pollutant patches are defined, which 

are as follows: medium and high concentration of TSS, and a 

medium concentration of chlorophyll-a. Medium TSS 

concentration zone (M_TSS): the patch axis start at longitude 

(97˚ 05' 55") W and (51˚ 57' 59") W, and finished at 

longitude (97˚ 14' 41") W and latitude (51˚ 42' 20") N. The 

width range is 5 km to 10 km. High TSS concentration zone 

(H_TSS): patch length 10 km, and the width varies from 3.7 

km to 7 km. The search start point is longitude (97˚ 15' 57") 

W latitude (51˚ 27' 43") N, the target point is longitude (97˚ 

11’) W and latitude (51˚ 32' 38") N. Chlorophyll 

concentration zone (CHLO-A):  the search starts at longitude 

(97˚ 13' 20") W and latitude (51˚ 13' 14") N. The target point 

is longitude (97˚ 10' 43") W and latitude (51˚ 58' 18") N.  The 

patch axis passes through these two points. Figure 10 

illustrates the water pollutant patches. The above points 

represent the patch entrance and the patch exit waypoints.  

Many strategies have been applied in order to maximize the 

data set value and to navigate an optimal patch subject to the 

imposed constrains.  

 

Fig. 10. Acquisition patches.  

a) Chlorophyll-a patch, b) TSS patches  

 

Three strategies were applied on each patch in order to 

generate the initial GA population. In the first strategy, the 

platform navigates perpendicularly to the patch axis, which 

means the heading angle varies in the range ± 90ᵒ. This 

strategy scans the patch searching for the local maxima. The 

path planning neglects the traveling distance and time. The 

second strategy initially navigates around the patch axis 

looking for the maxim value samples, minimizing the path 

travel distance. The heading angle ranges ± 35ᵒ. The third 

strategy represents the shortest distance path planning, from 

the start point to the target point, where the samples have the 

lowest value.       

The GAOT Matlab toolbox was applied to optimise the final 

data acquisition platform path planning. The population size 

varies from one path to other, the crossover rate was 80%, the 

mutation rate was 5%, and the generation number 500.  

6.2 Test results  

Different results were obtained by changing the objective 

function factors. The multi-point crossover mixes up the 

paths and gets the optimal solution depending on the 

objective function factors. Figure 11a shows the optimal path 

planning for the navigation and collection of samples from 

three different H_TSS, M_TSS and chl-A patches, which has 

many segments belonging to different strategies.  

                       

a)                          b) 

Fig. 11. Path planning optimisation process. 
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Multi-point crossover and multi-point mutation are applied. 

The trip length  is 129680 m, and  94 samples are collected as 

follows: 27 H_TSS, 31 M_TSS and 36 Chl-A. Figure 11 b) 

shows the path planing for sampling M_TSS for 84469 m. 

Twenty-seven samples were colllected. A simple crossover 

and one waypoint mutation were applied.  

The tests have demonstrated that waypoint navigation 

strategies help to find a suitable initial population which leads 

to an optimal solution or near optimal solution, depending on 

a suitable genetic algorithm operators and appropriate fitness 

function.  

    

7. CONCLUSIONS 

Genetic algorithms have demonstrated their usefulness in 

solving multi-objective path planning problems, where the 

mobile platform navigates an unknown environment. In this 

paper, a hybrid waypoint/GA algorithm was presented. The 

data acquisition platform path maximises the data set quantity 

and quality along a set of local paths, which are defined 

within local region-of-interest areas. The optimization 

process assists the planner in creating the optimal path by 

deleting unfeasible and obstacle collision waypoints. Each 

global path handles different number of water samples. 

Different acquisition strategies were investigated and tested 

for acquiring water pollutant samples in inland waters. 
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