

UNIVERSITÉ DU QUÉBEC

PH.D. THESIS PROPOSAL

PRESENTED TO

UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF PH.D. IN INFORMATION SCIENCE AND TECHNOLOGY

BY

WASSIM EL-KASS

INTEGRATING SEMANTIC WEB AND UNSTRUCTURED INFORMATION

PROCESSING ENVIRONMENTS: A VISUAL RULE-BASED APPROACH

GATINEAU, JANUARY 24, 2018

© Copyright 2018, Wassim El-Kass

All Rights Reserved

© Copyright reserved

It is forbidden to reproduce, save or share the content of this document either in whole or in parts. The reader

who wishes to print or save this document on any media must first get the permission of the author.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Stéphane Gagnon, Thesis Supervisor

Département des sciences administratives, Université du Québec en Outaouais

Mr. Michal Iglewski, Thesis Co-Supervisor

Département d’informatique et d’ingénierie, Université du Québec en Outaouais

Mr. Marek Zaremba, President of the Board of Examiners

Département d’informatique et d’ingénierie, Université du Québec en Outaouais

Mr. Mohand Said Allili, Member of the Jury

Département d’informatique et d’ingénierie, Université du Québec en Outaouais

Mr. Stan Matwin, External Evaluator

Faculty of Computer Science, Dalhousie University

Mr. René Witte, External Evaluator

Department of Computer Science & Software Engineering, Concordia University

THIS THESIS PROPOSAL WAS PRENSENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND PUBLIC

JANUARY 27, 2012

AT UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS

FOREWORD

This thesis is presented to the University of Québec in Outaouais (UQO) in partial fulfillment

of the requirements for the degree of Ph.D. in Information Science and Technology.

With the ever-increasing volume and variety of digital data, most public and private

organizations are realizing the importance of their data and other data that can be made

available to them. Data can be a big asset and an important competitive advantage that should

not be ignored nowadays. This is true only if data is analysed and used properly. Otherwise,

data becomes a burden for its storage and maintenance.

A large number of organizations are shifting toward Data-Driven Decision Making (also

known as Evidence-based Decision Making). This is, in part, due to major hardware advances

in storage capacity and processing speed as well as the progress made in Data Mining and

visualization tools that made data analysis available to non-technical domain experts.

Current Data Mining and visualization tools are primarily focused on structured data when the

large majority of data being generated today is unstructured. This leaves a huge gap and causes

organizations to lose the information and knowledge buried in unstructured data.

Our research was mainly focused on closing the unstructured data gap by providing tools and

methods for non-technical domain experts to extract knowledge from unstructured data in an

easy and efficient way.

ACKNOWLEDGMENT

I would like to express my deepest and most sincere gratitude to my research supervisor Dr.

Stéphane Gagnon and co-supervisor Dr. Michal Iglewski for their continuous guidance,

support, motivation, and patience. Their patience and empathy helped me overcome the stress

of doing a PhD while maintaining my full-time job as Team Leader, teaching undergraduate

courses, and helping my wife with our four kids including newly born twins. Dr. Gagnon’s and

Dr. Iglewski’s availability and willingness to help combined with their wealth of deep

knowledge in various domains greatly served me throughout my research.

I also would like to thank my wife Sonia for her support, encouragement, and patience. She

often played my role with kids in addition to her role when I was too busy during the last 8

years. I cannot see how my research and this thesis would’ve been accomplished without her

support.

Last but not the least, I would like to thank my family: my mother and father who supported

me emotionally and financially since I was born until I became independent and whom I

promised 22 years ago to do my PhD, my brothers, and my in-laws for their love and

encouragement throughout my research and while writing this thesis.

INTÉGRATION DES ENVIRONNEMENTS DE TRAITEMENTS DU WEB

SÉMANTIQUE ET DE L'INFORMATION NON-STRUCTURÉE : UNE APPROCHE

VISUELLE FONDÉE SUR DES RÈGLES

Wassim EL-KASS

RESUME

Les informations non-structurées réfèrent principalement au texte, mais aussi à toutes les

informations stockées sans une structure de données prédéfinie. Des progrès significatifs ont

été réalisés dans le Traitement automatique du langage naturel (TALN), avec des annotations

syntaxique et toponymique très fiables utilisant l’étiquetage morpho-syntaxique (Part of

Speech (POS) tagging), la segmentation des phrases (Noun Phrase (NP) chunking), et la

reconnaissance d'entités nommées (Named-Entity Recognition, NER).

Cependant, l'annotation sémantique reste une tâche difficile, dont la précision et le rappel

varient considérablement selon les types de documents et domaines d'application. Tandis que

les textes simples tels que des messages électroniques dans un seul domaine peuvent être

analysés avec des résultats cohérents, des documents professionnels et scientifiques de taille

similaire, comme les nouvelles et les résumés, présentent trop de complexité avec divers

vocabulaires et significations ambiguës à travers des phrases et des sections du document. Les

principales difficultés restent la relation des concepts entre eux sous forme de graphiques

d'annotation, et leur combinaison pour un classement dans une hiérarchie de classes

sémantiquement valide et exhaustive.

Dans cette thèse, nous démontrons comment utiliser les technologies du web sémantique, en

particulier les ontologies et bases de données de graphes, pour aider à améliorer la qualité (F-

score) de ces tâches d'annotation et de classification. Nous intégrons une ontologie formelle

avec une plate-forme de TALN standard, la testons sur un corpus de la recherche publique, et

rapportons des F-scores supérieurs aux algorithmes d'apprentissage machine antérieurs.

Nous développons et testons une plate-forme innovante, soit une Architecture adaptative à base

de règles pour l’extraction de connaissances (Adaptive Rules-Driven Architecture for

Knowledge Extraction, ARDAKE). Notre logiciel intègre la norme Architecture de gestion de

l’information non-structurée (Unstructured Information Management Architecture, UIMA)

avec une base de données graphique standard pour stocker nos ontologies. Nous développons

des extensions au langage de règles UIMA Ruta pour invoquer et vérifier les rapports entre

classes de l'ontologie. D’autres extensions comprennent le calcul de mesures complémentaire

utiles pour intégrer les règles de correspondance (matching) entre mots et classes, soient

conditionnelles, statistiques, et basées sur les distances sémantiques. Nous développons

également un nouvel algorithme itératif des n-grammes afin de combiner les règles de

X

correspondance et d’optimiser les F-scores et l’aire sous les courbes de Caractéristique de

fonctionnement du récepteur (Receiver Operating Characteristic, ROC). Nous proposons un

nouveau style graphique circulaire (pie-chart) pour faciliter la visualisation de l'évaluation de

la performance d'annotation. Ces composants sont intégrés dans une interface graphique

permettant aux experts du domaine de règles de composer visuellement des ensembles de

règles, dans des hiérarchies de complexité variable, de scorer et comparer leur performance

relative, et enfin les améliorer en intégrant des sources d'ontologies supplémentaires.

Notre plate-forme est testée sur un cas d'utilisation particulier dans les sciences de la santé :

une méthode d'analyse de la littérature médicale selon la population, l’intervention, le contrôle,

et les résultats (Population, Intervention, Control, and Outcome, PICO). Nous montrons que

notre plate-forme peut efficacement et automatiquement produire des ensembles de règles

parcimonieux, avec des F-scores plus élevés sur les classes P et I que les auteurs antérieurs

utilisant des algorithmes d'apprentissage machine.

INTEGRATING SEMANTIC WEB AND UNSTRUCTURED INFORMATION

PROCESSING ENVIRONMENTS: A VISUAL RULE-BASED APPROACH

Wassim EL-KASS

ABSTRACT

Unstructured information refers primarily to text but also any information stored without a pre-

defined data structure. Significant advances have been made in Natural Language Processing

(NLP), with reliable syntactic and gazetteer annotations from Part of Speech (POS) tagging,

Noun Phrase (NP) chunking, and Named-Entity Recognition (NER).

However, semantic annotation remains a challenging task, with precision and recall varying

greatly across document types and application domains. While simple texts such as email

messages in a single domain can be analysed with consistent results, professional and scientific

documents of similar size, such as news and abstracts, present too much complexity with

diverse vocabulary and ambiguous meanings throughout sentences and document sections.

Major difficulties remain in accurately relating concepts with one another into annotation

graphs, and combining them for further classification across a hierarchy of classes with

semantic relevance and completeness.

In this thesis, we demonstrate how to use semantic web technologies, in particular ontologies

and graph databases, to help improve the quality (F-score) of such annotation and classification

tasks. We integrate a formal ontology with a standard NLP platform, test it on a public research

corpus, and report F-scores superior to prior Machine Learning algorithms.

We develop and test an innovative platform, the Adaptive Rules-Driven Architecture for

Knowledge Extraction (ARDAKE). Our software integrates the Unstructured Information

Management Architecture (UIMA) with a standard graph database to host our ontologies. We

develop extensions to the UIMA Ruta rules language to invoke and verify class relationships

from the ontology. Other extensions include computing additional text metrics useful in

integrating conditional, statistical, and semantic distances for token-class matching. We also

develop a new iterative n-grams algorithm to combine matching rules and optimize F-scores

and area under the Receiver Operating Characteristic (ROC) curves. We propose a new pie-

chart style to facilitate visualization of annotation performance evaluation. These components

are integrated within a graphical interface allowing domain experts to visually compose rule

sets within hierarchies of varying complexity, score and benchmark their relative performance,

and improve them by integrating additional ontology sources.

Our platform is tested on a particular use case in the health sciences: the Population,

Intervention, Control, and Outcome (PICO) medical literature analysis methods. We show that

our platform can efficiently and automatically produce parsimonious rule sets, with higher F-

scores on the P and I classes than prior authors using machine learning algorithms.

XII

TABLE OF CONTENTS

Page

FOREWORD ... V

ACKNOWLEDGMENT.. VII

RESUME ... IX

ABSTRACT ... XI

TABLE OF CONTENTS .. XIII

LIST OF TABLES .. XVII

LIST OF FIGURES ... XIX

LIST OF ABBREVIATIONS .. XXIII

CHAPTER 1 Introduction..1

1.1 Problem Statement ...1

1.2 Integrating Text Mining and Semantic Web Technologies ...3

1.3 Research Objectives ...4
1.4 Structure of the Thesis ...4

CHAPTER 2 Literature Review ..7
2.1 Chapter Overview ..7
2.2 Research Questions ..9

2.3 What is an Annotation? ..10
2.4 Natural Language Processing and Text Annotation Performance10

2.5 Semantic Annotations ..13
2.6 Performance Evaluation Metrics ..14

2.6.1 Confusion Matrix .. 15
2.6.2 F-Score .. 15

2.6.3 Accuracy, Sensitivity, and Specificity .. 17
2.6.4 Receiver Operating Characteristics (ROC) ... 17
2.6.5 Area Under the ROC Curve (AUC) .. 19

2.7 Integrating Semantic Web Technologies for Annotation ..19
2.7.1 XML and XML schemas .. 20
2.7.2 RDF ... 20
2.7.3 RDF serialization .. 22
2.7.4 RDF Graphs .. 22
2.7.5 RDFS... 23

XIV

2.7.6 OWL and OWL2... 24
2.7.7 Semantic Reasoners .. 25
2.7.8 Triple stores .. 25

2.8 Platforms and Standards for Annotation Rules and Pipelines26
2.8.1 GATE and GATE-based Platforms .. 26
2.8.2 UIMA and UIMA-based Platforms .. 27

2.8.2.1 Ruta (Formally TextMarker).. 28
2.8.2.2 U-Compare and Taverna .. 29

2.8.2.3 IBM LanguageWare... 29
2.9 Choosing the Right Annotation Platform ..30

2.10 Research Challenges in Knowledge Extraction ...31

2.11 Chapter Summary ..34

CHAPTER 3 Objectives and Methodology ...37
3.1 Chapter Overview ..37

3.2 Research Objectives ...37
3.3 Research Procedure ..39

3.3.1 Study the domain .. 42

3.3.2 Define/understand KE requirements ... 42
3.3.3 Find or Create a Corpus (Training and Test sets) 42

3.3.4 Create a database to store the training data and your results 43
3.3.5 Visualize and analyse your training data and test results 43
3.3.6 Create Elementary Rules (Typically using a visual rules editor) 44

3.3.7 Run elementary inclusion and exclusion rules on corpus and store results

in database ... 44
3.3.8 Visualize and analyse test results to optimize elementary rules 45
3.3.9 Look for the best rules combination based on results 45

3.4 Chapter Summary ..46

CHAPTER 4 N-Gram Algorithms ...47

4.1 Chapter Overview ..47
4.2 What are N-Grams ...48
4.3 N-Grams Limitations ...48
4.4 Mitigating n-grams limitations ..48
4.5 Proposed Algorithms ...49

4.5.1 N-Grams Tree generation ... 52

4.5.2 Rules auto generation from N-Grams Trees ... 55

4.6 Improving Annotation Results Using n-grams Inclusion and Exclusion Rules55
4.7 Chapter Summary ..56

CHAPTER 5 Prototype ..57
5.1 Chapter Overview ..57
5.2 Prototype Requirements ...57
5.3 Prototype Architecture ...58

5.3.1 The Corpus Extractor .. 59

5.3.2 The Corpus Transformer ... 60

XV

5.3.3 The Corpus Loader ... 61
5.3.4 The Corpus Analyser .. 62
5.3.5 The Rules Composer ... 62

5.3.6 The Ruta Generator ... 65
5.3.7 The Rules Results Analyser .. 66
5.3.8 The Rules Combiner ... 68

5.4 The ARDAKE Database ..70
5.5 Main functionalities ...73

5.5.1 Rules structures ... 73
5.5.2 Rules elements .. 74

5.5.2.1 Patterns ... 74

5.5.2.2 Conditions .. 75
5.5.2.3 Actions ... 76

5.5.3 Rules examples ... 78

5.5.3.1 Basic Rules... 78
5.5.3.2 Advanced Rules ... 80

5.6 Interfaces and Extensions to the UIMA Ruta Language ...83

5.6.1 Pattern Extensions ... 84
5.6.2 Condition Extensions .. 90

5.6.3 Action Extensions ... 90
5.7 Chapter Summary ..91

CHAPTER 6 Corpus Preprocessing ..93

6.1 Chapter Overview ..93

6.2 Finding the Right Corpus ...93
6.3 EBM PICO ...94
6.4 NICTA-PIBOSO Corpus ...95

6.5 Downloading and Preparing abstracts for the PIBOSO corpus96
6.6 Importing Abstracts and Sentences into the ARDAKE database97

6.7 Importing the PIBOSO Manual Annotations into the ARDAKE database98
6.8 Importing ARDAKE/UIMA Annotations into the ARDAKE database99
6.9 Chapter Summary ..99

CHAPTER 7 Data Analysis ...101
7.1 Chapter Overview ..101

7.2 Studying the PIBOSO Domain and Training Set ..101

7.3 Using the ARDAKE Corpus Analyser ..103

7.4 Visualizing and Analyzing the PIBOSO Training Set ...106
7.5 Chapter Summary ..119

CHAPTER 8 Rules Development ..121
8.1 Chapter Overview ..121
8.2 Building the PIBOSO Elementary Rules in ARDAKE ...121
8.3 Running the Elementary Rules ..126
8.4 Chapter Summary ..128

XVI

CHAPTER 9 Evaluation ..129
9.1 Chapter Overview ..129
9.2 Measuring the performance of rules ..129

9.3 Creating, Visualizing, Analyzing, and Optimizing the Elementary rules for Population

and Intervention ...130
9.3.1 Population annotation based on business rules 130
9.3.2 Population annotation based on statistical rules 132
9.3.3 Population annotation based on inclusion and exclusion n-gram tree rules

... 134
9.3.4 Population annotation based on semantic rules 136

9.4 Generating the best rules combination ...137

9.5 Benchmarking with Machine Learning Algorithms ..139
9.6 Chapter Summary ..140

CHAPTER 10 Conclusion ...141

10.1 Fulfillment of Research Objectives ...141
10.2 Research Contributions ..143
10.3 Significance..144

10.4 Limitations ...146
10.5 Application Potential ...147

10.6 Related Works ..148
10.7 Future Research ...148

ANNEX I Ruta Script Generated by ARDAKE for Population Annotations151

BIBLIOGRAPHY ..157

LIST OF TABLES

Page

Table 2.1: A Confusion Matrix ..15

Table 2.2 : Most Common RDF Serialization Formats ...22

Table 2.3: Comparison of NLP architectures from [23] ..30

Table 2.4: Rule-based KEFUD Challenges ...32

Table 3.1: List of Research Objectives ..38

Table 5.1: Equivalent Ruta for rules in Figure 5.13 ..80

Table 5.2: Ruta script generated by ARDAKE for rules in Figure 5.1482

Table 5.3: The ARDAKE Annotation Upper Ontology ..86

Table 5.4: The Object Properties in the ARDAKE Annotation Upper Ontology87

Table 5.5: ARDAKE generated Ruta script for the Address ontology89

Table 5.6: ARDAKE Requirements ..91

Table 6.1: PIBOSO Annotations Counts ...98

Table 7.1: Subset 1 of the ARDAKE Corpus Analyser results ...103

Table 7.2: Subset 2 of the ARDAKE Corpus Analyser results ...105

Table 7.3: SQL snippet for common Population and Intervention annotations117

Table 7.4: SQL snippet for common Population and Intervention annotations by sentence

position ...117

Table 7.5: Common Population and Intervention annotations by sentence position118

Table 8.1: UIMA Ruta script snippet generated by ARDAKE ...126

Table 9.1: Output produced by the ARDAKE Rules Combiner ..138

Table 9.2: Population and Intervention annotation results ..140

Table 10.1: Fulfillment of Research Objectives ..141

LIST OF FIGURES

Page

Figure 2.1: NLP chunking..12

Figure 2.2: The ROC Curve - Modified from [3; 4]. ...18

Figure 2.3: An RDF Graph ..23

Figure 3.1: Our KEFUD process (green and black) and how it maps to CRISP-DM (in

blue) ...41

Figure 4.1: The ARDAKE Corpus Analyser ...50

Figure 4.2: The tree representation for Code Snippet 2 ...54

Figure 5.1: The ARDAKE architecture ...59

Figure 5.2: The ARDAKE Corpus Loader ..62

Figure 5.3: The ARDAKE Annotation Rules Composer...63

Figure 5.4: ARDAKE properties grid for an annotation action ...65

Figure 5.5: R. 1- High Precision-Low Recall ..67

Figure 5.6: R. 2- Low Precision-High Recall ..67

Figure 5.7: Results of Rule1 AND Rule2 ..68

Figure 5.8: Results of Rule1 OR Rule2 ...68

Figure 5.9: Calculating the results of R1 OR R2 ...69

Figure 5.10: Results-Based rules combiner ...70

Figure 5.11: The ARDAKE database schema ...71

Figure 5.12: Properties for the "Mark fast as" action ..77

Figure 5.13: Age and Age Range rules in ARDAKE ..79

Figure 5.14: ARDAKE rules for PIBOSO Population sentence candidate annotations81

Figure 5.15: Properties grids for rules in Figure 5.14 ..82

XX

Figure 5.16: The main rule related classes in ARDAKE ...84

Figure 5.17: The ARDAKE annotation upper ontology ..85

Figure 5.18: The Address ontology ...88

Figure 5.19: Ontology pattern for Address ..89

Figure 7.1: The Population Characteristics class and its subclasses in MeSH102

Figure 7.2: PIBOSO annotations counts in structured and unstructured abstracts107

Figure 7.3: Stack Bar – PIBOSO annotations in structured and unstructured abstracts108

Figure 7.4: PIBOSO sentences breakdown by their position within abstracts109

Figure 7.5: Stacked bar – PIBOSO sentences breakdown by their position within

abstracts..110

Figure 7.6: PIBOSO sentences breakdown by their length ...111

Figure 7.7: Stacked bar – PIBOSO sentences breakdown by their length112

Figure 7.8: PIBOSO sentences breakdown by their position in structured/unstructured

abstracts..113

Figure 7.9: Stacked bar – PIBOSO sentences breakdown by their position in

structured/unstructured abstracts ...114

Figure 7.10: PIBOSO annotations breakdown by their sentence length in

structured/unstructured abstracts ...115

Figure 7.11: Stacked bar - PIBOSO sentences breakdown by their length in structured and

unstructured abstracts...116

Figure 8.1: Age Rule (A) and Age Indicator Rule (B) in ARDAKE122

Figure 8.2: Age Range Rules in ARDAKE ...122

Figure 8.3: Population Sentence Candidate Rule in ARDAKE ...123

Figure 8.4: PIBOSO Diseases Annotation Rule in ARDAKE ..124

Figure 8.5: ARDAKE Rule to Identify Sentences at Population Position125

Figure 8.6: Mark Score Action for Sentences Containing PIBOSO Disease Annotations125

Figure 9.1: Population annotation results based on age related rules131

XXI

Figure 9.2: Population annotation results based on gender ...132

Figure 9.3 : Population annotation results based on statistical rules133

Figure 9.4: Results of a Population annotation rule based on unigrams from the Training

set ...135

Figure 9.5: Results of a Population annotation rule based on unigrams from the Test sets ..135

Figure 9.6: Results of a Population annotation rule based on unigrams from the Training and

Test sets ..136

Figure 9.7: Annotation results based on Disorder subclasses in the MeSH ontology.137

Figure 9.8: The ARDAKE Rules Combiner ..138

LIST OF ABBREVIATIONS

AAE: Aggregate Analysis Engine

AE: Analysis Engine

AI: Artificial Intelligence

ALTA: Australasian Language Technology Association

ANNIE: A Nearly-New Information Extraction

ARDAKE: Adaptive Rules-Driven Architecture for Knowledge Extraction

AUC: Area Under the ROC Curve

BLOB: Binary Large Object

CART: Classification and Regression Trees

CREOLE: Collection of REusable Objects for Language Engineering

CRISP-DM: CRoss-Industry Standard Process for Data Mining

DAML: DARPA Agent Manipulation Language

DM: Data Mining

EBM: Evidence Based Medicine

ETL: Extraction, Transformation, and Loading

FN: False Negatives

FP: False Positives

GATE: General Architecture for Text Engineering

IDF: Inverse Document Frequency

JAPE: Java Annotation Patterns Engine

KE: Knowledge Extraction

XXIV

KEFUD: Knowledge Extraction From Unstructured Data

LHS: Left Hand Side

MeSH: Medical Subject Headings

ML: Machine Learning

NCBI: National Center for Biotechnology Information

NE: Named Entity

NER: Named Entity Recognition

NICTA: National Information Communications Technology Australia

NLM: National Library of Medicine

NLP: Natural Language Processing

NN: Neural Network

OIL: Ontology Interchange Language

RDF: Resource Description Framework

RDFS: RDF Schema

RHS: Right Hand Side

ROC: Receiver Operating Characteristics

SCA: Service Component Architecture

TN: True Negatives

TP: True Positives

UIMA: Unstructured Information Management Architecture

URI: Universal Resource Identifier

XML: eXtensible Markup Language

CHAPTER 1

Introduction

1.1 Problem Statement

Unstructured data has been growing exponentially for more than a decade with no indication

that this trend is going to change in the foreseeable future. According to many studies and

statistics, unstructured data represents nearly 80% of all corporate data. Yet, organizations still

invest a lot more efforts and resources into data mining to extract knowledge from data

structured in relational databases. This is mainly due to the simplicity of extracting knowledge

from structured data compared to extracting knowledge from unstructured data. Data mining

and visualization tools have evolved over the last twenty years to help, less technical, business

users analyse and visualize structured data to gain quick insights and see useful trends.

It is safe to assume that the amount of knowledge embedded in unstructured data is far bigger

than what exists in structured data. This can be justified by two properties of unstructured data

that are the abundance of unstructured data (medical and non-medical research articles and

results, twitter, Facebook, e-commerce feedback, etc.) and the amount of knowledge (implicit

and explicit semantic information and relationships) that can be encoded/hidden in even small

chunks of unstructured data (short tweets from leaders, politicians, scientists, etc.). These very

two properties are unfortunately what make Knowledge Extraction From Unstructured Data

(KEFUD) particularly challenging.

Natural languages are extremely expressive, allowing domain experts to express and describe

domain knowledge including their findings and results in a way that other domain experts can

understand and act on. Humans are good in identifying and relating concepts, emotions,

actions, and facts described in naturel languages but are limited when it comes to the number

of facts and concepts they can relate and analyze simultaneously. Computers, on the other

hand, can efficiently relate and analyze millions of concepts and facts simultaneously, as long

as these concepts and facts are formally defined in a way that a computer software can interpret.

2

Object-oriented programming languages makes it possible for software developers to define

concepts and facts as well as the relationships and interactions between different concepts.

However, domain expert cannot use programming languages to describe their domain

knowledge and knowledge is produced at a much higher rate than what software developers

can handle.

What makes things more complex is the large skillset gap and incompatible thinking between

developers and domain experts which usually requires involving business analysts to act as

middlemen and fill in this gap. Engaging developers and business analysts to capture all

domain knowledge in software applications is impractical and has a cost that many businesses

cannot financially afford. Another way to make knowledge available for computers to access

and act on is to encode this knowledge using a formal language that a software (reasoner) can

interpret. A reasoner for a formal language is a software program that has code to handle all

keywords (vocabulary) and rules (grammar) of this language. Therefore, the reasoner’s

complexity increases with the increase of the language complexity and expressive power.

Natural languages are extremely high expressive making it impossible to write interpreter

(reasoners) for even one language. Many formal languages with different expressive powers

were defined for knowledge representation. Tools were also developed to allow creating and

managing knowledge encoded using these formal languages.

While this is easier for domain experts than using programming languages, it is still too

complex for non-technical people to learn and use formal languages. Data engineers and

business analysts would still be required to convert domain knowledge into formal languages

that computers can interpret and act on. Again, the amount of existing and new knowledge

described in natural languages exceeds by far the capacity to encode all this knowledge in a

formal language. Natural Language Processing (NLP) lets domain experts describe their

knowledge using natural language and provides tools to process the text in order to identify

knowledge or actionable data usable by computer software. NLP helps determining the

structure and finding Named Entities (NE) in natural language sentences but is not enough by

itself to identify actionable information since it deals mostly with the linguistic aspect of the

3

text being analysed. NLP can be ineffective and difficult to use in some domains where special

terminologies and abbreviations or where languages other than English are used.

1.2 Integrating Text Mining and Semantic Web Technologies

NLP based on machine learning algorithms, and semantic web technologies focused on

ontology and reasoning, are two approaches that have found tremendous success. Countless

applications have found their way into all sectors of the economy and become generic and

well-accepted technologies, such as: email filtering and spam detection, semantic indexing and

search, automatic translation and summarization, question-answering systems, user profile

associations and recommendations, etc.

Rule-based methods to identify actionable information and extract knowledge directly from

unstructured data can be precise and efficient. However, languages used to create these rules

are too complex even for advanced software developers. Furthermore, most rule-based

languages focus on the linguistic features and partially or completely ignore the semantic

dimension of the data.

The increasing demand for more diverse applications of text analytics creates opportunities for

improving the performance and reliability of these systems, and make them ever more versatile

to address an ever-expanding variety of unstructured contents. For that purpose, combining

NLP, semantic, and rules-based approaches present major advantages, and compensate for

their respective weaknesses. For example, while bag-of-words techniques remain the most

efficient and effective for simple texts (e.g., email), ontology-driven tagging provides for the

most exhaustive coverage of potential relations among text patterns, even in higher complexity

texts. As well, even if semantic rules can be most formal representation of a text structure,

ensuring the right rules are used among an exponential number of combinations still remains

a computationally challenging task.

Combining these technologies is in theory feasible, but requires significant development

capabilities, and testing before confirmed reliability. Therefore, it is no surprise that such

4

integrated solutions have remained mostly at experimental level, lacking sufficient

performance to find commercial applications.

1.3 Research Objectives

Our thesis addresses these many challenges by focusing first on a key requirement often

neglected in this research area: making text analytics engines more user-friendly. With that in

mind, we developed a prototype named Adaptive Rules-Driven Architecture for Knowledge

Extraction (ARDAKE), providing first an interface for domain experts to seamlessly and

collaboratively develop text mining rules. These are then executed, scored, and combined into

pipelines or processes using an open source NLP backend, integrated with a graph database

and rules language. Once the optimal combination of rules has been found and recommended

by the system, it can then be applied to annotate text corpora, reusing as well existing

annotators. Our implementation uses the Unstructured Information Management Architecture

(UIMA) and the Ruta annotation rules language, to which we added semantic integration

extensions.

To demonstrate the effectiveness of our approach, we used a text corpus that was extensively

studied using machine learning. We imported the PIBOSO dataset maintained by NICTA in

Australia, which had been the focus of a competition at the Australasian Language Technology

Conference for several years. All prior authors used various ML tactics to improve sentence

classification in a set of 1000 abstracts from the medical literature focused on a single disease

(i.e., spinal cord injury). Our results outperformed those obtained by most state-of-the-art ML

algorithms used in the ALTA-NICTA PIBOSO contest confirming the simplicity and the

effectiveness of our approach as well as the potential of integrating text mining and semantic

annotation.

1.4 Structure of the Thesis

This thesis is structured in 10 chapters. In chapter 2, we review the foundations of text mining

and classification performance metrics, as well as define core concepts of semantic web

technologies and popular platforms, proposing to integrate both approaches to solve

performance issues with complex text corpora. Chapter 3 presents the objectives and research

5

procedure, focusing on the choice of our demonstration corpus and establishing conditions for

the successful evaluation of our approach. We propose in chapter 4 an n-gram algorithm to

automatically generate annotation rules sets, which are further used within our application

along with user generated rules. Our prototype is described at length in chapter 5, explaining

especially the operation of our end-user interface and its interaction with the back-end

annotation platform and rules language. Chapter 6 defines the application domain of our

demonstration, which is sentence classification of medical journal abstracts, and details the

many steps to pre-process and prepare the dataset for our annotation platform. Our approach

is tested and results are reported in chapters 7, 8, and 9, dealing respectively with data analysis,

rules development, and annotation performance scores. Our conclusion in chapter 10

summarizes the contributions and limitations of our thesis, and outlines a future research

program in this area.

CHAPTER 2

Literature Review

2.1 Chapter Overview

Computer systems and devices have gone a long way in providing novel services and breaking

new records in the last decade. After almost dropping the Artificial Intelligence (AI) dream, to

build machines and systems that outsmart humans, at the end of the last century, AI was revived

by major advances in increasing the storage capacity and computational power of computers

as well as the introduction of new standards, platforms, tools, and libraries to resolve specific

issues that undermined the AI success in the past. A major goal of AI is to have systems, agents,

or devices that can learn and become smarter over time. Learning is done by acquiring data

from different data sources (such as knowledge bases, text, images, videos, etc.), analyzing the

data to identify actionable information that can be used to enrich knowledge bases and to make

decisions. This requires high capacity and efficient storage devices, standards to represent and

exchange knowledge, annotation techniques and tools to identify actionable information in

data read from data sources as well as tools that can act on identified information to help

enriching knowledge bases, making recommendations, or even take decisions.

High Capacity and efficient storage is important to store and access data from which intelligent

systems can learn or analyse to make recommendations and decisions. Storage is not an issue

anymore after the introduction of extremely high capacity and high-speed storage devices.

Cloud services and Hadoop pushed the storage limit even higher and eliminated the concerns

about data size especially for unstructured data. The I/O overhead that used to kill applications’

performance in the past was greatly reduced with powerful new technologies and parallel

read/write operations.

Since 2000, many efforts were made to create higher expressive knowledge representation

semantic languages with acceptable computational complexity. Those efforts resulted first in

merging the DARPA Agent Manipulation Language (DAML) and the Ontology Interchange

Language (OIL) into one language known as DAML+OIL that became a layer on top of the

8

existing Resource Description Framework (RDF) and RDF Schema (RDFS) knowledge

representation languages. DAMPL+OIL later inspired the creation of the OWL language in

2004. In 2009, OWL2 which is a newer and more expressive version of OWL became a W3C

recommendation. OWL2 is supported by editors such as Protégé along with visualization

plugins and many plugins for reasoning and semantic inference such as Pellet, RacerPro,

FaCT++, and HermiT.

While many studies were done on annotation techniques and tools to identify actionable

information in data sources, the results are still far from being satisfactory especially with

unstructured data [1]. This demonstrates the need for doing more research in this area in order

to improve the performance and efficiency of annotation tools especially with the fast and

steady increase of unstructured data. [2] shows the great need for more research in order to

advance the state-of-the-art of rule-based information extraction from unstructured data.

According to many statistics, unstructured data, mostly text, account for over 80% of

organizations data and is doubling in size every 18 months [3; 4]. Unstructured data often

include large amounts of information that could be crucial for businesses and organizations.

Most organizations today recognize the importance of unstructured data and consider it an

important asset. Organizations that employ effective methods for extracting information from

unstructured data and act upon this information are likely to have a big competitive advantage

over those who are not benefiting from unstructured data.

Manual information extraction is not an option nowadays given the huge amount of data

produced every day and even every second in some domains. The information extraction

process should therefore be automated and run by powerful servers with load balancing or in

the cloud in order to break down and distribute the heavy processing load.

Natural languages are not suitable for computers processing. Text written in natural languages

has lots of implicit, highly contextual, ambiguous, and imprecise information. Natural

languages are too large and allow expressing the same information in so many different ways

9

making it almost impossible to write parsers for natural languages. Natural Language

Processing (NLP) helps determining the structure and finding Named Entities (NE) in natural

language sentences. NLP can be used to improve the information extraction from natural

languages but is not enough by itself since it deals mostly with the linguistic aspect of the text

being analysed. For information extraction, chunks of data need to be properly identified and

labeled in a way that other systems can interpret and act on. NLP can be ineffective and

difficult to use in some domains where special terminologies and abbreviations or where

languages other than English are used.

A mandatory step in enabling computer systems extracting and analyzing information from

unstructured data is to map this unstructured data or portions of it into elements of a knowledge

representation language that computer systems can parse and understand. This mapping is an

example of text annotation. The knowledge representation language used for annotation should

be expressive enough to allow representing (expressing) as much knowledge as needed.

However, increasing the expressiveness also increases the computational complexity of the

language and makes it harder to write parsers (reasoners) for it. It is therefore important to

maintain a balance between the expressiveness and the complexity of knowledge

representation languages used for annotations. Manual annotation is tedious and time

consuming. It is possible to do manual annotation on a small scale but, in most cases, automatic

annotation is required due to the amount of unstructured data being annotated.

2.2 Research Questions

Knowledge hidden in unstructured data may help finding root causes or even cures for some

major illnesses; stop crimes, attacks, and suicide attempts; or give big competitive advantages

to organizations. The large amount of crucial knowledge buried inside unstructured data

(especially text), the complexity of extracting this knowledge either manually or using

currently available tools, and the limited success of current KE tools in extracting the desired

knowledge raise a number of research questions.

10

 What can be done to improve the efficiency of KE tools so that more useful information

and less noise is extracted from unstructured data, mostly text, that represents more

than 80% of all data?

 Are current KE tools suitable for domain experts who can best describe the kind of the

knowledge they are looking for, what properties help identifying the existence or the

absence of certain knowledge, and how to use the knowledge when found?

 How can we reduce the complexity of KE tools, make them easier to use, and make

them available to more users including non-technical domain experts?

 Is it possible to maintain large knowledge bases using currently available tools or

should automatic knowledge base enrichment be used? What role can annotation tools

play in automatic knowledge base enrichment?

We will answer these questions and more in the next chapters of this thesis.

2.3 What is an Annotation?

The annotation process is the act of creating annotation objects. Like metadata, an annotation

object is a data that describes other data. [5] defines three types of annotations (Informal,

Formal, Ontological) as a tuple (as, ap, ao, ac) where as is the subject of the annotation, ap is the

predicate of the annotation, ao is the object of the annotation, and ac is the context in which the

annotation was made. The differentiation factor between the three types of annotations is the

type of the different elements of the annotation tuple. For informal annotations, as, ap, ao, and

ac are textual label which makes their automatic interpretation difficult. In formal annotations,

as, ap, ao, and ac are Universal Resource Identifiers (URIs) allowing for more consistency and

automation but remaining limited on reasoning and deriving more knowledge. Full automation

and deriving more knowledge beyond what is found in a corpus is possible with semantic

annotations where, as, ap, ao, and ac are concepts in ontologies as described in section 2.5.

2.4 Natural Language Processing and Text Annotation Performance

Knowledge Extraction/discovery from textual data is an incremental process that starts with

identifying small bits and pieces then examines the different relationships amongst them in

11

order to come up with potential conclusions. Some of these conclusions constitute the input

for even bigger conclusions and discoveries. This is in line with the human nature of extracting

knowledge from text by reading characters and words in sentences and paragraphs, linking

words to concepts and relationships, then matching these concepts and relationships with

concepts and relationships acquired in the past in order to come up with conclusions.

A number of text processing, linguistic, and semantic techniques is needed in order to simulate

and mimic the human way of extracting knowledge. We first need tools to match and identify

specific words or sequence of characters (patterns) in text. Tools are also needed to link

patterns to concepts and relationships in predefined knowledge bases in order to infer more

knowledge.

Mapping patterns to concepts and relationships is not always simple and straightforward.

Depending on the context, the same pattern can be mapped to completely different concepts.

NLP constitutes a powerful tool for recognizing named entities and identifying linguistic

relationships between different patterns but NLP alone does not give enough semantic

information for knowledge extraction. Similarly, semantic annotations are useful in extending

the knowledge far beyond what can be found in the text but this cannot be accomplished

without proper pattern matching and NLP to determine the context. The following example

shows that even simple knowledge extraction tasks cannot be properly accomplished without

patterns matching, NLP, and semantic annotations.

Consider the following two sentences:

“Smoking can cause lung cancer” and “Lung cancer can be caused by smoking”

Pattern matching and NLP help creating annotations and understanding the structure of

sentences which can lead to more accurate results. As shown in Figure 2.1 below, with NLP,

it is possible to recognize the smoking and lung cancer as nouns and to establish the type and

the direction of their relationship through the verb “cause”. However, without linking this to

12

concepts in a knowledgebase, we limit the knowledge that we can discover and the questions

we can answer.

Figure 2.1: NLP chunking

13

Knowledge and answers for the questions below cannot be obtained from the above two

sentences without using a knowledgebase or an ontology. The explanations in parenthesis,

beside each question, show how terms from each question can be linked to concepts in the

Medical Subject Headings (MeSH) ontology in order to derive more knowledge.

- What diseases are caused by smoking? (“lung cancer” is a subclass of “disease”)

- What diseases are caused by tobacco use? (“smoking” is a subclass of “tobacco use”)

- What behavior can lead to lung cancers/cancer? (“tobacco use” is a subclass of

behavior)

- Does smoking affect the respiratory system? (“lung” is a subclass of “respiratory

system”)

- Etc…

Knowledge acquiring is different from knowledge extraction retrieval/discovery/uncovering

and is more concerned with building knowledge bases by learning new concepts and new

relationships. Knowledge acquiring can be theory-based or discovery-based. With Theory-

based knowledge acquiring, a number of concepts and their relationships are assumed and tools

are used to prove or disprove the theory based on fact data. Discovery-based knowledge

acquiring comes more in the form of querying and filtering data then examining the results in

order to learn new concepts and relationships.

Given the number of techniques required for knowledge extraction, rich and flexible tools are

needed to help end users (especially less technical domain experts) with this complex task.

Unfortunately, rich and flexible tools can quickly become unusable due to their complexity

and the number of available options that users have to learn and master. We should therefore

pay a close attention to keeping knowledge extraction tools as simple and user friendly as

possible.

2.5 Semantic Annotations

In order to define semantic annotations, we first need to define what an ontology is. Tom

Gruber, who was credited with giving the term ontology a technical definition for computer

science, defines the ontology in the context of computer and information sciences as “An

ontology defines a set of representational primitives with which to model a domain of

14

knowledge or discourse. The representational primitives are typically classes (or sets),

attributes (or properties), and relationships (or relations among class members). The

definitions of the representational primitives include information about their meaning and

constraints on their logically consistent application” [6]. In section2.7, we present the

evolution of ontology languages and discuss their importance in knowledge representation and

knowledge extraction.

The semantic annotation is the process of describing data using concepts in ontologies. In other

words, semantic annotation is done by linking chunks of data to concepts, instances, and

relationships defined in ontologies. Reasoning can then be done on those concepts and

relationships to infer even more implicit annotations. The authors of [7] used semantic

annotations to introduce and define the semantic web. Nowadays, semantic annotations are

perceived as an enabler technology for the semantic web and semantic web services. With

semantic annotations, more accurate information retrieval can be achieved in semantic web.

The semantic annotation of web service descriptions creates what is known as semantic web

services and enable their automatic compositions. This is possible because with semantic

annotations, systems are able to interpret the meanings of web services and understand their

functionalities assuming that those services are properly annotated [8; 9].

2.6 Performance Evaluation Metrics

Many evaluation methods exist for measuring the performance of machine learning, statistical,

and rule-based knowledge extraction models. F-Score, Accuracy, ROC, and AUC are amongst

the most widely used methods for comparing and measuring the performance of KE models.

Studies show that no single method fits all. While F-Score and Accuracy are considered good

for evaluating discrete classifiers (classifiers that class instances as either belong to the class

or do not belong to the class), they are criticized for their dependency on the proportional

distributions of instances in and outside the class. This is because their formulas take into

consideration both positive and negative results at the same time. ROC and its associated AUC

method do not suffer from this issue as they are based on False Positive (FP) rate and True

Positive (TP) rate that do not mix positive and negative results [10]. When previous studies are

15

considered as benchmarks and current results are to be compared with the results of those

studies, the same evaluation metrics must be used.

2.6.1 Confusion Matrix

A confusion matrix (Table 2.1) is not a performance evaluation metric by itself but it

constitutes the basis for many commonly used performance evaluation metrics including

Accuracy and F-Score.

Table 2.1: A Confusion Matrix

 Retrieved Not Retrieved

Relevant True Positives (TP) False Negatives (FN)

Irrelevant False Positives (FP) True Negatives (TN)

For an IR or KE system or an algorithm that returns the results for a given query, the confusion

matrix shows the following four useful evaluation metrics:

 True Positives (TP): The number of relevant results that were correctly identified as

relevant.

 False Positives (FP): The number of irrelevant results that were mistakenly identified

as relevant.

 True Negatives (TN): The number of irrelevant results that were correctly identified as

irrelevant.

 False Negatives (FN): The number of relevant results that were mistakenly identified

as irrelevant.

2.6.2 F-Score

The F-Score of a classifier is the harmonic mean of its precision and its recall. The precision

is the ratio of the TP results to the total number of retrieved results including the FP results as

16

in equation (1). The recall is the ratio of the TP results to the number of all relevant results

including FN ones as in equation (2). Equation (3) shows the formula for calculating the F-

Score of a classifier using its precision and recall.

FPTP

TP
precision




(1)

FNTP

TP
recall




(2)

recallprecision

recallprecision
ScoreF






2 (3)

An annotation/IR/IE tool or algorithm can be extremely precise but has a low recall. For

example, a tool that does not retrieve any irrelevant information but only returns one relevant

result out of thousands of relevant results gets 100% precision but a very low recall. Such a

tool can be useless for many applications where the priority is to retrieve more relevant results.

Similarly, a trivial annotation/IR/IE tool or algorithm that blindly returns all regardless of the

query will have a recall of 100% since it is returning all relevant information but its precision

will suffer a lot due to the large amount of irrelevant retrieved results. As per the above

formulas, the precision is directly proportional with TP and inversely proportional with FP.

The recall is directly proportional with TP and inversely proportional with FN. Therefore, the

focus should be on increasing the TP and reducing the FP when only the precision matters. To

get a better recall, the TP should be increased while decreasing the FN. In order to obtain a

better F-Score, one should try to retrieve more relevant results while, at the same time, reducing

the number of retrieved irrelevant results.

The F-Score is also known as the F1-Score or F1-Measure which is derived from a more generic

formula that allows putting more emphasis on either the precision or the recall base on the

value of  . The generic formula for Fẞ-Score is

17

recallprecision

recallprecision
ScoreF






)(
)1(

2

2




(4)

2.6.3 Accuracy, Sensitivity, and Specificity

Accuracy is widely used to measure the performance of binary classifications (i.e. whether or

not an instance belongs to a given class). It is the ratio of the number of instances properly

classified as TP or TN over the total number of tested instances. The Accuracy formula is:

FNFPTNTP

TNTP
Accuracy




 (5)

Other binary classification quality measurements that are widely used in bio and medical

applications are the Sensitivity and the Specificity. Like the Accuracy measure, both

Sensitivity and Specificity are defined in terms of TP, TN, FP, and FN as shown in the

following formulas. Unlike Accuracy that takes into account correct (both positive and

negative) classifications, Sensitivity measures the quality of positive classifications only while

Specificity measures the quality of negative classifications as shown in equations (6) and (7)

[11].

FNTP

TP
ySensitivit


 (6)

TNFP

TN
ySpecificit


 (7)

2.6.4 Receiver Operating Characteristics (ROC)

Receiver Operating Characteristics (ROC) (Figure 2.2) is a graph-based technique for

evaluating classifiers and visualizing their performance. ROC graphs are commonly used in

medical decision making as well as in the machine learning and data mining. Figure 2.2 shows

the curves corresponding to the 3 different classifiers A, B, and C.

18

Figure 2.2: The ROC Curve - Modified from [3; 4].

A ROC graph is a two-dimensional graph where the x-axis represents the FP rate (specificity

inverse) and the y-axis represents the TP rate (sensitivity). Discrete classifiers strictly classify

instances as either belonging or not belonging to a given class. Thus, a discrete classifier

produces a pair of (TP rate, FP rate) that maps to a single point on the ROC graph. Non-discrete

classifier such as Naïve Bayes and Neural Networks classify instances with a probability or a

confidence level. Since instances are not strictly assigned to a given class when using non-

discrete classifiers, a threshold must be used to discretize their results in order to map them to

points on the ROC graph.

19

2.6.5 Area Under the ROC Curve (AUC)

As the names implies, the Area Under the ROC Curve (AUC) refers to the area of the zone

below the ROC curve in a ROC graph. Figure 2.2 shows that classifier A has a larger AUC

than classifiers B and C despite the fact that A has the lowest TP rate or sensitivity. This is

because A has a much better specificity than B and C. This means that A has a much lower FP

rate. We can also see that C has an AUC of 0.5 (or 50% of the area of the square). This means

that predictions produced by C are not any better than random guessing despite the fact that C

has a very high TP rate. This can happen for a classifier that classifies all instances as instances

of type C1 regardless of their real class. This classifier would have the highest TP rate of 1 as

it successfully classifies all instances of C1. However, this same classifier also gets highest FP

rate of 1 for failing to classify all instances that do not belong to C1. The ROC curve for (1, 1)

coordinate on the ROC graph corresponds to the flat line diagonal of the square that translates

into a 0.5 AUC.

[12] proposes the following simple formula for estimating the AUC:

10

1000
2/)(

nn

nnnS
A




 (8)

where n0 and n1 are the number of positive and negative instances respectively and S0 is the

sum of ri, where ri is the rank of the ith positive example in the ranked list. [13] shows that AUC

is a better measure than accuracy in comparing learning algorithms.

2.7 Integrating Semantic Web Technologies for Annotation

While semantic annotations are primarily used to enable the semantic web and semantic web

services, nothing prevents from using them in other general-purpose or domain specific

systems. Any application that requires automation, advanced and precise search capabilities,

integration, or intelligence may benefit from the use of semantic annotations. The list of such

applications is endless and includes decision-support systems, search engines, e-Commerce,

healthcare and life sciences, and surveillance applications. Those systems and applications can

benefit, not only from semantic annotations, but also from other semantic web technologies

such as semantic rules, reasoning, semantic query languages like SPARQL, triple stores, and

20

so on. The following sub-sections show the evolution of modern knowledge representation

languages that were created to enable and support the semantic web technologies but can play

a key role in semantic annotation and knowledge extraction.

2.7.1 XML and XML schemas

XML was a big step forward toward storing data in both human and machine-readable format.

Data encoded in XML documents is machine readable (i.e. can be separated into different data

elements) but not machine-interpretable unless the structure and the definitions of tags are

considered in the application logic. This is because different people can use different XML

tags and different data types and formats to store the same data in XML formats. XML schemas

describe the structure and the data types of XML elements making it possible to implement

generic logic to interpret and validate any XML document that adhere to the defined schema.

This is possible because the generic logic is implemented based on the predefined schema and

not based on individual XML documents. XML schemas allow defining what data elements

and attributes can be used in respective XML documents. An XML schema also defines the

structure of data elements (nodes) in corresponding XML documents where child nodes are

contained in their parent nodes.

2.7.2 RDF

Besides defining the types and the parent-child elements relationship, XML schemas do not

define any semantic or standard way to characterize data elements or their relationships. In

plain XML, nodes <Description>, <xyz>, and <Disease> are semantically equivalent because

they are just nodes. When dealing with plain XML, the semantic of various nodes is defined at

the application level. As such, there is no standard way, using plain XML or even using an

XML schema, to denote a relationship between two concepts (ex.: Smoking causes Lung

Cancer). Plain XML and XML schemas are therefore not suitable for semantic annotations and

knowledge representation which requires describing concepts and relationships between

concepts in a formal and standard way. RDF remediates this problem by defining the semantic

21

of some elements and attributes making it possible to describe resources (especially web

resources) and to express the relationships between different resources in a standard way as

shown in the code snippet below.

Code Snippet 1

Any RDF enabled system understands that the above code snippet is to describe the resource

at URI “http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C17934” using resources

“Tabaco Smoking”, “http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C20134”, and

“http://purl.bioontology.org/ontology/PDQ/CDR0000040209” with the ‘label’, ‘subClassOf’,

and ‘causes’ relationships defined at the rdfs, rdfs, and rel namespaces respectively. The RDF

enabled system can also follow related resources and learn more about their properties and

relationships. This is how RDF enables linked data and the semantic web. The RDF semantic

model is based on triplets that represent data relationships in the form of <s, p, o> where s is

the subject, p is the predicate, and o is the object.

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE rdf:RDF[

<!ENTITY rdf 'http://www.w3.org/TR/rdf-syntax/'>

 <!ENTITY rdfs 'http://www.w3.org/TR/rdf-schema/'>

 <!ENTITY rel 'http://www.mydomain.org/relations/'>

 <!ENTITY nci 'http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#'>

 <!ENTITY bio 'http://purl.bioontology.org/ontology/PDQ/'>

]>

<rdf:RDF xmlns:rdf="&rdf;" xmlns:rdfs="&rdfs;" xmlns:rel="&rel;" xmlns:nci="&nci;"

xmlns:bio="&bio;">

 <rdf:Description rdf:about="&nci;C17934">

 <rdfs:label>Tabaco Smoking</rdfs:label>

 <rdfs:subClassOf rdf:resource="&nci;C20134"/>

 <rel:causes rdf:resource="&bio;CDR0000040209"/>

 </rdf:Description>

</rdf:RDF>

22

2.7.3 RDF serialization

The RDF/XML formant in code snippet Code Snippet 1 was the first standard RDF

serialization format but the wide adoption of RDF led to the support of many other RDF

serialization formats. Table 2.2 shows today’s most common RDF serialization formats.

Table 2.2 : Most Common RDF Serialization Formats

RDF serialization format Description

Turtle a compact, human-friendly format

N-Triples a simple, easy-to-parse, line-based format that is not as compact

as Turtle

N-Quads a superset of N-Triples, for serializing multiple RDF graphs

JSON-LD a JSON-based serialization mostly used in REST lightweight

web services

N3 or Notation3 a non-standard serialization that is similar to Turtle, but has

some additional features, such as the ability to define inference

rules.

2.7.4 RDF Graphs

A set of RDF triples can be represented as a directed labeled graph where the nodes represents

the subjects and the objects of the RDF triples and where the arcs represent the predicates

linking subjects to objects. Figure 2.3 shows the RDF graph for RDF Code Snippet 1.

23

Figure 2.3: An RDF Graph

2.7.5 RDFS

RDF provides a mechanism to describe domain-neutral metadata but does not define the

semantics of any domain application [14]. While RDF-enabled systems are able to detect

relationships between resources, those systems do not understand the semantics (meanings) of

the relationships and are therefore unable to act upon them or exploit them to derive more

knowledge or take further actions. In code snippet Code Snippet 1, the subClassOf relationship

does not mean anything, beyond being just a link between two resources, to an RDF-enabled

system. This RDF limitation led to the creation of many RDF extensions with richer semantics

and more expressiveness power such as the RDF Schema (RDFS) and OWL.

RDFS introduced a number of elements including (class, subClassOf, property, subPropertyOf,

domain, label, range, type) that can be used to define domain-specific classes (concepts) and

their properties. An RDFS enabled system reading code snippet Code Snippet 1 concludes that

the resource being described is labeled “Tabaco Smoking” and is a subclass of another concept

labeled “Smoking Behavior” which is in turn a subclass of a concept labeled “Personal

Behavior” and so on. This means that any property or logic that applies to “Smoking Behavior”

or “Personal Behavior” also applies to “Tabaco Smoking” as this latter is a subset of the

previous two. From an information or knowledge extraction perspective, it means that results

24

matching “Tabaco Smoking” should be returned when searching for “Personal Behavior”

which is not possible with pure syntactical pattern matching.

Despite its richness and expressive power, RDFS remains far from being sufficient to describe

and represent domain knowledge. Many basic constructs that are fundamental for knowledge

representation and extraction cannot be expressed in RDFS. This includes class conjunction,

disjunction, cardinality restrictions as well as properties constraints such as uniqueness,

inversion, and transitivity. OWL and its extension OWL2 were therefore introduced to

overcome the shortcomings of RDFS [15].

2.7.6 OWL and OWL2

OWL and OWL2 were created in response to the increasing demand and need for more

expressive languages allowing better and richer knowledge representation. Unfortunately, the

expressiveness has a costly price. The more expressive a language is, the higher is its

computational complexity. Some operators, such as the negation operator, are known for their

computation complexity that can be exponential. Writing parsers or reasoners is also harder

for the more expressive languages.

To maintain a balance between the expressiveness and the complexity, OWL 2 was broken

down into 3 different profiles or sublanguages where each profile trades some expressive

power for the efficiency of reasoning and is suitable for specific application scenarios.

OWL 2 EL: Mainly intended for applications employing ontologies with very large numbers

of properties and/or classes. OWL 2 EL is efficient for applications that require the recognition

of structurally complex objects. It has a reasoning complexity of PTIME-complete.

OWL 2 QL: Intended for applications that use very large volumes of instance data, and where

reasoning is mostly based on query answering. OWL 2 QL is suitable for representing database

schemas and has a reasoning complexity of NLogSpace-complete.

OWL 2 RL: is designed for applications that require scalable reasoning while maintaining the

highest possible expressiveness power. Its reasoning complexity is PTIME-complete.

25

2.7.7 Semantic Reasoners

A semantic reasoner or simply reasoner is an application that can interpret a set of facts,

typically defined in an ontology, and infer logical consequences that are implicit and may be

hard to identify manually especially in large ontologies. The standardization of OWL led to

the creation of a number of OWL and OWL2 reasoners. Pellet, FacT++, RACER, and HermiT

are among the best available OWL reasoners.

Given enough facts, a reasoner may reveal crucial implicit knowledge that are otherwise hard

to discover. For example, if a fact indicates that depression leads to smoking for individuals

with certain characteristics and another fact indicates that smoking causes lung cancer, a

reasoner can conclude that individuals with certain characteristics are more at risk to have lung

cancer if they have a depression. This looks like a trivial conclusion to make but it may be

impossible to recognize when looking into a large number of facts.

2.7.8 Triple stores

Triple stores are special graph databases for the storage and retrieval of RDF triples. They can

store billions of triples while maintaining extremely high read/write performance. An SQL-

like query language called SPARQL is used to query data in triple stores.

There are many commercial and free triple stores available today. Oracle Spatial and Graph

with Oracle Database 12c is the most powerful one and can load, infer from, and query up to

1.08 Trillion triples. AllegroGraph by Franz is another triple store that can handle up to 1

Trillion triples. Stardog 2.1 by Clark & Parsia can work with 50 Billion triples on a 32 cores

server with 256GB of RAM reaching load speeds of 500k triples/sec for 1 Billion triples and

more than 300k triples/sec for 20 Billion triples. Stardog offers a free community version that

does not require any licence fees and supports 10 databases with up to 25 Million triples in

each database. Google Knowledge Graph (previously FreeBase) is another interesting triple

store that can handle billions of triples.

26

More details on the performance numbers and machines used for testing different triple

stores can be found at: http://www.w3.org/wiki/LargeTripleStores.

2.8 Platforms and Standards for Annotation Rules and Pipelines

Efficient knowledge representation and sharing is not possible without defining common

standards to describe, serialize, and communicate the knowledge. A knowledge representation

standard must define how to describe simple and complex concepts as well as the relationships

between different concepts. When data is unstructured, it is hard for software systems to even

detect the boundaries and identify basic concepts. Delimiters and tags can be used to determine

the start and end of different data elements in unstructured documents creating a certain

structure in those documents. This makes unstructured documents more machine-readable.

2.8.1 GATE and GATE-based Platforms

The General Architecture for Text Engineering (GATE, ([16])) was first released in 1996 at

the University of Sheffield. GATE started as a Software Architecture for Language

Engineering and evolved into a family of language processing products and tools. The GATE

product family includes:

1. GATE Developer: an open source java-based integrated development environment for

language processing bundled with many Information Extraction and NLP plugins under

what is known as the Collection of REusable Objects for Language Engineering

(CREOLE). GATE developers can extend the CREOLE library with their own plugins

and use these plugins in their text processing workflows. The core CREOLE library

includes Information Extraction and NLP plugins such as ANNIE, LingPipe, OpenNLP,

and many NLP parsers and taggers.

2. GATE Teamware: a web-based management platform for collaborative annotation and

curation. It enables the coordination of efforts for a distributed team while monitoring the

progress and results in real-time. GATE Teamware allows viewing, and editing text

annotations remotely through a web browser. Users can load document collections, create

http://www.w3.org/wiki/LargeTripleStores

27

project templates, create projects based on existing templates, assign projects and roles to

specific users, monitor the progress of various projects, and generate project status and

progress reports.

3. GATE Mímir: a multi-paradigm information management index and repository that can be

used to index and search over text, annotations, semantic schemas (ontologies), and

semantic meta-data (instance data). It allows queries that mix full-text, structural, linguistic

and semantic queries and that can scale to gigabytes of text. Mímir provides indexing

infrastructure for annotated GATE documents. Users can submit documents to a Mímir

server for indexing. They can then run queries against the set of indexed documents.

4. GATE JAPE: the Java Annotation Patterns Engine (JAPE) is a finite state transducer that

operates over annotations based on rules and regular expressions. The GATE framework

allows running multiple JAPE transducers in sequence. This chaining allows later JAPE

transducers to use the output of earlier JAPE transducers in order to build more and more

complex annotations and incorporating more of the context (semantics) of the document

into the new annotations. The JAPE grammar consists of a set of sentences, each of which

containing a set of pattern/action rules. A JAPE rule has two sides: Left Hand Side (LHS)

and Right Hand Side (RHS). The LHS specifies the identified annotation pattern and may

contain regular expression operators (e.g. *, ?, +). The Right RHS indicates the action to

be taken on the matched pattern and consists of annotation manipulation statements.

2.8.2 UIMA and UIMA-based Platforms

Unstructured Information Management Architecture (UIMA, [17]) is a component architecture

and software framework implementation for the analysis of unstructured content like text,

video and audio data. For example, UIMA can be used to process business news and identify

entities, such as companies, owners, etc., as well as relationships among entities, such as

merger or acquisition.

The core of UIMA is the Analysis Engine (AE), a collection of Analysis Components (or

Annotators). A primitive AE contains only one Analysis Component, and the UIMA Software

28

Development Kit makes it easy to statically combine AEs to form an Aggregate Analysis

Engine (AAE). This is done through an XML descriptor where no code is required. For more

complex (non-sequential) annotation workflows, flow controllers can be inserted into an AAE

to determine the order in which the components of the aggregate are invoked. The UIMA

framework runs AEs by looping through their Analysis Components and calling their methods

in a well-defined order.

While creating primitive annotators is relatively simple, creating aggregate annotators that

require more than a simple sequential execution of their component annotators involves many

additional steps. These steps include writing and compiling the code that defines the actual

execution flow. This makes aggregate annotators harder to implement and maintain, and less

adaptable to changes because changing the execution flow requires code changing and

recompiling.

To further increase the adoption of UIMA and the reusability of annotators, it must be fairly

easy to create and modify aggregate annotators even when the execution flow of their

component annotators is complex. This can be achieved by automating the creation of

annotators’ execution flows based on domain-specific rules [18].

2.8.2.1 Ruta (Formally TextMarker)

Built upon UIMA, Ruta is an open source rule-based language for information extraction and

text processing tasks [19]. Knowledge engineers can create scripts of Ruta rules and execute

them to identify desired text patterns and create annotations.

Rules are built using a specialized representation language for knowledge formalization, with

the possibility of creating new annotation types and integrating them into a taxonomy. They

can either be extracted directly from unstructured sources or coded in the scripting rules

language. Each rule can be defined within a rule set or type, and associated with specific

patterns and actions. Ruta provides a rich set of patterns, conditions, and actions that can be

used to create annotation rules. What makes Ruta more interesting is its extension interface

29

that allows developers to enrich the language by adding more patterns, conditions, and actions.

The advantages of Ruta are undermined by its complex syntax as it is the case with all

information extraction rules. Providing a visual version of Ruta that is easy to use by non-

technical domain expert would unleash the power of Ruta and increase its adoption.

2.8.2.2 U-Compare and Taverna

U-Compare is an integrated text mining/natural language processing system based on the

UIMA Framework. U-Compare offers a GUI for easy drag-and-drop workflow (UIMA

component descriptor) creation, comparison by U-Compare parallel component, evaluation,

statistics, and visualizations. U-Compare workflows have the same limitations that UIMA

aggregate components have; that is, only linear fixed flow and language dependent flow are

available for use. For more complex execution flow, code is required.

The U-Compare integration within the generic workflow system Taverna offers more

capabilities by enabling more flexible and richer annotations and text mining workflows [20;

21]. However, those workflows are static Taverna workflows that cannot be reused by any

other UIMA compatible system.

2.8.2.3 IBM LanguageWare

IBM LanguageWare allows extending UIMA annotations using a rules engine. The

LanguageWare rules engine supports three kinds of matching rules:

 Break Rules: specify how documents are split into lexical components such as

paragraphs, sentences and tokens. A token can be anything from a word to a

punctuation symbol, a number, a currency, etc.

 Character Rules: these are character expressions used to match desired sequences of

characters such as postal codes, telephone numbers, email addresses, and so on. The

rules engine creates annotations when text sequences are found to match the character

expression.

 Parsing Rules: use textual patterns from custom dictionary entries and different parts-

of-speech, in addition to some previously created annotations.

30

LanguageWare allows adding features to the newly created annotation type by dragging and

dropping features from existing annotations. However, LanguageWare works only on already

annotated documents (for reusing existing annotators) and does not support features’

computations (only drag-drop of features is supported) nor does it allow Boolean conditions

for creating new annotations [22].

2.9 Choosing the Right Annotation Platform

With the abundance of available platforms and tools, it was hard to choose the right one to

work with. The choice was particularly difficult between GATE and UIMA as they both offer

rich and advanced annotation tools. After working with both GATE and UIMA, we came to

the conclusion that UIMA could better serve our research and is more user friendly. A survey

done in 2012 (Table 2.3) [23] showed that, except for some interchangeability, UIMA

supported all the GATE features. The same survey shows that UIMA supports many key

features that are not supported by GATE or the other platforms considered by the study.

Table 2.3: Comparison of NLP architectures from [23]

A particularly attractive feature the UIMA rule language (Ruta) is its compactness compared

to the GATE rule language (Jape) and other rule languages as clearly demonstrated in [24].

31

2.10 Research Challenges in Knowledge Extraction

Knowledge Extraction (KE) can be either rule-based or based on statistical or Machine

Learning (ML) Data Mining (DM) methods and algorithms. A hybrid approach using both

rules and ML for KE is also possible. Each approach has its advantages and disadvantages as

explained in the following paragraphs.

Rule-based KE is based on a set of rules that are mostly created and maintained manually using

a programming or a rule language. This is the main reason behind criticizing rule-based KE as

labor intensive and requiring specialized skills [2; 24; 25]. Resources with various skillsets are

required to create KE extraction rules. Domain experts are the best to describe most KE rules

since they know their domain rules and exceptions more than anyone else. However, most

domain experts do not have the necessary programming skills to write even simple KE rules.

Therefore, programmers are needed to create the rules and often business analyst are required

to facilitate communications between domain experts and programmers.

Rule-based KE is also criticized for being inefficient when analysing erroneous or incomplete

data. Data cleansing to fix erroneous and incomplete data has been extensively studied in the

last two decades and will not be covered in this thesis [26; 27; 28; 29].

Despite the inconveniences, rule-based KE has some significant advantages such as debugging

and explanation ability. In addition, most rules can be created without relying on training data.

Rule-based KE is crucial for industry practitioners but more research is needed to advance its

state-of-the-art [2].

ML algorithms can be either supervised or unsupervised. A supervised ML algorithm is trained

using a training data set where the results (output variable) have been pre-established. A typical

example of a training set is a list of past observations for temperature, humidity, air pressure

and other measurements that could indicate rain forecasts and an output variable indicating

whether or not it rained the next day. A supervised algorithm learns from the training data by

looking at variations and combinations in the input data that lead to a decision matching the

output variable in the training data. For the weather forecast example, the algorithm may

32

attempt to identify the patterns or the combinations of values or ranges that lead to a decision

on whether or not it will rain the next day.

Unlike supervised algorithms, unsupervised ML algorithms do not need the output variable in

the training set but most of them still require a training set to build their models. They often

look for similarities amongst the data being analysed and try to group similar elements

together. Many unsupervised ML algorithms exist today to serve different purposes such as

Market-Basket and Cluster analysis. Unsupervised algorithms are usually generic and don’t

have any prior knowledge about the domain or the data being analysed.

Depending on the algorithm, the output of the training exercise of a supervised ML algorithm

is a prediction model in the form of a set of rules, a decision tree, a Bayesian or a Neural

Network (NN) where the structure and the content of the model are mainly shaped by the

underlying training data. A good training set should accurately represent the test data or the

real data to be analysed by the prediction model generated by the ML algorithm.

ML KE algorithms are adaptable to various domains and eliminate the need to manually create

and maintain KE rules. Nevertheless, domain experts must dedicate significant time and efforts

to create and maintain training sets when such sets do not exist. Furthermore, using these

algorithms to create or retrain KE model requires ML expertise.

Our research is mainly concerned with rule-based KEFUD. Table 2.4 summarizes the rule-

based KEFUD challenges that we intend to address or minimize as part of our research.

Table 2.4: Rule-based KEFUD Challenges

Challenge Description

Creating and

maintaining

KEFUD rules

Building a KEFUD solution usually requires the creation of very

complex pattern matching models. When rule-based KEFUD is used,

a large variety of rules requiring different unrelated skillsets is needed

to match different kinds of patterns. Additionally, most existing rule-

33

based KEFUD solutions require defining rules in a script-like format

that requires advanced programming skills. This makes it near to

impossible for a single person to define all required rules even for a

relatively small KEFUD project. Maintaining these rules and adapting

them to changing business requirements is even a bigger challenge.

Creating semantic

rules based on

ontologies

A well-defined domain ontology constitutes a substantial part of the

Knowledge Base in any domain. Medical ontologies, for example,

contain the definitions of different illnesses and the relationships

between them. These can be linked with pharmaceutical ontologies

containing definitions for different kinds of medications, the illnesses

they treat, their possible side effects and so on. Domain experts should

be, or can easily become, familiar with their domain ontologies as they

contain knowledge that they already know or can quickly learn. The

big challenge for domain experts is to learn how to use the rich

knowledge embedded in their domain ontologies to extract, possibly

large amount of, valuable knowledge buried under huge piles of

unstructured (typically textual) data. On the other hand, it is usually

too hard for, even highly skilled, non-domain experts to grasp the

definitions and knowledge embedded in domain ontologies in order to

use them for KE. Big opportunities can be lost, resulting in poor KE

performance, if the concepts and knowledge of domain ontologies are

not properly utilized.

Determining the

right set of n-grams

to use for KEFUD

rules

As we show in details in CHAPTER 4, n-grams play a key role in

KEFUD when used properly. Many n-gram aspects such as the

length, frequency, and co-existence with other n-grams should be

considered when using n-grams for KEFUD. The challenge here is

to decide what n-grams to use when building KEFUD models or

rules. Many algorithms exist today for calculating the n-grams to

include in their KEFUD models. Most of these algorithms are based

on the frequency count of n-grams in a training set. They mainly rely

34

on the positive correlation between n-grams and the pattern in

question without taking full advantage of the negative and collective

n-grams correlation with the patterns of interest to improve the

quality of their pattern matching results.

Finding the best

combination of

KEFUD rules

Creating and measuring the performance of elementary inclusion and

exclusion pattern matching rules for KEFUD can be hard and time

consuming. However, it is usually much harder and way more time

consuming to find the right combination of rules to use for KEFUD.

The right combination of rules is the combination that produces the

maximum KEFUD performance. Evaluating one combination can

take hours based on the size of the training set and the complexity of

rules. With only 10 elementary rules, one may need many days to test

over 1000 combinations in order to find the best one.

Evaluating and

optimizing KEFUD

rules

KEFUD rules are often evaluated and optimized to improve their

outcome. Optimization can be done by tightening the condition of the

rule to improve its precision or relaxing it to improve its recall. When

advanced metrics such as F-Score are used to measure the

performance of a rule, the rule’s precision and recall are blended

together to produce the final score. This makes it hard for rules

designers to know what adjustments they need to apply to their rules.

2.11 Chapter Summary

We reviewed the history and the evolution of KE with a special focus on unstructured data,

specifically text, that represents more than 80% of all internet and corporate data and is

doubling in size every 18 months according to many statistics. We also described the major

challenges encountered with Knowledge Extraction From Unstructured Data (KEFUD) and

presented our research questions that we answer throughout the remaining chapters of this

thesis.

35

While many studies were done on annotation techniques and tools to identify actionable

information in data sources, the results are still far from being satisfactory especially with

unstructured data. Studies show the great need for doing more research in this area in order to

improve the performance and efficiency of annotation tools especially with the fast increase of

unstructured data sources. A big part of this chapter was to discuss semantic annotations as we

believe in the important role they can play in improving the quality of KEFUD. The quality

of KEFUD and KE in general is measured using a number of standard performance evaluation

metrics that we also defined in this chapter. We finished the chapter with a comparison between

the most widely adopted NLP architectures and annotation platforms that shows the many

features of UIMA that no other platform currently has.

The rest of this thesis is structured as follow: in chapter 3, we define our research objectives

and methodology; in chapter 4 we show the importance of n-grams for KEFUD and introduce

a novel method for creating n-gram decision trees that can be used to automatically generate

rules for better quality KEFUD; chapter 5 presents the architecture and main components of

our prototype called ARDAKE (Adaptive Rule-Driven Architecture for Knowledge

Extraction) as well as our extensions to the UIMA Ruta language to include ontology-based

semantic rules and other useful statistical and textual rules; chapter 6 covers the challenges of

finding and preprocessing a good Corpus for a KEFUD project; in chapter 7, we demonstrate

our Corpus data analysis work and show the importance of visual analytics at this stage; chapter

8 presents the rules we developed using ARDAKE to identify sentences containing Population

and Intervention patterns in the NICTA-PIBOSO corpus; and evaluate our rules and results

and compare them with those obtained by the state-of-the art algorithms in chapter 9. Finally,

chapter 10 summarizes the contributions and limitations of our thesis, and outlines a future

research program in this area.

CHAPTER 3

Objectives and Methodology

3.1 Chapter Overview

Complex tasks and projects require simple, yet, powerful tools. Large and long projects require

methodologies to coordinate and guide the efforts through the various stages and keep the focus

on the things to accomplish at each stage. Knowledge Extraction From Unstructured Data

(KEFUD) projects are often long and complex and therefore require good methodologies and

a rich set of powerful, user friendly, tools to guide miners and help them with their most

complex tasks. A key challenge with unstructured data is the identification of semantic

concepts and relationships.

In this chapter, we present our research objectives that are primarily aimed at simplifying and

improving the performance of rule-based KEFUD projects. Our efforts are to serve two main

purposes: Identify the most complex tasks in a rule-based KEFUD project then design and

build a set of powerful, easy to use, tools to simplify these tasks with a special focus on the

semantic aspects; a methodology specifically designed for rule-based KEFUD projects.

3.2 Research Objectives

Text mining or KE from text has made a long way but has not matured enough to fulfill its

goals and cover the needs of the numerous applications that rely on it such as question

answering, text understanding/summarization, translation, and knowledge discovery. As

discussed in 2.10, current KE techniques, especially the rule-based ones, are quite complex,

making it impossible for non-technical domain experts to get the full benefits of knowledge

extraction. They require the collaboration of people with many different skills including

analysts, designers, developers, statisticians, testers, and more, in addition to domain experts.

Our research objectives are driven by the rule-based KEFUD challenges described in Table

2.4. Table 3.1 lists our research objectives and the challenge targeted by each objective.

38

Table 3.1: List of Research Objectives

Research Objective Targeted Challenge

Simplify the creation and maintenance of KEFUD

rules.

Creating and maintaining KEFUD

rules

Make it easy for users, particularly domain experts,

to rely on ontology concepts and relationships while

creating their KEFUD rules.

Creating semantic rules based on

ontologies

Explore the full potential of n-grams including their

positive, negative, and collective correlation with

the patterns of interest in order to get a better

KEFUD performance.

Determining the right set of n-grams

to use for KEFUD rules

Find a simple, accurate, and efficient way to

identify the best combination of KEFUD rules.

Finding the best combination of

KEFUD rules

Make it trivial for rule designers to correct a failing

rule in either matching true positive results or

avoiding false positive results.

Evaluating and optimizing KEFUD

rules

Our overall goal is to make rule-based KEFUD projects simpler, requiring less time and

resources, while maintaining their efficiency. We intend to do this through the definition of a

clear and complete methodology specifically designed for rule-based KEFUD and the creation

of efficient, easy to use, tools to help rule-based KEFUD miners with their most complex tasks.

We will rely on visualization to simplify many complex tasks and to eliminate, or reduce, the

need for some resources such as programmers and business analysts. To help maintain

efficiency, we will enable non-technical domain users to create and maintain various type of

rules, including semantic rules, in a simple visual and uniform way. We will also provide tools

to automatically generate rules based on common tokens called n-grams. Other tools will help

finding the best rules combination that produce the highest classification F-Score.

39

In order to evaluate our work and to prove that our objectives are met, we will use our

methodology and tools to show how easy it is to create KEFUD rules, without any

programming, for classifying sentences in the NICTA-PIBOSO corpus and then compare our

classification results with those obtained by the state-of-the-art ML algorithms.

Our tools are not limited to sentence classification. Other types of unstructured information

processing like Named Entity Recognition (NER), sentiment analysis, link analysis, and

language detection can be implemented using specialized rules but this is outside the scope of

this thesis. Our tools can be extended to extract information and knowledge from non-textual

unstructured data like images, audio, and video. This is possible because our tools are based

on UIMA which is a standard framework from processing all types of unstructured data.

Although, it is possible to adopt a hybrid approach by using the output of some ML algorithms

as input to our KE rules, we don’t consider this as an objective as the integration between ML

and rule-based KE is already done in most hybrid KE solutions.

3.3 Research Procedure

We started by studying the latest research on SOA and SaaS and whether or not the current

development methodologies are suitable for building SOA and SaaS solutions. This led us to

studying the automation of web services composition and how it can be achieved using

annotations and semantic web services.

To understand semantic web services, it was necessary to learn about Ontologies, semantic

annotations, and reasoning. While studying domain ontologies, we came across the challenging

tasks of creating and maintaining them. Semantic annotation is a key enabler but also one of

the biggest challenges for semantic web services. As we further investigated the semantic

annotation challenge, we realized that annotations play even a bigger role and present a bigger

challenge for Knowledge Extraction from unstructured data.

40

Creating the right annotations in textual data and combining annotations to build more

interesting knowledge became our main focus. We studied and compared the state-of-the-art

text analysis frameworks and tools including UIMA, LanguageWare, GATE, GATE

TeamWare, UCompare with Taverna, Orange4WS, and more. We studied the pros and cons

of each framework/tool and came to the conclusion that UIMA was the most powerful and

promising due to its flexibility and richness. UIMA makes it easy to define Analysis Engines

and provide a framework to combine and run Analysis Engines.

A major limitation for UIMA was the need to write Java or C++ code in order to create Analysis

Engines or to conditionally run Analysis Engines based on the results of previous ones or other

conditions. Another limitation of UIMA is the lack of integration with Ontologies to create

semantic annotations.

We started remediating the UIMA limitations by defining a new architecture that we called

Adaptive Rule-Driven Architecture for Knowledge Extraction (ARDAKE). ARDAKE’s main

goal is to simplify and improve KE from unstructured text and make it available to domain

(subject matter) experts who are not familiar with programming and scripting languages such

as UIMA Ruta and GATE JAPE. ARDAKE leverages Ruta by adding semantic, linguistic, and

statistical rules extensions and allowing users to create and combine these rules in a uniform

and visual way.

To further simplify and improve KEFUD, we defined a highly visual process for creating and

combining KE rules. Our process was inspired from the CRoss-Industry Standard Process for

Data Mining (CRISP-DM) [30] that is the most widely used data mining methodology [31].

Figure 3.1 presents our KEFUD process and how it maps to CRISP-DM. Along with tools

allowing visual rules creation for KEFUD, this process greatly simplifies and shorten the

duration of KEFUD projects while helping getting the best results.

41

Business

Understanding

Data

Understanding

Data

Preparation

Modeling

Evaluation

Deployment
Data

Study the

domain

Define KE

requirements

Find or create
a corpus

Create a database
for training data
and test results

Visualize and
analyze your data

Create
elementary

rules

Run rules over
training data and

store results in
database

Visualize and
analyze results to

optimize rules

Look for the best
rules combination
based on results

Deploy
your

model

Figure 3.1: Our KEFUD process (green and black) and how it maps to CRISP-DM (in blue)

In subsequent chapters, we show how we used our KEFUD process with ARDAKE for visual

KEFUD rules creation to classify sentences in the medical abstracts of the NICTA-PIBOSO

corpus. Our classification results bypassed those obtained by most state-of-the-art tools and

ML algorithms using the same corpus. The following subsections gives more details about

each step in our process.

42

3.3.1 Study the domain

It is important to study the domain and have, at least, a basic understanding of the main

concepts and rules before starting any KE project. This is especially true when a KE project is

conducted by non-domain experts as the lack of knowledge can hinder any effective

communication with domain experts who are usually the main source of information to define

requirements.

3.3.2 Define/understand KE requirements

Like with any project, requirements can be adjusted and may be developed and finalized over

time but starting any project without some clear requirements significantly increases the

chance of failure. The requirements should at least identify the kind of knowledge to extract

and the success criteria for the KE project.

3.3.3 Find or Create a Corpus (Training and Test sets)

It is possible to define KE rules and create rule-based KE models based on experience and

familiarity with the domain and without a training set. This falls under the unsupervised

learning methods for creating KE models. Unsupervised learning is the only option in domains

where it is impossible or too costly to create training sets. However, for most domains, creating

new or finding existing training and test sets is worth the efforts and costs. Having a good data

set, that properly represents the domain data, allows creating and evaluating models based on

supervised learning methods. Creating training and test sets can be a big challenge but many

researches were done on how to simplify and improve this task due to the key role training and

test sets play in supervised Data Mining and KE methods [32; 33].

43

3.3.4 Create a database to store the training data and your results

Databases are extremely efficient and powerful in storing and querying data. While relational

databases are primarily designed to handle structured data, they have gone a long way in

handling non-structured binary and textual data as well. Non-relational databases have recently

become very popular due to their high capacity in storing and querying unstructured data,

especially textual documents.

Storing your training set and your test results in a database gives the opportunity to use

advanced database functionalities to analyse and understand the data and to analyse test results

and optimize rules and models.

ARDAKE provides a generic database that can be used to store training sets and test results

for KE projects that aim to identify patterns and knowledge at the sentence level as it is the

case for the NICTA-PIBOSO contest.

Stored training data and test results in databases has another great benefit especially for non-

technical domain experts. It enables the use of visualization tools to present the data and test

results in different views and from different perspectives. In the last few years, we have

witnessed the quick rise of some data visualization giants such as tableau and Qlik whose main

target audiences are non-technical business users. Existing Business Intelligence leaders

including SAP, Oracle, Microsoft, and IBM have also enriched their database and data analysis

products with visualization.

3.3.5 Visualize and analyse your training data and test results

The English Idiom “A picture is worth a thousand words” is often used to express the fact that

a complex idea can be made simple with an image. In fact, an image or a view may be worth

millions of words when analysing and trying to understand a large amount of unstructured data.

A good understanding of the training data and the distinguished properties of the embedded

44

knowledge is a crucial step before creating KE rules. This can be made much simpler using

visualization tools.

Visualization tools can also be very useful in viewing and analysing the results of KE rules

once they are defined and tested. Test results can be analysed without visualization but

presenting test results in a visual way gives an immediate insight on where the hits and misses

are and allows zooming into more details to see where the problems are and adjust the rules to

fix those problems.

When analyzing data, we recommend looking for both positive and negative properties of

patterns of interest. Positive properties of a pattern are properties that indicate the existence of

the pattern while negative properties indicate its absence.

3.3.6 Create Elementary Rules (Typically using a visual rules editor)

Pattern identification rules are the building blocks to form more complex KE rules. Elementary

KE rules can be created once the unique differentiating properties of desired patterns are

identified. Inclusion and exclusion rules should be created to model the positive and negative

patterns properties respectively. Rules can be expressed in so many different ways and

languages but the best tool that makes rules creation available to more audience, including

non-technical users, is the tool that allows the creation of a rich set of rules in a simple way.

With ARDAKE, a user can create linguistic, statistical, and semantic KE rules in a simple and

consistent visual way.

3.3.7 Run elementary inclusion and exclusion rules on corpus and store results in

database

In order to measure the quality of rules, they should be run over the training set and have their

results captured and compared with predefined training patterns. A KE rule typically has a

condition and an action part. Running a rule over a training set means checking the condition

45

part of the rule against the training set data and applying the action part of the rule when the

condition is met. An example of a KE rule is a rule where the condition is to match a sequence

of a number token followed by “years old”. The action part of such rule could be to label this

sequence as an age pattern.

3.3.8 Visualize and analyse test results to optimize elementary rules

As stated in 3.3.5, visualizing test results gives an immediate insight on where the problems

are and help narrowing down and resolving issues in order to optimize the performance of KE

rules. Analyzing test results of a KE rule is done by comparing the results of the rule with

manually predefined results. Patterns identified both manually and by the rule constitute the

True Positive (TP) set of the rule. Patterns identified manually and missed by the rule are the

False Negative (FN) results. Patterns mistakenly identified by the rule are the False Positive

(FP) results. Finally, patterns that are left out by both the rule and the manual annotation are

called True Negative (TN) results. The quality of a KE rule is usually measured using its TP,

FP, TN, and FN results or a formula based on them like ROC and F-Score.

3.3.9 Look for the best rules combination based on results

Some rules have a high precession with a low recall. Others have a high recall with a low

precession. Rules composition has the goal of finding the rules combination that produces the

right balance between precision and recall and thus optimizing the resulting F-Score. Rules for

matching same pattern types can be combined by joining their conditions using Boolean

operators. Combining two rules using the AND operator results in a more restrictive rule and

helps eliminating FP results found in both original rules. Combining two rules using the OR

operator creates a looser rule that has the TP results of both original rules. Unfortunately,

combining rules using the AND operator often removes TP results from original rules and

combining them using the OR operator passes the FP results of the original rules to the new

rule. Therefore, combining rules should be done by carefully inspecting the commonality and

disjunction between their TP, FP, TN, and FN results. Finding the best rules combination

46

manually is a tedious and time-consuming task even with a few elementary rules. ARDAKE

includes a results-based functionality to check millions of rules combinations, in few seconds,

and identify the combination that produces the best KE results.

3.4 Chapter Summary

We highlighted the most complex tasks in a KEFUD project and set our objectives to

simplify these tasks by designing and developing efficient, easy to use, tools. We also

described a new methodology, inspired from CRISP-DM, to guide KEFUD miners

throughout the various stages of a KEFUD project while concentrating their efforts on the

tasks they need to focus on at each stage.

As we show in the rest of this thesis, the methodology and tools we created greatly helped us

obtain better KEFUD results than those obtained by state-of-the-art algorithms. We believe

that other KEFUD projects can get the same benefits using our tools and methodology.

CHAPTER 4

N-Gram Algorithms

4.1 Chapter Overview

N-grams are widely used in NLP and text mining [34; 35; 36; 37; 38]. Frequent n-grams found

in training sets can be used as keywords while looking for patterns in test sets or in actual text.

N-grams should be used with care in KEFUD projects. Using the wrong set of n-grams leads

to poor KE quality by increasing the number of FP and/or decreasing the number of TP results.

Using long n-grams or n-grams co-occurrence helps reducing FP results but often eliminates a

significant number of TP results leading to poor KE performance.

We distinguish between two types of n-grams: a positive n-gram that indicates the existing of

a given pattern and a negative n-gram that indicates the absence of a pattern. We propose a

new algorithm to generate positive and negative n-gram decision trees for specific patterns.

We then use those n-gram decision trees to automatically generate inclusion and exclusion KE

rules.

N-grams trees have been used by few researchers for language modeling. [39] used a

TreeTagger to model the probability of a tagged sequence of words using a binary decision

tree to estimate transition probabilities. [40] used a word-tree data structure to model textual

documents where nodes represent sequences of words with their frequencies in the training

corpus. Our n-grams decision trees algorithm is similar to existing DM algorithms like C5 and

Classification and Regression Trees (CART) but is distinguished by its splitting criteria and

stopping condition based on precision, recall, or F-Score gain. Our results demonstrate that n-

gram decision trees and associated rules are more efficient than simple n-grams or n-grams co-

occurrence.

48

4.2 What are N-Grams

An n-gram is a sequence of n consecutive tokens in a given text. Tokens can be words, letters,

numbers, or even special characters. Single token n-grams (n equals 1) are known as unigrams,

double tokens n-grams (n equals 2) are called bigrams, and triple tokens n-grams (n equals 3)

are trigrams. The sentence “Smoking can cause cancer” has four unigrams “Smoking”, “can”,

“cause”, and “cancer”. The same sentence has 3 bigrams “Smoking can”, “can cause”, and

“cause cancer” and 2 trigrams “Smoking can cause” and “can cause cancer”. In general, the

number of n-grams in a sentence of m words is equal to m – (n – 1).

The Oxford Web Language Model (previously Microsoft Web N-Gram Services) shows the

importance of n-grams in building language models and the different applications that rely on

them such as Search Query Segmentation, Word Breaking, Spell Checking, and Auto

Completion. The Microsoft Web N-Gram corpus was built by parsing web pages’ contents,

titles, and anchors. It includes hundreds of billions of unigrams, bigrams, trigrams, as well as

n-grams of size 4 and 5.

4.3 N-Grams Limitations

In Information Extraction, an n-gram that is frequently found with other patterns in a training

set can be used to determine the existence of similar patterns in test sets or in real corpora. The

appearance of the same n-gram where the pattern of interest is missing can lead to a false

positive result by mistakenly labeling the nearby text when the n-gram is found. The number

of false positive results can be reduced by relying on the co-existence of two or more n-grams

with the pattern being searched. Unfortunately, this usually increases the number of false

negative results since less patterns will be identified with more coexisting n-grams. Finding

the right number of coexisting n-grams to use in order to identify a given pattern is important,

but not always possible, to get better IE results.

4.4 Mitigating n-grams limitations

Many researchers studied the impact of n-grams length on the precision and recall of the

patterns matching results [41; 42]. Other researchers used n-grams co-occurrence and n-gram

49

words/tokens permutation to improve the patterns identification results. Better pattern

matching can be achieved by either having a significant increase of true positive compared to

the false positive results and/or by having a significant decrease of false positive results

without losing much of true positive results.

Using longer n-grams or multiple n-grams co-occurrence is usually done to improve the

precision by reducing the number of false positives. Unfortunately, this almost always results

in eliminating a large number of true positive results leading to a lower recall and most likely

a lower F-Score. A better alternative, especially in closed domains, is the use of negatively

correlated or simply negative n-grams. As opposed to previously discussed n-grams that

indicate the existence of certain patterns, negative n-grams indicate the absence of some

patterns and can therefore be used to reduce the number of false positives. Negative n-grams

can be calculated by identifying frequent n-grams that rarely or never co-exist with given

patterns in a training set.

4.5 Proposed Algorithms

We propose an algorithm, for the creation for n-grams decision trees, that allows manipulating

different n-grams features, including the n-gram length, co-occurrence, and the splitting

criteria. Decision trees generated by our algorithm help balancing the number of true positive

and false positive results to obtain the desired results based on precision, recall, or F-Score.

As shown in Figure 4.1, the ARDAKE Corpus Analyser that implements our n-gram decision

trees algorithm requires a few input parameters such as the preferred n-gram length, the list of

sentences containing a pattern of a given type/class in the training set, and the desired minimum

correlation level between n-grams and the pattern in question. The correlation level can be

calculated based on precision, recall, or the F-Score. Assigning a value that is close to 100 to

the correlation level risks overfitting the resulting n-grams tree model. Increasing the values of

the n-gram length and minimum frequencies parameter helps reducing the size of the resulting

n-gram tree. This is important when generating trees for a large corpus as sparsity is a common

issue when creating decision trees.

50

Figure 4.1: The ARDAKE Corpus Analyser

The algorithm starts by identifying frequent n-grams in both the list of positive sentences

(sentences containing the patterns for the type/class of interest) and the list of negative

sentences (sentences that do not contain the patterns for the type/class of interest) in the training

set. This generates 3 disjoint categories of n-grams based on their level of correlation with the

pattern of interest:

1- Highly positive correlated n-grams: these are n-grams that are frequently found in

positive sentences but are absent or rarely found in negative sentences. N-grams in this

category can be used in inclusion pattern matching rules to help increasing the number

of true positive results with no or minimal increase in the number of false positives.

2- Highly negative correlated n-grams: these are n-grams that are frequently found in

negative sentences but are absent or rarely found in positive sentences. N-grams in this

category should be used in exclusion pattern matching rules and can play an important

role in reducing the number of false positive results with a minimal or no decrease in

the number of true positive results.

51

3- Low or no correlation n-grams: these n-grams are found in almost same proportions in

both positive and negative sentences. N-grams in this category are usually ignored and

considered non-deterministic when, in fact, they can have a potential value and play a

key role in either increasing the number of true positives and/or decreasing the number

of false positives. The next paragraph presents a real example taken from the PIBOSO

training set that shows how, when combined, n-grams in this category can play an

important role in improving the pattern matching results. The following section shows

how our algorithm recursively combines n-grams in this category to generate additional

positive and negative pattern matching rules.

To demonstrate the usefulness of n-grams in the above third category, we consider unigram

“conducted” that is found in 23 positive population sentences and 53 negative population

sentences of the PIBOSO training set. Similarly, unigram “patients” exists in 335 positive

population sentences and 1269 negative population sentences but the two unigrams co-exists

in 13 positive population sentences and only one negative population sentence. Note that the

number and frequency of n-grams is normally higher in the negative population sentences since

the PIBOSO training set contains 10804 negative population sentences and only 812 positive

population sentences.

In the previous example, neither n-grams could be used separately to generate an inclusion or

exclusion pattern matching rule. However, the combination of the two n-grams can generate a

very high precision inclusion rule in case the training set correctly represents the domain

corpus. Sometimes, the combination of two or more n-grams is still frequently encountered in

both positive and negative sentences. To take advantage of such n-gram combinations, our

algorithm incrementally adds more n-grams to the mix then checks whether an inclusion or an

exclusion pattern matching rule can be generated. The end result is an XML-based n-gram

decision tree in which the root node and children of no/low correlation nodes have each three

child nodes:

52

- Positive n-grams node: Children of this node are leaf nodes for n-grams that, when

combined with n-grams in their parent nodes (if any), have positive correlation with

the pattern type/class of interest.

- Negative n-grams node: Children of this node are leaf nodes for n-grams that, when

combined with n-grams in their parent nodes (if any), have negative correlation with

the pattern type/class of interest.

- Other n-grams node: This node has a child node for each n-gram that is not included in

the previous two nodes or their parents. Like the root node, each n-gram node here has

three child nodes (Positive, Negative, and Other).

The next section shows how the n-grams tree is built and the order in which n-gram nodes are

created and inserted into the tree. Section 4.5.2 demonstrates how inclusion and exclusion

pattern matching rules can be automatically derived from the n-grams decision tree.

4.5.1 N-Grams Tree generation

The first step in building the n-grams tree is the creation of an empty root node that has three

child nodes (PositiveNGrams, NegativeNGrams, and OtherNGrams). Positive and Negative

sentences are then parsed to compute positive, negative, and other n-grams based on options

selected by the user in the ARDAKE Corpus Analyser before generating the n-grams tree.

These options include the maximum n-gram length, minimum and maximum n-gram

frequency, as well as the minimum desired degree of correlation between n-grams and the

pattern in question. The correlation is not calculated based on a simple count for the number

of times an n-gram is found in positive and negative sentences. It is rather calculated, according

to user selection, based on the precision, the recall, or the F-score value or gain. N-grams with

frequencies outside the specified boundaries are dropped before the correlation calculation

phase.

To classify an n-gram based on its precision, we calculate its positive and negative precisions.

The positive precision for an n-gram is the ratio of the number of positive sentences containing

the n-gram over the total (positive and negative) number of sentences containing the n-gram.

53

Likewise, the negative precision is the ratio of the number of negative sentences containing the

n-gram over the total number of sentences containing the n-gram. If the positive precision is

greater than or equal to the specified threshold, the n-gram is classified as a positive n-gram

and a child node is created for the n-gram under the “PositiveNGrams” node. If the negative

precision is greater than or equal to the specified threshold, the n-gram is classified as a

negative n-gram and a child node is created for the n-gram under the “NegativeNGrams” node.

In case the two previous conditions are both wrong, a child node is added for the n-gram under

the OtherNGrams node. This process is recursively repeated for each node under the

OtherNGrams node but the positive and negative precisions are then calculated for subsequent

n-grams in conjunction with their parent n-grams. The children of each node are sorted by their

level of correlation with the pattern type/class of interest.

Classifying n-grams based on recall or F-Score is done in the same manner as classifying them

using the precision except that the recall or the F-Score formulas are used instead of the

precision formula. Code Snippet 2 shows a partial n-gram tree for the population sentences in

the PIBOSO corpus. Figure 4.2 graphically illustrates the same tree.

<root>
 <name_635790719492055913 Text="PositiveNGrams">
 <name_635790719492055913 Text="recruited" PCount="26" NCount="4" />
 <name_635790719492055913 Text="crossover" PCount="5" NCount="0" />
 <name_635790719492055913 Text="July" PCount="5" NCount="1" />
 …
 </name_635790719492055913>
 <name_635790719492055913 Text="NegativeNGrams">
 <name_635790719492055913 Text="significant" PCount="4" NCount="574" />
 <name_635790719492055913 Text="quality" PCount="10" NCount="221" />
 <name_635790719492055913 Text="evidence" PCount="6" NCount="202" />
 …
 </name_635790719492055913>
 <name_635790719492212171 Text="OtherNGrams">
 <name_635790719493618523 Text="patients" PCount="135" NCount="1317">
 <name_635790719493618523 Text="PositiveNGrams">
 <name_635790719493618523 Text="conducted" PCount="7" NCount="1" />
 <name_635790719493618523 Text="placebo-controlled" PCount="5" NCount="1"
/>
 …
 </name_635790719493618523>
 <name_635790719493618523 Text="NegativeNGrams">
 <name_635790719493618523 Text="symptoms" PCount="2" NCount="44" />
 <name_635790719493618523 Text="increased" PCount="2" NCount="41" />

54

 …
 </name_635790719493618523>
 <name_635790719493618523 Text="OtherNGrams">
 <name_635790719493618523 Text="study" PCount="61" NCount="73">
 <name_635790719493618523 Text="PositiveNGrams">
 <name_635790719493618523 Text="retrospective" PCount="6" NCount="2"
/>
 <name_635790719493618523 Text="clinical" PCount="5" NCount="2" />
 …
 </name_635790719493618523>
 <name_635790719493618523 Text="NegativeNGrams">
 <name_635790719493618523 Text="efficacy" PCount="2" NCount="7" />
 <name_635790719493618523 Text="treatment" PCount="2" NCount="6" />
 …
 </name_635790719493618523>
 <name_635790719493618523 Text="OtherNGrams">
 …

Code Snippet 2: n-grams decision tree sample in XML format

Figure 4.2: The tree representation for Code Snippet 2

55

4.5.2 Rules auto generation from N-Grams Trees

Generating inclusion and exclusion pattern matching rules from an n-grams decision tree is

straightforward and is similar to generating rules from other decision trees. Starting from the

root node, n-grams under the “PositiveNGrams” node are directly mapped into an inclusion

rule. N-grams under the “NegativeNGrams” node are mapped into an exclusion rule. Finally,

n-grams under the “OtherNGrams” are combined with their positive and negative n-gram

descendants to create inclusion and exclusion rules respectively. The following example shows

how a sample n-gram subtree is converted into inclusion and exclusion rules.

The n-grams decision tree in Code Snippet 2 generates the following inclusion and exclusion

pattern matching rules:

Inclusion Rules

 A sentence that contains n-gram “recruited” or “crossover” or “July” or … is considered

a positive sentence.

 A sentence that contains n-gram “patients” and (“conducted” or “placebo-controlled”

or …) is considered a positive sentence.

 A sentence that contains n-grams “patients” and “study” and (“retrospective” or

“clinical” or …) is considered a positive sentence.

Exclusion Rules

 A sentence that contains n-gram “significant” or “quality” or “evidence” or … is

considered a negative sentence.

 A sentence that contains n-gram “patients” and (“symptoms” or “increased” or …) is

considered a negative sentence.

 A sentence that contains n-grams “patients” and “study” and (“efficacy” or “treatment”

or …) is considered a negative sentence.

4.6 Improving Annotation Results Using n-grams Inclusion and Exclusion Rules

Annotation results can be analysed and looked at in different ways. CHAPTER 5 demonstrates

the visualization of annotation results and how it easily helps seeing what is required in order

to improve these results. Improving the results is mainly done by adjusting annotation rules to

56

increase the number of true positive results or to decrease the number of false positive results.

N-grams inclusion and exclusion rules serve the exact same purpose. The goal of inclusion

rules is to increase the number of true positive results with no or insignificant increase in the

number of false positive results. Similarly, the goal of exclusion rules is to decrease the number

of false positive results with no or an insignificant decrease in the number of true positive

results. Therefore, n-gram inclusion and exclusion rules described in this chapter play a key

role in improving the annotation performance.

4.7 Chapter Summary

N-grams are powerful tools for KEFUD. They are widely used in NLP and text mining but are

not used to their full benefits. When using n-grams, it is important to find the right set of n-

grams for a specific pattern type. Having too many n-grams results in more FPs while having

too few of them leads to less TPs. In both cases, the end KE performance suffers.

Longer n-grams or n-grams co-occurrence is sometimes used to improve the KE precision but

often results in missing valid patterns. We proposed a new algorithm for creating n-gram

decision trees that can be used to generate efficient KE rules for maximizing TP and

minimizing FP results. Applying NLP tasks on the text, such as stopwords removal and

stemming before generating the n-gram decision tree often results in a better and smaller tree.

Unlike other language modeling n-gram trees that are primarily used for tagging and text

proofing, our n-gram trees are specifically designed for annotation (pattern identification) and

classification in textual data. Our algorithm is similar to existing DM algorithms like C5 and

CART but is distinguished by its tree splitting criteria and the structure of its output n-gram

decision trees.

CHAPTER 5

Prototype

5.1 Chapter Overview

In this chapter, we present the architecture of our prototype called ARDAKE and describe the

tools and main functionalities we built to help KEFUD miners with their complex tasks as

described in CHAPTER 3. Specialized tools can be used at different stages of a KEFUD project

from Extraction, Transformation, and Loading (ETL), through the data analysis and

rules/models creation and evaluation, to the deployment. Although some of our tools are

designed for textual data, similar tools can be developed for other types of unstructured data

such as images, audio, and video. The last section of this chapter highlights some useful UIMA

Ruta extensions that we added to help KEFUD miners create richer and efficient KEFUD rules.

In the following chapters, we show how we used our prototype and tools at various stages of

the methodology we described in CHAPTER 3.

5.2 Prototype Requirements

The ARDAKE prototype was defined, designed, and implemented in a way that supports our

main objective which is to make rule-based KEFUD projects simpler, requiring less time and

resources, while maintaining their efficiency.

In order to simplify KEFUD projects and to minimize the implementation time and number of

resources needed for a KEFUD project, ARDAKE will fulfill the following requirements:

1) Non-technical domain experts should be able to create KE rules using a visual, user

friendly, rule editor without having to write any code.

2) Users should have access to a set of simple integrated tools to help them with the ETL

and the analysis of textual corpora.

3) Users should be able to visualize and analyse the rules execution results in order to

have a better insight on how rules can be optimized.

58

4) ARDAKE should assist users through the automatic generation of n-gram inclusion

and exclusion rules as described in 4.5.2.

5) To maintain the efficiency of rule-based KE, ARDAKE must support rules of various

types including linguistic, statistical, and semantic rules. All ARDAKE rules will be

created in a consistent way using a simple visual rule editor.

6) ARDAKE will assist users finding the combination of rules that produces the best

results based on F-Score.

7) It should be possible to share rules with other ARDAKE users and use existing rules

to define more complex ones.

8) Users should be able to run rules directly from ARDAKE or generate equivalent Ruta

rules that can be used in any UIMA Ruta compatible system.

5.3 Prototype Architecture

The ARDAKE architecture is based on a set of text analysis and rule-based annotation

components that complete each other to form an environment that simplifies the

implementation of more accurate end to end KE solutions. ARDAKE’s components can be

grouped into two categories: the Corpus Manager and the Rules Manager. The Corpus

Manager provides the ETL functionalities required for dealing with the corpus and includes

the Corpus Extractor, the Corpus Transformer, the Corpus Loader, and the Corpus Analyser.

The Rules Manager has components to deal with rules including, the Visual Rules Composer,

the Ruta Generator, the Rules Results Analyser, and the Rules Combiner. Figure 5.1 shows the

main ARDAKE components.

59

Rules ManagerCorpus Manager

Corpus Analyser

UIMA

Ruta

Visual Rules Composer

Rules
Results

Analyser

Rules
Combiner

Corpus Loader

Corpus Transformer

ARDAKE

Ruta Extentions

Ruta Generator

Corpus Extractor

Figure 5.1: The ARDAKE architecture

We describe the main components of the ARDAKE architecture and more in the next

subsections.

5.3.1 The Corpus Extractor

The Corpus Extractor helps creating local copies of corpora by downloading related files from

the web or by recreating the files from a database where they have been previously imported.

The Corpus Extractor is particularly helpful for making local copies of corpora whose files are

available individually online at URLs that can be identified by a set of ids. This is the case of

the NICTA-PIBOSO corpus where files are downloadable from the National Center for

Biotechnology Information (NCBI) website using URLs in the format of

“http://www.ncbi.nlm.nih.gov/pubmed/ID?dot=XML” where ID is the unique identifier of the

abstract file to download in XML format. The Corpus Extractor is also useful for downloading

web pages under a specific folder on a website. This could be downloading the financial news

from a news website.

Reconstructing the corpus from the database is another quick way for creating a local corpus

copy in case some or all local files were deleted. This can save a considerable time when a

60

large corpus is available on a server with a slow connection. Generating a corpus from the

database is also useful in case the online corpus is no longer available.

5.3.2 The Corpus Transformer

Data transformation is an essential part of any data mining project including the mining of

structured data. This is because data usually comes from different data sources and is stored in

a format that the analysis of prediction algorithm cannot properly read. Since unstructured data

is harder to read and analyse, this data must be passed through a transformation process that

creates some sort of structure out of this data. The ARDAKE Corpus Transformer reshapes

textual data in a format that makes it easier to analyse.

The Term-Document matrix is commonly used in text mining tools and algorithms [43]. It is

a two-dimensional matrix where terms are on one dimension and the documents are on the

other dimension. The cell values in the matrix represents the frequencies of different terms in

different documents. The size of the term-document matrix can grow quickly and become huge

even for medium size corpus. For large corpora, it is important to employ trimming techniques

to keep the size of the term-document matrix manageable. Different techniques exist for

reducing the size of a term-document matrix by eliminating stop words, low frequency terms

or terms that are irrelevant for the current domain. The Inverse Document Frequency (IDF) is

another technique that is commonly used to remove terms that show up in most documents

with similar frequencies.

Hadoop and MapReduce are powerful tools that can be used to work with extremely large

term-document matrices due to their distributed parallel storage and processing. The term-

document matrix drives the logic of many text clustering and classification algorithms. These

algorithms compare the frequencies of terms in the document being analysed with those in the

term-document matrix in order to make their prediction, classification, clustering, etc.

61

The term-document matrix allows analysing the data at the document level to search, classify,

or cluster documents for example. It is also possible to create association rules between terms

using the term-document matrix. However, a lot of information that could be essential for many

text mining projects cannot be captured or explored using a term-document matrix. This

includes the paragraph and sentence level information such as the lengths and positions of

sentences containing terms of interest as well as the structure of these sentences. Term-

paragraph and term-sentence matrices can be used to capture and explore some information

that the term-document matrix cannot capture. This obviously makes more complex the

creation, storage, and analysis of all these matrices. A multi-dimensional matrix or database is

a better alternative to store and analyse additional information at the paragraph, sentence, or

chuck levels.

For the PIBOSO corpus, the ARDAKE Corpus Transformer extracts abstracts text from

downloaded XML files that are downloaded from the NCBI website. The XML files available

on the NCBI website contain the actual abstract text in a specific tag called <AbstractText>.

This extraction step is required so that UIMA analysis components can parse and annotate the

abstracts. The ARDAKE prototype also supports regenerating the abstracts from the database

once they are imported there.

5.3.3 The Corpus Loader

Once the data is transformed into the desired format, it can be passed for analysis. To avoid

repeating the same data transformation over and over, the transformed data is stored into files,

databases, or data stores. This saves the transformation time and effort before every analysis.

While a triple store could have been used to store transformed data, we preferred storing this

data into a relational SQL database, using the ARDAKE Corpus Loader (Figure 5.2), for a

number of reasons. The main reason behind using a relational SQL database is because most

visualization tools are designed for tabular data and relational database. In addition, it is easier

to manually or dynamically create SQL statements, functions, and stored procedures than

creating SPARQL queries.

62

Figure 5.2: The ARDAKE Corpus Loader

5.3.4 The Corpus Analyser

The Corpus Analyser uses the functionalities built into the ARDAKE to identify common

properties such as frequent lengths and position ranges for sentences of specific types. A key

component in the ARDAKE Corpus Analyser is the n-gram decision tree generator (see

CHAPTER 4) that produces inclusion and exclusion n-gram trees in a well-defined XML

format. The ARDAKE Corpus Analyser allows users to automatically generate inclusion and

exclusion rules, based on n-gram trees, using the “Generate Ruta Rules” button (Figure 4.1).

N-gram decision trees and other common properties found using the Corpus Analyser

constitute the basic elements for building the initial set of annotation rules in ARDAKE.

5.3.5 The Rules Composer

ARDAKE rules have the same general structure as the UIMA Ruta rules PATTERN+

{CONDITIONS? -> ACTION+} where each rule has one or more patterns, an optional set of

conditions also called filters, and one or more actions. The Patterns part of a rule determines

the initial set of tokens to match. Actions are only applied on tokens identified in the first step

63

and where all conditions (if any) are satisfied (i.e. tokens that pass all filters in the Filters node).

Since conditions are optional, actions are applied to all tokens matching the patterns part when

no condition is specified. Having a rule without a pattern or an action part is useless because a

rule without a pattern is not applied to any token and a rule without an action would select and

filter patterns without making any changes. If a rule has multiple patterns, then only tokens

matching the sequence of those patterns in the same order are considered for the rule. Figure

5.3 shows two examples of pattern sequences (one for Age and one for AgeRange tokens).

The Rules Composer (Figure 5.3) is a visual rules editor that greatly simplifies the creation of

annotation rules. It makes it possible for even non-technical users, including domain experts,

to create and maintain advanced and powerful annotation rules.

Figure 5.3: The ARDAKE Annotation Rules Composer

When a new annotation library (rules set) is created, an empty rule is added with two

mandatory nodes (Patterns and Actions) and an optional node (Filters). Users define an

annotation rule by dragging items from the list boxes presented at the top of the ARDAKE

64

Annotation Rules Composer and dropping them into corresponding nodes of the rule. Items in

the Patterns list box are used to populate the Patterns node of a rule. Similarly, items in the

Conditions list box are used to populate the Filters node and items in the Actions list box are

used for the Actions node of a rule.

If an action for creating a new annotation type is added to the Actions node of a rule, the

resulting annotation type gets automatically added to the Annotators list to the right of the

Rules Composer. These annotation types can then be used as patterns when creating new rules.

More complex patterns can be defined by grouping items using the “Group pattern” that allows

combining other patterns with logical operators. We discuss the rules structure and the different

rules elements in more details in Section 5.5.

Users can create new rules by clicking the “R” button from the toolbar. The “X” button in the

toolbar allows deleting a rule or a specific element inside a rule. The script icon beside the “R”

button in the toolbar generates the Ruta script for all the rules in the current rules set.

ARDAKE supports many rule types including textual, linguistic, statistical, and semantic rules.

ARDAKE rules are presented in a tree structure where each pattern, condition, and action is a

node in the tree. A property grid allows setting the properties of any selected node as shown in

Figure 5.4.

65

Figure 5.4: ARDAKE properties grid for an annotation action

5.3.6 The Ruta Generator

The Ruta generator converts ARDAKE rules into UIMA Ruta scripts so that they can be

executed in any UIMA enabled environment. What makes this conversion simple is that

ARDAKE visual rules follow the same structure as Ruta rules where each rule has one or more

patterns, an optional set of conditions, and one or more actions. The Ruta generator works in a

polymorphic way to convert ARDAKE visual rules into a Ruta script. It does this by navigating

the rules tree structure from the root down while prompting each node for its equivalent Ruta

66

code. Table 5.1, Table 5.2, and Table 5.5 at the end of this chapter show Ruta scripts generated

by the ARDAKE Ruta Generator for different kinds of KEFUD rules.

5.3.7 The Rules Results Analyser

The Rules Results Analyser helps rules designers improve the quality of their rules by showing

the different kinds of problems in the results produced by those rules. The Rules Results

Analyser compares the rules results (results produced by running the rule over the corpus test

set) with the set of predefined results (manually created results) in order to create four sets of

matches (True Positives, False Positives, True Negatives, and False Negatives). Rules

designers can use this information to adjust the patterns, conditions, and/or actions of their

rules in order to improve their accuracy. For example, a rules designer can decide to tighten

the conditions of a rule if it yields too many false positives.

A rule’s performance is determined by the results it produces when executed over a test set.

To measure the F-Score of a rule, its TP, FP, and FN should first be calculated. These

measurements along with the TN can be analysed to figure out where and why a rule is poorly

performing. For example, a rule that generates lots of FP could give an indication that the rule’s

condition is too loose and needs to be more restrictive. Similarly, a rule that produces lots of

FN may require to match on more patterns and/or have its condition(s) relaxed to add more

relevant results.

Analysing the results of different rules also helps determining what logical operators to use for

combining specific rules in order to obtain compound rules with higher F-Scores. Rules that

share most TP but only few FP results should be combined using the logical AND operator

while those that have more FP and less TP in common are better combined using the logical

OR operator.

67

Visualizing “rules results” gives an immediate insight into their quality by graphically showing

the proportion of each measurement. This could be useful to determine which rules to combine

using what logical operator in order to obtain more accurate results.

Figure 5.5 and Figure 5.6 show the visual representations of the results of a (high precision,

low-recall) rule and a (low precision, high recall) rule respectively. The portion between the

solid lines (relevant portion) in the pie chart represents all relevant results for a specific query.

The portion between the dashed lines (rule results portion) represents the results returned by a

rule. The intersection between the relevant portion and the rule results portion is the TP portion

of the rule. FP is the sub portion of the rule results portion that is not part of the relevant portion

while FN is the sub portion of the relevant portion that is not part of rule results portion. Finally,

the TN portion is the portion that is outside the relevant and the rule results portions.

Figure 5.5: R. 1- High Precision-Low Recall

Figure 5.6: R. 2- Low Precision-High Recall

Combining the above rules using the logic AND operator is likely to produce a rule with a

higher precision and a lower recall than both rules as shown in Figure 5.7. Combining the same

rules using the logic OR operator is likely to produce a rule with a lower precision and a higher

recall than both rules as shown in Figure 5.8.

68

Figure 5.7: Results of Rule1 AND Rule2

Figure 5.8: Results of Rule1 OR Rule2

Manual rules composition can be done on very small rule sets. Automatic rules composition

should be considered when dealing with more than just a few rules.

5.3.8 The Rules Combiner

The Rules Combiner starts with an initial set of rules for extracting a specific pattern. Each

rule is executed separately over the training set and is saved along with its matching results

into a relational database where all training and test data is stored and relevant results are

predefined. Having all this information in a relational database greatly simplifies the analysis

of rules results using SQL and data mining tools. It also makes it trivial, using SQL queries, to

calculate the TP, TN, FP, and FN of any rule and to compare and contrast the results of different

rules.

The biggest benefit of storing rules results is in enabling the automatic generation of the results

and the calculation of the F-Score for the combination of any subset from the initial rules

without having to run the rules combination over the training set. This allows the evaluation

69

of millions of rules combinations in few seconds instead of spending hours to only run few

rules combinations over the training or the test set. Fig. 7 shows how the results and F-Score

of a composite rule (R1 OR R2) can be calculated using the results of its constituent rules. The

left part of the array represents the relevant results while the right part represents the irrelevant

ones. A 1 in the left part indicates a TP and a 0 in the left part indicates a FN. Similarly, a 1 in

the right part indicates a FP and a 0 is for a TN. The example in Figure 5.9 also shows how

combining two rules can result in a better F-Score.

Figure 5.9: Calculating the results of R1 OR R2

Our automatic rules combining tool (Figure 5.10) combines each pair of rules in the initial

rules set using the AND and the OR logical operators. Composite rules with F-Scores higher

than their constituents are added to the initial set of rules and then combined with other

primitive and composite rules to get more complex rules with even higher F-Scores. The tool

allows users to select the level of granularity for adding composite rules. For example, a user

can specify that only rules combinations with an F-Score that is at least 3% higher than their

constituent rules are accepted. The process stops when no more rules are added to the rules set

or when a specified number of combinations has been generated and tested. The tool returns

the rules combination with the highest F-Score.

70

Figure 5.10: Results-Based rules combiner

We simulated thousands of rules combinations scenarios using various number of initial rules

at different granularity levels, and different training sets sizes. With the exception of some rare

extreme cases, our rules combiner produced rule combinations with F-Scores that are

significantly higher than those of the initial rules [44].

5.4 The ARDAKE Database

To help with the analysis and to get a better understanding of the training data, ARDAKE

provides a database where corpus data can be imported and analysed. The ARDAKE database

schema (Figure 5.11) is simple but offers many useful analysis and comparison functionalities.

71

Figure 5.11: The ARDAKE database schema

The Corpora table contains names and descriptions of corpora imported into the ARDAKE

database. A corpus is identified by its corpus id and is assigned a user-friendly name and

description. Documents are stored in the Documents table and are assigned to Corpora through

the CorpusID foreign key. Each document has a type that is determined by the

DocumentTypeID foreign key.

The DocumentTypes table defines the different document types in corpora such as “Training”,

“Validation”, and “Test”. The DocumentContent column of the Documents table is a Binary

72

Large Object (BLOB) to store the content of documents. Only text documents are currently

supported by ARDAKE but other formats can be easily added. Storing documents content is

not mandatory but is useful to avoid downloading the corpus over and over from the internet

or from other storage locations.

Documents content can still be reconstructed from the Sentences table where all sentences are

stored and linked back to their original documents. However, reconstructing a document using

its sentences does not guarantee having an exact match with the original documents as line

breaks/empty line might be lost. This can be adjusted by extending the database schema to

store information about paragraphs.

The SequenceNo field of the Sentences table contains the location of each sentence within its

parent document. This information is helpful as some annotation types are commonly found in

the first few sentences while others usually reside in the last few sentences of a given

document.

The schema in Figure 5.11 was specifically designed to help analysing and measuring the

performance of annotations done at the sentence level such as the case for the PIBOSO corpus.

For more granular annotations (i.e. annotations done at the words or other tokens levels), a

further breakdown must be done at the database schema level to include those annotations. The

TestRuns table is where information about each annotation test exercise is stored. The

XRef_Sentences_Annotations table is where annotations created by different test runs are

stored. It links the TestRuns table to the Sentences table making it possible to easily get, at any

time, the list of all annotations for any test run as well as the annotation type(s) that was

assigned to any given sentence during a test run.

The ARDAKE database allows comparing different annotation algorithms and tools by

comparing annotations produced by those algorithms and tools to see where they match and

where they do not. Evaluating the quality of annotation algorithms and tools become a simple

task once the manual annotations are added as a special test run. Comparing and contrasting

73

annotations produced by a test run with the manual annotations gives the number of True

Positives, False Positive, True Negatives and False Negatives for that test run, which can be

used to calculate the F-Score or other evaluation measurements for the test run.

The ARDAKE database provides SQL functions and stored procedures for comparing different

test runs including comparing test runs with manual test runs and calculating their performance

measurements such as their precision, recall, and F-Scores.

5.5 Main functionalities

5.5.1 Rules structures

All ARDAKE rules have the same structure that includes three parts (patterns, conditions, and

actions). The patterns section of an ARDAKE rule can contain any combination of patterns to

match when the rule is applied. A pattern can be the whole document being analysed, a

paragraph, a sentence, a word, a token, or any combination of these. Annotation types created

by existing rules can also be used as patterns when defining new rules. This is a powerful

feature since it allows the creation of compound and more interesting annotation rules based

on the results of previously defined rules. For example, assuming we have three different

annotation rules for matching dates, times, and locations respectively. A new rule can then be

defined to create meeting annotations when a sequence of date, time, and location annotations

is detected in the same sentence. ARDAKE patterns can be grouped together using the AND

and OR logical operators.

Conditions in ARDAKE rules are used to filter the patterns on which the rule actions are

applied. If a rule has no conditions, the rule actions are applied on all tokens matched based on

patterns defined in the patterns section of the rule. An example of a condition could be to

consider meeting patterns for which the date is between two given dates. An ARDAKE rule

can have as many conditions as needed.

74

ARDAKE users can specify one or more actions to apply on annotations matching the patterns

and satisfying the conditions of a rule. ARDAKE supports a large number of annotation actions

that we describe in section 5.5.2.3. The “Mark” and the “Mark Fast” actions for creating new

annotations are probably the most important ones. Another interesting action is “Mark Score”

that allows assigning a score to a matched pattern for its likelihood to be an annotation of a

certain type. Other rules can use the score action to increase or decrease scores based on

specific conditions. This helps rules designers to defer the creation of annotations until multiple

rules are evaluated and consider patterns whose scores are above a specific threshold.

5.5.2 Rules elements

ARDAKE rules elements are grouped in three main categories (Patterns, Conditions, and

Actions). ARDAKE has two additional categories (Operators and Variables) for advanced

users to create more complex rules.

5.5.2.1 Patterns

ARDAKE has many built-in elementary patterns to match basic tokens in text such as words,

spaces, exclamation marks, and other special characters. This includes “Space”, “Line Break”

for matching a single space and a line break character respectively. The “White Space” pattern

is the parent of both “Space” and “Line Break” and can therefore be used to match either a

single space or a new line character. The “Exclamation mark”, “Period”, and “Question mark”

patterns can be used to match respective characters in text. The “Sentence End” matches any

of the previous three patterns. Similarly, the “Comma”, “Colon” and “Semi Colon” help

matching respective punctuation marks. To match any punctuation mark including sentence

end tokens, the “Punctuation Mark” pattern can be used. Other granular patterns include

“Symbol”, “Non-breaking space”, and “Ampersand” for matching any special character, an

html non-breaking space, and html ampersand “&” respectively. “HTML and XML

elements” helps matching any html or xml tag. ARDAKE also includes coarse patterns such

as “Lower case word”, “Begins with capital”, “Capital word” that are sub-patterns of the

“Word” pattern. The “Number” pattern matches any numeric token in a text. The “Any”

75

matches any of the patterns described in this section except html and xml tags. “All” matches

any of the patterns described in this section including html and xml tags. ARDAKE provides

even more complex patterns like “Free text” that allows rules designers to specify free text to

match in a document and “Any Sequence” to match a sequence of any number of consecutive

tokens for a given pattern. Finally, the “Document” pattern matches the whole text of a

document and is usually used with the Markfast action described in 5.5.2.3.

5.5.2.2 Conditions

In most cases, many tokens matched by the patterns part of a rule are irrelevant. Rules can have

any number of conditions to filter irrelevant tokens and only keep those on which actions

should be taken. Multiple conditions can be combined using the “And” and “Or” logical

operators. Negation is also possible using the “Not” operator. Tokens can be excluded based

on their position within their document, their sentence or their relative position compared to

other tokens. This can be done using various position-based conditions including “Before”,

“After”, “Between”, “Last”, “Near”, and “Is at position”. An example of this would be to only

consider time tokens that show up after a date token in a sentence. Tokens can also be filtered

based on whether or not they contain, start, or end with other tokens. This is enabled by the

“Contains”, “Starts with”, and “Ends with” conditions respectively. Similarly, a token can be

checked to see if it is part of another token using the “Part of” and “Part of but not equal to”

conditions. It is possible to discard less frequent tokens using the “Has more annotations”

condition that compares tokens for two annotation types and evaluates to true for more frequent

tokens within a specified window (sentence, paragraph, or a document).

Annotations can be filtered based on their types using the “Is of type” condition. This is useful

when some tokens are marked with multiple annotation types simultaneously but actions

should be taken on only those with a specific annotation type.

The “Has feature with value” condition allows filtering annotations based on their features

(properties). Given annotations of type person with an age feature, the “Has feature with value”

can be used to eliminate all persons where the age is less than 50 for example.

76

Annotations can be filtered based on their frequencies within a given window. “Total count”,

“Count”, “Context count”, and “Current count” can be used to eliminate annotations based on

their number of occurrences within the document, or other specified text windows.

The “Enough conditions” is used when multiple conditions are specified and actions should be

taken on those fulfilling a certain number of conditions but not necessarily all of them. The

user should specify the minimum number of conditions that must evaluate to true in order to

apply the actions.

Advanced users can do more complex filtering using the “Matches regular expression”

conditions where the user specifies a regular expression to keep only annotations matching this

regular expression.

The “Score” condition is one of the most interesting conditions as it allows to check the value

assigned to each token, using “Mark Score” action discussed later, for the likelihood of being

of a certain type. This allows the creation of fuzzy rules where the score of a given token

determines its membership degree to different pattern types. The score condition also allows

deferring the annotation creation action until a certain number of rules have been evaluated

and only create annotations for tokens whose score is higher than a given threshold. See section

5.5.3 for examples about this condition and other conditions discussed here.

5.5.2.3 Actions

ARDAKE has a long list of actions that can be applied to tokens that match the patterns part

and satisfy the conditions of annotation rules. Various actions, starting with the Mark keyword,

exist for creating or identifying new annotations in different ways. The “Mark as” creates

annotations for tokens matched by the patterns and satisfying the conditions of a rule. “Mark

fast as” create annotations for tokens matching items listed in an external file. When the “Mark

fast as” action is used, users should use the custom properties grid as shown in Figure 5.12. In

77

this example, MonthList.txt is a text file containing the list of all months where each month is

entered on a separate line.

Figure 5.12: Properties for the "Mark fast as" action

“Mark score” is another interesting action that assigns a score to a token rather than creating

an annotation for it. Different rules can increase or decrease the score of tokens based on

various conditions. Later on, tokens with specific scores can be considered for further actions.

When multiple tokens of the same type exist within a given text window, an annotation can be

created for the first or the last token using the “Mark first” or the “Mark last” actions

respectively. The “Mark once” action creates a new annotation for a matching token only if

this same token does not already have existing annotations.

The “Set features” action can be used to create or update annotation features (properties). To

create an annotation and set its features at the same time, use the “Create annotation with

features” action.

Many transient annotations are usually created during the annotation process. These are usually

used in subsequent rules to create more complex annotations but are not needed once those

rules are executed. For example, in order to create annotations for meeting patterns,

annotations of type date, time, and location are first created then combined to identify meeting

tokens. Once the meeting annotations are created, annotations of type date, time, and location

may no longer be needed and can therefore be deleted to reduce the total number of

annotations. Deleting annotations can be done using the “Remove annotation” action.

78

Duplicate annotations created by different rules for the same tokens can be cleaned using the

“Remove duplicates” action.

5.5.3 Rules examples

In this section, we demonstrate the creation of a number of annotation rules in ARDAKE and

present their equivalent Ruta script to show the simplicity of ARDAKE compared to the Ruta

language.

5.5.3.1 Basic Rules

Figure 5.13 shows how annotation rules can be visually created for identifying age and age

range tokens in text and creating annotations for those tokens. Every rule is built by dragging

elements from the patterns, conditions, and actions list at the top of the ARDAKE’s Rules

Composer and dropping these elements into their respective nodes of the rule. User defined

annotation types are automatically added to the list of annotators on the left side of the Rules

Composer and can be used as patterns while defining subsequent rules.

All rules in Figure 5.13 (A) except Number use the “Mark fast” action to create annotations of

type LetterNumber, AgeKeyword, and AgeUnit respectively. These rules reference external

text files where possible values are listed. An age keyword is either “old” or “of age”. Possible

values for an age unit include “year”, “years”, “yr”, “yrs”, “month”, “months”, “week”,

“weeks”, “day”, and “days”. The Number rule uses the “Group” pattern to define a Number

pattern as either a digital or a letter number. The “Group” pattern allows combining other

patterns using logical “And” and “Or” operators.

Figure 5.13 (B) shows how annotation types defined in previous rules can be used as patterns

while defining new rules. The Age rule define an age pattern as a sequence of a number

followed by any token followed by an age unit then an optional token and an optional age

keyword. To define a pattern as optional in ARDAKE, set its Mandatory property to false as

shown in the Properties grid below the Age rule in Figure 5.13 (B).

79

The Age rule in Figure 5.13 (B) create age annotations for various tokens including “15 years

old”, “twenty five years of age”, “2-yrs-old”, and more.

(A)

(B)

(C)

Figure 5.13: Age and Age Range rules in ARDAKE

Figure 5.13 (C) shows three different rules to define age range patterns in various shapes. This

allows identifying various age pattern tokens in text including “between 10 and 12”, “between

fifty and fifty five”, “under 2”, “over four”, “16 and under”, “eighteen and over”, and more.

Table 5.1 below shows equivalent Ruta code, generated by ARDAKE, for rules in Figure 5.13.

80

Table 5.1: Equivalent Ruta for rules in Figure 5.13

(A) DECLARE LetterNumber;

WORDLIST LetterNumberList = 'LetterNumberList.txt';

Document{->MARKFAST(LetterNumber, LetterNumberList)};

DECLARE Number;

(NUM | LetterNumber){->MARK(Number)};

DECLARE NumberRange;

Number ANY Number{->MARK(NumberRange, 1, 3)};

DECLARE AgeKeyword;

WORDLIST AgeKeyword = 'AgeKeyword.txt';

Document{->MARKFAST(AgeKeyword, AgeKeyword)};

DECLARE AgeUnit;

WORDLIST AgeUnit = 'AgeUnit.txt';

Document{->MARKFAST(AgeUnit, AgeUnit)};

(B) DECLARE Age;

Number ANY? AgeUnit ANY? AgeKeyword?{->MARK(Age, 1, 5)};

(C) DECLARE AgeRange;

"between" Number "and" Number{->MARK(AgeRange, 1, 4)};

("under" | "over") Number{->MARK(AgeRange, 1, 2)};

Number "and" ("under" | "over" | "older" | "younger"){->MARK(AgeRange, 1, 3)};

5.5.3.2 Advanced Rules

Creating advanced rules in ARDAKE is as easy as creating simple ones. Figure 5.14 shows an

example for creating a PIBOSO_Disease semantic annotation rule and three other rules for

assigning scores to sentences satisfying certain conditions for their likelihood to be PIBOSO

population sentences. The “PIBOSO Diseases” rule in Figure 5.14 (A) uses the semantic

“Subclass” condition to create annotations for any combination of 1 to 5 words that matches

81

any concept that directly or indirectly inherits from the “Spinal Cord Diseases”, “Brain

Injuries”, or “Demyelinating Diseases” concepts in the MESH ontology.

(A) (B)

Figure 5.14: ARDAKE rules for PIBOSO Population sentence candidate annotations

The second rule in Figure 5.14 (A) assign a score to any sentence containing one or more

“PIBOSO Diseases” annotation to be considered as a candidate for a Population sentence.

The first “PopulationSentenceCandidate” rule in Figure 5.14 (B) shows how negation and

Boolean operators can be used to exclude undesired tokens. This rule assigns a score to

sentences containing one or more population n-grams and no negative population n-grams. The

second rule in the same figure increases the score of “PopulationSentenceCandidate” sentences

if they are among the first 6 sentences in the document being analysed.

When a rule element is added to a rule, its properties can be set using the context-sensitive

properties grid. Figure 5.15 shows the properties grids for three elements in rules defined in

82

Figure 5.14. Figure 5.15 (A) shows how to set the number of desired occurrences of the Word

pattern in the “PIBOSO Diseases” rule. Here we indicate that any sequence of 1 to 5

consecutive words will be considered by the rule. Figure 5.15 (B) is the properties grid for the

“Subclass of Brain Injuries” condition of the “PIBOSO Diseases” rule. The user does not have

to type anything but rather selects the ontology and the parent concepts for creating

annotations. The user can also use the Recursive property to specify whether or not to consider

concepts that indirectly inherits from the selected parent concept. The “Subclass” condition is

described in more details in section 5.6.2. Figure 5.15 (C) is for the “Mark score” action of the

“PopulationSentenceCandidate” rule in Figure 5.14 (A) and it shows how a user can assign or

increment the score for tokens matching the patterns part of rule and fulfilling its conditions.

Note that the score can be decreased by specifying a negative value.

(A) (B) (C)

Figure 5.15: Properties grids for rules in Figure 5.14

Table 5.2 shows the Ruta script generated by ARDAKE for the rules in Figure 5.14.

Table 5.2: Ruta script generated by ARDAKE for rules in Figure 5.14

(A) DECLARE PIBOSO_Disease;

(W | (W W) | (W W W) | (W W W W) | (W W W W W)){OR(

SubClassOf("<http://bioonto.de/mesh.owl#C10.228.854>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#C10.228.140.199>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#C10.314>", "mesh", true)

83

) ->MARK(PIBOSO_Disease)};

Sentence{CONTAINS(PIBOSO_Disease)->MARKSCORE(20,

PopulationSentenceCandidate)};

(B) DECLARE PopulationSentenceCandidate;

Sentence{AND(-CONTAINS(NonPopulationNgram),

CONTAINS(PopulationNgram))->MARKSCORE(40,

PopulationSentenceCandidate)};

Sentence {OR(POSITION(Document, 1), POSITION(Document, 2),

POSITION(Document, 3), POSITION(Document, 4), POSITION(Document, 5),

POSITION(Document, 6)) -> MARKSCORE(10, PopulationSentenceCandidate)};

5.6 Interfaces and Extensions to the UIMA Ruta Language

A powerful feature of the Ruta language that is reflected in ARDAKE is the ability to extend

the rule language by adding definitions for new patterns, conditions, and actions without

altering the core language. This is done by extending the ARDAKE node patterns, conditions,

and actions classes as shown in Figure 5.16.

84

Figure 5.16: The main rule related classes in ARDAKE

In order to compensate for the lack of semantic rules in Ruta, most ARDAKE extensions we

built for patterns, conditions, and actions are semantic-based. The following sections describe

some of these extensions.

5.6.1 Pattern Extensions

Many domain experts prefer defining domain types and structures (concepts and relationships)

formally using RDF or OWL ontologies. New ontologies and concepts are not created from

scratch but are rather based on existing ones. An upper ontology defines the domain’s main

concepts and their relationships at a high abstraction level and helps regulating middle and

lower level ontologies. For example, an upper ontology can define concepts “Product” and

“Category” with their attributes and a mandatory relationship “exists in” that links “Product”

85

to “Category”. A domain ontology that defines concept “Milk” as a subclass of “Product” must

link “Milk” to a subclass of “Category” such as “Dairy Products”.

ARDAKE provides an upper ontology (Figure 5.17) so that concepts and structures defined in

domain ontologies can be used as patterns in annotation rules. This is done by linking concepts

in domain ontologies to those in the ARDAKE upper ontology. The ARDAKE upper

annotation ontology allows defining complex compound types and structures with any level of

nested elements. The upper ontology also allows applying restrictions to concept defined in

the domain ontology. For example, one can specify that the City pattern or element must appear

after the Street name element in an Address concept/structure. Structures defined in domain

ontologies can then be used in ARDAKE rules as shown in Figure 5.19.

Figure 5.17: The ARDAKE annotation upper ontology

Figure 5.17 shows the structure of the ARDAKE annotation upper ontology whose concepts

are explained in

Table 5.3.

86

Table 5.3: The ARDAKE Annotation Upper Ontology

Concept Description

AnnotationNode The main concept in the ARDAKE annotation upper

ontology. It represents a pattern element in an ARDAKE

rule.

TypeSystemAnnotationNode This is a subclass of the AnnotationNode concept that

represents a UIMA type system defined in an external

UIMA Analysis Engine descriptor.

AnnotationNodeFeature Represents a feature (property) for an annotation node. A

feature is defined by its name and value (ex. “age”, “42”).

AnnotationNodeRange Determines the minimum and maximum frequency for a

pattern to be considered by a rule.

RegularExpression Holds the regular expression for an ARDAKE rule

condition of type “Matches regular expression”.

AnnotationList Represents a collection of AnnotationNode.

DictionaryBasedAnnotationList A subclass of AnnotionList to model annotations created

based on a list using the ARDAKE MarkFast action.

SemanticAnnotationList Another subclass of AnnotationList to model annotations

created for concepts in ontologies identified using the

ARDAKE “Related to” condition.

ChildNodeSequence Acts as an intermediate layer between a parent annotation

node and its children. It determines the order in which the

children of a given parent element must appear in the rule.

Table 5.4 shows some object properties in the ARDAKE annotation upper ontology along with

their domains, ranges, and equivalent ARDAKE elements.

87

Table 5.4: The Object Properties in the ARDAKE Annotation Upper Ontology

Object Property Domain

Range

Equivalent ARDAKE Element

annotation_node_exists_in_list AnnotationNode

AnnotationList

“Is in list” condition

annotation_node_feature AnnotationNode

AnnotationNodeFeature

“Create annotation with features” action

annotation_node_matches_regex AnnotationNode

RegularExpression

“Matches regular expression” condition

annotation_node_score AnnotationNode

AnnotaionNodeRange

“Mark score” action

child_sequence_to_node

ChildSequenceNode

AnnotaionNode

“Is in list” condition

node_to_child_sequence AnnotaionNode

ChildSequenceNode

“Is in list” condition

The remaining object properties in the ARDAKE annotation upper ontology have

AnnotationNode as their Domain and Range and translate into identical ARDAKE conditions.

These properties are “after”, “before”, “contains”, “ends_with”, “last”, “near”, “partof”,

“partofneq”, “precedes”, and “starts_with”.

In addition to object properties, the ARDAKE annotation upper ontology has a number of data

properties. An interesting data property for the AnnotationNode concept is the “is_root”

88

property that identifies the starting (root) concepts while converting structures defined in the

ontology into annotation rules. Another useful data property for the AnnotationNode concept

is the “is_mandatory” that determines if a concept is mandatory or optional for a structure.

This maps into the “Mandatory” property of an ARDAKE pattern.

The ChildNodeSequence concept acts as an intermediate layer between a parent annotation

node and its children. It determines the order in which the children of a given parent element

must appear in the rule. ChildNodeSequence can be ignored if the order of children is not

important.

Figure 5.18 shows the “before” relationship connecting different concepts such as AdressLine1

to AddressLine2, AddressLine2 to PostalCode, Line1Token1 to Line1Token2, and

Line2Token1 to Line2Token2.

Figure 5.18: The Address ontology

Line1Token1, Line1Token2, Line2Token1, and Line2Token2 are all instances of type

ChildNodeSequence concept in the ARDAKE upper ontology. Instances of this concept help

determining the order of child concepts but do not appear in resulting annotation rules. Table

89

5.5 shows the Ruta script that ARDAKE generates for the Address ontology defined in Figure

5.18.

Table 5.5: ARDAKE generated Ruta script for the Address ontology

DECLARE AddressLine1;

 NUM CW { -> MARK(AddressLine1, 1, 2)};

DECLARE AddressLine2;

 CW NUM { -> MARK(AddressLine2, 1, 2)};

DECLARE Address;

 AddressLine1 AddressLine2 PostalCode { -> MARK(Address, 1, 3)};

To add an Ontology-based pattern to an ARDAKE rule, simply drag the “Ontology Pattern”

into the patterns node of the rule and set its properties as shown in Figure 5.19. The ontology

can be loaded from an RDF/OWL file or directly from the web using its URL. It is also possible

to load ontologies from triple stores such as a Stardog data store.

Figure 5.19: Ontology pattern for Address

ARDAKE generates annotation rules for “Ontology” patterns linked to OWL/RDF ontologies.

Similar extensions can be added to create pattern extensions for relational databases, UML,

and .net classes using reflection.

90

5.6.2 Condition Extensions

A simple but useful condition extension in ARDAKE is the length extension that evaluates to

true for tokens whose length is within the minimum and maximum length properties of the

condition. The length condition played an important role in improving the F-Score for the

Population and Intervention annotations in the PIBOSO corpus. As shown in section 7.4 in

CHAPTER 7, the length of sentences containing population and intervention patterns in the

PIBOSO corpus fall within a specific range.

“Subclass of” is a semantic condition extension that can be used to identify tokens matching

any concept that directly or indirectly inherit from a given concept in an ontology. After adding

a “Subclass of” condition to the conditions node of a rule, a user can use the properties of the

condition to select an ontology from a Stardog triple store. The user can then filter and search

concepts within the ontology to select the root concept for the condition. The user can finally

set the “Recursive” property of the rule to determine whether or not to consider concepts that

indirectly inherit from the root one. The “Subclass of” condition also played a key role in

improving the F-Score for the Population and Intervention annotations in the PIBOSO corpus.

Other semantic and NLP condition extensions can also be added to test NLP properties or to

check whether or not tokens are semantically related or semantically close. This can be done

using the Semantic Measures Library & ToolKit [45; 46] available at (http://www.semantic-

measures-library.org/sml/index.php) or similar libraries.

5.6.3 Action Extensions

ARDAKE allows growing (enriching) knowledge bases with concepts and relationships

learned while analyzing documents. This is enabled by a number of semantic action extensions

that include “AddConcept”, “AddObjectProperty”, “AddDataProperty”, “AddInstance”,

“RemoveConcept”, “RemoveObjectProperty”, “RemoveDataProperty”, and

“RemoveInstance”.

http://www.semantic-measures-library.org/sml/index.php
http://www.semantic-measures-library.org/sml/index.php

91

One can decide to do a double-pass corpus analysis where an ontology is created or enriched

with concepts and relationships learned during the first pass. This ontology can then be used

with other data sources during the second pass to look for specific patterns/information within

the corpus.

5.7 Chapter Summary

Using the right tools and following a suitable methodology are key success factors for large

and complex projects. The right tools are the ones that make the most challenging tasks simple

or significantly simpler. A good methodology serves as a roadmap in long running projects

where it is easy to lose track. Most KEFUD projects are both complex and long requiring a

rich set of powerful, easy to use, tools as well as a clear and easy to follow methodology.

In this chapter, we presented our prototype, called ARDAKE, that includes a number of

powerful, yet easy to use, tools that we developed to help KEFUD miners with their most

challenging tasks at various stages of a KEFUD project. We defined the requirements of our

prototype in Section 5.2 then showed, in subsequent sections, how all requirements were met.

Table 5.6 summarizes the ARDAKE requirements and indicates where each one is fulfilled.

Table 5.6: ARDAKE Requirements

Requirement Implemented in Section(s)

1) Non-technical domain experts should

be able to create KE rules using a

visual, user friendly, rule editor without

having to write any code.

ARDAKE Rules Composer 5.3.5

2) Users should have access to a set of

simple integrated tools to help them

with the ETL and the analysis of textual

corpora.

The Corpus Extractor

The Corpus Transformer

The Corpus Loader

The Corpus Analyser

5.3.1

5.3.2

5.3.3

5.3.4

92

3) Users should be able to visualize and

analyse the rules execution results in

order to have a better insight on how

rules can be optimized.

The Rules Results Analyser 5.3.7

4) ARDAKE should assist users through

the automatic generation of n-gram

inclusion and exclusion rules as

described in 4.5.2.

The Corpus Analyser 5.3.4

5) To maintain the efficiency of rule-based

KE, ARDAKE must support rules of

various types including linguistic,

statistical, and semantic rules. All

ARDAKE rules will be created in a

consistent way using a simple visual

rule editor.

ARDAKE Rules Composer

Rules structures

Ruta Rules Extensions

5.3.5

5.5.1

5.6

6) ARDAKE will assist users finding the

combination of rules that produces the

best results based on F-Score.

The Rules Combiner 5.3.8

7) It should be possible to share rules with

other ARDAKE users and use existing

rules to define more complex ones.

ARDAKE Rules Composer

Rules Examples

5.3.5

5.5.3

8) Users should be able to run rules

directly from ARDAKE or generate

equivalent Ruta rules that can be used

in any UIMA Ruta compatible system.

ARDAKE Rules Composer

The Ruta Generator

5.3.5

5.3.6

CHAPTER 6

Corpus Preprocessing

6.1 Chapter Overview

The Extract-Transform-Load (ETL) process is an expensive but essential part of most

knowledge extraction projects. Designing and implementing ETL takes up to 70% of the time

and cost resources [47]. This high ETL cost was reported for projects dealing with structured

data. Since it is harder to work with unstructured data, it is expected that the cost of ETL from

unstructured data sources is even higher. It is therefore crucial to develop and rely on advanced

specialized tools to simplify the ETL process when working with unstructured data.

In this chapter, we present the tools we used and the steps we took to find a good corpus and

preprocess it before loading into our database that is designed for visualization, easy and

efficient, data and results analysis.

6.2 Finding the Right Corpus

The efficiency and performance of Knowledge Extraction (KE) solutions and tools cannot be

measured and evaluated without running them over a corpus that represents the overall data of

the respective domain. The corpus must be approved and manually annotated by domain

experts so that results produced by KE solutions and tools can be compared against those

created by the domain experts. Those solutions and tools are then evaluated by how close the

results they produce match the ones done by domain experts. Solutions and tools producing

the best results can be used as a benchmark by future solutions and tools that try to beat their

scores. Finding the right corpus to create, train and evaluate KE models is therefore an essential

step for any KE solution.

After evaluating annotated corpora for different domains including financial, sports, and

medical, we found that the most suitable corpus to evaluate our solution is the NICTA-PIBOSO

corpus described in section 6.4.

94

While expert-level knowledge is not required to evaluate the performance of KE solutions

when run against an already annotated corpus, basic knowledge is necessary to compare the

results and make the right judgments. In the next sections, we introduce EBM and its related

PICO and PIBOSO frameworks.

6.3 EBM PICO

Evidence Based Medicine (EBM) is an approach to better teaching medical and clinical

practices by making the search for answers in large volume medical libraries more formal and

systematic [48; 49].

Keywords search without a formal context usually lead to a large number of unrelated results.

For example, a keyword search for asthma will return all articles containing the word asthma

or related synonyms in their title, abstract, or text. This does not take into consideration the

patient’s gender, age, or other criteria such as what kind of intervention is needed and the

desired outcome. Even if all those elements are specified in a keyword search string, different

people would specify them in different ways and orders making it hard for the search engine

to identify them and use them for a more precise search result.

With EBM, medical students and practitioners perform more contextual searches by specifying

keywords in different categories. EBM recommends that physicians express their

questions/queries in terms of the Problem/Patient/Population, Intervention, Comparison, and

Outcome or PICO in short.

PICO is not the only EBM framework for formulating clinical questions. Other PICO

variations such as PECORD and PIBOSO are also used. Different studies showed that, despite

their limitations, PICO and similar frameworks help improving query results when searching

for answers to medical questions in already annotated abstracts.

95

What limits the success of PICO and similar frameworks is the fact that a large number of

medical questions do not necessarily have all the elements of the framework. In fact, many

questions will only have 1 or 2 elements of the underlying framework but even in this case, the

frameworks still present a good value in assisting physicians practicing EBM. One of the

biggest challenges of EBM is the annotation of PICO elements in medical abstracts and text

[50].

6.4 NICTA-PIBOSO Corpus

The Australasian Language Technology Association (ALTA) organizes annual events and

workshops about language technologies. ALTA’s goal is to enable computers to better process

human languages and to allow more sophisticated access to stored information.

In 2012, ALTA organized a competition to build automatic sentence classifiers that can map

the content of sentences from biomedical abstracts into a set of pre-defined EBM categories.

The competition was sponsored by the National Information Communications Technology

Australia (NICTA) which is one of the largest Australian research center dedicated to

Information Communication Technology research. NICTA also provided the annotated corpus

and related data sets for the competition. The annotations were based on an EBM PICO

variation called PIBOSO that drops the C (Comparison) element of PICO and adds three new

elements B (Background), S (Study Design), and O (Other). Here is a short description of each

element in the PIBOSO schema:

 Population: The group of individual persons, objects, or items comprising the study's

sample, or from which the sample was taken for statistical measurement;

 Intervention: The act of interfering with a condition to modify it or with a process to

change its course (includes prevention);

 Background: Material that informs and may place the current study in perspective, e.g.

work that preceded the current; information about disease prevalence; etc.;

 Outcome: The sentence(s) that best summarize(s) the consequences of an intervention;

 Study Design: The type of study that is described in the abstract;

 Other: Any sentence not falling into one of the other categories and presumed to

provide little help with clinical decision making, i.e. non-key or irrelevant sentences.

96

The NICTA-PIBOSO Corpus has a total of 1000 expert-annotated structured (i.e. includes

heading such as Method, Results, Conclusions, etc.…) and unstructured abstracts where 800

are used for training and 200 for testing. Unlike structured abstracts, unstructured abstracts do

not include any headings. The 800/200 of training/testing abstracts was decided by the creator

or the NICTA-PIBOSO corpus and was used by those who participated to the ALTA-NICTA

PIBOSO contest.

6.5 Downloading and Preparing abstracts for the PIBOSO corpus

The NICTA-PIBOSO corpus data is available on Kaggle at https://inclass.kaggle.com/c/alta-

nicta-challenge2/data. The following files can be downloaded from there:

Train.csv: a file containing comma separated values used to train models on labeling sentences

using the PIBOSO schema. Sentences in this file were taken from 800 PUBMED abstracts.

Each line in this file contains five fields.

- Prediction: a 0 or 1 value that indicate whether the sentence of the line matches the

PIBOSO label (class) of the same line.

- Label: one of the PIBOSO labels (Population, Intervention, Background, Outcome,

Study design, or Other).

- Document: the PUBMED identifier of the source abstract from which sentences were

taken. Appending this number to the main PUBMED URL

“http://www.ncbi.nlm.nih.gov/pubmed/” on the National Library of Medicine website

creates a link to the actual abstract text. For example, the link to obtain the text of the

abstract with the document number 10072623 is

“http://www.ncbi.nlm.nih.gov/pubmed/10072633”. This gives access to the abstract in

html format. To obtain abstracts in XML format, add “?dopt=XML” at the end of the

URL after the document number.

- Sentence: The sequence number of the sentence within the source abstract text.

- Text: the text of the sentence of the current line.

Test.csv: this is used to test the performance of classification models. It contains the same

fields as Train.csv except the Prediction column that has to be provided by classifiers.

Sentences in this file were taken from 200 PUBMED abstracts that are in mutual disjunction

with the train.csv ones. Related abstracts can be downloaded in html or XML format using the

same method described above to download training abstracts.

https://inclass.kaggle.com/c/alta-nicta-challenge2/data
https://inclass.kaggle.com/c/alta-nicta-challenge2/data
http://www.ncbi.nlm.nih.gov/pubmed/
http://www.ncbi.nlm.nih.gov/pubmed/10072633

97

More files are provided for training purposes such as files containing sentences of the training

abstracts with NLP tags as well as other files that contain the headers in each structured

abstract.

ARDAKE rules are converted into UIMA Ruta scripts that gets included into a UIMA Analysis

Engine then executed using the Eclipse-based UIMA Document Analyser. The UIMA

Document Analyser runs UIMA Analysis Engines over a set of files in an input folder.

Therefore, full abstract text for the PIBOSO corpus has to be stored in files in order to annotate

them using annotation rules created with ARDAKE. The ARDAKE Corpus Extractor was used

to download all training and test abstracts by parsing the csv files of the PIBOSO corpus and

looping through the document numbers. For each document number, the URL of the abstract

in XML format was constructed using the method described above.

6.6 Importing Abstracts and Sentences into the ARDAKE database

The training and test CSV files described in section 6.5 contain, for each sentence, the sentence

text, its sequence number within its parent abstract, as well as the PUBMED document ids of

the abstract. Therefore, they can be used to import the PIBOSO abstracts and sentences into

the ARDAKE database. The PIBOSO corpus also has, for each structured abstract, a text file

that has the PUBMED abstract ID as a name and that contains the list of headers along with

their locations within the abstract. This can be used to set the optional IsStructured field of the

Documents table in the ARDAKE database.

Before importing the PIBOSO abstracts, a new row was inserted in the Corpora table for the

PIBOSO corpus. The corpus id field is an auto-generated number; the corpus name was set to

“PIBOSO”; and a description of the PIBOSO corpus was provided in the CorpusDescription

field of the Corpora table.

For each abstract in the PIBOSO corpus, a new row was inserted in the Documents table of the

ARDAKE database. The document id is an auto-generated number; the corpus id is the

PIBOSO corpus id as defined in the Corpora table; the document type is set to “test” for

98

documents in the Test.csv and to “training” for documents in Training.csv respectively.

Document contents can be obtained either by downloading them as described in section 6.5 or

by concatenating sentences, with the same document id, in the right order based on their

sequence number in the csv file. The data in the csv files are enough to populate the Sentences

table as these contain all fields in the Sentences table, namely the document (abstract) id, the

sentence sequence number within the abstract, and the sentence text. Note that the sentence

sequence number is unique within a given abstract as no two different sentences can have the

same sequence number in the same abstract. This means that any sentence in the ARDAKE

database can be uniquely identified by its document id and sequence number.

6.7 Importing the PIBOSO Manual Annotations into the ARDAKE database

The PIBOSO corpus includes a text file called gs.txt that has the list of all manual annotations

for the training and test abstracts. Each line in gs.txt contains three tab separated fields that are

the abstract document id, the sentence sequence number within the abstract, and the manual

annotation. A sentence that has multiple manual annotations has multiple lines in gs.txt (one

line per annotation) as shown for sentence 1 in document 10850747 in the following snippet

taken from gs.txt.

Table 6.1: PIBOSO Annotations Counts

10847225 21 other

10847225 22 outcome

10847225 23 outcome

10850747 1 background

10850747 1 population

10850747 1 intervention

10850747 2 outcome

In order to import manual annotations, a test run has to be created first. This is done by inserting

a new row in the TestRuns table. For PIBOSO, the test run date was set to the date on which

the manual annotations were imported into the ARDAKE database, the ARDAKE file content

and Ruta script fields were left empty, and the test run description was set to “Manual

annotations for the PIBOSO corpus”. The PIBOSO manual annotations were imported into the

ARDAKE database by reading the content of gs.txt line by line and inserting a new row in

99

XRef_Sentences_Annotations for each line. For each row, the test run id is the id of the manual

test run as defined in the TestRuns table, the annotation type is obtained from the last element

in each line read from gs.txt. To get the sentence id, the first two elements in each line in gs.txt

(document id and sentence sequence number) are read then used to query the Sentences table

for the uniquely matching sentence id.

6.8 Importing ARDAKE/UIMA Annotations into the ARDAKE database

ARDAKE rules can be executed directly from the ARDAKE menu or used to generate Ruta

scripts that are executed in Eclipse using the UIMA Document Analyser that creates an xml

document with the xmi extension in which it stores all annotations for each document being

analysed. In order to reuse the existing functionality of importing manual annotations into the

ARDAKE database, UIMA annotations in xmi files are used to generate a file that has the same

structure as gs.txt. This file is then read and imported the same way gs.txt is imported into the

ARDAKE database.

6.9 Chapter Summary

We described the tools we used and the steps we took to find a good corpus and to preprocess

it before loading it into our database for further analysis. This is a crucial step given its

complexity and its big influence on all subsequent steps in any KEFUD project. Meta-data and

results extracted from unstructured data sources and their training and test sets respectively

should be stored in a manner that makes it simple to analyse and visualize. As we show in the

following chapter, our database is designed to store meta-data and results in a way that greatly

simplifies visualization and data analysis. More importantly, our database and tools allow the

automatic generation of more efficient KEFUD rules based on existing ones.

CHAPTER 7

Data Analysis

7.1 Chapter Overview

KE from any domain requires some level of understanding of that domain as well as the corpus

and data from which the knowledge is to be extracted. The minimum required level of

understanding depends on the degree to which we rely on automatic parsing and rules/models

generation. Unsupervised ML algorithms require no, or minimal, understanding of the

underlying domain and data. However, these algorithms are often based on statistical analysis

only and are therefore limited and lack the semantic and business aspects in the rules and

models they produce. This is particularly true for unstructured data where NLP and TDF are

used first to create structured data before running statistical-based unsupervised algorithms to

generate rules and models.

Defining KE rules manually requires a high level of understanding of the domain and corpus

in question whether or not training data is available. This is why domain experts are sometimes

the best ones to define KE rules. Domain experts know the business rules featuring the domain

knowledge but still need tools to help them discover and understand the structural, linguistic,

statistical, and semantic characteristics of the knowledge to extract.

7.2 Studying the PIBOSO Domain and Training Set

Before defining any annotation rules, one should have some basic understanding of the domain.

When good training sets are available, they should also be studied, visualized, and analysed

with the purpose of finding distinguishing properties for each annotation type. We studied the

PICO/PIBOSO literature and training sets to gain basic knowledge on the topic so that we can

do more in-depth analysis and start writing elementary annotation rules. Our focus was mainly

on the Population and Intervention annotations since, so far, none of the existing

algorithms/tools has succeeded to precisely identify them in the PIBOSO corpus. The

literatures and the manual annotations helped identifying a number of common patterns (ex.

102

Age, gender, etc.) in Population and (treatments, drugs, procedures) in Intervention

annotations. The MeSH ontology is another good source of information about patterns

commonly found in PIBOSO and other medical corpora.

Figure 7.1: The Population Characteristics class and its subclasses in MeSH

Figure 7.1 shows the “Population Characteristics” class and some of its subclasses in the MeSH

ontology. These definitions and their synonyms can be very useful for creating basic rules to

identify Population annotations in medical abstracts. Other classes in MeSH such as “Surgical

103

Procedures, Operative” and “Therapeutics” can be used to create rules for the Intervention

annotations. Ideally, a more specific ontology for the PIBOSO corpus should be used but since

such ontology could not be found, we decided to use the MeSH ontology instead.

7.3 Using the ARDAKE Corpus Analyser

We used the ARDAKE Corpus analyser to create n-grams decision trees for the Population

sentences in the training set of the PIBOSO corpus. Table 7.1 shows a subset of the results

produced by the ARDAKE Corpus Analyser for creating the unigram decision tree with a

minimum frequency of 3 and the minimum F-Score of 90%.

Table 7.1: Subset 1 of the ARDAKE Corpus Analyser results

 <name_635790719492055913 Text="PositiveNGrams">

 <name_635790719492055913 Text="crossover" PCount="4" NCount="0" />

 <name_635790719492055913 Text="July" PCount="3" NCount="0" />

 <name_635790719492055913 Text="Sprague-Dawley" PCount="3" NCount="0" />

 <name_635790719492055913 Text="corn" PCount="3" NCount="0" />

 <name_635790719492055913 Text="formula-fed" PCount="3" NCount="0" />

 <name_635790719492055913 Text="Indian" PCount="3" NCount="0" />

 <name_635790719492055913 Text="rabbits" PCount="3" NCount="0" />

 <name_635790719492055913 Text="cord-injured" PCount="3" NCount="0" />

 </name_635790719492055913>

 <name_635790719492055913 Text="NegativeNGrams">

 <name_635790719492055913 Text="significant" PCount="0" NCount="308" />

 <name_635790719492055913 Text="significantly" PCount="0" NCount="292" />

 <name_635790719492055913 Text="trials" PCount="0" NCount="245" />

 <name_635790719492055913 Text="therapy" PCount="0" NCount="241" />

 <name_635790719492055913 Text="increased" PCount="0" NCount="238" />

 <name_635790719492055913 Text="quality" PCount="0" NCount="205" />

 <name_635790719492055913 Text="evidence" PCount="0" NCount="184" />

…

 </name_635790719492055913>

 <name_635790719492212171 Text="OtherNGrams">

 <name_635790719493618523 Text="patients" PCount="135" NCount="1317">

 <name_635790719493618523 Text="PositiveNGrams">

104

 <name_635790719493618523 Text="retrospective" PCount="4" NCount="0" />

 <name_635790719493618523 Text="obstruction" PCount="4" NCount="0" />

 <name_635790719493618523 Text="recruited" PCount="3" NCount="0" />

 <name_635790719493618523 Text="skin" PCount="3" NCount="0" />

 <name_635790719493618523 Text="aged" PCount="3" NCount="0" />

 <name_635790719493618523 Text="clinic" PCount="3" NCount="0" />

 <name_635790719493618523 Text="Hospital" PCount="3" NCount="0" />

 <name_635790719493618523 Text="carried" PCount="3" NCount="0" />

 <name_635790719493618523 Text="determined" PCount="3" NCount="0" />

…

 </name_635790719493618523>

 <name_635790719493618523 Text="NegativeNGrams">

 <name_635790719493618523 Text="therapy" PCount="0" NCount="67" />

 <name_635790719493618523 Text="risk" PCount="0" NCount="50" />

 <name_635790719493618523 Text="symptoms" PCount="0" NCount="44" />

...

 </name_635790719492212171>

Table 7.1 shows that only few n-grams were repeated 3 or 4 times in the Population sentences

and less than 3 times in the non-population sentences. On the other hand, many n-grams have

high frequencies in the non-population sentences and frequencies of 2 or less in the population

sentences. This means that only few keywords can be used in Population inclusion rules but

many keywords can be used in exclusion rules as they are frequently used in non-population

sentences but not in the population ones.

Table 7.1 also shows that many n-grams frequently appear in both population and non-

population sentences. Having these n-grams in inclusion rules results in a large number of false

positives and having them in the exclusion rules would eliminate many valid population

sentences resulting in a large number of false negatives. Therefore, these n-grams must be used

in conjunction with other n-grams to create inclusion and exclusion rules. For example, the

word “patients” appears 135 times in population sentences and 1317 times in non-population

sentences. However, “patients” co-occurs 4 times in same sentences with “retrospective”

105

and/or “obstruction” in population sentences only. Similarly, “patients” co-occurs 67, 50, and

45 times with “therapy”, “risk”, “symptoms” respectively in non-population sentences only.

Changing the parameters of the ARDAKE Corpus Analyser yields to a different n-gram

decision tree as shown in Table 7.2. This tree was produced for unigrams with a minimum

frequency of 5, and the minimum F-Score of 90%.

Table 7.2: Subset 2 of the ARDAKE Corpus Analyser results

 <name_635792614000163346 Text="PositiveNGrams">

 <name_635792614000163346 Text="man" PCount="7" NCount="0" />

 </name_635792614000163346>

 <name_635792614000163346 Text="NegativeNGrams">

 <name_635792614000163346 Text="significant" PCount="0" NCount="308" />

 <name_635792614000163346 Text="significantly" PCount="0" NCount="292" />

 <name_635792614000163346 Text="trials" PCount="0" NCount="245" />

 <name_635792614000163346 Text="therapy" PCount="0" NCount="241" />

 <name_635792614000163346 Text="increased" PCount="0" NCount="238" />

…

 </name_635792614000163346>

 <name_635792614000243403 Text="OtherNGrams">

 <name_635792614000243403 Text="patients" PCount="135" NCount="1316">

 <name_635792614000243403 Text="PositiveNGrams">

 <name_635792614000243403 Text="prospective" PCount="7" NCount="0" />

 <name_635792614000243403 Text="conducted" PCount="5" NCount="0" />

 <name_635792614000243403 Text="referred" PCount="5" NCount="0" />

 </name_635792614000243403>

 <name_635792614000243403 Text="NegativeNGrams">

 <name_635792614000243403 Text="group" PCount="0" NCount="80" />

 <name_635792614000243403 Text="injury" PCount="0" NCount="69" />

 <name_635792614000243403 Text="care" PCount="0" NCount="68" />

 <name_635792614000243403 Text="risk" PCount="0" NCount="50" />

 <name_635792614000243403 Text="outcome" PCount="0" NCount="48" />

 <name_635792614000243403 Text="symptoms" PCount="0" NCount="44" />

…

106

By observing the results in Table 7.2, more n-gram co-occurrence inclusion and exclusion rules

can be created.

7.4 Visualizing and Analyzing the PIBOSO Training Set

One of the advantages of storing corpora (especially training sets) in a relational database is to

enable the easy visualization and analysis of data using built-in and custom database

functionalities as well as existing visualization tools such as Tableau and QlikView. This helps

getting a quick insight into the manual annotations and allow building basic inclusion and

exclusion annotation rules with pretty high precisions. Data mining tools can also be used to

get advanced statistics about the manual annotations.

We used many built-in and custom functionalities and a number of visualization tools to get

distinguishing factors for the PIBOSO annotations. All tools led to the same conclusions

showing strong correlations between some sentence annotation types and the lengths and the

positions of those sentences within their abstracts as shown in the screenshots below for

different visualizations created using the Tableau software.

Figure 7.2 shows the number of annotations for each annotation type in structured and

unstructured abstracts of the PIBOSO corpus. While this can be easily produced at the database

level and have another tool such as Microsoft Excel produce the graphics, visualization tools

such as Tableau and Qlik do the work with few mouse drag/drops. The same data can be shown

in different visual formats for easy interpretation.

107

Figure 7.2: PIBOSO annotations counts in structured and unstructured abstracts

Figure 7.3 shows the same data presented in Figure 7.2 using a stack chart. By looking at the

chart in Figure 7.3, one can immediately realize that the PIBOSO corpus has more Outcome

annotations than any other annotation types. It is also clear that Outcome annotations are

evenly distributed between structured and unstructured abstracts. This is not the case for the

“Other” annotation type where the number of annotations in structured abstract is much larger

than those in the unstructured ones. The chart also shows that three quarters of the

“Background” annotations are in unstructured abstracts. Another obvious information that can

be obtained from the chart is that there are not as many annotations for “Study Design”,

108

“Intervention”, and “Population”. Some researchers use this later information as a justification

for not having high F-Scores for the “Population” and “Intervention” annotations.

Figure 7.3: Stack Bar – PIBOSO annotations in structured and unstructured abstracts

Figure 7.4 shows the number of annotations per sentence sequence number for each annotation

type while Figure 7.5 shows the same data in a stacked chart. Both Figure 7.4 and Figure 7.5

show that Population and Intervention annotations are almost always found in the first eleven

sentences in abstracts. We can therefore define elementary annotation rules to reject Population

and Intervention annotation candidates identified after the 11th sentence. This rule will sacrifice

positive annotations that exist after the 11th sentence but this should have a minor impact as

109

the percentage of those annotations is very low compared to the ones found in the first 11

sentences.

Figure 7.4: PIBOSO sentences breakdown by their position within abstracts

110

Figure 7.5: Stacked bar – PIBOSO sentences breakdown by their position within abstracts

Another interesting breakdown is the distribution of the different type of PIBOSO sentences

based on their length. A sentence length is the number of characters in the sentence including

white spaces and special characters. Since the length can be too granular for visualization,

sentences were grouped into ranges of 0 to 10 characters for visualization. Figure 7.6 shows

the PIBOSO sentence distribution based on their length range. Figure 7.7 shows the same data

in a stacked bar chart. A number of observations can be made by looking at Figure 7.6 and

Figure 7.7. An obvious observation is that short sentences (length <= 20) are almost always of

type “Other”. Likewise, all sentences with more than 260 characters are of type “Other”. This

information can be translated into an elementary annotation rule where a sentence is

automatically labeled with the “Other” annotation type if its length is less than or equal to 20

or when its length is over 260. This rule alone can lead to an F-Score of 65 or more for the

“Other” annotation type.

111

Figure 7.6: PIBOSO sentences breakdown by their length

112

Figure 7.7: Stacked bar – PIBOSO sentences breakdown by their length

Adding more dimensions to the data analysis and visualization can sometimes reveal more

details about the data and more importantly about the distinguishing factors between the

various annotation types. For example, sentences positions and lengths in structured abstracts

may not be quite the same as in unstructured abstract. In that case, it might be better to develop

two sets of annotation rules (one for structured and one for unstructured abstracts). New

dimensions can be analysed and visualized in isolation or side by side. With the isolation

approach, only structured or unstructured abstracts are loaded for analysis and visualization in

order to identify common properties. When put side by side, properties of each group of

abstracts can be compared and contrasted with those of the other group. This helps determining

whether one set of rules applies to both or not.

The remaining Figures in this section show numbers and graphics for structured and

unstructured abstracts side by side. Figure 7.8 shows the number of each type of PIBOSO

sentences at each position within structured and unstructured abstracts. Figure 7.9 is a visual

presentation of the data in Figure 7.8 using a stacked bar chart. Both figures reveal important

facts about the distribution of Population and Intervention annotations in structured and

113

unstructured abstract respectively. The biggest majority of Population and Intervention

annotations in unstructured abstracts are in the first 6 sentences unlike the structured abstracts

where the majority of annotations are in the second sentence and in sentences 4 to 10. This

information helps writing better annotation rules to increase the number of true positives while

reducing the number of false positives for Population and Intervention annotations.

Figure 7.8: PIBOSO sentences breakdown by their position in structured/unstructured

abstracts

More useful observations about other annotation types can also be made by studying Figure

7.8 and Figure 7.9. For example, it is easy to notice that “Outcome” annotations are almost

always in the first 14 sentences in unstructured abstract but they are mostly in sentences 7 to

22 in the structured ones. Similar observations can be made for other annotation types.

114

Figure 7.9: Stacked bar – PIBOSO sentences breakdown by their position in

structured/unstructured abstracts

Figure 7.10 shows the PIBOSO annotations, in the training set for structured and unstructured

abstracts, grouped by the length ranges of their sentences. Figure 7.11 shows the same data

using a stacked bar graph. Both figures show that sentence lengths for Population and

Intervention annotations in structured abstracts are consistent with those in the unstructured

ones. This means that one rule set about the sentence lengths for each annotation type can be

applied to both structured and unstructured abstracts. This is clearly not the case for annotations

of type “Other” where the biggest majority of annotation sentences are less than 20 characters

long in structured abstract as opposed to those in unstructured abstracts where lengths ranges

between 50 and 180 characters.

115

Figure 7.10: PIBOSO annotations breakdown by their sentence length in

structured/unstructured abstracts

116

Figure 7.11: Stacked bar - PIBOSO sentences breakdown by their length in structured and

unstructured abstracts

More analysis can be done in Tableau, in similar tools, or at the database level to retrieve more

facts about the training data in order to build the initial set of annotation rules. One can, for

example, see the number of overlapping annotations vs distinct ones. Simple SQL queries like

the one in

Table 7.3 we ran over the PIBOSO training set in the ARDAKE database yields the following

results:

 216 common Population and Intervention sentences

 178 Population sentences that are not Intervention sentences

 129 Intervention sentences that are not Population sentences

117

Table 7.3: SQL snippet for common Population and Intervention annotations

This means that close to 55% of Population annotations are also Intervention annotations and

about 63% of Intervention annotations are also Population annotations. This information can

be taken into consideration while writing annotation rules so that when a Population annotation

is identified with a high confidence, its confidence level for also being an Intervention

annotation should be set to a minimum of 63%.

The above SQL query can be slightly modified to show common annotations grouped by

position or by sentence length or any other available information. This helps writing more

specific rules that lead to better results. The SQL code snippet in Table 7.4 lists common

Population and Intervention annotations based on the position of each sentence within its

parent abstract as shown in Table 7.5.

Table 7.4: SQL snippet for common Population and Intervention annotations by sentence

position

-- Manual Test Run

DECLARE @TestRunID UniqueIdentifier = '88EF3C87-68C7-E311-BEAA-6036DDE93D1E'

DECLARE @AnnotationTypeID1 INT = 1 -- Population

DECLARE @AnnotationTypeID2 INT = 2 -- Intervention

DECLARE @DocumentTypeID INT = 1 -- Training

-- Manual Test Run
DECLARE @TestRunID UniqueIdentifier = '88EF3C87-68C7-E311-BEAA-6036DDE93D1E'
DECLARE @AnnotationTypeID1 INT = 1 -- Population
DECLARE @AnnotationTypeID2 INT = 2 -- Intervention
DECLARE @DocumentTypeID INT = 1 -- Training

SELECT COUNT(*) [Count]
FROM [dbo].[XRef_Sentences_Annotations] ann1
INNER JOIN [dbo].[XRef_Sentences_Annotations] ann2

ON ann1.SentenceID = ann2.SentenceID
INNER JOIN dbo.Sentences ps ON ps.SentenceID = ann1.SentenceID
INNER JOIN dbo.Documents d ON d.DocumentID = ps.DocumentID
WHERE
 (@DocumentTypeID IS NULL OR (@DocumentTypeID = d.DocumentTypeID))
 AND ann1.TestRunID = ann2.TestRunID
 AND ann1.TestRunID = @TestRunID
 AND ann1.AnnotationTypeID = @AnnotationTypeID1
 AND ann2.AnnotationTypeID = @AnnotationTypeID2

118

SELECT ps.SequenceNo [Sentence Position], COUNT(*) [Count]

FROM [dbo].[XRef_Sentences_Annotations] ann1

INNER JOIN [dbo].[XRef_Sentences_Annotations] ann2

ON ann1.SentenceID = ann2.SentenceID

INNER JOIN dbo.Sentences ps ON ps.SentenceID = ann1.SentenceID

INNER JOIN dbo.Documents d ON d.DocumentID = ps.DocumentID

WHERE (@DocumentTypeID IS NULL OR (@DocumentTypeID = d.DocumentTypeID))

AND ann1.AnnotationTypeID != ann2.AnnotationTypeID

AND ann1.TestRunID = ann2.TestRunID AND ann1.TestRunID = @TestRunID

AND ann1.AnnotationTypeID != @AnnotationTypeID1

AND ann2.AnnotationTypeID = @AnnotationTypeID2

GROUP BY SequenceNo

ORDER BY [Count] DESC

Table 7.5: Common Population and Intervention annotations by sentence position

Sentence Position Common Population and Intervention Count

1 25

2 24

3 21

4 18

5 18

6 10

7 5

8 2

9 2

11 2

19 1

10 1

Table 7.5 shows that most common Population and Intervention annotations occur in the first

6 sentences. The above SQL query can be adjusted to eliminate rows with low counts.

119

Further breakdown can be done by including the structured/unstructured abstract to be even

more specific about common Population/Intervention annotations.

7.5 Chapter Summary

Having some level of domain and corpus understanding is essential for any KE project. This

is especially true for KEFUD projects where unsupervised ML algorithms are quite limited

and where it is hard or impossible to create a training set.

In this chapter, we showed how existing visualization tools along with our analysis tools gave

us a quick insight and helped us understanding the PIBOSO corpus. This was a big step forward

towards defining our initial KE rules that we describe in the next chapter.

CHAPTER 8

Rules Development

8.1 Chapter Overview

Having a good understanding of the domain and corpus is essential for determining what KE

rules are needed. However, this effort becomes useless if we don’t have the tools and capacity

to create and deploy the required rules. Having the right set of tools to create KE rules can have

a huge impact on the time and cost of rules development.

The tools we created as part of our ARDAKE prototype were so helpful in creating simple and

efficient rules to identify Population and Intervention sentences in the PIBOSO corpus. We

show in this chapter how we created textual, statistical, and semantic rules, using ARDAKE,

in a simple and consistent way.

8.2 Building the PIBOSO Elementary Rules in ARDAKE

Based on the visual and non-visual analysis we did, we created a number of elementary rules

to identify Population and Intervention annotations in the PIBOSO corpus. For example, it is

common to mention an age or an age range in population sentences. We therefore needed to

build elementary annotation rules to match age and age range patterns. An age or age range

pattern in a sentence gives an indication that this may be a population sentence. To increase

the confidence level, the same sentence containing an age or an age range pattern is searched

for other population related patterns. This is done by building more elementary annotation rules

and combining these rules to calculate the final confidence level to decide whether or not the

sentence is a population annotation.

Building annotation rules in ARDAKE is done by simple mouse drag/drop of predefined built-

in or user defined patterns, conditions, and actions. Figure 8.1 (A) shows an ARDAKE rule for

matching age patterns. The AgeUnit pattern in the rule matches any age unit such as year,

month, day, etc. The AgeKeyword pattern is either “old” or “of age”. The rule in Figure 8.1

122

(A) defines the age as a number (written in digits or in letters) followed by any characters

(spaces or other) followed by an age unit, then any characters and ends with an age keyword.

This allows matching age patterns in different forms such as “3 weeks old”, “fifty three years

of age”, etc.

(A)

(B)

Figure 8.1: Age Rule (A) and Age Indicator Rule (B) in ARDAKE

Figure 8.1 (B) shows another ARDAKE rule to match age indicators in sentences. This rule

uses the “Mark fast” action that matches any word from a selected word list. Our age indicator

word list contains all variations of English age indicators such as “infant”, “toddler”, “baby”,

“child”, “teenager”, etc…, in their singular and plural forms.

(A)

(B)

(C)

Figure 8.2: Age Range Rules in ARDAKE

123

The rules in Figure 8.2 match age ranges in different forms including “between 30 and 40”,

“between ten and eleven”, “under twenty”, “16 and over”, and so on.

The ARDAKE “Mark fast” action can be used to match positive and negative n-grams. All you

need is to save positive and negative n-grams, identified by the ARDAKE Corpus Analyser,

in text files then set the “Word List” property of the “Mark fast” action to point to those files.

Once this is done, these two rules can be used to define a new rule to identify sentences that

have one or more positive population n-grams and no negative population n-grams as a

population candidate sentence as shown in Figure 8.3.

Figure 8.3: Population Sentence Candidate Rule in ARDAKE

PIBOSO Semantic rules are as easy to create as the previously shown ones in this section. It is

common for population sentences to include the problem or the disease of interest. A generic

ARDAKE annotation rule can be created to match any disease in the text being analysed. This

can be done by simply using the “Subclass of” condition and setting the “Parent Concept”

property to the top-most disease class in MeSH or a similar ontology. However, this can

generate too many concepts to look for and can result in matching many false positive results.

To obtain better results, we should be as specific as possible about the concepts (diseases or

problems) to match in the text. Ideally, a dedicated ontology for the corpus being analysed

should be used but, since we could not find such an Ontology for the PIBOSO corpus and it

would be a tedious task to develop one, we decided to use the MeSH ontology and be more

specific about the parent concepts to look for in population sentences. The main reason for

124

choosing MeSH over other medical ontologies is that NLM uses the MeSH to index the articles

in the MedLine/PubMED database.

By reading some of the PIBOSO training population annotations, you can notice that they are

mostly about spinal cord issues and brain injuries. Figure 8.4 shows a rule that defines any

occurrence of a sub-concept of the “Spinal Cord Diseases” or “Brain Injuries” as a PIBOSO

disease.

Figure 8.4: PIBOSO Diseases Annotation Rule in ARDAKE

Other population related rules such as the ones identified during the visual analysis are trivial

to create in ARDAKE. This is done by using the Position or Length conditions as shown in

Figure 8.5.

The rule in Figure 8.5 covers frequent positions of population sentences in both structured and

unstructured abstracts. For better results, the rule in Figure 8.5 could be replaced with two

other rules, one for structured abstracts that looks for sentences at positions (2, 4, 5, 6, 7, 8, 9,

and 10) and one for unstructured abstracts that looks for sentences at positions 1 to 6

inclusively. This is based on numbers and observations from Figure 7.8 and Figure 7.9 in the

previous chapter.

125

Figure 8.5: ARDAKE Rule to Identify Sentences at Population Position

Once all elementary rules are created, new rules can be created to assign scores to the results

of each elementary rule. This is done using the Mark Score action as in Figure 8.6.

Figure 8.6: Mark Score Action for Sentences Containing PIBOSO Disease Annotations

Figure 8.6 shows two sub-rules where the first one is to annotate any sentence that contains a

PIBOSO Disease pattern as SentenceWithPIBOSODisease and the second one to create an

annotation of type PopulationSentence with a score of 20 for each

SentenceWithPIBOSODisease. This is because the second sub-rule does not have any

conditions. Note that if a sentence was already annotated as a PopulationSentence by another

126

sub-rule and that this same sentence also contains a PIBOSO_Disease annotation, the score of

the PopulationSentence annotation is increased by 20.

8.3 Running the Elementary Rules

ARDAKE allows running rules by clicking the Run button or generate UIMA Ruta scripts

from its visual rules. This is done by simply choosing the “Generate Ruta Script” button from

the ARDAKE menu bar. Generated Ruta scripts like the snippet in Table 8.1 can then be run

into any UIMA environment.

Table 8.1: UIMA Ruta script snippet generated by ARDAKE

DECLARE AgeIndicator;

WORDLIST AgeIndicator = 'AgeIndicator.txt';

Document{->MARKFAST(AgeIndicator, AgeIndicator)};

DECLARE AgeKeyword;

WORDLIST AgeKeyword = 'AgeKeyword.txt';

Document{->MARKFAST(AgeKeyword, AgeKeyword)};

DECLARE AgeUnit;

WORDLIST AgeUnit = 'AgeUnit.txt';

Document{->MARKFAST(AgeUnit, AgeUnit)};

DECLARE Gender;

WORDLIST GenderList = 'GenderList.txt';

Document{->MARKFAST(Gender, GenderList)};

DECLARE Age;

Number ANY? AgeUnit ANY? AgeKeyword{->MARK(Age, 1, 5)};

DECLARE AgeRange;

"between" Number "and" Number{->MARK(AgeRange, 1, 4)};

("under" | "over") Number{->MARK(AgeRange, 1, 2);

Number "and" ("under" | "over" | "older" | "younger"){->MARK(AgeRange, 1, 3)};

DECLARE PopulationNgram;

127

WORDLIST P_Indicators = 'P_Indicators.txt';

Document{->MARKFAST(PopulationNgram, P_Indicators)};

DECLARE NonPopulationNgram;

WORDLIST P_Negators = 'P_Negators.txt';

Document{->MARKFAST(NonPopulationNgram, P_Negators)};

DECLARE PopulationSentenceCandidate;

Sentence{AND(-CONTAINS(NonPopulationNgram), CONTAINS(PopulationNgram))

->MARK(PopulationSentenceCandidate)};

DECLARE SentenceAtPopulationPosition;

PopulationSentenceCandidate{

OR(

POSITION(Document, 1), POSITION(Document, 2), POSITION(Document, 3),

POSITION(Document, 4), POSITION(Document, 5), POSITION(Document, 6),

POSITION(Document, 7), POSITION(Document, 8), POSITION(Document, 9)

) ->MARK(SentenceAtPopulationPosition)};

DECLARE PIBOSO_Disease;

#{

OR(

SubClassOf("<http://bioonto.de/mesh.owl#C10.228.854>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#C10.228.140.199>", "mesh", true)

) ->MARK(PIBOSO_Disease)};

Different options exist when it comes to running elementary rules and getting their results. We

could generate a separate Ruta script for each elementary rule then run this script and import

its resulting annotations into the ARDAKE database for further analysis and improvements.

This option is best suitable for business users as it does not require any knowledge about Ruta

or the database. Another option is to generate one script with all elementary rules then comment

out all elementary rules except one in the Ruta script before running and importing the

annotations. Once the results are imported, the active elementary rule is commented out and

another one uncommented then the script is run again until all rules are executed and their

results are imported in the database. Unlike the first option, the second option requires some

128

basic Ruta knowledge. A third option is to generate one Ruta script with all the elementary

annotation rules, run this script once, then do the analysis on the annotation types produced by

each elementary rule instead of doing it based on the target annotation type (ex. Population or

Intervention). The last option takes less time than the first two but requires some basic database

and SQL knowledge.

8.4 Chapter Summary

We showed the main rules we created using ARDAKE to identify Population and Intervention

sentences in the PIBOSO corpus. Although these rules were of different types including

textual, statistical, and semantic rules, they were all created in a consistent and simple visual

way. These are the same rules we used to obtain better KE results than those obtained by state-

of-the-art KE algorithms when applied on the NICTA-PIBOSO corpus as detailed in the next

chapter.

CHAPTER 9

Evaluation

9.1 Chapter Overview

Newly created KE rules and models should be tested, evaluated, and optimized to produce the

best results. Sometimes it is even necessary to update rules that are already deployed especially

when the business logic or the data change or if more information becomes available. To

optimize rules, we first need to identify their shortcomings.

Creating and optimizing rules without having the right tools is difficult but finding the right

rules combinations that yield the best KE results can be much more challenging.

In this chapter, we show how our ‘Results Analyser and Visualizer’ tool can be used to indicate

what rules should be optimized and how to optimize them. We also show how we used our

‘Rules Combiner’ tool to automatically generate the best rules combination that outperformed

most state-of-the-art KE algorithms when run over the NICTA-PIBOSO corpus to identify

population and intervention sentences.

9.2 Measuring the performance of rules

As discussed in CHAPTER 2, the performance of rules can be measured in different ways

using existing supervised machine learning evaluation methods. The most common evaluation

methods/formulas are F-Score, ROC, AUC, Accuracy, Sensitivity (Recall), Specificity, and

Precision [11]. Storing rules results in a database along with the training and test data makes it

easier to measure and compare the performance of KE rules using visual tools and/or SQL

queries.

We developed a number of SQL functions to calculate the precision, recall, and F-Score for

annotation results stored in the in ARDAKE database. Other SQL functions and stored

procedures in the ARDAKE database return the TP, FP, TN, and FN sets for any given test

130

run. Analyzing and visualizing the output of the ARDAKE database functions and stored

procedures help optimizing the rules used to generate annotation results.

The ARDAKE Rules Results Analyser described in Section 5.3.7 leverages the SQL Server

capabilities by presenting functions and stored procedures’ results in a visual user-friendly

way.

9.3 Creating, Visualizing, Analyzing, and Optimizing the Elementary rules for

Population and Intervention

Population and Intervention rules for the PIBOSO corpus were iteratively developed starting

with elementary rules to annotate simple patterns. Simple patterns definitions were obtained

from two main sources:

- A research report, done at the University of Quebec in Outaouais, to define the

characteristics of PICO terms.

- The results of analyzing PIBOSO training data as explained in CHAPTER 7.

The following subsections show the main Population elementary rules along with their

precision, recall, and F-Score. Elementary Intervention rules were developed in the same

manner.

9.3.1 Population annotation based on business rules

A research report prepared at the University of Quebec in Outaouais described the properties

of patterns found in different PIBOSO sentences. For example, it is logical for sentences

describing patients or population to have age and/or gender related patterns. We showed how

these rules can be created using ARDAKE in CHAPTER 8. Figure 9.1 shows the visual

representation of the annotation results for a number of age related rules along with the

precision, recall, and F-Score of each rule. An interesting observation is that the results

(precision, recall, and F-Score) of each business rule when run over the training set were almost

the same results of this rule when run over the test set.

131

(A) Based on age units

(P: 17.32%, R: 20.67%, F-Score: 18.84%)

(B) Based on age keywords

(P: 56.25%, R: 6%, F-Score 10.84%)

(C) Based on age indicator

(P: 25.97%, R: 13.33%, F-Score 17.62%)

(D) Based on age

(P: 87.50%, R: 4.67%, F-Score 8.86%)

Figure 9.1: Population annotation results based on age related rules

132

Note that the age units rule (Figure 9.1 (A)) has a poor precision and a good recall as opposed

to the age keywords rule (Figure 9.1 (B)) that has a good precision and a poor recall. This

indicates that age units are found in many Population sentences but are also present in many

non-Population sentences. It also indicates that age keywords are found in few Population

sentences but are very unlikely to show up in non-Population sentences. The age rule that

combines both age units and age keywords has an excellent precision but a very low recall.

Combining the age units and age keywords rules resulted in 1.33% recall loss but increase the

precision by over 30% compared to the age keywords rule.

Some elementary rules such as the gender rule (Figure 9.2) lead to relatively acceptable

precisions and good recalls.

(P: 25.69%, R: 18.67%, F-Score 21.62%)

Figure 9.2: Population annotation results based on gender

9.3.2 Population annotation based on statistical rules

Like business rules, statistical rules produced similar results whether they were run over the

training or the test set of the NICTA-PIBOSO corpus. Figure 9.3 shows the visual

133

representation of results produced by the sentence position and length statistical rules and their

combination using the AND operator.

A) Based on sentence position (1 to 9)

(P: 13%, R: 85.33%, F-Score 22.57%)

B) Based on length (80 to 260)

(P: 8.13%, R: 96%, F-Score 14.99%)

C) Based on sentence length and position

(P: 14.6%, R: 82.67%, F-Score 24.82%)

Figure 9.3 : Population annotation results based on statistical rules

134

Notice that the F-Score of the combination is higher than the F-Score of both elementary rules

despite the lower recall. This is because the drop in the recall was compensated for by the

precision increase. The results correspond to our analysis and observations in CHAPTER 7

where we show that almost all population sentences are amongst the first 9 sentences with a

length ranging between 80 and 260 characters.

9.3.3 Population annotation based on inclusion and exclusion n-gram tree rules

The annotation results for rules based on n-gram decision trees, produced by the ARDAKE

Corpus Analyser, revealed three interesting points:

1- The ARDAKE algorithm that generates n-gram decision trees is very powerful and

useful for annotation and knowledge extraction especially when the training set

properly represents the domain data.

2- The use of n-grams extracted from a training set negatively impacts the quality of KE

models and rules if the training set does not properly represent the domain data.

3- The PIBOSO training set does not properly represent the corresponding test set as

indicated in [51]. This is true, at least, from a linguistic perspective.

By looking at Figure 9.4 and Figure 9.5, we can easily see how using annotation rules with

unigrams produced based on one set generates excellent results for the same set but poor results

for the other set. Figure 9.6 shows that the annotation rule for unigrams produced based on

both sets generated very good and identical results for both training and test sets. In all these

cases, n-grams were generated based on precision but, as explained in CHAPTER 4, the

ARDAKE Corpus Analyser can also generate n-grams based on the recall or the F-Score.

135

Training

P: 99.75%, R: 61.48%, F-Score: 76.07%

Test

P: 26.67%, R: 2.67%, F-Score: 4.85%

Figure 9.4: Results of a Population annotation rule based on unigrams from the Training set

Training

P: 35.42%, R: 2.57%, F-Score: 4.79%

Test

P: 100.00%, R: 83.33%, F-Score: 90.91%

Figure 9.5: Results of a Population annotation rule based on unigrams from the Test sets

136

Training

P: 99.74%, R: 58.46%, F-Score: 73.71%

Test

P: 100.00%, R: 66.00%, F-Score: 79.52%

Figure 9.6: Results of a Population annotation rule based on unigrams from the Training and

Test sets

9.3.4 Population annotation based on semantic rules

Like business and statistical rules, semantic rules produced similar results when run over the

training and test sets of the PIBOSO corpus. This is normal because semantic rules can be

considered as business rules that are defined based on ontologies. The graphs in Figure 9.7

show that more than half of the population sentences and less than the quarter of the non-

population sentences contain a MeSH Disorder subclass.

137

Training

P: 15.57%, R: 49.85%, F-Score: 23.72%

Test

P: 17.60%, R: 58.67%, F-Score: 27.08%

Figure 9.7: Annotation results based on Disorder subclasses in the MeSH ontology.

9.4 Generating the best rules combination

Once all elementary rules are defined, tested individually, and had their results stored in the

ARDAKE database, it is time to find the rules combination that yields the best performance

based on the F-Score or other metrics.

Annotation rules can be combined using logical operators ‘AND’ and ‘OR’. The number of

combinations increases exponentially with the number of initial rules. For example, given two

rules A and B, there are only 2 combinations (A AND B) and (A OR B) which gives a total of

4 rules altogether. Adding only one rule C creates 6 new rule combinations that are (A AND

B AND C), (A AND (B OR C)), (A OR (B AND C)), (A OR B OR C), ((A AND B) OR C),

((A OR B) AND C).

Testing rules combinations manually is very time consuming as it can take days to test few

hundred combinations. The ARDAKE Rules combiner can test millions of rules combinations

and select the one with the best performance in minutes because it does this by combining

138

results instead of running each combination separately against the corpus. Figure 9.8 and Table

9.1 show the best combination produced by the ARDAKE Rules Combiner for 6 Population

elementary rules. The combination has an F-Score of 35% while the highest F-Score for an

elementary rule is 26%.

Figure 9.8: The ARDAKE Rules Combiner

Table 9.1: Output produced by the ARDAKE Rules Combiner

Round 1: 19 combinations were added.
Combinations compared so far: 84
Round 2 in progress...

Round 2: 231 combinations were added.
Combinations compared so far: 1072
Round 3 in progress...

Round 3: 22065 combinations were added.
Combinations compared so far: 119806
Round 4 in progress...

Round 4: 1756896 combinations were added.
Combinations compared so far: 11482398
Round 5 in progress...

R0: 134
R1: 136
R2: 137

139

R3: 139
R4: 142
R5: 143
R6: 144

Number of initial rules: 6
Total number of accepted combinations: 1779218
Max F-Score obtained 0.35
Combination with Max F-Score is: (((R0[0.22] U R2[0.24]) I (R4[0.26] I R5[0.17])) U ((R0[0.22] U (R1[0.14] U R3[0.04]))

I (R2[0.24] U (R4[0.26] I R6[0.19]))))

9.5 Benchmarking with Machine Learning Algorithms

It was quite simple, using our approach and tools, to bypass the annotation results obtained by

most state-of-the-art annotation algorithms and tools used in the NICTA-PIBOSO contest.

Note that there is still lots of room to refine our annotation rules and obtain even better

annotation results.

Despite the fact that our rules did not take any advantage of the distinctive characteristics of

structured versus unstructured abstracts, our F-Scores for structured and unstructured abstracts

were higher than most state-of-the-art algorithms as show in Table 9.2.

Our Population F-Score for structured abstracts was 15% higher than the one obtained by [52]

and 6% above the one obtained by [53] but 5% less than the best results obtained by [54]. Our

F-Score for Population sentences in unstructured abstracts was 26% higher and more than

doubled the one obtained by Verbeke et al. for the same classification. It was also 8% higher

than the one obtained by Kim et al. but 11% lower than the Sarker et al. one.

Our Intervention results were even better as we had the highest F-Score for classifying

Intervention sentences in structured abstracts. Our Intervention F-Score for the structured

abstracts was 13% higher than the highest F-Score obtained by Sarker et al... This represents

an increase 43% over the best F-Score obtained during the ALTA-NICTA PIBOSO contest.

Our F-Score here is 17% higher than the Verbeke et al. and more than doubled the one obtained

by Kim et al. For unstructured abstracts, our F-Score was almost the triple of the one obtained

by Kim et al. and more than doubled the Verbeke et al. one and only 3% below the highest F-

Score obtained by Sarker et al.

140

Table 9.2: Population and Intervention annotation results

PIBOSO

Terms

Sarker et al. Kim et al. Verbeke et al. Our approach

S U S U S U S U

Population 0.45 0.59 0.56 0.40 0.36 0.22 0.51 0.48

Intervention 0.30 0.39 0.20 0.13 0.26 0.16 0.43 0.36

While we use the NICTA-PIBSO competition results as a benchmark, it is important to note

that a study done by [55], after the competition, produced better results using a ML approach

based on a discriminative set of features from the PIBOSO corpus. The latter solution produced

results that are much lower than other state-of-the-art when tested on balanced PIBOSO

corpora generated using various data balancing strategies [51].

9.6 Chapter Summary

We used the tools we developed and described in previous chapters to evaluate and optimize

our elementary KE rules then to automatically generate the rules combination that produced

better results than those obtained by most state-of-the-art KE algorithms and tools when run

over the NICTA-PIBOSO corpus to identify population and intervention sentences. Our tools

can be used, in the same manner, in other rule-based KE projects to optimize rules and generate

the best rules combination.

CHAPTER 10

Conclusion

10.1 Fulfillment of Research Objectives

We set our research objectives in Table 3.1 based on KEFUD research challenges described in

Table 2.4 and showed how they were all met throughout the chapters of this thesis. We

summarize everything in Table 10.1 and provide references to the sections containing the proof

and details about the fulfillment of each objective.

Table 10.1: Fulfillment of Research Objectives

Research Objective Targeted Challenge Fulfillment

Simplify the creation and

maintenance of KEFUD

rules.

Creating and

maintaining KEFUD

rules

A significant part of our research and

work was to meet this objective. We

designed and implemented ARDAKE

(CHAPTER 5) that allows users to

create and modify KEFUD rules in a

simple, visual, and consistent way. We

used ARDAKE in CHAPTER 8 to

show how simple it is to create

KEFUD rules that produce results that

are comparable to, and in some cases

better than, those obtained by state-of-

the-art ML algorithms as shown in

Table 9.2.

Make it easy for users,

particularly domain

experts, to rely on

ontology concepts and

relationships while

Creating semantic

rules based on

ontologies

In order to compensate for the lack of

semantic rules in UIMA Ruta, most

Ruta extensions we created in 5.6 were

semantic-based. We showed in

CHAPTER 8 that using ARDAKE to

142

creating their KEFUD

rules.

create Semantic rules based on

ontologies is similar to the creation of

all other ARDAKE rule types. It is

done using a simple, visual user

interface allowing users to select

desired ontologies and concepts with

few mouse clicks. See Figure 8.5 for

an example of a semantic rule in

ARDAKE.

Explore the full potential

of n-grams including

their positive, negative,

and collective correlation

with the patterns of

interest in order to get a

better KEFUD

performance.

Determining the

right set of n-grams

to use for KEFUD

rules

We dedicated CHAPTER 4 to study

the importance and the limitations of

n-grams. We proposed an algorithm in

4.5 to generate n-gram decision trees

based on positive and negative

correlations between n-grams. We

discussed in 4.6 how n-gram decision

trees can be used to improve the

quality of KEFUD rules. We also

created the Corpus Analyser (5.3.4) to

automatically generate KEFUD rules

based on our n-gram decision trees. In

Section 9.3.3 we showed that KEFUD

rules generated based our n-gram

decision trees produce high F-Scores

when the training set properly

represents the domain data. The same

rules produce very low F-Scores when

the training set does not properly

represent the domain data.

143

Find a simple, accurate,

and efficient way to

identify the best

combination of KEFUD

rules.

Finding the best

combination of

KEFUD rules

In Section 5.3.8, we showed how the

Rules Combiner compares millions of

rules combinations and select the best

one in seconds. We did may

simulations and noticed that the rules

combinations produced by our Rules

Combiner have F-Scores that are

significantly higher than those of the

initial rules.

Make it trivial for rule

designers to correct a

failing rule in either

matching true positive

results or avoiding false

positive results.

Evaluating and

optimizing KEFUD

rules

The Rules Results Analyser described

in 5.3.7 shows the results of each rule

using a pie chart with different colors

to depict TP, FP, TN, and FN. It gives

an immediate insight on the quality of

the results and suggests whether the

rule condition(s) should be tightened

or relaxed in order to improve the rule

performance.

10.2 Research Contributions

Our research was concentrated on the creation of simple, yet efficient, rules for knowledge

extraction from unstructured data. Our goal was to make it possible for non-technical domain

experts to create, maintain, and run knowledge extraction while reducing the need for business

analysts, data engineers, and software engineers and minimizing the risk of lost or incorrect

knowledge due to miscommunication amongst resources with different backgrounds and

skillsets.

We designed an architecture for KEFUD and developed a prototype named Adaptive Rules-

Driven Architecture for Knowledge Extraction (ARDAKE), providing an interface for domain

experts to develop text mining syntactical and semantic rules. These are then executed, scored,

144

and combined into pipelines of analysis engines using an open source NLP backend, integrated

with a graph database and rules language. Our results visualizer gives an immediate insight

into rules performance and how to optimize individual rules based on their results.

We also defined and implemented an algorithm to automatically generate n-grams based

annotation rules that ARDAKE users can add to their rules set. Our results-based rules

combiner efficiently compares the performance of thousands of rules combinations without

having to execute these combinations over the corpus. Once the optimal combination of rules

is found and recommended by the system, it can then be applied to annotate text corpora.

We defined a number of semantic and non-semantic rule elements (Patterns, Conditions, and

Actions) and implemented them as UIMA Ruta extensions. We then extended ARDAKE to

make it possible for users to use our rule elements while creating or modifying theirs rules

using the ARDAKE Visual Rules Editor.

We demonstrated the performance of our prototype, algorithm, rule extensions, and tools using

a text corpus that had been extensively studied with machine learning. We imported the

PIBOSO dataset and successfully improved sentence classification in a set of 1000 abstract

from the medical literature focused on a single disease (i.e., spinal cord injury). Our results

outperformed those obtained by most state-of-the-art ML algorithms used in the ALTA-

NICTA PIBOSO contest confirming the simplicity and the effectiveness of our approach as

well as the potential of integrating text mining and semantic annotation.

10.3 Significance

Our results offer the first published contribution toward extending the Ruta rules language to

integrate semantic and NLP technologies. Most NLP and semantic platforms are separated,

with the rare exception of the General Architecture for Text Engineering (GATE) platform that

allows integrating with Graph DB and writing rules in Java. We showed that our environment

can offer the same functionality with great simplicity and expandability. As well, the Service

Component Architecture (SCA) environment provided by UIMA provides a much greater

145

flexibility and reliability in high-performance, distributed, and real-time enterprise

environments.

We also made the first extensive use of n-grams to compose, test, and optimize rules to be

integrated within a semantic engine. Our approach contrasts with traditional machine learning

applications in text mining. Instead of looking at text with only Part-of-Speech tagging, n-

grams are a convenient middle-ground between, on one hand, the indiscriminate bag-of-words

and TD-IDF computation, and on the other hand, the computationally complex formalism of

an ontology. Our algorithm takes the advantage of the quantitative as well as qualitative aspects

of n-grams, which encompass in part the logic behind text associations, while keeping the

relevance of frequency distributions of such combinations. The nested capability of our

algorithm also goes well beyond similar efforts in hierarchical text mining.

The prototype we developed is also among the first attempts to making NLP and semantic rules

integration most user-friendly. We ensured that our interfaces take in consideration the literacy

level of end-users, and exploit the simplicity and expressivity of ontologies to document a

knowledge base. We were also very faithful to the logic of the Ruta language, by representing

its very elements and structure in our visual rules development process. We also provided great

transparency by allowing end-users to check the “back-end” of our code implementation, and

verify the code produced of these rules, as well as their validity and reliability.

We proposed a new way of visualizing the quality performance of rules, extending the already

well-known classification performance indicators. While recognizing that traditional

indicators are highly meaningful, we wanted to make them more accessible to non-technical

end-users. As such, a visual and colorful representation, while ensuring a limited set of

elements and relationships, became a valuable asset to communicate classification results to

domain experts. We hope this particular contribution will find extensive use and relevance in

a variety of fields where these traditional performance indicators are commonly used.

146

Finally, we contributed to the EBM PICO literature by improving the classification of 2 key

classes for medical literature abstracts. This research area has mostly been studied using

machine learning, as demonstrated in the exclusive use of such technologies in analyzing the

PIBOSO corpus. In addition to attempting to innovate in service to the biomed informatics

profession, we provided hope to push ever further the performance and quality of classification

engines in the medical profession, something that may have been viewed until recently

infeasible given the high complexity of these scientific disciplines. We are confident that our

approach can help EBM PICO researchers reach much greater success, allowing them to tackle

text corpora and knowledge bases of greater complexity than those studied so far in the

literature.

10.4 Limitations

One of the limitations of ARDAKE is that it is a windows-based application which requires

installing it on a windows operating system before it can be used. Our future web-based

implementation of ARDAKE will eliminate the need to install it making it available to more

users.

Like other rule-based KE solutions, ARDAKE suffers an inherit limitation for analysing poor

quality data with erroneous and/or missing values. This can be solved using data cleansing or

by creating extra rules to handle specific cases of erroneous or missing data.

Creating and managing a large number of rules is a challenge for any rule-based KE solution.

This limitation can be reduced by grouping related rules into libraries and allowing users to

search and import rules from those libraries.

Another limitation is the lack of integration with well known text annotation platforms such as

GATE. ARDAKE supports the conversion of its rules into the UIMA Ruta rules language. The

integration with GATE and it rules language JAPE can be accomplished using the UIMA-

GATE interoperability layer provided by GATE.

147

We must also consider the risks of diversifying the use of our prototype to text corpora and

application domains of greater complexity. We have not yet tested our tool with scenarios of

vast and deep relationships in complex ontologies. We have also not yet studied the challenging

interpretations when n-grams must be combined with numeric data and symbols.

Finally, our test has been highly focused on improving the classification performance of a

specific corpus. While ARDAKE offers evident advantages relative to other platforms, we still

need to measure the tangible impact on the task efficiency and efficacy of end-users in a variety

of application domains. This would require a more behavioral analysis of a richer and more

dynamic rules-driven decision-making environment.

10.5 Application Potential

We are undoubtedly entering the era of unstructured information, and text and rules will

become the next frontier in Big Data, Analytics, and Intelligent Systems research. However,

the integration of NLP and semantic technologies is still in its infancy. We therefore have very

limited hints as to the potential of using our approach, other than those presently revealed by

existing uses of text mining.

Yet we can envision a future in a variety of industries, organizations, professions, sectors, and

even any human activity, where any end-user (no longer simply domain experts) will be able

to seamlessly and instinctively “think in terms of adaptive rules” in decision-making.

Our vision for a future making text the core element of any decisions with humans in the loop

may, possibly, revolutionize our conception of intelligent systems. As opposed to always being

conceived “in-support-of” human activity, the greater facility to integrate text directly within

intelligent information processing may create true cyborg intelligence, where humans and

machines co-depend on one another for the endless virtuous cycle of knowledge extraction,

knowledge combination, knowledge creation, knowledge codification, knowledge diffusion,

and knowledge reuse.

148

10.6 Related Works

A recent study was done by [56] to compare the most popular text mining tools. Fifty-five text

mining tools were identified out of which thirty-nine are proprietary and thirteen are open

source and only three are web-based tools that offers very limited functionality. The study

listed the techniques and features supported by each tool. While some tools include features

that are not currently supported by ARDAKE such as data cleansing text summarization, and

audio/video content analysis, the rule-based tools are almost entirely based on writing rules

using DM or rule languages like R, NLP++, and GATE Jape. For instance, VisualText can

auto-generate some rules if users provide sufficient text annotations of specific text portions

such as phone numbers but users must write NLP++ code with complex syntax for more

advanced rules. In addition to statistical and other machine learning techniques, OdinText has

limited support for rule-based solutions and its rules are proprietary and not reusable by other

tools or for other corpora [57]. ARDAKE rules can be exported into standard UIMA Ruta rules

and can therefore be reused by any UIMA-based tool. Tovek Tools offer a query editor

allowing users to create IE rules and combine them using Boolean expressions. Their query

editor is intended for expert users who need to write their rules in full-text using a specific rule

syntax.

10.7 Future Research

Inspired by the diversity of potential application areas, our technical research program will

encompass both infrastructure and application development.

On the software-side, we will continue with the aim of improving our prototype and its

customization to various domains. In addition to overcoming the known ARDAKE limitations,

our future research will focus especially on the detection of temporal events and complex

relationships extraction. We also plan to research more enterprise-grade environments, such as

those depending on the creation of business rules engine that can be used to automate business

processes and data driven decision making.

However, we envision most of our efforts, and especially research collaborations, to address

the application-side of our field. As a starting point, organizational decision-making will

149

greatly benefit from knowledge extraction and modeling that integrates concepts and

relationships annotations created by the execution of ARDAKE rules over domain corpora. As

well, our research agenda will increasingly integrate multidisciplinary and multilingual text

corpora, to accurately reflect the changing workplace and globalization. Great consideration

for combining quantitative and qualitative data should also offer significant research

challenges, many of which will also reflect the increasing complexity of diverse applications

of data and text mining by workers of various professionals.

Finally, as we did in the field of EBM PICO, we hope to make further contributions to various

domains of the arts, humanities, management, health and natural sciences where semantic text

mining is becoming increasingly valuable. We will continue our efforts in developing the

mission of the informatics profession in becoming partners and agents of change in every

aspect of human knowledge, hence requiring ever greater care for end-user friendliness and

empowerment in using intelligent systems for knowledge management.

ANNEX I

Ruta Script Generated by ARDAKE for Population Annotations

DECLARE Quotation;

W{REGEXP("((QUOTE))")->MARK(Quotation)};

DECLARE Sentence;

Quotation # Quotation{->MARK(Sentence, 2)};

Sentence {Length(0, 10) ->UNMARK(Sentence)};

DECLARE AgeIndicator;

WORDLIST AgeIndicator = 'AgeIndicator.txt';

Document{->MARKFAST(AgeIndicator, AgeIndicator)};

DECLARE AgeKeyword;

WORDLIST AgeKeyword = 'AgeKeyword.txt';

Document{->MARKFAST(AgeKeyword, AgeKeyword)};

DECLARE AgeUnit;

WORDLIST AgeUnit = 'AgeUnit.txt';

Document{->MARKFAST(AgeUnit, AgeUnit)};

DECLARE Gender;

WORDLIST GenderList = 'GenderList.txt';

Document{->MARKFAST(Gender, GenderList)};

DECLARE Race;

WORDLIST RaceList = 'RaceList.txt';

Document{->MARKFAST(Race, RaceList)};

DECLARE LetterNumber;

WORDLIST LetterNumberList = 'LetterNumberList.txt';

Document{->MARKFAST(LetterNumber, LetterNumberList)};

DECLARE Number;

(NUM | LetterNumber){->MARK(Number)};

DECLARE NumberRange;

Number ANY Number{->MARK(NumberRange, 1, 3)};

DECLARE Age;

((Number AgeUnit) | (Number AgeUnit AgeKeyword) | (Number ANY? AgeUnit

ANY? AgeKeyword)){->MARK(Age, 1, 2)};

//Number AgeUnit AgeKeyword{->MARK(Age, 1, 3)};

//Number ANY? AgeUnit ANY? AgeKeyword{->MARK(Age, 1, 5)};

DECLARE AgeRange;

"between" Number "and" Number{->MARK(AgeRange, 1, 4)};

("under" | "over") Number{->MARK(AgeRange, 1, 2)};

152

Number "and" ("under" | "over" | "older" | "younger"){->MARK(AgeRange, 1,

3)};

DECLARE PopulationNgram;

WORDLIST P_Indicators = 'P_Indicators.txt';

Document{->MARKFAST(PopulationNgram, P_Indicators)};

DECLARE PopulationKeyword;

WORDLIST PopulationKeywor_List = 'PopulationKeyword.txt';

Document{->MARKFAST(PopulationKeyword, PopulationKeywor_List)};

DECLARE NonPopulationNgram;

WORDLIST P_Negators = 'P_Negators.txt';

Document{->MARKFAST(NonPopulationNgram, P_Negators)};

DECLARE PIBOSO_Disease;

(W | (W W) | (W W W) | (W W W W) | (W W W W W)){OR(

SubClassOf("<http://bioonto.de/mesh.owl#C10.228.854>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#C10.228.140.199>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#A05.360.444>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#F01.145.126>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#C20.111.258>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#C10.314>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#D003123>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#D010190>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#D002277>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#E01.370.378.325>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#C26>", "mesh", true),

SubClassOf("<http://bioonto.de/mesh.owl#A08.186>", "mesh", true)) -

>MARK(PIBOSO_Disease)};

WORDLIST MeshConcept_List = 'MeshConcepts.txt';

Document{->MARKFAST(PIBOSO_Disease, MeshConcept_List)};

DECLARE PopulationSentenceCandidate;

Sentence{CONTAINS(PopulationNgram)->MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bretrospective\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bretrospectively\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bprospective\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bQOL\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bobstruction\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\baged\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\brecruited\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bconducted\\b).*$") -

>MARK(PopulationSentenceCandidate)};

153

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\breferred\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bexamined\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\btreated\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bassessed\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bevaluated\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bstudied\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bselected\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bidentified\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\btested\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\binvestigated\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bmeasured\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bconsecutive\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\benrolled\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bsuffered\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\brandomized\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bcriteria\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bdiagnosed\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\b\\(N =\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bphysical\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bcompleted\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bstudy\\b)(?=.*\\bincluded\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bstudy\\b)(?=.*\\bexamined\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatient\\b)(?=.*\\bexperiences\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatient\\b)(?=.*\\bmuscle\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bsuffered\\b)(?=.*\\bfrom\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\beffect\\b)(?=.*\\bexamined\\b).*$") -

>MARK(PopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bsubjects\\b)(?=.*\\bscheduled\\b).*$") -

>MARK(PopulationSentenceCandidate)};

154

Sentence{REGEXP("^(?=.*\\bsubjects\\b)(?=.*\\binterview\\b).*$") -

>MARK(PopulationSentenceCandidate)};

DECLARE NonPopulationSentenceCandidate;

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bgroup\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\binjury\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bcare\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\brisk\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\boutcome\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bsymptoms\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

//Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bassociated\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bsevere\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\blevels\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bmean\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bgroups\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bCHF\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bresults\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bprimary\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bsurgery\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

Sentence{REGEXP("^(?=.*\\bpatients\\b)(?=.*\\bpatient\\b).*$") -

>MARK(NonPopulationSentenceCandidate)};

DECLARE PrePopulationSentence;

PopulationSentenceCandidate {->MARKSCORE(50, PrePopulationSentence)};

DECLARE PopulationPosition;

Sentence {OR(POSITION(Document, 1), POSITION(Document, 2),

POSITION(Document, 3), POSITION(Document, 4), POSITION(Document, 5),

POSITION(Document, 6), POSITION(Document, 7), POSITION(Document, 8),

POSITION(Document, 9), POSITION(Document, 10)) -

>MARK(PopulationPosition)};

PopulationPosition{->MARKSCORE(10, PrePopulationSentence)};

Sentence {OR(CONTAINS(AgeIndicator), CONTAINS(Age), CONTAINS(AgeRange)) -

>MARKSCORE(20, PrePopulationSentence)};

Sentence {CONTAINS(Gender) ->MARKSCORE(20, PrePopulationSentence)};

Sentence {CONTAINS(Race) ->MARKSCORE(20, PrePopulationSentence)};

Sentence {CONTAINS(PopulationKeyword) ->MARKSCORE(20,

PrePopulationSentence)};

155

Sentence {CONTAINS(PIBOSO_Disease) ->MARKSCORE(20,

PrePopulationSentence)};

Sentence {Length(85, 265) -> MARKSCORE(10, PrePopulationSentence)};

PrePopulationSentence {CONTAINS(NonPopulationNgram)->MARKSCORE(-30,

PrePopulationSentence)};

NonPopulationSentenceCandidate {->MARKSCORE(-50, PrePopulationSentence)};

PrePopulationSentence {OR(Length(0, 84) , Length(266, 100000)) ->

MARKSCORE(-50, PrePopulationSentence)};

Sentence {AND(-POSITION(Document, 1), -POSITION(Document, 2), -

POSITION(Document, 3), -POSITION(Document, 4), -POSITION(Document, 5), -

POSITION(Document, 6), -POSITION(Document, 7), -POSITION(Document, 8), -

POSITION(Document, 9), -POSITION(Document, 10)) ->MARKSCORE(-50,

PrePopulationSentence)};

DECLARE PSentence;

PrePopulationSentence {SCORE(41, 1000000)->MARK(PSentence)};

PrePopulationSentence {->UNMARK(PrePopulationSentence)};

PopulationPosition {->UNMARK(PopulationPosition)};

Sentence {->UNMARK(Sentence)};

Quotation {->UNMARK(Quotation)};

BIBLIOGRAPHY

[1] Simpson, M. S., & Demner-Fushman, D., (2012), "Biomedical text mining: A survey

of recent progress", Mining text data, Springer, 465-517.

[2] Chiticariu, L., Li, Y., & Reiss, F. R., (2013), "Rule-based information extraction is

dead! long live rule-based information extraction systems!", Paper presented at the

EMNLP: 827-832.

[3] Khan, N., Yaqoob, I., Hashem, I. A. T., Inayat, Z., Mahmoud Ali, W. K., Alam, M.,

Shiraz, M., & Gani, A., (2014), "Big data: survey, technologies, opportunities, and

challenges", The Scientific World Journal, 2014.

[4] Sharda, R., Delen, D., & Turban, E., (2013), Business Intelligence: A Managerial

Perspective on Analytics, Prentice Hall Press.

[5] Oren, E., Möller, K., Scerri, S., Handschuh, S., & Sintek, M., (2006), "What are

semantic annotations", Relatório técnico. DERI Galway.

[6] Gruber, T., (1993), "What is an Ontology".

[7] Berners-Lee, T., Hendler, J., & Lassila, O., (2001), "The semantic web", Scientific

american, 284 (5): 28-37.

[8] McIlraith, S. A., Son, T. C., & Zeng, H., (2001), "Semantic web services", IEEE

intelligent systems, 16 (2): 46-53.

[9] Paolucci, M., Kawamura, T., Payne, T. R., & Sycara, K., (2002), "Semantic matching

of web services capabilities", The Semantic Web—ISWC 2002, Springer, 333-347.

[10] Fawcett, T., (2006), "An introduction to ROC analysis", Pattern recognition letters,

27 (8): 861-874.

[11] Sokolova, M., Japkowicz, N., & Szpakowicz, S., (2006), "Beyond accuracy, F-score

and ROC: a family of discriminant measures for performance evaluation", AI 2006:

Advances in Artificial Intelligence, Springer, 1015-1021.

[12] Hand, D. J., & Till, R. J., (2001), "A simple generalisation of the area under the ROC

curve for multiple class classification problems", Machine learning, 45 (2): 171-186.

[13] Ling, C. X., Huang, J., & Zhang, H., (2003), "AUC: a better measure than accuracy in

comparing learning algorithms", Advances in Artificial Intelligence, Springer, 329-

341.

158

[14] Devedzic, V., (2004), "Education and the semantic web", International Journal of

Artificial Intelligence in Education, 14 (2): 165-191.

[15] Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., & Sattler, U.,

(2008), "OWL 2: The next step for OWL", Web Semantics: Science, Services and

Agents on the World Wide Web, 6 (4): 309-322.

[16] Cunningham, H., (2002), "GATE, a general architecture for text engineering",

Computers and the Humanities, 36 (2): 223-254.

[17] Ferrucci, D., & Lally, A., (2004), "UIMA: an architectural approach to unstructured

information processing in the corporate research environment", Natural Language

Engineering, 10 (3-4): 327-348.

[18] El-Kass, W., Gagnon, S., & Iglewski, M., (2012), "Adaptive Rules-Driven Architecture

for Knowledge Extraction (ARDAKE) with UIMA", Paper presented at the

International Conference on Electrical and Computer Systems (ICECS'12), Ottawa:

15-27.

[19] Kluegl, P., Atzmueller, M., & Puppe, F., (2009), "TextMarker: A tool for rule-based

information extraction", Proceedings of the Biennial GSCL Conference 2009, 2nd

UIMA@GSCL Workshop: 233-240.

[20] Goble, C., & De Roure, D., (2009), "The impact of workflow tools on data-centric

research", Data Intensive Computing: The Fourth Paradigm of Scientific Discovery:

137-145.

[21] Kano, Y., Dobson, P., Nakanishi, M., Tsujii, J., & Ananiadou, S., (2010), "Text mining

meets workflow: Linking U-compare with Taverna", Bioinformatics, 26 (19): 2486-

2487.

[22] IBM, (2011), "LanguageWare Resource Workbench 7.2 - Create Parsing Rules", IBM

Corporation.

[23] Bank, M., & Schierle, M., (2012), "A Survey of Text Mining Architectures and the

UIMA Standard", Paper presented at the LREC: 3479-3486.

[24] Kluegl, P., Toepfer, M., Beck, P.-D., Fette, G., & Puppe, F., (2016), "UIMA Ruta:

Rapid development of rule-based information extraction applications", Natural

Language Engineering, 22 (1): 1-40.

[25] Kotsiantis, S. B., Zaharakis, I., & Pintelas, P., (2007), "Supervised machine learning:

A review of classification techniques".

159

[26] Chu, X., Morcos, J., Ilyas, I. F., Ouzzani, M., Papotti, P., Tang, N., & Ye, Y., (2015),

"Katara: A data cleaning system powered by knowledge bases and crowdsourcing",

Paper presented at the Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, ACM: 1247-1261.

[27] Hernández, M. A., & Stolfo, S. J., (1998), "Real-world data is dirty: Data cleansing and

the merge/purge problem", Data mining and knowledge discovery, 2 (1): 9-37.

[28] Krishnan, S., Haas, D., Franklin, M. J., & Wu, E., (2016), "Towards reliable interactive

data cleaning: a user survey and recommendations", Paper presented at the HILDA@

SIGMOD: 9.

[29] Rahm, E., & Do, H. H., (2000), "Data cleaning: Problems and current approaches",

IEEE Data Eng. Bull., 23 (4): 3-13.

[30] Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth,

R., (2000), "CRISP-DM 1.0 Step-by-step data mining guide".

[31] Galar, D., Kans, M., & Schmidt, B., (2016), "Big Data in Asset Management:

Knowledge Discovery in Asset Data by the Means of Data Mining", Paper presented

at the Proceedings of the 10th World Congress on Engineering Asset Management

(WCEAM 2015), Springer: 161-171.

[32] Heimerl, F., Koch, S., Bosch, H., & Ertl, T., (2012), "Visual classifier training for text

document retrieval", Visualization and Computer Graphics, IEEE Transactions on,

18 (12): 2839-2848.

[33] Sánchez, J. S., Barandela, R., Marqués, A. I., Alejo, R., & Badenas, J., (2003),

"Analysis of new techniques to obtain quality training sets", Pattern Recognition

Letters, 24 (7): 1015-1022.

[34] Elragal, A., & Haddara, M., (2014), "Big data analytics: A text mining-based literature

analysis", Paper presented at the Norsk konferanse for organisasjoners bruk av IT.

[35] Gupta, V., & Lehal, G. S., (2009), "A survey of text mining techniques and

applications", Journal of emerging technologies in web intelligence, 1 (1): 60-76.

[36] Langkilde, I., & Knight, K., (1998), "The practical value of n-grams in generation",

Paper presented at the Proceedings of the ninth international workshop on natural

language generation, Citeseer: 248-255.

[37] Manning, C. D., & Schütze, H., (1999), Foundations of statistical natural language

processing, MIT Press.

160

[38] Shaoul, C., Westbury, C. F., & Baayen, H. R., (2013), "The subjective frequency of

word n-grams", Psihologija, 46 (4): 497-537.

[39] Schmid, H., (2013), "Probabilistic part-ofispeech tagging using decision trees", Paper

presented at the New methods in language processing, Routledge: 154.

[40] Boswell, D., (2003), "CSE 254 (Spring 2003)“Growing N-gram Trees for Language

Modeling”".

[41] Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., & Lai, J. C., (1992),

"Class-based n-gram models of natural language", Computational linguistics, 18 (4):

467-479.

[42] Cheng, W., Greaves, C., & Warren, M., (2006), "From n-gram to skipgram to

concgram", International journal of corpus linguistics, 11 (4): 411-433.

[43] Feinerer, I., (2014), "Introduction to the tm Package Text Mining in R".

[44] El-Kass, W., Gagnon, S., & Iglewski, M., (2015), "A Visual and Results-Driven Rules

Composition Approach for Better Information Extraction", IFAC-PapersOnLine, 48

(3): 112-117.

[45] Harispe, S., Ranwez, S., Janaqi, S., & Montmain, J., (2014), "The semantic measures

library and toolkit: fast computation of semantic similarity and relatedness using

biomedical ontologies", Bioinformatics, 30 (5): 740-742.

[46] Harispe, S., Ranwez, S., Janaqi, S., & Montmain, J., (2015), "Semantic Similarity from

Natural Language and Ontology Analysis", Synthesis Lectures on Human Language

Technologies, 8 (1): 1-254.

[47] KABIRI, A., & CHIADMI, D., (2013), "SURVEY ON ETL PROCESSES", Journal

of Theoretical & Applied Information Technology, 54 (2).

[48] Pwee, K., (2004), "What is this thing called EBM?", Singapore medical journal, 45

(9): 413.

[49] Richardson, W. S., Wilson, M. C., Nishikawa, J., & Hayward, R. S., (1995), "The well-

built clinical question: a key to evidence-based decisions", Acp j club, 123 (3): A12-

13.

[50] Huang, X., Lin, J., & Demner-Fushman, D., (2006), "Evaluation of PICO as a

knowledge representation for clinical questions", Paper presented at the AMIA annual

symposium proceedings, American Medical Informatics Association: 359.

161

[51] Hassanzadeh, H., Groza, T., Nguyen, A., & Hunter, J., (2014a), "Load Balancing for

Imbalanced Data Sets: Classifying Scientific Artefacts for Evidence Based Medicine",

PRICAI 2014: Trends in Artificial Intelligence, Springer, 972-984.

[52] Verbeke, M., Van Asch, V., Morante, R., Frasconi, P., Daelemans, W., & De Raedt,

L., (2012), "A statistical relational learning approach to identifying evidence based

medicine categories", Paper presented at the Proceedings of the 2012 Joint

Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning, Association for Computational

Linguistics: 579-589.

[53] Sarker, A., Mollá-Aliod, D., & Paris, C., (2013), "An approach for automatic multi-

label classification of medical sentences".

[54] Kim, S. N., Martinez, D., Cavedon, L., & Yencken, L., (2011), "Automatic

classification of sentences to support evidence based medicine", BMC bioinformatics,

12 (2): S5.

[55] Hassanzadeh, H., Groza, T., & Hunter, J., (2014b), "Identifying scientific artefacts in

biomedical literature: The evidence based medicine use case", Journal of biomedical

informatics, 49: 159-170.

[56] Kaur, A., & Chopra, D., (2016), "Comparison of text mining tools", Paper presented at

the Reliability, Infocom Technologies and Optimization (Trends and Future

Directions)(ICRITO), 2016 5th International Conference on, IEEE: 186-192.

[57] Burita, L., & Halouzka, K., (2017), "The Effective Working with Tovek Tools", Paper

presented at the Management Challenges in a Network Economy: Proceedings of the

MakeLearn and TIIM International Conference 2017, ToKnowPress: 185-194.

